
An Algorithm for Tunable Memory Compression of Time-Based Windows
for Stream Aggregates

Downloaded from: https://research.chalmers.se, 2024-06-30 18:48 UTC

Citation for the original published paper (version of record):
Gulisano, V. (2024). An Algorithm for Tunable Memory Compression of Time-Based Windows for
Stream Aggregates. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 14351 LNCS: 18-29.
http://dx.doi.org/10.1007/978-3-031-50684-0_2

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

An Algorithm for Tunable Memory
Compression of Time-Based Windows

for Stream Aggregates

Vincenzo Gulisano(B)

Chalmers University of Technology, Gothenburg, Sweden

vincenzo.gulisano@chalmers.se

Abstract. Cloud-to-edge device continuums transform raw data into
insights through data-intensive processing paradigms such as stream pro-
cessing and frameworks known as Stream Processing Engines (SPEs).
The control of resources in streaming applications within and across such
continuums has been a prominent topic in the literature. While several
techniques have been proposed to control resources like CPU, limited
control exists for other resources such as memory.

Based on this observation, this work proposes an algorithm for stream-
ing aggregation that allows for control of memory usage through lossless
compression. The algorithm provides a “knob” to control the amount
of state that should be compressed, prioritizing the compression of old
over fresh data when performing streaming aggregation. Together with
a detailed algorithmic description, this work presents preliminary results
from a fully implemented prototype on top of the Liebre SPE, showing
the effectiveness of the proposed approach.

Keywords: Stream Processing · Stream Aggregate · Compression

1 Introduction

Cloud-to-edge device continuums support pipelines transforming edge data into
cloud-based insights/decisions. These pipelines often rely on data-intensive pro-
cessing paradigms like stream processing where applications are defined as
Directed Acyclic Graphs (DAGs) of operators and run by Stream Processing
Engines (SPEs). SPEs allow control of how pipelines are deployed through the
distribution and parallelization of the operators of a DAG.

Despite the increasing computational power of the cloud-edge continuum,
resources are typically dedicated to critical tasks, with limited room for cus-
tom analysis, especially at the edge (e.g., as in modern vehicles, where powerful
devices are primarily utilized for critical driving applications [18]).

The ability to control resource utilization of stream processing applications
has been a prominent topic in the literature, e.g., with adaptive distribution and
elasticity [8,9], shedding [20], and thread scheduling [22,23]. However, current

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
D. Zeinalipour et al. (Eds.): Euro-Par 2023 Workshops, LNCS 14351, pp. 18–29, 2024.
https://doi.org/10.1007/978-3-031-50684-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-50684-0_2&domain=pdf
http://orcid.org/0000-0002-2136-9179
https://doi.org/10.1007/978-3-031-50684-0_2

Windows Compression in Streaming 19

solutions offer limited control over memory usage, which is crucial for stream-
ing applications with operators maintaining state over analyzed data to manage
their memory footprint. In this context, this work introduces an algorithm for
streaming aggregation that allows for control of memory usage through compres-
sion. By defining a single additional parameter to existing streaming aggregation
parameters, the algorithm provides a “knob” to control the amount of state that
should be compressed, prioritizing the compression of old over fresh data.

This work provides a detailed algorithmic description of the proposed solu-
tion, along with a fully implemented prototype on top of the Liebre SPE [21].
The results demonstrate the effectiveness of the approach in managing memory
usage while maintaining the desired level of aggregation accuracy.

2 Preliminaries

2.1 Stream Processing Basics and Streaming Aggregation

According to DataFlow [2], a stream S is an unbounded sequence of tuples, each
defined by its type 〈τ, v1, . . . , vn〉, where τ is the timestamp attribute, always
included in the type of a tuple, and v1, . . . , vn are application-specific attributes.
Streams are homogeneous: every tuple t of the same stream S has the same type.

