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A B S T R A C T

In model-driven engineering, developing a textual domain-specific language (DSL) involves constructing a
meta-model, which defines an underlying abstract syntax, and a grammar, which defines the concrete syntax
for the DSL. We consider a scenario in which the meta-model is manually maintained, which is common in
various contexts, such as blended modeling, in which several concrete syntaxes co-exist in parallel. Language
workbenches such as Xtext support such a scenario, but require the grammar to be manually co-evolved, which
is laborious and error-prone.

In this paper, we present GrammarTransformer, an approach for transforming generated grammars in the
context of meta-model-based language evolution. To reduce the effort for language engineers during rapid
prototyping and language evolution, it offers a catalog of configurable grammar transformation rules. Once
configured, these rules can be automatically applied and re-applied after future evolution steps, greatly
reducing redundant manual effort. In addition, some of the supported transformations can globally change
the style of concrete syntax elements, further significantly reducing the effort for manual transformations.
The grammar transformation rules were extracted from a comparison of generated and existing, expert-
created grammars, based on seven available DSLs. An evaluation based on the seven languages shows
GrammarTransformer’s ability to modify Xtext-generated grammars in a way that agrees with manual changes
performed by an expert and to support language evolution in an efficient way, with only a minimal need to
change existing configurations over time.
1. Introduction

Domain-Specific Languages (DSLs) are a common way to describe
certain application domains and to specify the relevant concepts
and their relationships (Van Deursen et al., 2000). They are,
among many other things, used to describe model transforma-
tions (the Operational transformation language of the MOF Query,
View, and Transformation — QVTo Object Management Group, 2016a
and the ATLAS Transformation Language — ATL Eclipse Founda-
tion, 2018a), bibliographies (BibTeX Paperpile, 2022), graph models
(DOT Graphviz Authors, 2022), formal requirements (the Scenario
Modeling Language — SML Greenyer, 2018 and Spectra Spectra
Authors, 2021a), meta-models (Xcore Eclipse Foundation, 2018b), or
web-sites (Xenia Xenia Authors, 2019b).
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In many cases, the syntax of the language that engineers and
developers work with is textual. For example, DOT is based on a
clearly defined and well-documented grammar so that a parser can be
constructed to translate the input in the respective language into an
abstract syntax tree which can then be interpreted.

A different way to go about constructing DSLs is proposed by model-
driven engineering. There, the concepts that are relevant in the domain
are captured in a meta-model which defines the abstract syntax (see,
e.g., Roy Chaudhuri et al. (2019), Frank (2013) and Mernik et al.
(2005)). Different concrete syntaxes, e.g., graphical, textual, or form-
based, can be defined to describe actual models that adhere to the
abstract syntax.

In this paper, we consider the Eclipse ecosystem and Xtext (Bettini,
2016) as its de-facto standard framework for developing textual DSLs.
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Xtext relies on the Eclipse Modeling Framework (EMF) (Steinberg et al.,
2008) and uses its Ecore (meta-)modeling facilities as basis. Developing
a textual DSL in Xtext involves two main artifacts: a grammar, which
defines the concrete syntax of the language, and a meta-model, which
defines the abstract syntax. Xtext allows either the grammar or the
meta-model to be created first, and then automatically generating
the one from the other (or alternatively, writing both manually and
aligning them).

Software languages change over time. This is due to language evo-
lution, which entails that languages change over time to address new
and changed requirements, and due to rapid prototyping, which involves
many quick iterations on an initial design. In the case of an Xtext-
based language, grammar and meta-model need to be modified to stay
consistent with each other. We consider two options for evolving a
language in Xtext: First, the developers can change the grammar and
then use Xtext to automatically create an updated version of the meta-
model from it. Second, the developers can change the meta-model
then use Xtext to update the grammar. We call the first approach
grammar-based evolution, and the second approach meta-model-based
evolution.

In this paper, we focus on meta-model-based evolution, for the
following rationale: While grammar-based evolution is a common way
of developing languages in Xtext, it is not geared for three scenar-
ios that we encountered in the real world, including collaborations
with an industrial partner. In particular: 1. Several concrete syntaxes
(e.g., visual, textual, tabular) for the same underlying metamodel co-
exist and evolve at the same time. This is particular common in the
context of blended modeling (Ciccozzi et al., 2019), a timely modeling
paradigm. 2. The metamodel comes from some external source (such as
a third-party supplier or a standardization committee), which prohibits
independent modification. 3. The metamodel is the central artifact of a
larger ecosystem of available tools, including. e.g., automated analyses
and transformations. As such, the language engineers might prefer to
evolve it directly, instead of relying on the, potentially sub-optimal,
output of automatically co-evolving it after grammar changes. The real-
world case that inspired this paper has aspects of the first two scenarios:
we work on a language from an industry partner for which there
already exists an evolving metamodel and graphical editor available.

Compared to grammar-based evolution, meta-model-based evolu-
tion has one major disadvantage: Co-evolving the grammar after meta-
model changes is more complicated than vice versa, as it involves
dealing with both abstract and concrete syntax aspects, whereas up-
dating the meta-model after grammar changes only involves abstract
syntax aspects. In the state of the art, the updating needs to be done
manually, which leads to effort after each evolution step. According to
the Xtext textbook (Bettini, 2016), ‘‘the drawback [of manually maintain-
ing the Ecore model] is that you need to keep the Ecore model consistent with
your DSL grammar’’. The goal of this paper is to substantially mitigate
this disadvantage, as we will now explain.

