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Abstract
Plug-in hybrid electric vehicles (PHEVs) combine an electricmotorwith an internal combustion
engine and can reduce greenhouse gas emissions from transport ifmainly driven on electricity. The
environmental benefit of PHEVs strongly depends on its usage and charging behavior. Several studies
have demonstrated low electric driving shares (EDS) ofmany PHEVs.However, there is limited
evidence onwhich vehicle properties affect the EDS of PHEVs towhich extent. Here, we provide an
empirical and quantitative analysis of real-world EDS and fuel consumption and look at how they are
impacted by factors related to vehicle properties such as range, systempower andmass.We
complement previous studies on real-world EDS and fuel consumption of PHEVs by combining two
different data sets, with almost 100,000 vehicles in total, over 150models in 41 countries, which is
combined the largest PHEV sample in Europe to date to be analyzed in the literature.We find that an
increase of 10 kmof type approval range leads on average to 13%–17% fuel consumption decrease and
1%–4%EDS increase. Furthermore, a 1 kW increase in systempower per 100 kg of vehiclemass is
associatedwith an average increase of 7%–9% in fuel consumption and a decrease of up to 2% in EDS.
We alsofind that long-distance driving and charging behavior are the largest non-technical factors for
the deviation between type-approval and real-world data. Furthermore, PHEV fuel consumption and
related tail-pipe emissions in Europe are on average higher than official EU values.

1. Introduction

Electrification of transport plays a crucial role inmeeting the climate goals in Europe and the Paris Agreement
[1–5]. One of the available technologies for passenger cars are plug-in hybrid electric vehicles (PHEV) since they
combine an internal combustion enginewith an electricmotor [6]. However, the actual impact of PHEVs on
emissions depends on real-world driving behavior and the utility factor (UF), which is the share of kilometers
driven on electricity or the electric driving share (EDS), a similarmetric to theUF [1, 7–9]. Assessing PHEV fuel
consumption is challenging because it depends on various factors, including vehicle characteristics, charging
patterns, and driving behavior [10–15].

To evaluate PHEV fuel consumption, standardized testing procedures or test cycles are commonly used. In
Europe, theNewEuropeanDriving Cycle (NEDC) and theWorldwideHarmonized Light-DutyVehicles Test
Procedure (WLTP) are themost relevant [16, 17]. However, previous studies have shown that theUFs used in
these procedures are outdated andmay overestimateUFs and underestimate the actual fuel consumption and
emissions of PHEVs [16, 18–23], with some studies finding that the gap between standard values and real-world
UF ismore apparent in shorter range PHEVs, yet can shrink and level up as PHEV range increases for certain
PHEV variants in certain regions [24]. Similarly, theWLTP cycle often underestimates the fuel consumption of
internal combustion engine vehicles as well. The aimof this paper is to complement previous studies with newer
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andmore data to provide better empirical support for revisions of themeasurement of fuel consumption and
tail-pipe emissions of PHEVs in EU regulations.

Previous studies have specifically looked at the effects of charging behavior [11, 13, 15, 22], the role of driving
patterns, especially long-distance driving [3, 14, 15], and howhousehold factors such as the number of
conventional vehicles [25]may affect fuel consumption andUF. A second branch of literature that focuses on
the effect of vehicle characteristics has used simulations or real-world data from amostly small set of vehicles
[21, 26–28]. Only very few studies have used large real-world data sets to analyze the actual UF, fuel
consumption and impact of several aspects of user behavior such as charging. Thus, the empirical basis tomake
robust conclusions on the relation betweenmain vehicle properties, user behavior, andUF is weak.

In this study, we complement previous studies on real-world fuel consumption and electric driving of
PHEVs by combining two large empirical data sets on real-world PHEVusage to study the real-world fuel
consumption and electric driving share and how these are affected by technical factors. The novelty lies in
combining two data sets: eachwith several thousand PHEV, one coveringmanymakes andmodels while the
second data set covers a large number of countries. The combination of both data sets, to the authors’ best
knowledge, results in the analysis of the largest PHEV sample to date in Europewith almost 100,000 vehicles,
over 150models and covering 41 countries.

In addition, as recent statistical literature shows [29], even large samples can lead to strongly biased results,
we thus combine two PHEVdata sets in the present study to obtainmore robustfindings. This allows us also to
investigate if results fromprevious studies still are valid given 1) an update with new data and 2) a
complementary data set.We focus on technical properties and their correlation to user behavior of the vehicle
such as range (also studied in [6, 30, 31]) and power-to-mass ratio and do this based on real-world driving data.

Ourwork extends previous studies in several aspects. Firstly, this is the largest combined sample of real-
world PHEVusage data for Europe available in the literature. Secondly, by performing the same regression on
two similar data sets we reduce sample selection bias and over confidence in regression results. Thirdly, our
results cover a large number ofmakes and countries globally.

The outline of this paper is as follows. The data andmethods are presented in section 2, followed by the
results in section 3 and discussion in section 4.We close with summary and conclusions in section 5.

2.Data andmethods

2.1.Data
Wecollected two primary data sets on real-world fuel consumption and electric driving share (EDS) of PHEVs in
Europe. Thefirst data set combines different online sources, company car data, and a PHEVuser survey. It has
been collected during the years 2021 and 2022 [32]. The second data set covers on-boardmeasurement ofmany
PHEVs in Europe from a singlemanufacturer, collected during the years 2018 to 2021.