Stream processing queries (or simply queries) are composed of ingresses, oper-
ators, and egresses. Ingresses forward tuples (e.g., events reported by sensors or
other applications) to operators, the basic units manipulating tuples. Operators
connected in a Directed Acyclic Graph (DAG) process and forward/produce
tuples; eventually, tuples are fed to egresses, which deliver results to end-users
or other applications. Multiple copies of the same operator can be deployed
within the same DAG, each analyzing a portion of a given stream (e.g., tuples
sharing the same key in key-by parallelism, as explained in the remainder).

As an ingress tuple t corresponds to an event, t.τ is the event time set by the
ingress when the event took place. Event time is expressed in time units from a
given epoch and progresses in SPE-specific δ increments (e.g., milliseconds [11]).

Operators are distinguished into stateless and stateful. FlatMap, Filter, and
Map are stateless operators that do not maintain a state that evolves accord-
ing to the tuples they process. Stateful operators produce results from a state,
dependent on one or more tuples. This work targets stateful operators defined
over delimited groups of tuples called time-based windows (or simply windows)
which are commonly provided by SPEs [11,21,25]: Aggregates over windows.

An Aggregate A(WA,WS, SI , fK , fA, fO, fS) is defined by parameters:

Window Advance (WA), Size (WS): the epochs [�WA, �WA + WS), with
� ∈ N, covered by A. Each epoch is referred to as a window instance γ. If
WA < WS, consecutive sliding γs overlap and a tuple can fall into several γs.
If WA = WS, each tuple falls in exactly one tumbling γ.

Stream SI : the input stream fed to A.
Function fK : which specifies the subset (possibly empty) of SI tuples’ attributes

used to maintain dedicated γs for tuples that share the same key. Note that
fK affects the way in which A is parallelized, as discussed next.

20 V. Gulisano

Function fA(γ, t) to add to γ the contribution of t.
Function fO (γ) to compute the values of an output to from γ.
Function fS (γ, l) to advance γ to its new left boundary l, increasing l by WA.

A γ’s left boundary (inclusive) is referred to as γ.l (omitting γ if clear from
the context). The right (exclusive) boundary is γ.l +WS. When an output tuple
to is created from γ, to.τ is set by A to γ.l + WS − δ [6,11,25].

As aforementioned, SPEs parallelize the execution of an operator by deploy-
ing multiple copies of such an operator. To achieve this, SPEs let users define
operators as logical, and later convert them into physical instances. Since stateless
operators do not maintain a state that evolves based on the tuples they process,
the data fed to multiple instances of the same logical operator can be shuffled
or fed in a round-robin fashion. For logical stateful operators like A, SPEs rely
on key-by routing/partitioning, splitting the data sent to such instances so that
tuples sharing the same fK value are correctly processed by the same instance.

2.2 Correctness Conditions

Users expect SPEs’ executions to enforce A’s semantics correctly:

Definition 1. A’s execution is correct if any subset of tuples from SI sharing
the same key and falling in the same γ is jointly processed by fO exactly once
and the resulting output tuple is forwarded to A downstream peers.

For A, Definition 1 implies that all the tuples falling into γ should be added
to γ by fA and jointly processed by fO exactly once. Correct execution can be
achieved by consistently maintaining A’s watermarks [17]:

Definition 2. A’s watermark Wω
A at wall-clock time ω is the earliest event time

a tuple ti fed to A can have from ω on (i.e., ti.τ ≥ Wω
A ,∀ti fed to A from ω on).

Watermarks are commonly maintained assuming ingresses periodically out-
put special watermark tuples with monotonically increasing timestamps [11,17].
They serve as notifications of how event-time advances from the perspective of
ingresses, and operators use them to (1) make progress even in the absence of
regular tuples and/or (2) reorder tuples from out-of-timestamp-order streams.