In this paper, we propose a different approach to supporting meta-
model-based evolution: Automated synchronization of the grammar
based on simple rules, which we call grammar transformation rules.
Such rules encode typical improvements that are made to a gram-
mar, e.g., changing parentheses layouts, keywords, and orders of rule
fragments. Configurations can either be automatically extracted from
previous manual edits of the grammar (Zhang et al., 2023), or explic-
itly created by the language engineer, as an alternative to manually
performing redundant changes affecting many places in the grammar.
Whenever the meta-model evolves, the same or a slightly modified set
of transformation rules can be applied to a fresh grammar that Xtext can
automatically generate from the meta-model. The resulting grammar is
inherently synchronized with the meta-model, but restores the syntax
decisions made in the previous grammar versions, thus avoiding effort
for manual synchronization.

Our approach can considerably reduce the manual effort for trans-
formations compared to editing and replaying grammar changes man-
2

ually and, consequently, enable faster turnaround times. This is due to
two factors that we demonstrate in our evaluation: First, the potential
to reuse existing configurations across successive evolution steps. For
example, we considered four evolution steps from the history of QVTo.
Initially, we created a configuration that fully transformed the gener-
ated grammar to be consistent with the expert-created grammar for that
evolution step. For the following three iterations, we only needed to
modify 2, 0, and 1 configuration lines, respectively, to automatically
transform the generated grammar. Without our approach, language
engineers would need to manually modify 228 lines of 66 grammar
rules in each evolution step. Second, the availability of powerful rules
that enforce a large-scope change affecting many grammar rules at
the same time. For example, for the EAST-ADL case, modifying the
Xtext-generated towards the expert-created grammar required curly
braces for all attributes to be removed, while keeping the outer sur-
rounding curly braces for each rule. Performing this change manually
entails manually revising 303 rules, whereas it took only one line of
configuration in GrammarTransformer.

While our approach clearly unfolds these benefits in the case of
evolving languages and complex changes, it does not come for free.
For locally-scoped changes, creating a configuration generally leads to
more effort than a manual grammar edit and hence, presents an upfront
investment that pays off only when the language evolves over time.
In a different paper (Zhang et al., 2023), we present an approach for
automating the extraction of configurations from user-provided manual
edits, thus reducing the initial manual effort to be the same as in the
traditional process, while keeping the long-term benefits. Together with
the present paper, for the supported kinds of changes, it supports a
fully automated process for aligning the grammar after changes to the
meta-model.

The contribution of this paper is GrammarTransformer, an approach
that modifies a generated grammar by applying a set of configurable,
modular, simple transformation rules. It integrates into the workflow of
language engineers working with Eclipse, EMF, and Xtext technologies
and is able to apply rules to reproduce the textual syntaxes of common,
textual DSLs.

We demonstrate its applicability on seven domain-specific lan-
guages from different application areas. We also show its support for
language evolution in two cases: (1), we recreate the textual model
transformation language QVTo in all four versions of the official
standard (Object Management Group, 2016a) with only small changes
to the configuration of transformation rule applications and with high
consistency of the syntax between versions; and (2), we conceived for
the automotive systems modeling language EAST-ADL (EAST-ADL As-
sociation, 2021) together with an industrial partner a textual concrete
syntax (Holtmann et al., 2023), where we initially started with a gram-
mar for a subset of the EAST-ADL meta-model (i.e., textual language
version 1) and subsequently evolved the grammar to encompass the
full meta-model (i.e., textual language version 2).

The remainder of this paper is structured as follows. First, in Sec-
tion 2, we provide an overview of the background of this paper, in
particular, on metamodel-based textual DSL engineering. In Section 3,
we review related research. In Section 4, we define the methodology
of this paper. Subsequently, in Section 5, we describe the identified
transformation rules, which are the main technical contribution of this
paper. Following that, in Section 6, we present our solution of the
GrammarTransformer, which implements the identified transformation
rules. In Section 7, we present our evaluation. Section 8 is devoted
to our discussion, where we address threats to validity, the effort
required to use GrammarTransformer, implications for practitioners and
researchers, and future work. Finally, in the last section, we conclude.

2. Background: Textual DSL engineering based on meta-models

The engineering of textual DSLs can be conducted through the

traditional approach of specifying grammars, but also by means of
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meta-models. Both approaches have commonalities, but also differ-
ences (Paige et al., 2014). Like grammars specified by means of the
Extended Backus Naur Form (EBNF) (International Organization for
Standardization (ISO), 1996), meta-models enable formally specifying
how the terms and structures of DSLs are composed. In contrast to
grammar specifications, however, meta-models describe DSLs as graph
structures and are often used as the basis for graphical or non-textual
DSLs. Particularly, the focus in meta-model engineering is on speci-
fying the abstract syntax. The definition of concrete syntaxes is often
considered a subsequent DSL engineering step. However, the focus in
grammar engineering is directly on the concrete syntax (Kleppe, 2007a)
and leaves the definition of the abstract syntax to the compiler.