Data set 1 is a combination of different data sources. Here, we combined real world fuel consumption of
individual PHEVs fromonline fuel logs (e.g., the app andwebsite Spritmonitor.de), as well asfleet software data
from individual companies concerning their company cars, and vehicle usage survey data. Plötz, Link [32]
contains a full description of the individual sources, data cleaning, and representativeness. Data set 1 covers 27
countries, including almost allMember States of the EuropeanUnion, as well as theUK, Switzerland, and
Norway.Most data is fromGermany (N= 7123 andWestern Europe (ten other countries with at least 50
vehicles). It includes data fromprivate (N= 5808) and company cars (N= 3047), i.e., vehicles owned by an
organization and assigned to an individual user for both business and private purposes. About 70%of the
vehicles in our sample haveWLTP values reported andmost of these vehicles also haveNEDC type-approval
values. The sample covers 27 vehiclemanufacturers, over 100 PHEVmodels, and over 400model variants.
BMW (24%),Mercedes-Benz (14%), andVW (11%) are the top three brands andMitsubishiOutlander (9%),
VWPassat (5%), and BMWX3 (5%) the top threemodels. Data set 1 was cleaned in several steps: (1)Only
vehicles with build years>2010were kept. (2)Entries with partial fuel consumption larger than 20 l/100 km
were omitted. (3)Only vehicles with at leastfive refueling stops or a recorded distance of at least 1,500 kmwere
kept. (5)Careful considerationwas given to erasemild or full hybrids (HEV)whichweremistakenly entered as
PHEV in the data by checking electric charging events, officialmodel specifications, build year, and vehicle
power information tomake sure only actual PHEV are kept. The final aggregated data is freely available for
download under [32].

The second data is from a singlemanufacturer with Europe-wide operation. The data is collected between
thefirst and last workshop visit of the vehicles and is aggregated over the time in between. The data contains the
vehicle kilometers travelled (VKT)with internal combustion engine (ICE) on, idle, and off. Here, ‘ICE on’ refers
to ICE being the only engine for propulsion, ‘ICE off’ refers towhen only the electric engine is used for
propulsion, and ‘ICE idle’ refers towhen the electric engine is used for propulsion, but the PHEVcanmake use
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of the ICE under certain conditions e.g. the load and operation temperatures. It contains over 85,000 vehicles of
nine different PHEVmodels in 41 countries in Europe (EU27+EUCandidates (exc. Serbia)+EFTA (exc.
Liechtenstein)+UK+Russia+Georgia+Azerbaijan). The battery sizes range from10.4 to 11.6 kWh for eight
of themodels and 34 kWh for onemodel.WLTP range is from34 to 54 kmon average for eightmodels and
124 km for vehicles with a large battery. Themean observation period (time between twoworkshop visits) is
580 days. The data ismixed in user groups and is assumed to contain both private and company cars. Further
details regarding the specificmake andmodel of the vehicles in data set 2 are protected by a data licensing
agreement and the data is not publicly accessible. Data set 2was initially cleaned and anonymized by the data
provider, and it was further cleaned for this study by (1) omitting vehicles with less than 100 observation days,
therefore focusing the analyses on vehicles that were driven long-term, (2) omitting inconsistent observations
such aswhere the total VKTdid notmatch the sumofVKTwith ICE on, idle and off.

Table 1 contains an overview of both data sets, the number ofmakes,models and the total sample size.
In terms of vehicle classes, data set 1 has a variety of vehicle classes ranging fromEuroC-segment to

E-segment and several different SUV classes. Similarly, data set 2 has a variety of vehicle classes; EuroD-segment
and E-segment for stationwagon and sedans, several different SUV classes, and a sports car. Different SUV
classes here refer to small,medium and large size SUVs as advertised in the Europeanmarket, whereas theNorth
American classificationwould be subcompact, compact andmid-size for the same vehicles. In data set 2, D and
E-segment vehiclesmake up 29%of the data set,mediumSUVsmake up 43%of the data set, large SUVsmake
up 25%of the dataset, small SUV and sports vehiclesmake up 3%of the data set. The combined data set reflects
the variety seen in data set 2.

Model years for private cars in data set 1 range from2011 to 2021, with the averagemodel year being 2018;
whereas for company carsmodel years range from2014 to 2021, with the average being 2020. For themixed fleet
in data set 2, themodel years range from2019 to 2021, with the average being 2019.Overall, the vehicles in both
data sets were on average quite newmodels (one to two years old) during the data collection.

2.2.Methods
2.2.1. Derivation of electric driving share
PHEVs can drive with the combustion engine on or off.We define the electric driving share (EDS), denoted by
EDS ,real as share of total distance disttotal

real drivenwith the combustion engine off while in charge depletingmode,
i.e., driven purely on electricity dist .electric

real Note that inWLTP, the utility factor (UF)does notmatch the EDS
directly. InWLTP, theUF corresponds to the share of distance driven in charge depleting (CD)mode, which is
mostly electric but not fully electric [33]. Please note that the EDS is not only the quantity describing the share of
the different PHEVmodes of operation. A closely related quantity is theUtility Factor (UF)with several
definitions in the engineering literature (e.g. the FleetUF, the Individual UF, the Single Day Individual UF, the
MultipleDay Individual UF, the SpecificUF, theCity Specific FleetUF, and theHighway Specific FleetUF, cf
[30]). However, we use the EDS here for several reasons: (1) it is standard in a large part of the PHEV literature;
(2) it ismuch easier to understand; and (3) it is easy and clearly defined as the share of kmwith combustion
engine off.

=EDS
dist

dist
: 1real electric

real

total
real

( )

The EDS can be approximately derived from the real-world fuel consumption FCtotal
real (as part of the PHEV

usage data in data set 1) and from the real-world fuel consumption of driving solely in charge-sustainingmode
FCCS

real [32]:

= -EDS
FC

FC
1 2real total

real

CS
real

( )

The real-world fuel consumption of driving in charge-sustainingmode FCCS
real can be estimated fromNEDCor

WLTP type-approval values -FCCS
type approval and a correction factor X explained in the following:

Table 1.Overview of vehicle data sources by number of PHEVmakes andmodel variants covered, sample size,
predominant user group, and country.