Upon receiving a watermark, A can store the watermark’s time and update
Wω

A to the smallest value among those in the set comprised of the latest water-
mark from each input stream. Upon reception of a watermark that increases
Wω

A , A can output the results of all γs whose right boundary is not greater than
Wω

A (i.e., invoke fO on any γ|γ.l + WS ≤ Wω
A) since no more tuples will fall in

such γs, and then forward Wω
A to its downstream peers.

3 Problem Definition

This study aims at defining an Aggregate operator that lets users customize its
behavior through its common parameters (see Sect. 2.1) allowing to control which

Windows Compression in Streaming 21

portion of its γs should be compressed, ranging from none to all, prioritizing the
compression of γs updated least recently over those updated more recently.

Since the additional compression and decompression of γs can ease memory
consumption but also incurs a computational cost besides the data handling
and data analysis ones already defined by an Aggregate, this work assesses the
memory/performance trade-offs based on the following metrics:

– Throughput: the number of tuples processed per unit of time,
– Latency: the delay in the production of an output tuple once the tuple trig-

gering the production of such an output is fed to A,
– Number of compressions/decompressions (cumulative) over time,
– Memory usage: the total memory used by A’s state, and
– Percentage of compressed/uncompressed γs (over the total number of γs).

This work assumes that each one of the input streams fed to an instance of
A is sorted on its timestamp attributes or, alternatively, that it can be sorted by
relying on watermarks before being fed to A [15]. If multiple streams are fed to
A, then they are first merge-sorted based on their timestamp, for instance, like
in [16]. Notice that, with such an assumption in place, the timestamp of each
tuple fed to A is in fact an update of the A’s watermark, since any later tuple fed
to A will have an equal or greater timestamp, according to Definition 2. For A’s
downstream operators/sinks to also count with sorted streams, the algorithm
should also produce A’s output tuples in timestamp order [16].

When presenting the proposed algorithm, for ease of exposition, the SPE
running the A is assumed to define two main methods: process(t), invoked by
the SPE to signal A that a new input tuple t can be processed by the latter,
and forward(t), invoked by A when a new output tuple t can be forwarded to
downstream operators/sinks, after t.τ is set by the SPE according to the A’s
WA and WS parameters (see Sect. 2.1).

4 Proposed Algorithm and Aggregate Operator

This section overviews the algorithm proposed for an operator AC that can
compress part of the γs that have updated least recently, later decompress-
ing/compressing them based on updates or results production.

Besides the parameters covered in Sect. 2.1, AC defines an additional param-
eter D, to express the maximum time distance in event time that can elapse from
the update of a γ to its compression. Note such a parameter allows tuning the
fraction of γs that are compressed by AC in a range that goes from D = 0, where
all γs will be immediately compressed after their update, to D = ∞, where no
γ will be compressed. Also, note that for D 	= ∞, any compressed γ must be
decompressed before invoking fA, fO, or fS on it.

Algorithm 1 shows AC ’s variables and methods. AC ’s variables include WA
and WS (L 1), parameter D (L 2), two Map objects uncompγ and compγ main-
taining uncompressed and compressed γs, respectively (L 3), the earliest left
boundary el of any γ maintained by AC (L 4), a TreeMap linking a given event

22 V. Gulisano

Algorithm 1: Aggregate AC supporting compression, run by the SPE.
Local variables:

1 WA, WS // window advance and size

2 D // max event-time diff. from last insertion to trig compression

3 Map<k,γ> uncompγ , compγ // uncompressed/compressed γs
4 el // earliest left boundary of any γ kept by A
5 TreeMap<τ,Set<k>> τK // keys for each latest contrib. timestamp

6 Map<k,τ> kτ // latest contribution for key k
Auxiliary Methods:

7 getEarliestLeftBound(τ) // get γ’s earliest left bound for τ
8 getOrCreate(k, τ) // get (decompress if needed) or create γ
9 compress(γ),decompress(γ) // compress/decompress γ