Meta-model-based textual DSLs. There are also examples of textual DSLs
that are built with meta-model technology. For example, the Object
Management Group (OMG) defines textual DSLs that hook into their
meta-model-based Meta Object Facility (MOF) and Unified Modeling
Language ecosystems, for example, the Object Constraint Language
(OCL) (Object Management Group (OMG), 2014) and the Operational
transformation language of the MOF Query, View, and Transformation
(QVTo) (Object Management Group, 2016a). However, this is done in
a cumbersome way: Both the specifications for OCL and QVTo define
a meta-model specifying the abstract syntax and a grammar in EBNF
specifying the concrete syntax of the DSL. This grammar, in turn,
defines a different set of concepts and, therefore, a meta-model for the
concrete syntax that is different from the meta-model for the abstract
syntax. As Willink (2020) points out, this leads to the awkward fact that
the corresponding tool implementations such as Eclipse OCL (Eclipse
Foundation, 2022a) and Eclipse QVTo (Eclipse Foundation, 2022b) also
apply this distinction. That is, both tool implementations require an
abstract syntax and a concrete syntax meta-model and, due to their
structural divergences, a dedicated transformation between them. Ad-
ditionally, both tool implementations provide a hand-crafted concrete
syntax parser, which implements the actual EBNF grammar. Maintain-
ing these different parts and updating the manually created ones incurs
significant effort whenever the language should be evolved.

Xtext. Xtext provides a more streamlined approach to language engi-
neering that envisions the use of a single metamodel for defining the
abstract syntax, and an associated grammar for defining the textual con-
crete syntax. Grammars are defined in a custom, EBNF-based format.
Using an Xtext grammar, Xtext applies the ANTLR parser generator
framework (Parr, 2022) to derive a parser and all its required inputs. It
also generates editors along with syntax highlighting, code validation,
and other useful tools.

Xtext supports both grammar-based and meta-model-based-
evolution in the sense introduced in Section 1. For our considered
meta-model-based scenario, Xtext’s default workflow requires that af-
ter each meta-model change, the grammar has to be manually syn-
chronized (Bettini, 2016), a disadvantage we aim to avoid with our
approach. To this end, we rely on a built-in feature of Xtext for
automatically deriving a grammar from a meta-model. (we call this
grammar generated grammar in this paper). This creates a grammar that
contains grammar rules for all meta-model elements that are contained
in a common root node and resolves references, etc., to a degree
(see Section 4.3 for details). This grammar is typically quite verbose,
structured extensively using braces, and uses a lot of keywords, as
illustrated with the example in Fig. 1, depicting an instance of the
generated grammar for EAST-ADL. Therefore, generated grammars are
intended to be improved before being used in practice (Bettini, 2016).
In our approach, we use generated grammars as the starting point for
recording and automatically replaying changes made to the grammar,
thus avoiding manual synchronization effort.

3. Related work

In the following, we discuss approaches for grammar transforma-
tion, approaches that are concerned with the design and evolution of
DSLs, and other approaches.
3

Fig. 1. Instance of the generated grammar for EAST-ADL.

Grammar transformation. There are a few works that aim at trans-
forming grammar rules with a focus on XML-based languages. For
example, Neubauer et al. (2015, 2017) also mention transformation of
grammar rules in Xtext. Their approach XMLText and the scope of their
transformation focus only on XML-based languages. They convert an
XML schema definition to a meta-model using the built-in capabilities
of EMF. Based on that meta-model, they then use an adapted Xtext
grammar generator for XML-based languages to provide more human-
friendly notations for editing XML files. XMLText thereby acts as a
sort of compiler add-on to enable editing in a different notation and
to automatically translate to XML and vice versa. In contrast, we
develop a post-processing approach that enables the transformation of
any Xtext grammar, not only XML-based ones, (cf. also our discussion
in Section 8).

The approach of Chodarev (2016) shares the same goal and a
similar functional principle as XMLText, but uses other technolog-
ical frameworks. In contrast to XMLText, Chodarev supports more
straightforward customization of the target XML language by directly
annotating the meta-model that is generated from the XML schema. The
same distinction applies here as well: GrammarTransformer enables the
transformation of any Xtext grammar and is not restricted to XML-based
languages.

Grammar transformation for DSLs in general is addressed by Jouault
et al. (2006). They propose an approach to specify a syntax for textual,
meta-model-based DSLs with a dedicated DSL called Textual Concrete
Syntax, which is based on a meta-model. From such a syntax specifica-
tion, a concrete grammar and a parser are generated. The approach
is similar to a template language restricting the language engineer
and thereby, as the authors state, lacks the freedom of grammar spec-
ifications in terms of syntax customization options. In contrast, we
argue that the GrammarTransformer provides more syntax customization
options to achieve a well-accepted textual DSL.

Finally, Novotný (2012) designed a model-driven Xtext pretty
printer, which is used for improving the readability of the DSL by means
of improved, language-specific, and configurable code formatting and
syntax highlighting. In contrast, our GrammarTransformer is not about
improving code readability but focused on how to design the DSL itself
to be easy to use and user-friendly.