Source #makes #models Sample User groups No. of countries

Data set 1 27 >150 8,855 private& company car 27

Data set 2 1 9 87,509 mixed private & company car 41
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= -*FC X FC 3CS
real

CS
type approval ( )

As discussed in Plötz, Link [32], -FCCS
type approval can be obtained fromNEDCorWLTP type-approval

combined fuel consumption values and the correspondingNEDC all-electric range orWLTP equivalent all-
electric range as provided by the ADACAutokatalog database [34]. Based on existing studies on the deviation of
real-world and type-approval fuel consumption of hybrid electric vehicles that are not externally chargeable, X
is approximately equal to 1.47 forNEDC and 1.23 forWLTP type-approval values, i.e., FCCS

real is on average 47%
higher than itsNEDC type-approval value [18]. The 1.23 forWLTP is taken from the deviation betweenWLTP
andNEDCobserved empirically in [18]whereNEDC is on average 20%higher thanWLTP resulting in aWLTP
pre-factor of 1.47/1.2= 1.23. Further details are given in Plötz, Link [32].

This leads to:

= -EDS
FC

FC
1

1.47
for NEDC type approval vehicles and 4real total

real

CS
NEDC

( )

= -EDS
FC

FC
1

1.23
for WLTP type approval vehicles. 5real total

real

CS
WLTP

( )

WhenbothNEDC andWLTP values are available, the two derived values for the real-world fuel consumption in
charge-sustainingmode FCCS

real do not necessarilymatch. In that case, we use the average of the two values.
Contrary to data set 1, in data set 2, the real-world fuel consumption is not available; however, the real-world

electric driving share is. Therefore, in data set 2, to calculate the real-world fuel consumption, we follow
equation (4) and equation (5) in reverse to reach the real-world fuel consumption. Similarly, if bothNEDC and
WLTP values are available, we take the average of the two values.

2.2.2. Regression analysis
The all-electric range and other vehicle properties such as systempower affect fuel consumption and EDS.We
use two separate regressionmodels to quantify the effect of these external factors on fuel consumption and EDS.
Our aim is to derive robust values for the effect of range and other vehicle properties on PHEV fuel consumption
and EDS from the combination of different data sets and different regressionmodels. Please note that we do not
analyze the effect of systempower on fuel consumption from an engineering point of view via, e.g. physical laws,
but from social science or behavioral aspect, i.e., PHEVusers with long-ranged or highly powered PHEV could
use themdifferently.

We use theWLTP values for the all-electric range, as it is readily available formost PHEVmodels. The power
of the vehicle in terms of combustion engine power, electricmotor power, and systempower, i.e., themaximum
power of allmotors and engines, are included to account for different vehicle sizes or types and engine capacity.
Strictly speaking, the systempower is themaximal power available for propulsion. For some PHEVmodels, this
is the sumof combustion engine and electricmotor power butwe looked up themaximal available power for
each PHEVmodel. In range extended electric vehicles, however, the systempower is smaller than the sumof
engine and electricmotor power because the combustion engine is not directly used for propulsion but for
battery charging.

Since fuel consumption is strictly non-negative, we use an exponential function for the effect of vehicle
models’ all-electric range and powerwith the followingmodel based on [3, 32]:

b b b e= + + + a +FC Power Mass Rangeexp Controls . 6real
0 1 2( ) ( )/

Here, Power Mass/ is the systempower in kWdivided by the vehicle emptymass in kg, and Range is the PHEV’s
all-electric rangemeasured in units of 10 km. The chosen dependence is physicallymeaningful: For Range→0,
the fuel consumption approaches afinite value (i.e., the fuel consumption in charge-sustainingmode) and goes
to zero for Range→∞ (for negativeβ2). Likewise, the fuel consumption approaches zero for systempower
tending to zero and growswith increasing systempower (for positiveβ1).We choose systempower divided by
vehiclemass as power andmass are often strongly correlatedwhichwould lead to potential collinearity issues in
the regression. Furthermore, we add several control variables (Abbreviated as Controls in equation (6) such as
model year, annual vehicle kilometers traveled (VKT), country and user group (private or company car) to
account for additional effects. The linear regression is performed after taking logarithms byweighted least
squares (with the square root of sample size as weights).

We also perform a regression analysis with the EDS as dependent variable. As the EDS is a non-negative
fraction, we use a fractional logitmodel and include the same independent variables as for the real-world fuel
consumption, likewise weighted by the square root of sample size for aggregated data (implemented as quasi-
binomial regressionmodel, see [35]).We calculate averagemarginal effects to quantify the impact of different
factors on EDS using the statistical software R [36] and the packagemargins [37].
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3. Results

3.1.Descriptive statistics
Summary statistics of fuel consumption and electric driving share for both datasets are given in table 2. It should
be noted that the summary statistics reflect the overall fuel consumption and electric driving share for all vehicles
in a user group, without distinguishing for ranges of the vehicles or other factors that can impact.We look at
factors that can affect fuel consumption and EDS separately in sections 3.2 and 3.3.

We observe that themean fuel consumption is higher for company cars in data set 1, with 7.5 l/100 km,
compared to the 4.4 l/100 km for private cars. For themixed fleet in data set 2, the fuel consumption on average
is 5.8 l/100 km. If the private and company cars in data set 2 are assumed to have themean fuel consumption as
estimated in data set 1, this wouldmean that the approximate share of company cars in data set 2 is around 55%.
The share of company cars (among newly sold PHEVs) inwestern and northern European countries range from
57% to 69% [38]. This shows that themixed fleet in data set 2 has a ratio of private to company cars that is close
to expectations.