10 Method process(t) // process tuple t
11 while el + WS < t.τ do // Output and advance γs
12 for k ∈ uncompγ do // Output and advance uncompressed γs
13 forward(fO(uncompγ [k]))
14 uncompγ [k] ←− fS(uncompγ [k], el + WA)
15 if |uncompγ [k]| == 0 then // remove if γ is empty

16 uncompγ .remove(k)

17 for k ∈ compγ do // Output and advance compressed γs
18 γ ←−decompress(compγ [k]) // decompress γ
19 forward(fO(γ))
20 γ ←− fS(γ, el + WA)
21 if |γ| == 0 then // remove if γ is empty

22 compγ .remove(k))
23 else // compress γ again

24 compγ [k] ←− compress(γ)

25 el ←− el + WA // advance earliest left boundary of γs kept by A

26 k ←− fK(t) // get t’s key

27 l ←− getEarliestLeftBound(t.τ) // get γ’s earliest left bound for t
28 γ ←− getOrCreate(k,l) // get (decompress if needed) or create γ
29 γ ←− fA(γ, t) // add the tuple

30 if k ∈ kτ then // update kτ and τK based on t
31 τK[kτ [k]].remove(k)

32 kτ [k] ←− t.τ
33 τK[t.τ].add(k)
34 for τ ∈ τK do // compress γs not updated in the last D time units

35 if t.τ − τ ≥ D then
36 for k′ ∈ τK[τ] do
37 compγ [k′] ←− compress(uncompγ [k′])
38 uncompγ .remove(k′)
39 kτ .remove(k′)
40 τK.remove(τ)

41 else
42 break

Windows Compression in Streaming 23

time τ with all keys for which τ represents the last event time at which the
corresponding γ has been updated (L 5), and a Map storing, for each key, the
latest event time at which the corresponding γ has been updated (L 6).

Notation: M [k] refers to the entry k of Map or TreeMap M , M .remove(k)
indicates key k is being removed from M , S.add(k) indicates the k is being
added to set S, “if (k ∈ M) {}” checks if k is a key maintained by M , |γ|
refers to the number of tuples in γ. The keys of a TreeMap M are traversed in
increasing order when running “for (k ∈ M) {}”.

In Algorithm 1, the auxiliary method getEarliestLeftBound(τ) computes
the left bound of the earliest γ to which a tuple with timestamp τ contributes
to (L 7). Method getOrCreate(k, τ) retrieves the γ for key k and timestamp
τ . If γ exists but is compressed, the method decompresses γ before returning it,
while if γ does not exist, the method creates it (L 8). Methods compress(γ)/
decompress(γ) compress/decompress γ, respectively (L 9).

Upon reception of a new input tuple (method process(t), L 10), AC pro-
duces all the output tuples that can be produced based on t.τ . As discussed in
Sect. 3, t.τ represents in this case AC ’s latest watermark (see Sect. 2.2). AC keeps
producing, in timestamp order, the results of the γs it maintains as long as their
left boundary indicates such γs are expired (i.e., as long as el +WS < t.τ , L 11),
increasing el by WA at each iteration (L 25), and thus meeting the requirement
of producing output tuples in timestamp order (see Sect. 3). Within each itera-
tion, AC begins by producing the results for uncompressed γs. For each γ, the
result is retrieved and forwarded by AC . Subsequently, γ is advanced and either
maintained or discarded depending on whether it is empty or not once advanced
(L 12-16). Results for compressed γs are produced similarly, with additional calls
to methods decompress, before producing the result of a γ and advancing it,
and compress, before storing back in compγ a non-empty γ (L 17-24).