Designing and evolving meta-model-based DSLs. Many papers about the
design of DSLs focus solely on the construction of the abstract syntax
and ignore the concrete syntaxes (e.g., Roy Chaudhuri et al., 2019;
Frank, 2011), or focus exclusively on graphical notations (e.g., Frank,
2013; Tolvanen and Kelly, 2018). In contrast, the guidelines proposed
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by Karsai et al. (2009) contain specific ideas about concrete syntax de-
sign, e.g., to ‘‘balance compactness and comprehensibility’’. Arguably,
the languages automatically generated by Xtext are neither compact
nor comprehensible and therefore require manual changes.

Mernik et al. (2005) acknowledge that DSL design is not a sequential
process. The paper also mentions the importance of textual concrete
syntaxes to support common editing operations as well as the reuse
of existing languages. Likewise, van Amstel et al. (2010) describe
DSL development as an iterative process and use EMF and Xtext for
the textual syntax of the DSL. They also discuss the evolution of the
language, and that ‘‘it is hard to predict which language features will
improve understandability and modifiability without actually using the
language’’. Again, this is an argument for the need to do prototyping
when developing a language. Karaila (2009) broadens the scope and
also argues for the need for evolving DSLs along with the ‘‘engineering
environment’’ they are situated in, including editors and code gener-
ators. Pizka and Jürgens (2007) also acknowledge the ‘‘constant need
for evolution’’ of DSLs.

There is a lot of research supporting different aspects of language
change and evolution. Existing approaches focus on how diverse arti-
facts can be co-evolved with evolving meta-models, namely the models
that are instances of the meta-models (Hebig et al., 2016), OCL con-
straints that are used to specify static semantics of the language (Khel-
ladi et al., 2017, 2016), graphical editors of the language (Ruscio et al.,
2010; Di Ruscio et al., 2011), and model transformations that consume
or produce programs of the language (García et al., 2012). Specifi-
cally, the evolution of language instances with evolving meta-models
is well supported by research approaches. For example, Di Ruscio et al.
(2011) support language evolution by using model transformations to
simultaneously migrate the meta-model as well as model instances.

Thus, while these approaches cover a lot of requirements, there
is still a need to address the evolution of textual grammars with the
change of the meta-model as it happens during rapid prototyping or
normal language evolution. This is a challenge, especially since fully
generated grammars are usually not suitable for use in practice. This
implies that upon changing a meta-model, it is necessary to co-evolve
a manually created grammar or a grammar that has been generated
and then manually changed. GrammarTransformer has been created to
upport prototyping and evolution of DSLs and is, therefore, able to
upport and largely automate these activities.

ther approaches. As we mentioned above, besides Xtext, there are
wo more approaches that support the generation of EBNF-based gram-
ars and from these the generation of the actual parsers. These are
MFText (Heidenreich et al., 2009) and the Grasland toolkit (Kleppe,
007b), which are both not maintained anymore.

Whereas our work focuses on the Eclipse technology stack based
n EMF and Xtext, there are a number of other language workbenches
nd supporting tools that support the design of DS(M)Ls and their
volution. However, none of these approaches are able to derive gram-
ars directly from meta-models, a prerequisite for the approach to

anguage engineering we propose and the basis of our contribution,
rammarTransformer. Instead, tools like textX (Dejanović et al., 2017)
o the other way around and derive the meta-model from a grammar.
angium (TypeFox GmbH, 2022) is the self-proclaimed Xtext successor
ithout the strong binding to Eclipse, but does not support this particu-

ar use case just yet and instead focuses on language construction based
n grammars. MetaEdit+ (Kelly and Tolvanen, 2018) does not offer
textual syntax for the languages, but instead a generator to create

ext out of diagrams that are modeled using either tables, matrices,
r diagrams. JetBrains MPS (JetBrains, 2022) is based on projectional
diting where concrete syntaxes are projections of the abstract syntax.
owever, these projections are manually defined and not automatically
erived from the meta-model as it is the case with Xtext. Finally, Pizka
nd Jürgens (2007) propose an approach to evolve DSLs including
heir concrete syntaxes and instances. For that, they present ‘‘evolution
anguages’’ that evolve the concrete syntax separately. However, they
ocus on DSLs that are built with classical compilers and not with
4

eta-models.
4. Methodology

In this section, we describe our research methodology, shown in
an overview in Fig. 2. Our methodology consists of a number of
sequential steps, in particular: selecting the case languages, preparing
metamodels and grammars (including the exclusion of certain parts of
the language), and two iterations of analysis, including extraction of
grammar transformation rules and tool development. We now describe
all of these steps in detail.

4.1. Selection of sample DSLs

We selected a number of DSLs for which both an expert-created
grammar and a meta-model were available. Our key idea was that
the expert-created grammar serves as a ground truth, specifying what
a desirable target of an transformation process would look like. As
the starting point for this transformation process, we considered the
Xtext-generated grammars for the available meta-models. The goal
of our grammar transformation rules was to support an automated
transformation to turn the Xtext-generated grammar into the expert-
created grammar. By selecting a number of DSLs with a grammar or
precise syntax definition from which we could derive such a ground
truth, we aimed to generalize the grammar transformation rules so that
new languages can be transformed based on rules that we include in
GrammarTransformer.