A visual representation of the distribution of fuel consumption for both data sets is given in figure 1.We
observe that the distribution of private cars in data set 1 has a right skew and the distribution of company cars has
a left skew,mirroring each other. This clearly shows the stark difference between the two user groups. Themixed
fleet in data set 2, however, hasmore symmetric distribution as expected.

The EDS for private cars in data set 1 is on average 46%,much higher compared to the 15% for company
cars. This inverselymirrors the average fuel consumption from those user groups as expected,meaning that
company cars have higher fuel consumption and lower EDS on average, and private cars have lower fuel
consumption and higher EDS on average. On the other hand, for themixedfleet in data set 2, the average EDS is
40%which is expectedly between the values observed separately for private and company cars.

A visual representation of the distribution of electric driving share for both data sets is given infigure 2.We
observe that the distribution of private cars in data set 1 has a slight left skew and the distribution of company
cars has a right skew. EDS for private cars in data set 1, albeit having a slight left skew, has amore symmetric
distribution, compared to company cars. This indicates that although on average, EDS is higher for private cars
compared to company cars, there ismore variance in electric driving behavior for private users, whereas for

Figure 1.Distribution of fuel consumption (l/100 km) in private and company vehicles inData set 1 and in themixedfleet inData set
2; normalized tomaximum1.N refers to the total number of vehicles aggregatedwithin subsamples.

Table 2. Summary statistics of fuel consumption and electric driving share in both data sets.

Min

0.25

quantile Median Mean

0.75

quantile Max Std. dev. N*

Fuel consump-

tion (l/100 km)
Data set 1 Private cars 0.02 3.1 4.2 4.4 5.5 13.0 1.9 5,808

Company cars 0.3 6.1 7.4 7.5 8.8 17.1 2.2 3,047

Data set 2 Mixed fleet 0.1 4.6 5.7 5.8 7.1 11.5 1.7 87,509

Electric driving

share (%)
Data set 1 Private cars 0.0% 34.3% 46.6% 46.3% 59.0% 99.7% 18.8% 5,808

Company cars 0.0% 2.1% 9.7% 15.1% 22.0% 97.0% 16.9% 3,047

Data set 2 Mixed fleet 0.0% 28.1% 39.2% 39.9% 50.5% 98.9% 15.5% 87,509

*Nrefers to the total number of vehicles aggregatedwithin subsamples.
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more than 75%of the company cars EDS is lower than 22% indicating amore uniform electric driving behavior
that results in lower EDS.

TheCO2 emissions target for newly sold passenger cars in the EuropeanUnion for the period of 2020–24 is
95 gCO2/km [39]. Based on the conversion values of the Environmental ProtectionAgency in theUS [40], this
corresponds to 4.1 l/100 km in fuel consumption. The average fuel consumption in both data sets (for both
private and company cars) is above this value. For comparison, the average fuel consumption of 4.4 l/100 km for
private cars in data set 1 corresponds to 102 gCO2/km in tail-pipe emissions, for company cars this corresponds
to 173 gCO2/km and for themixed fleet in data set 2 to 134 gCO2/km; all of which are significantly above the
target level of 95 gCO2/km.

3.2. Regression results on fuel consumption
The results of the regression analysis on fuel consumption are given in table 3. For both data sets, all coefficients
are statistically significant (at 0.1% significance level) and have the expected signs. Data set 1 has a higher
goodness offit compared to data set 2, which can be explainedwith a lower variance in a smaller sample with
fewer countries.

Wefind that a 10 km increase ofWLTP range leads on average to a 13%decrease (11%–15%with 95%
confidence interval) in fuel consumption in data set 1 compared to a 17%decrease (16.6%–17.3%with 95%
confidence interval) in data set 2. The similarity in estimated coefficients and the level of significance for two data
sets (which are starkly different from each other in sample size andmodel variance) shows that the effect of range
on fuel consumption is consistent across PHEVmodels and countries in Europe.

We alsofind that every 1 kW increase in systempower for 100 kg of vehiclemass leads on average to a 7.4%
increase (6.2%–8.6%with 95% confidence interval) in fuel consumption in data set 1 compared to an 8.6%
increase (8.3%–8.9%with 95% confidence interval) in data set 2. This shows that PHEVswith higher system
power on average lead to higher fuel consumption acrossmodel variants and countries.

Figure 2.Distribution of electric driving share (in%) for private and company vehicles inData set 1 and in themixedfleet inData set 2;
normalized tomaximum1.N refers the total number of vehicles aggregatedwithin subsamples.

Table 3.Regression results on fuel consumption (l/100 km).

Data set 1 Data set 2

Estimate Std. error Estimate Std. error

Intercept −111.20 25.12 *** −464.10 4.23 ***

WLTP range (10 km) −0.13 0.01 *** −0.17 0.002 ***

Systempower /mass (kW/kg) 7.42 0.60 *** 8.60 0.15 ***

Model year 0.06 0.01 *** 0.23 0.002 ***

Annual VKT (1,000 km) 0.004 0.001 *** 0.01 0.0001 ***

User group: private −0.50 0.03 ***

+Country dummies

N 779 87,509

AdjustedR2 0.63 0.28

F-statistic 45.1*** 771.3***

Significance levels ‘***’ 0.1%, ‘**’ 1%, ‘*’ 5%, ‘.’ 10%

Sample sizeN= 779 for data set 1 refers to the number of aggregated subsamples where each observation

containsmultiple vehicles. The number of vehicles in data set 1 used for regression is 3,865 vehicles after

omitting incomplete observations.
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Wealso observe in data set 1 that private PHEVs have on average about 50% lower fuel consumption. This is
in linewith the observed behavior of private cars having lower fuel consumption as shown in section 3.1.
Considering the dependency of themodel year, an additional increase of 6%on average in fuel consumption
with every built year is observed in data set 1, compared to 23% increase in dataset 2. This discrepancymight
arise fromdata set 2 havingmuch less variance inmodel years and no variance in themake of the vehicle (single
manufacturer).We also observe that every 1,000 km increase in annual VKT is associatedwith a slight increase of
0%–1% in fuel consumption in both data sets.