Once the output tuples (if any) that could be produced based on the incoming
t are forwarded, AC retrieves k = fK(t) (L 26), the left boundary of the earliest
γ to which t contributes (L 27), the corresponding γ, decompressing or creating
it if necessary (L 28), and proceeds adding t to γ (L 29). Then, it proceeds
to update the information about the latest event time at which k has been
updated. If k was previously updated it removes K from the set of keys for
the corresponding event time update. Then, it proceeds to update kτ [k] and τK
(L 30-33). Finally, AC traverses all the keys of the uncompressed γs it maintains
based on the latest event time at which each key updated its corresponding γ.
The γs that refer to keys whose last update is far away from t.τ more than D
time units are compressed and moved from uncompγ to compγ , updating kτ [k]
and τK accordingly. Note the traversal stops as soon as the distance between t.τ
and the latest update of a given set of is less than D (L 34-42).

5 Evaluation

The evaluation begins by discussing hardware/software, data, and how exper-
iments are conducted for AC . Then, it discusses how the performance metrics
introduced in Sect. 3 behave for various setups of the experiments’ parameters.

24 V. Gulisano

Hardware/Software. Experiments run on an Intel Xeon E5-2637 v4 @ 3.50
GHz (4 cores, 8 threads) server with 64 GB of RAM with Ubuntu 18.04. The
server is representative of a device that could be deployed at the edge end of the
cloud-edge continuum in connection to the use-case presented next. Algorithm 1
has been implemented using the Liebre SPE [21] and the Snappy [1] compressor.

Data. For SI (see Sect. 2.1), the data comes from the Linear Road bench-
mark [5], a popular benchmark in stream processing that simulates a real-time
traffic monitoring system. Its data models individual vehicles with a given num-
ber of highways, generating a stream of reports of vehicles’ position and speed,
with new reports being generated every second. Consecutive reports from the
same vehicle are 30 s apart (in event time). Each vehicle starts/ends producing
reports within a given event time interval, lasting a few to tens of minutes. The
simulated traffic covers 3 h (in event time) and results in ∼ 44 million tuples.

Experimental Setup. AC ’s fO (see Sect. 2.1) counts the number of stops each
vehicle performs during its journey, where a stop is a sequence of at least one
position report with zero speed in-between reports with non-zero speed (or hap-
pening at the very beginning/end of the journey), over a window with WA and
WS set to 1 min and 3 h, respectively. AC ’s fA and fS store and remove tuples
in a γ’s internal state, respectively. The experiments study AC ’s performance for
varying injection rates – 5∗103, 10∗103, 20∗103, 25∗103, and 40∗103 t/s – up to
the rate sustainable for an AC that does not compress its γs, and D values (see
Sect. 4) – ∞, 20 m, 10 m, 1 m, 15 s and 0 s. Note that, for a fair comparison,
the original Liebre Aggregate is used when D = ∞ (i.e., when no γ is to be
compressed). Each experiment lasts 10 min. The data collected during the first
(warm-up) and last (cool-down) minutes is excluded from the results. For each
experiment, given the performance metrics introduced in Sect. 3, throughput
and latency metrics refer to the average value observed during the experiment,
while ratio, compression, decompression, and memory metrics refer to the value
at the end of the experiment. All results are averaged over 10 repetitions. Shaded
areas in the plots represent the 99% confidence interval. Since accurate runtime
memory estimation in Java is costly, runtime measurements are based on pre-
computed measurements, obtained using the Jamm library1, of tuples’ sizes and
per-tuple overheads (e.g., for maintaining a tuple in a LinkedList), later used
as a multiplicative factor of the total number of tuples maintained by AC .

Results. Figure 1(a) presents the legend for the different injection rates used in
all the subsequent plots, while Figs. 1(b) and 1(c) present the throughput and
latency metrics, respectively, for the various injection rates and D values. As
shown, the throughput degrades for decreasing D values, and, the higher the
injection rate, the more severe the degradation. Similar trends are observed for

1 https://github.com/jbellis/jamm.

https://github.com/jbellis/jamm

Windows Compression in Streaming 25

the latency, with an increasing overhead as D increases and higher overheads
observed for higher injection rates.

Fig. 1. Legend for all figures(a), and throughput(b)/latency(c) performance figures.