Sources. To find language candidates, we collected well-known lan-
guages, such as DOT, and used language collections, such as the At-
lantic Zoo (AtlanMod Team, 2019), a list of robotics DSLs (Nordmann
et al., 2020), and similar collections (Wikimedia Foundation, 2023;
Barash, 2020; Semantic Designs, 2021; Community, 2021; Van Deursen
et al., 2000). However, it turned out that the search for suitable
examples was not trivial despite these resources. The quality of the
meta-models in these collections was often insufficient for our purposes.
In many cases, the meta-model structures were too different from the
grammars or there was no grammar in either Xtext or in EBNF publicly
available as well as no clear syntax definition by other means. We
therefore extended our search to also use Github’s search feature to
find projects in which meta-models and Xtext grammars were present
and manually searched the Eclipse Foundation’s Git repositories for
suitable candidates. Grammars were either taken from the language
specifications or from the repositories directly.

Concrete grammar reconstruction for BibTeX. In some cases, the syntax
of a language is described in detail online, but no EBNF or Xtext
grammar can be found. In our case, this is the language BibTeX. It is a
well-known language to describe bibliographic data mostly used in the
context of typesetting with LaTeX that is notable for its distinct syntax.
In this case, we utilized the available detailed descriptions (Paperpile,
2022) to reconstruct the grammar. To validate the grammar we created,
we used a number of examples of bibliographies from Paperpile (2022)
and from our own collection to check that we covered all relevant cases.

Meta-model reconstruction for DOT. DOT is a well-known language for
the specification of graph models that are input to the graph visual-
ization and layouting tool Graphviz. Since it is an often used language
with a relatively simple, but powerful syntax, we decided to include
it, even if we could not find a complete meta-model that contains both
the graph structures and formatting primitives. The repository that also
contains the grammar we ended up using (itemis AG, 2020), e.g., only
contains meta-models for font and graph model styles.

Therefore, we used the Xtext grammar that parses the same lan-
guage as DOT’s expert-created grammar to derive a meta-model (itemis
AG, 2020). Xtext grammars include more information than an EBNF
grammar, such as information about references between concepts of the
language. Thus, the fact that the DOT grammar was already formulated

in Xtext allowed us to directly generate DOT’s Ecore meta-model from
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Fig. 2. Overview of our methodology.
Table 1
DSLs used in this paper, the sources of the meta-model and the grammar used, as well as the size of the meta-model and grammar. The first set of DSLs was analyzed to derive
necessary transformation rules, and the second set to validate the candidate transformation rules and extend them if necessary.

Iteration DSL Meta-model Expert-created grammar Generated grammar

Source Classesa Source Rules lines rules calls

ATLb Atlantic Zoo 30 ATL Syntax 28 275 30 232
AtlanMod Team (2019) Eclipse Foundation (2018a)

BibTex Grammarware 48 Self-built 46 293 48 188
1st Zaytsev (2013) Based on Paperpile (2022)

DOT Generated 19 Dot 32 125 23 51
Graphviz Authors (2022)

SMLc SML repository 48 SML repository 45 658 96 377
Greenyer (2018) Greenyer (2018)

Spectra GitHub repository 54 GitHub repository 58 442 62 243
Spectra Authors (2021b) Spectra Authors (2021a)

2nd Xcore Eclipse 22 Eclipse 26 243 33 149
Eclipse Foundation (2012) Eclipse Foundation (2018b)

Xenia Github repository 13 Github repository 13 84 15 36
Xenia Authors (2019a) Xenia Authors (2019b)

a After adaptations, containing both classes and enumerations.
b Excluding embedded OCL rules.
c Excluding embedded SML expressions rules.
this Xtext grammar. This meta-model acquisition method is an excep-
tion in this paper. Since this paper focuses on how to transform the
generated grammar, we consider this way of obtaining the meta-model
acceptable for this one case.

Selected cases. As a result, we identified a sample of seven DSLs (cf. Ta-
ble 1), which has a mix of different sources for meta-models and
grammars. This convenience sampling consists of a mix of well-known
DSLs with lesser-known, but well-developed ones. We believe this
breadth of domains and language styles is broad enough to extract a
generically applicable set of candidate transformation rules for Gram-
marTransformer. We analyzed these selected languages in two iterations,
the 1st analyzing four of them and the 2nd analyzing the remaining
three. In Table 1, we list all seven languages, including information
about the meta-model (source and the number of classes in the meta-
model) and the expert-created grammar (source and the number of
grammar rules).

4.2. Exclusion of language parts for low-level expressions

Two of the analyzed languages encompass language parts for ex-
pressions, which describe low-level concepts like binary expressions
(e.g., addition). We excluded such language parts in ATL and in SML
due to several aspects. Both languages distinguish the actual language
part and the expression language part already on the meta-model
level and thereby treat the expression language part differently. The
respective expression parts are similarly large than the actual languages
(i.e., 56 classes for the embedded OCL part of ATL and 36 classes
for the SML scenario expressions meta-model), which implies a high
5

analysis effort. Finally, although having a significantly large meta-
model, the embedded OCL part of ATL does not specify the expressions
to a sufficient level of detail (e.g., it does not allow to specify binary
expressions). Therefore, we excluded such language parts by introduc-
ing a fake class OCLDummy. The details for the exclusion is described
in the supplemental material (Zhang et al., 2024).1

Exclusion from the grammar. In addition, we need to ensure that we
can compare the language without the excluded parts to the expert-
created grammar. To do so, we derive versions of the expert-created
grammars in which these respective language parts are substituted by a
dummy grammar rule, e.g., OCLDummy in the case of ATL. This dummy
grammar rule is then called everywhere where a rule of the excluded
language part would have been called.