3.3. Regression results on electric driving share
The results of the regression analysis on electric driving share are given in table 4.We observe that all coefficients
are statistically significant (at 0.1% significance level) and have the expected signs.

The regressionmodel is a quasi-binomial regressionmodel, whichmeans only the coefficient signs can be
directly interpreted, not the coefficient estimates. Therefore, the averagemarginal effectsmust be calculated
separately. See table 5 for the averagemarginal effects on electric driving share for both data sets.

We observe that a higherWLTP range is associatedwith a higher EDS in both data sets. An increase of 10 km
inWLTP range leads on average to 3%–4% increase in EDS in data set 1, and 1%–2% increase in data set 2. The
effect of range in data set 1 is almost three times that of data set 2. This difference can be due to the higher
number ofmodel variants and thus higher variation in ranges in data set 1, whereas the range variation is quite
limited in data set 2.

We also observe that a higher systempower permass is associatedwith a lower EDS in both data sets. Every
kW increase in systempower for 100 kg of vehiclemass leads on average to 0.8%–1.8%decrease in EDS in data

Table 4.Regression results on electric driving share (scaled 0 to 1).

Data set 1 Date set 2

Estimate Std. error Estimate Std. error

Intercept 123.73 56.7 *** 135.50 8.71 ***

WLTP range (10 km) 0.16 0.02 *** 0.06 0.01 ***

Systempower /mass (kW/kg) −6.12 1.12 *** −1.35 0.32 ***

Model year −0.06 0.03 *** −0.07 0.004 ***

Annual VKT (1,000 km) −0.02 0.003 *** −0.02 0.0002 ***

User group: private 1.73 0.09 ***

+Country dummies

N 779 87,509

Significance levels ‘***’ 0.1%, ‘**’ 1%, ‘*’ 5%, ‘.’ 10%

Sample sizeN= 779 for data set 1 refers to the number of aggregated subsamples where each observation

containsmultiple vehicles. The number of vehicles in data set 1 used for regression is 3,865 vehicles after

omitting incomplete observations.

Table 5.Averagemarginal effects on electric driving share (scaled 0 to 1).

Averagemarginal

effect Std. err.

Lower bound 95%confidence

level

Upper bound 95%confidence

level

Data set 1

WLTP range (10 km) 0.03 0.004 0.03 0.04

Systempower /mass (kW/kg) −1.30 0.26 −1.81 −0.79

Model year −0.01 0.01 −0.02 −0.002

Annual VKT (1,000 km) −0.004 0.001 −0.005 −0.002

User group: private 0.32 0.01 0.30 0.34

Data set 2

WLTP range (10 km) 0.01 0.001 0.01 0.02

Systempower /mass (kW/kg) −0.32 0.08 −0.46 −0.17

Model year −0.02 0.001 −0.02 −0.01

Annual VKT (1,000 km) −0.01 0.0001 −0.005 −0.005

The significance levels are the same as shown as in table 4. All coefficients in both data sets are statistically significant at the 0.1% significance

level.
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set 1, and 0.2%–0.5%decrease in data set 2. Similarly, the effect is larger in data set 1, which can again be due to
the limitedmodel variation in data set 2.We alsofind that having a private car is also significantly associatedwith
having a higher EDS, increasing EDS by 32%on average.More driving is associatedwith a decrease in EDS
although the effect is quite small where an increase of 1,000 km in annual VKT leads to 0%–1%decrease in EDS
in both data sets.

Please note that the regression results apply only around the observedmean values and thatmuch larger
changes, e.g., 100 km instead of 50 kmCDmode range need to be analyzed separately. In such a case, higher
order terms should be added, or existing non-linear relationships be used, for example theWLTPUF curve for
remarkably high ranges (potentially corrected for behavioral factors—see section 3.4 below).

3.4.Deviation between type approval and actual PHEV fuel consumption
In the present section, we extend the analysis of factors affecting PHEVEDS and fuel consumption beyond
technical vehicle attributes such as range and power to include user specific factors such as charging behavior
and long-distance driving. To this end, we extend the discussion in [32] by (1) differentiation of charging
behavior and long-distance driving, (2) explicitly analyzing the EDS, and (3) adding themixed fleet of data set 2.

We start with the averageWLTP type-approval EDS and fuel consumption values: 77%EDS for both private
and company cars in data set 1, as well as 70%EDS for themixed fleet in data set 2. The correspondingWLTP
mixed fuel consumption values are 1.67 l/100 km for private and 1.73 l/100 km for company cars in data set 1 as
well as 2.57 l/100 km for data set 2.

The difference between type-approval and real-world EDS can be decomposed into (1) the effect of lower
CDmode driving range, (2)more long-distance driving, and (3) lower charging frequency than once per driving
day. For the fuel consumption, an additional contribution arises from (4) the higher fuel consumption in charge
sustaining (CS)mode than expected from type-approval. The joint effect of these factors results in the actual
average real-world EDS and fuel consumption, respectively. The contribution of the individual factors is
summarized in table 6 and explained in the following. Please note that the analysis here refers only to average
values. On an individual level, actual EDS and fuel consumption can be better ormuch lower than type approval
value and further factors such as, e.g., aggressiveness of driving orweather can be important.