Fig. 2. Throughput (b) and latency (c) overheads.

The actual overheads (in t/s for throughput and s for latency) observed when
comparing the performance of an AC that does not rely on compression (i.e.,
when D = ∞) and one that does (i.e., when D 	= ∞) are shown in Fig. 2(a)
and Fig. 2(b), respectively. As shown, the degradation can grow to e.g., −40%
throughput and +9× latency for a low D value (15 s) and high injection rate
(40∗103 t/s). To contextualize the overheads with respect to the gains in memory,
though, one can observe from Fig. 3(a) and Fig. 3(b) that the values 15 s and 0 s

26 V. Gulisano

for D are the values at which the total number of compressions/decompressions
spikes. If this is expected when D = 0 s, since each γ is immediately compressed
once a tuple is added to it, it is also expected for D = 15 based on the data being
processed: since 15 s is less than the time interleaving two reports from the same
tuple, such a value implies each γ, once a tuple is added to it, is compressed
before any subsequent tuple from the same vehicle is again added to it.

Fig. 3. Overall number of compression (a) and decompression (b) actions

For a larger D value such as 60s, one can nonetheless observe that the benefits
from the memory perspective are visible even for a less aggressive compression
threshold, as shown in Fig. 4(a) and Fig. 4(b). For a medium injection rate, one
can observe a reduction of approximately 2/3 in the overall memory (from 3
to 1 GB), with approximately 40% of the overall γs being compressed, with a
throughput degradation of about 15%.

In general, the preliminary results indicate several configurations of the D
parameter, for several of the studied rates, have overheads that lead to perfor-
mance figures in the same order of magnitude as those without compression,
while they allow reducing memory usage by at least one-third.

6 Related Work

Managing access to computational resources in streaming applications is a widely
researched topic, as evidenced by the literature [3,7,9,19,22,23]. While several
proposed techniques/tools focus on CPU resource control [9,23] memory man-
agement (in general) and compression (in connection to this work) have received
less attention, unlike in databases where they have been discussed in major
depth [26]. Examples in stream processing are e.g., discussed in [23], including
the provisioning and scheduling of threads to queries and their operators.

Focusing on the existing solutions for streaming applications, memory control
has been discussed in [12–14] but with a focus on specific hardware like FPGAs.
The compression technique proposed in [14] is also for stream aggregation but for

Windows Compression in Streaming 27

Fig. 4. Overall memory usage (a) and ratio of uncompressed/compressed γs (b)

tuple-based windows, which differ from the windows considered in this work. The
tuple-based windows are chosen for FPGAs because they allow the exact size of
each window instance to be known in advance, enabling allocation and control
of the required memory for that window instance. Expanding the discussion to
generic hardware, other complementary approaches have been proposed in [10,
18]. However, these techniques differ from this work in that they apply lossy (with
a controllable error bound) instead of lossless compression and apply compression
to streams across operators rather than within an Aggregate operator. Similarly,
[24] proposes a compression scheme for tuples maintained outside individual
operators’ states. While [24] evaluates compression for stream aggregation, the
proposed solution only supports tumbling windows with WA=WS, unlike this
work. Additional work that relates to stream aggregation is discussed in [4].
However, this contribution focuses on a data structure (the Compressed Buffered
Tree) that can be leveraged by any operator rather than on the internal state of
stream Aggregates. Additionally, the data structure supports continuous stream
aggregation on a per-key basis but does not discuss window semantics.

7 Conclusions and Future Work

This work introduced a novel algorithm for tunable memory compression in
stream aggregation. By defining a single additional parameter besides the com-
mon parameters defined for streaming aggregation over time-based windows,
the algorithm allows controlling the amount of compressed window instances,
prioritizing the compression of those not recently updated.