4.3. Meta-model preparations and generating an Xtext grammar

The first step of the analysis of any of the languages is to generate
an Xtext grammar based on the language’s meta-model. This is done by
using the Xtext project wizard within Eclipse.

Note that it is sometimes necessary to slightly change the meta-
model to enable the generation of the Xtext grammar or to ensure
that the compatibility with the expert-created grammar can be reached.
These changes are necessary in case the meta-model is already ill-
formed for EMF itself (e.g., purely descriptive Ecore files that are not
intended for instantiating runtime models) or if it does not adhere to

1 See folder ‘‘Section_4_Methodology’’.
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Listing 1: EBNF rule edge_stmt from the expert-created grammar for
DOT

1 edge_stmt : ( node_id | subgraph ) edgeRHS [
a t t r _ l i s t ]

Listing 2: Xtext rules EdgeStmtNode and EdgeStmtSubgraph
from the transformed generated grammar

1 EdgeStmtNode re tu rns EdgeStmtNode:
2 {EdgeStmtNode}
3 node=NodeId
4 (edgeRHS+=EdgeRhs )+
5 ( a t t r L i s t s+=A t t r L i s t )∗
6 ;
7
8 EdgeStmtSubgraph re turns EdgeStmtSubgraph:
9 {EdgeStmtSubgraph}

10 subgraph=Subgraph
11 (edgeRHS+=EdgeRhs )+
12 ( a t t r L i s t s+=A t t r L i s t )∗
13 ;

certain assumptions that Xtext makes (e.g., no bidirectional references).
The method of metamodel modification is described in detail in our
supplementary material (Zhang et al., 2024).2

In Table 1, we list how many lines, rules, and calls between rules
the generated grammars included for the seven languages.

4.4. Comparing EBNF and Xtext grammars

As a prerequisite for our analysis of grammars, we present a strategy
for dealing with a noteworthy aspect of our methodology: in several
cases, we dealt with languages where the expert-created grammar was
available in EBNF, whereas our contribution targets Xtext, which aug-
ments EBNF with additional technicalities, such as cross-references and
datatypes. Hence, to validate whether our approach indeed produces
grammars that are equivalent to expert-created ones, we needed a
concept that allows comparing EBNF to Xtext grammars.

To this end, we introduce the concept of imitation. Imitation is a
form of semantic equivalence of grammars that abstracts from Xtext-
specific technicalities. Specifically, we consider a set of EBNF rules
{𝑟𝑟𝑥|1 ≤ 𝑥 ≤ 𝑛} to be imitated by a set of Xtext rules {𝑟𝑜𝑦|1 ≤ 𝑦 ≤ 𝑚} if
both produce the exact same language, modulo Xtext-specific details.
Note that the cardinalities 𝑛 and 𝑚 may differ due to situations in
which one expert-created rule is replaced by several transformed rules
in concert, explained below.

Like semantic equivalence of context-free grammars, in general,
Hopcroft (1969), imitation is undecidable if two arbitrary grammars are
considered. However, in the scope of our analysis, we deal with specific
cases that come from our evaluation subjects. These are generally of
the following form: 1. Two syntactically identical – and thus, inherently
semantically equivalent – grammar rules 2. Situations in which a larger
rule from the first grammar is, in a controlled way, split up into several
rules in the second grammar. For these, we consider them as equivalent
based on a careful manual analysis, explained later.

For example, the rule edge_stmt shown in Listing 1 is imitated
by the combination of the rules EdgeStmtNode and EdgeStmtSub-
graph shown in Listing 2. Merging the Xtext rules to form one rule,
like the EBNF counterpart, was not possible in this case, due to the
necessity of specifying a distinct return type in Xtext, which is not

2 See directory ‘‘Section_4_Methodology’’.
6

Listing 3: Non-terminal node_stmt in the expert-created grammar of
DOT, in EBNF

1 node_stmt : node_id [ a t t r _ l i s t ]

required in EBNF. In addition, the Xtext rules contain Xtext-specific
information for dealing with references and attribute types, which is
not present in the EBNF rule.

4.5. Analysis of grammars

We performed the analysis of existing languages in two iterations.
The first iteration was purely exploratory. Here we analyzed four of
the languages with the aim of finding as many candidate grammar
transformation rules as possible. In the second iteration, we selected
three additional languages to validate the candidate rules collected
from the first iteration, add new rules if necessary, and generalize the
existing rules when applicable.

Our general approach was similar in both iterations. Once we
had generated a grammar for a meta-model, we created a mapping
between that generated grammar and the expert-created grammar of
the language. The goal of this mapping was to identify which gram-
mar rules in the generated grammar correspond to which grammar
rules in the expert-created grammar. Note that a grammar rule in the
generated grammar may be mapped to multiple grammar rules in the
expert-created grammar and vice versa. From there, we inspected the
generated and expert-created grammars to identify how they differed
and which changes would be required to adjust the generated grammar
so that it produces the same language as the expert-created grammar,
i.e., imitates the expert-created grammar rules. We documented these
changes per language and summarized them as transformation rule
candidates in a spreadsheet.