The real-world CDmode range and thus the EDS is lower than in type-approval since type-approval energy
consumption is on average lower than actual energy consumptionwhich also applies to the electricity
consumption in theCDmode.We use theWLTPUF curve for the EDSwith the all-electric range (AER) instead
of theCDmode range to quantify this effect. Assuming that the electricity consumption of theCDmode in real-
world usage is about 20%higher than inWLTP type-approval [28], themeanWLTPCDmode range in data set 1
of 56 kmwould be 17% lower in real-world usage, at about 46 km. The difference in theWLTPUFbetween aCD
mode range of 46 km and 56 km is about 6 percentage points. For our PHEVmodels with a typicalWLTPCS
mode fuel consumption of 7.1 L/100 km, this increases the average fuel consumption by about 0.4 l/100 km.
Thus, we arrive at –6 percentage points in EDS and+0.4 l/100 km for private, company car, andmixedfleets
from lower real-world electric driving range.

Another aspect that is underrepresented inWLTP is the importance of long-distance driving. In the original
WLTPUF curve derivation [41] the input data came from conventional vehicles with (1) limited observation
period and (2) vehicles with high daily vehicle-kmwere explicitly excluded. Yet, the vehicles in the original
definition ofWLTP seem to include some long-distance driving as theUF curvewould otherwise reach 100%
already for small ranges. Please note that the share of long-distance driving in annual vehicle km travelled
increases with the observation period of vehicles [42, 43]. ThemeanWLTP range in our data is about 55 km
resulting in 77%WLTPUF. This would correspond to about one quarter of long-distance driving dayswith
more than 100 km, as 55/400*0.265+ 100%*0.735= 77% (assuming about 400 kmdaily kmon long-distance
driving days and full recharge every night).More realistic is about one third of long-distance driving days,

Table 6.Contributions to results on electric driving share and real-world fuel consumption. Percentage differences in percentage
points (pp).

Factor
Electric driving share Fuel consumption [l/100 km]

Private Company cars Mixed Private Company cars Mixed

MeanWLTP type approval value 77% 77% 70% 1.67 1.73 2.57

LowerCDmode range −6 pp −6 pp −6 pp +0.4 +0.4 +0.4

Long-distance driving −5± 5 pp −35± 10 pp −22± 10 pp +0.4 +2.1 +1.4

Charging behaviour −20± 5 pp −21± 10 pp −2± 10 pp +1.5 +1.6 +0.2

Higher CSmode fuel consumption — — — +0.8 +1.5 +1.2

Total real-world value 46% 15% 40% 4.4 7.4 5.8
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resulting in about 73%UF. Thus, the underestimation of long-distance driving inWLTP results in about 5
percentage points (pp) lowerUF for private vehicles. Company cars have higher annual VKT andmore days of
long-distance driving. For company carswith theirmuch higher annual VKT, long-distance driving ismuch
more frequent. E.g., driving 50 kmon a regular commute yields 10,000 kmover 200working days per year,
resulting in 1/3 of the average annualmileage of 30,000 km from short-distance driving. Accordingly, the
reduction inUF due to long-distance driving is 35 percentage points (55.4/350*0.67+ 0.33= 43% instead of
78%WLTP). For themixed fleet in data set 2, the share of company cars is about 55%yielding aweighted
average reduction of about 0.45*5 pp+ 0.55*35 pp= 22 pp. As the underlying data in the derivation of the
WLTPUF curve is not publicly available, all the estimates comewith noteworthy uncertainty whichwe estimate
as± 5 percentage points for private and± 10 percentage points for company cars.

For EDS, the remaining difference to real-world EDSmust be due to less charging than assumed inWLTP.
Aswe observe EDS of 46% for private, 15% for company cars, and 40% for themixed fleet of data set 2, the
resulting effect from less than daily charging is –20± 5 percentage points for private,−21± 10 percentage
points for company cars, and –2± 10 percentage points for themixedfleet in data set 2. Again, the uncertainty
from the share of long-distance driving is present in the uncertainty of these estimates.

Finally, we study the effect from a higher CSmode fuel consumption than in type-approval conditions.We
take the average real-world fuel consumption values of 4.2 l/100 km for private and 8.0 l/100 km for company
PHEVs as an example. As described in section 2.3, we assume that the real-world fuel consumptionwhen driving
on fuel can be approximated by theCSmode fuel consumption and that the real-world CSmode fuel
consumption is 23%higher than theWLTPCSmode fuel consumption. Thereby,+0.8 l/100 km for private
cars and+1.5 l/100 km for company cars aswell as 1.2 l/100 km for themixedfleet in data set 2 can be attributed
to the deviation of real-world and type-approval CSmode fuel consumption values. Note that the contribution
of the difference in fuel consumptionwhen driving on fuel is proportional to the fuel consumption resulting
from the realized EDS andCDmode driving share. The higher value for company than for private cars is linked
to their lower EDS.

Table 6 shows the contributions to results on EDS and real-world fuel consumption for private and company
cars in data set 1 as well as themixed fleet of data set 2.

In summary, the contribution of different non-technical factors to real-world EDS and fuel-consumption
can be approximated.Wefind that long-distance driving and charging behavior are the largest factors for the
deviation between type-approval and real-world data despite all uncertainties. These factors also differ between
private and company cars.