Initial results show the proposed algorithm can be beneficial and compress
memory by at least one-third, with overheads in throughput/latency perfor-
mance figures in the same order of magnitude as those without compression. This
initial study can be expanded in several research directions: extended empirical
studies, with more use-cases, setups (e.g., parallel/distributed executions) and
heterogenous hardware, comparison with state-of-the-art baselines, and amounts
of available memory, studying also the behavior of an Aggregate when memory

28 V. Gulisano

is exhausted or in high contention with e.g., a garbage collector; generalization of
the proposed technique to accommodate different compression techniques, possi-
bly extending to lossy compression too, and study of different compression levels
for a given technique, and joint use of the proposed technique with AI-based
agents adjusting parameter D based on e.g., Quality-of-Service requirements.

Acknowledgements. This work is supported by the Marie Sk�lodowska-Curie Doc-
toral Network project RELAX-DN, funded by the European Union under Horizon
Europe 2021–2027 Framework Programme Grant Agreement number 101072456, by
Chalmers Un. AoA frameworks Energy and Production, proj. INDEED, and WP “Scal-
ability, Big Data and AI”, respectively, and by the Swedish Government Agency for
Innovation Systems VINNOVA, proj. “Automotive Stream Processing and Distributed
Analytics (AutoSPADA)” (DNR 2019-05884) in the funding program FFI: Strategic
Vehicle Research and Innovation.

References

1. Snappy, a fast compressor/decompressor. https://github.com/google/snappy
2. Akidau, T., et al.: The dataflow model: a practical approach to balancing correct-

ness, latency, and cost in massive-scale, unbounded, out-of-order data processing.
Proc. Endowment 8(12), 1792–1803 (2015)

3. Aldinucci, M., Danelutto, M., Kilpatrick, P., Torquati, M.: Fastflow: high-level and
efficient streaming on multicore, chap. 13, pp. 261–280. Wiley (2017)

4. Amur, H., et al.: Memory-efficient groupby-aggregate using compressed buffer
trees. In: Proceedings of the 4th Annual Symposium on Cloud Computing, pp.
1–16 (2013)

5. Arasu, A., et al.: Linear road: a stream data management benchmark. In: Proceed-
ings of the Thirtieth International Conference on Very large data bases-Volume 30,
pp. 480–491. VLDB Endowment (2004)

6. Apache beam. https://beam.apache.org/. Accessed 12 Nov 2020
7. Cardellini, V., Grassi, V., Presti, F.L., Nardelli, M.: On QoS-aware scheduling

of data stream applications over fog computing infrastructures. In: 2015 IEEE
Symposium on Computers and Communication (ISCC), pp. 271–276. IEEE (2015)

8. Cardellini, V., Nardelli, M., Luzi, D.: Elastic stateful stream processing in storm.
In: 2016 International Conference on High Performance Computing Simulation
(HPCS), pp. 583–590. IEEE (2016)

9. De Matteis, T., Mencagli, G.: Keep calm and react with foresight: strategies for
low-latency and energy-efficient elastic data stream processing. ACM SIGPLAN
Notices 51(8), 1–12 (2016)

10. Duvignau, R., Gulisano, V., Papatriantafilou, M., Savic, V.: Streaming piecewise
linear approximation for efficient data management in edge computing. In: Pro-
ceedings of the 34th ACM/SIGAPP Symposium on Applied Computing (2019)

11. Apache flink. https://flink.apache.org. Accessed 27 Jan 2023
12. Geethakumari, P.R., Gulisano, V., Svensson, B.J., Trancoso, P., Sourdis, I.: Single

window stream aggregation using reconfigurable hardware. In: 2017 International
Conference on Field Programmable Technology (ICFPT). IEEE (2017)

13. Geethakumari, P.R., Gulisano, V., Trancoso, P., Sourdis, I.: Time-SWAD: a
dataflow engine for time-based single window stream aggregation. In: 2019 Interna-
tional Conference on Field-Programmable Technology (ICFPT), pp. 72–80. IEEE
(2019)

https://github.com/google/snappy
https://beam.apache.org/
https://flink.apache.org