For example, the expert-created grammar rule node_stmt in DOT
(see Listing 3) maps to the generated grammar rule NodeStmt in
Listing 4. Multiple changes are necessary to adjust the generated Xtext
grammar rule:

• Remove all the braces in the grammar rule NodeStmt.
• Remove all the keywords in the grammar rule NodeStmt.
• Remove the optionality from all the attributes in the grammar

rule NodeStmt.
• Change the multiplicity of the attribute attrLists from 1..* to

0..*.

Note that in most cases the expert-created grammar was written in
EBNF instead of Xtext. For example, the returns statement in line 1
of Listing 4 is required for parsing in Xtext. We took that into account
when comparing both grammars.

4.5.1. First iteration: Identify transformation rules
The analysis of the grammars of the four selected DSLs in the first

iteration had two concrete purposes:

1. identify the differences between the expert-created grammar and
generated grammar of the language;

2. derive grammar transformation rules that can be applied to
change the generated grammar so that the transformed grammar
parses the same language as the expert-created grammar.

Please note that it is not our aim to ensure that the transformed
grammar itself is identical to the expert-created grammar. Instead, our
goal is that the transformed grammar is an imitation of the expert-
created grammar and therefore is able to parse the same language as
the original, usually hand-crafted grammar of the DSL. Each language
was assigned to one author who performed the analysis.
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Listing 4: Grammar rule NodeStmt in the generated grammar of DOT,
in Xtext

1 NodeStmt re tu rns NodeStmt:
2 {NodeStmt}
3 ’ NodeStmt ’
4 ’ { ’
5 ( ’ node ’ node=NodeId ) ?
6 ( ’ a t t r L i s t s ’ ’ { ’ a t t r L i s t s+=A t t r L i s t

( " , " a t t r L i s t s+=A t t r L i s t )∗ ’ } ’
) ?

7 ’ } ’ ;

Table 2
Summary of identified rules their rule variants and their sources.

Iteration Rule candidates Selected rules Rule variants

Iteration 1 58 46 57
Iteration 2 10 10 10

Intermediate sum 68 56 67
Evaluation 4 4 4

Overall sum 72 60 71

As a result of the analysis, we obtained an initial set of grammar
ransformation rules, which contained a total of 58 candidate transfor-
ation rules. Table 2 summarizes in the second column the number

f identified rule candidates and in the second row the number for the
irst iteration. Since the initial set of grammar transformation rules was
result of an analysis done by multiple authors, it included rules that
ere partially overlapping and rules that turned out to only affect the
rammar’s formatting, but not the language specified by the grammar.
hus, we filtered rules that belong to the latter case. For rule candidates
hat overlapped with each other, we selected a subset of the rules
s a basis for the next step. This filtering led to a selection of 46
ransformation rules (cf. third column in Table 2).

We processed these 46 selected transformation rules to identify
equired rule variants that could be implemented directly by means of
ne Java class each, which we describe more technically as part of our
esign and implementation elaboration in Section 6.3. For identifying
he rule variants, we focused on the following aspects:

pecification of scope Small changes in the meta-model might lead
to a different order of the lines in the generated grammar rules
or even a different order of the grammar rules. Therefore, the
first step was to define a suitable concept to identify the parts
of the generated grammar that can function as the scope of an
transformation rule, i.e., where it applies. We identified differ-
ent suitable scopes, e.g., single lines only, specific attributes,
specific grammar rules, or even the whole grammar. Initially,
we identified separate rule variants for each scope. Note that
this also increased the number of rule variants, as for some rule
candidates multiple scopes are possible.

llowing multiple scopes In many cases, selecting only one specific
scope for a rule is too limiting. In the example above (Listing
4), pairs of braces in different scopes are removed: in the scope
of the attribute attrLists in line 6 and in the scope of the
containing grammar rule in lines 4 and 7. This illustrates that
changes might be applied at multiple places in the grammar
at once. When formulating rule variants, we analyzed the rule
candidates for their potential to be applied in different scopes.
When suitable, we made the scope configurable. This means that
only one transformation rule variant is necessary for both cases
in the example. Depending on the provided parameters, it will
either replace the braces for the rule or for specific attributes.
7

isting 5: Two attributes in the grammar rule XOperation in the
enerated grammar of Xcore
1 . . .
2 ( unordered?= ’ unordered ’ ) ?
3 ( unique?= ’ unique ’ ) ?
4 . . .

isting 6: Two attributes in the grammar rule XOperation in the
xpert-created grammar of Xcore
1 . . .
2 unordered?= ’ unordered ’ unique?= ’ unique ’ ? |
3 unique?= ’ unique ’ unordered?= ’ unordered ’ ?
4 . . .

omposite transformation rules We decided to avoid transforma-
tion rule variants that can be replaced or composed out of
other rule variants, especially when such compositions were
only motivated by very few cases. However, such rules might
be added again later if it turns out they are needed more often.

While we identified exactly one rule variant for most of the se-
ected transformation rules, we added more than one rule variant
or several of the rules. We did this when slight variations of the
esults were required. For example, we split up the transformation rule
ubstituteBrace into the variants ChangeBracesToParen-
heses, ChangeBracesToSquare, and ChangeBracesToAn-
le. Note that this split-up into variants is a design choice and not
n inherent property of the transformation rule, as, e.g., the type of
arget bracket could be seen as nothing more than a parameter of the
ule. As a result, we settled on 57 rule variants for the 46 identified
ules (cf. fourth column of second row in Table 2).