3.5. Sensitivity analysis and robustness checks
Wechecked variance inflation factors to account for potentialmulti-collinearity in our regressionmodels. An
initial observation of high variance inflation factors when systempower andmasswere included as separate
variables led to further testing. Pearson correlation coefficients in both data sets between systempower andmass
were greater than 0.5, indicating a strong correlation. To avoidmulti-collinearity, we used systempower divided
bymass in our regressionmodels. This appears to be a potential issue in other studies where vehicle power and
mass have been included separately. Thefinal regressionmodels in the present study for fuel consumption and
EDS as dependent variables show variance inflation factors less than 2, which indicates no problems ofmulti-
collinearity.

We tested regressionmodels (for both fuel consumption and EDS) on data set 1 but using only the same
make vehicles as in data set 2, to check if the samemake vehicles behave similarly in both data sets.We found, for
both fuel consumption and EDS, that the coefficient signswere the samewith slightly differentmagnitude.
However, except for a few coefficients (range and user group), all variables were statistically insignificant. This
can be due to the small sample size of 260 vehicles that were used for the regressionmodels on data set 1when
limited to onemake. Yet, the similarity of coefficient signs and estimates proves the comparability of the two
data sets. Furthermore, we added further control variables such as vehicle size to the regressionmodels without
relevant changes to the results.

Themultipliers of 1.47 forNEDC in equations (4) and 1.23 forWLTP in equation (5) directly impact the
calculation of EDS in data set 1 and fuel consumption in data set 2. Therefore, we performed a sensitivity analysis
wherewe varied thesemultipliers± 10%,meaning theNEDCmultiplier is varied between 1.32 and 1.62 and the
WLTPmultiplier is varied between 1.11 and 1.35.We observed that for the calculation of EDS in data set 1, the
variation of thesemultipliers impacts the EDS± 6%on average. On the other hand, for the calculation of fuel
consumption in data set 2, the variation of thesemultipliers impacts the fuel consumption± 0.6 l/100 kmon
average. Additionally, we also tested how the variation of thesemultipliers impact the regression results on EDS
and fuel consumption.We ran the regression analyses when theNEDCandWLTPmultipliers were 10% lower,
5% lower, 5%higher and 10%higher compared to the base values (that is forNEDCmultiplier 1.32, 1.39, 1.54,
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1.62, and forWLTPmultiplier 1.11, 1.17, 1.29, 1.35.).We observe that the coefficient estimates both in the EDS
and fuel consumption only slightly change; the coefficients signs are the same and the change in estimates is so
small such that if the same number of significant digits are used as in tables 3–5, the difference is not visible to the
reader. On the other hand, the statistical significance of the variables is the same, with the exception of ‘model
year’ on the EDS regression. For themodel year, we observed that when themultipliers are tested at the lowest
value (1.32 forNEDC and 1.11 forWLTP), it is still statistically significant, however at the 10% significance level,
instead of the 0.1% level.We did not observe this change for the regression analyses regarding fuel consumption.
The sensitivity analyses regarding themultipliers in equation (4) and equation (5) and the following robustness
checks on regression analyses show that our results are not significantly impacted by a± 10%magnitude change
in thesemultipliers, and therefore can be considered robust.

4.Discussion

Toderive the real-world EDS in data set 1, and reversely to derive real-world fuel consumption in data set 2, we
assume that the EDS is the share of pure electric driving,meaning the internal combustion engine (ICE) is
switched off. InWLTP type-approval calculations, this corresponds to the share of charge depleting (CD)mode
driving share. For some PHEVs, CDmode corresponds to ICE switched off, however in others, the PHEV can
make use of their ICE under certain conditions depending on e.g., the load and operation temperatures [44, 45].
In cases where the PHEVmakes use of its ICE, the estimated electric driving sharewill be higher; however, in that
case theCDmode rangewill also be higher. In data set 2, we have access to both pure electric driving (ICE
switched off) andCDmode driving (ICE switched off and ICE idle where the PHEV canmake use of the ICE).
We calculated EDSboth as share of pure electric driving and as share of CDmode driving.Wefind that the EDS
as share of pure electric driving is on average only 1% lower thanCDmode driving.We alsofind that using CD
mode does not result in any difference in our regression analysis, except for negligible changes to coefficient
estimates (at the second decimal). Furthermore, our assumptions regarding the calculation of fuel consumption
in charge sustainingmode, as shown in equation (3)were validated in Plötz, Link [32] and showonlyminor
deviations in recalculation toWLTP type-approval values. Therefore, we consider ourmethod of deriving real-
world EDS and real-world fuel consumption to be sufficiently accurate for the present purpose. Also note that
the definition of EDS presented above refers to the share of kmdrivenwith engine off ‘while inCDmode’.
Compared to other studies of the EDS, this definition adds the term ‘while inCDmode’ to specify the
circumstances of engine being off. By this we exclude a small number of kmdrivenwith engine off while in
charge sustaining (CS)mode operation to be consistent with further assumptions and technical definitions of
CD andCSmode inWLTP.Without this addition to the definition, non-plug-in hybrid electric vehicles (HEVs)
would have EDS>0. This is not a problem in itself and often the EDS ofHEVwould be small asmostHEV and
PHEV inCSmode have the engine off only rarely when they drive at very low speeds for short distances, e.g.
while parking or in stop-and-go traffic situations. As such this addition hasminor implications when compared
to the studies of EDS and can be in the small single digit percent range like the EDS versus CDmode share
discussion above.