Windows Compression in Streaming 29

14. Geethakumari, P.R., Sourdis, I.: Stream aggregation with compressed sliding-
windows. ACM Trans. Reconfigurable Technol. Syst. 16, 1–28 (2023)

15. Gulisano, V., Nikolakopoulos, Y., Cederman, D., Papatriantafilou, M., Tsigas,
P.: Efficient data streaming multiway aggregation through concurrent algorith-
mic designs and new abstract data types. ACM Trans. Parallel Comput. 4(2),
11:1–11:28 (2017). https://doi.org/10.1145/3131272

16. Gulisano, V., Nikolakopoulos, Y., Papatriantafilou, M., Tsigas, P.: ScaleJoin: a
deterministic, disjoint-parallel and skew-resilient stream join. IEEE Trans. Big
Data 7(2), 299–312 (2021). https://doi.org/10.1109/TBDATA.2016.2624274

17. Gulisano, V., Palyvos-Giannas, D., Havers, B., Papatriantafilou, M.: The role of
event-time order in data streaming analysis. In: Proceedings of the 14th ACM
International Conference on Distributed and Event-based Systems (2020)

18. Havers, B., Duvignau, R., Najdataei, H., Gulisano, V., Koppisetty, A.C., Papa-
triantafilou, M.: Driven: a framework for efficient data retrieval and clustering in
vehicular networks. In: 2019 IEEE 35 th International Conference on Data Engi-
neering (ICDE), pp. 1850–1861. IEEE (2019)

19. Hirzel, M., Soulé, R., Schneider, S., Gedik, B., Grimm, R.: A catalog of stream
processing optimizations. ACM Comput. Surv. (CSUR) 46(4), 1–34 (2014)

20. Kalyvianaki, E., Fiscato, M., Salonidis, T., Pietzuch, P.: Themis: fairness in feder-
ated stream processing under overload. In: Proceedings of the 2016 International
Conference on Management of Data, pp. 541–553 (2016)

21. Liebre SPE. https://github.com/vincenzo-gulisano/liebre. Accessed 27 June 2022
22. Palyvos-Giannas, D., Gulisano, V., Papatriantafilou, M.: Haren: a framework for

ad-hoc thread scheduling policies for data streaming applications. In: Proceedings
of the 13th ACM International Conference on Distributed and Event-based Sys-
tems, pp. 19–30 (2019)

23. Palyvos-Giannas, D., Mencagli, G., Papatriantafilou, M., Gulisano, V.: Lachesis: a
middleware for customizing OS scheduling of stream processing queries. In: Pro-
ceedings of the 22nd International Middleware Conference, pp. 365–378 (2021)

24. Pekhimenko, G., Guo, C., Jeon, M., Huang, P., Zhou, L.: TerseCades: efficient data
compression in stream processing. In: 2018 USENIX Annual Technical Conference
(USENIX ATC 18), pp. 307–320 (2018)

25. Apache storm. https://storm.apache.org. Accessed 1 Mar 2019
26. Zhang, H., Chen, G., Ooi, B.C., Tan, K.L., Zhang, M.: In-memory big data man-

agement and processing: a survey. IEEE Trans. Knowl. Data Eng. 27(7), 1920–1948
(2015)

https://doi.org/10.1145/3131272
https://doi.org/10.1109/TBDATA.2016.2624274
https://github.com/vincenzo-gulisano/liebre
https://storm.apache.org

	An Algorithm for Tunable Memory Compression of Time-Based Windows for Stream Aggregates
	1 Introduction
	2 Preliminaries
	2.1 Stream Processing Basics and Streaming Aggregation
	2.2 Correctness Conditions

	3 Problem Definition
	4 Proposed Algorithm and Aggregate Operator
	5 Evaluation
	6 Related Work
	7 Conclusions and Future Work
	References