The two data sets we use in this study are clearly complementary and both have strengths andweaknesses.
We combine them in the present study to reduce potential sample bias and to obtainmore robust results. Data
set 1 contains a larger number of different vehiclemakes and in generalmore variancewithin the control
variables as well asmore control variables such as user group. Yet, the sample size of data set 1 is noteworthy
smaller than in data set 2 and covers fewer countries with a focus onGermany (see Plötz, Link [32] for a
discussion). Data set 2, on the other hand, has amuch larger sample and coversmore countries from the same
make, which allows good coverage of country specific differences. However, with the drawback of lower variance
in the range, power and other vehicles characteristics, as well as not containing any information regarding user
groups (private and company cars). By applying the same regressionmodels and analysis to both data sets, we
obtain robust results that are less affected by sampling bias. In addition, the derivation of EDS and fuel
consumption apply only to one data set at a time. Data set 1 has real-world fuel consumption, thus EDS is
derived, whereas data set 2 has real-world EDS, thus fuel consumption is derived;meaning that each regression
model—applied to both data sets—presents results both on real-world and derived EDS or fuel consumption.
This allows for detecting any significant inaccuracy regarding themethodswe use to derive EDS and fuel
consumption, whichwe do not observe any.

In the regression analysis, all coefficients have the expected signs. Longer ranges and lower annualmileage
are associatedwithmore electric driving and less fuel consumptionwhereas larger combustion engines
(combustion engine power dominates systempower) correlate with less electric driving and higher fuel
consumption (atfixed vehiclemass). Please note thatwe are studying vehicle usage behavior in large PHEV
samples here and not engineering properties of vehicles. Of course, the coefficients differ slightly between the
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two data sets due to different sample composition and the availability of control variables. Yet, in general, the
effect sizes are in linewith existing literature reports and underline ourfindings’ robustness.

Please note furthermore, that the aim and contribution of the regression analysis is not to predict the
dependent variable (electric driving share and fuel consumption in our case) far away from the dependent
variables’mean values but rather to analyze the effect of various contributing factors while controlling for other
variables. As such, the regression results from themodels presented above cannot directly predict the electric
driving share or fuel consumption of PHEV for very large or very small values of independent variables, e.g. very
lowpower or very large all-electric ranges. For such an analysis, higher order termswould need to be
incorporated, which is beyond the aim and scope of the present paper.

In this study, we focus on the effect of vehicle characteristics on fuel consumption.However, fuel
consumption is also affected by external factors such as fuel prices, electricity prices, availability of chargers, and
weather conditions [46, 47]. Future studies could consider these in the analysis focusing on a country
comparison rather than vehicle andmodel comparison.

The empirical data demonstrates clear differences in electric driving and fuel consumption between
privately owned PHEV and company cars. As the vehicles are the same, the reasons for the difference are
obviously non-technical factors. Company car owners very often receive tax benefits for owning the vehicles
irrespective of their charging or usage behavior. Furthermore,many companies hand out fueling cards which
allow company car owners to refuel their vehicles without own expenses. Apart from these policy incentives,
company car owners showhigher annualmileagewhich correlates withmore frequent long-distance driving
resulting in lower EDS evenwhen recharging every day. It has long been acknowledged that driving cycles are
imperfect representations of real-world driving nomatter that driving train.While theWLTP is an
improvement compared toNEDC, it is still optimistic when it comes to fuel consumption and related emissions
(this does not only apply to PHEVs). A recent report by the EuropeanCourt of Auditors [48]finds –based on on-
boardmeasurements of PHEVs from2021– that themean real-world emissions are 3.5 higher than theWLTP
values, showing that ourfindings are in linewith large scale data, in addition to [32]. The EPAdriving cycle is
closer to real-world data; however, studies have shown that even this driving cycle underestimates fuel
consumption [49, 50]. These shortcomings have already partially been addressed by revisions of theUF curves
used in the estimations of fuel consumption (AnnexXIV of COMMISSIONREGULATION (EU) 2023/443)
[51] changes theWLTPUF curve from2025 onwards to lowerUF compared to today) and should be analyzed in
more detail withmore empirical data in the future (including alternativemeasurement procedures such as in-
vehicle telematics). Such changes do not necessarily bring the gap between type-approval and real-world fuel
consumption to zero but reduce it to the gap size of about 15%known for ICEs.

5. Summary and conclusions

In this study, we analyze fuel consumption and electric driving of PHEVs in Europewith two data sets. The
novelty of our study is that by using two data sets with different characteristics in sample size andmodel
variation, we reduce sampling bias to obtain robust results. In addition, the combination of both data sets
resulting in almost 100,000 vehicles, over 150models in 41 countries in Europe is the largest PHEV sample to
date to be analyzed in literature.Wefind that PHEV fuel consumption overall on average is significantly above
the EU target of 4.1 L/100 km (95gCO2/km) set for 2020–24, and private cars tend to have lower fuel
consumption and higher electric driving shares compared to company cars. Thus, the deviation between type
approval and actual fuel consumption ismuch larger for PHEV than for internal combustion engine vehicles.
We alsofind that an increase of 10 km inWLTP range leads on average to a decrease of 13% to 17% in fuel
consumption and an increase of 1% to 4% in electric driving share. Apart from the effect of range, we alsofind
that a kW increase in systempower per 100 kg of vehiclemass leads on average to an increase of 7% to 9% in fuel
consumption and a decrease of up to 2% in electric driving share. Our results highlight that PHEVs in Europe
have higher carbon emissions compared to EU targets. They also show that apart from range, the systempower
of the vehicle also has a significant impact on fuel consumption and electric driving share. The policy
implications of our study are that (1) incentives for PHEVs should be based onmonitoring of real-world fuel
consumption and electric driving due to the poor environmental performance of PHEVs compared to type-
approval values and (2) apart from range, other factors such as systempower of the vehicle should also be
considered by policymakers.
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