.5.2. Second iteration: Validate transformation rules
The last step left us with 46 selected transformation rules from

he first iteration (cf. second row in Table 2). We developed a pre-
iminary implementation of GrammarTransformer by implementing the
7 rules variants belonging to these 46 transformation rules (we will
escribe the implementation in the Solution section). To validate this

set of transformation rules, we performed a second iteration. In the
second iteration, we selected the three DSLs Spectra, Xenia, and Xcore.
As in the first iteration, we generated a grammar from the meta-
model, analyzed the differences between the generated grammar and
the expert-created grammar, and identified transformation rules that
need to be applied to the generated grammar to accommodate these
differences. In contrast to the first iteration, we aimed at utilizing as
many existing transformation rules as possible and only added new rule
candidates when necessary.

We configured the preliminary GrammarTransformer for the new
languages by specifying which transformation rules to apply on the
generated grammar. The execution results showed that the existing
transformation rules were sufficient to change the generated grammar
of Xenia to imitate the expert-created grammar used as the ground
truth. However, we could not fully transform the generated grammar
of Xcore and Spectra with the preliminary set of 46 transformation
rules from the first iteration. For example, Listing 5 shows two at-
tributes unordered and unique in the grammar rule XOperation
in the generated grammar for Xcore. However, in the expert-created
grammar, the rule portions for the two attributes each refer to the
other attribute in a way that allows using the keywords in several
possible orders, as shown in Listing 6. This transformation could not
be performed with the transformation rules from the first iteration.
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Listing 7: Grammar rule NodeStmt in the transformed grammar of
DOT, in Xtext

1 NodeStmt re tu rns NodeStmt:
2 {NodeStmt}
3
4
5 node=NodeId
6 ( a t t r L i s t s+=A t t r L i s t )∗
7 ;

Based on the non-transformed parts of the grammars of Xcore
and Spectra, we identified another ten transformation rules for the
GrammarTransformer. These ten newly identified transformation rules
transform all the non-transformed parts of the grammar of Xcore, in-
cluding, e.g., transforming the grammar in Listing 5 to Listing 6. These
new transformation rules also transform part of the non-transformed
parts of the grammar of Spectra. We will interpret the remaining
non-transformed parts in the Evaluation section. In the end, after two
iterations, we identified a total of 56 transformation rules (which will
be implemented by a total of 67 rule variants) (cf. fourth row in
Table 2).

5. Identified transformation rules

In total, we identified 56 distinct transformation rules for the gram-
mar transformation after the 2nd iteration, which we further refined
into 67 rule variants (cf. fourth row in Table 2). Note that 4 additional
rules were identified during the evaluation (this will be interpreted
in the Evaluation section), increasing the final number of identified
ransformation rules to 60 (cf. bottom row in Table 2) and the final
umber of rule variants to 71.

Table 3 shows some examples of the transformation rules. The rules
e implemented can be categorized by the primitives they manipulate:
rammar rules, attributes keywords, braces, multiplicities, optionality
a special form of multiplicities), grammar rule calls, import statements,
ymbols, primitive types, and lines. They either ‘add’ things (e.g., Add-
KeywordToRule), ‘remove’ things (e.g., RemoveOptionality), or ‘change’
hings (e.g., ChangeCalledRule). All transformation rules ensure that the

resulting changed grammar is still valid and syntactically correct Xtext.
Most transformation rules are ‘scoped’ which means that they only

apply to a specific grammar rule or attribute. In other cases, the scope is
configurable, depending on the parameters of the transformation rule.
For instance, the RenameKeyword rule takes a grammar rule and an
attribute as a parameter. If both are set, the scope is the given attribute
in the given rule. If no attribute is set, the scope is the given grammar
rule. If none of the parameters is set, the scope is the entire grammar
(‘‘Global’’). All occurrences of the given keyword are then renamed
inside the respective scope.

Changes to optionality are used when the generated grammar de-
fines an element as mandatory, but the element should be optional
according to the expert-created grammar. This can apply to symbols
(such as commas), attributes, or keywords. Additionally, when all
attributes in a grammar rule are optional, we have an transformation
rule that makes the container braces and all attributes between them
optional. This transformation rule allows the user of the language to
enter only the grammar rule name and nothing else, e.g., ‘‘EAPackage
DataTypes;’’.

Likewise, GrammarTransformer contains rules to manipulate the mul-
iplicities in the generated grammars. The meta-models and the expert-
reated grammars we used as inputs do not always agree about the
ultiplicity of elements. We provide transformation rules that can

ddress this within the constraints allowed by EMF and Xtext.
For the example in Listing 4, this means that the necessary changes

o reach the same language defined in Listing 3 can be implemented
8

sing the following GrammarTransformer rules:
Table 3
Excerpt of implemented grammar transformation rules. A configurable scope (‘‘Config.’’)
means that, depending on provided parameters, the rule either applies globally to a
specific grammar rule or to a specific attribute.

Subject Op. Rule Scope

Keyword Add AddKeywordToAttr Attribute
AddKeywordToRule Rule
AddKeywordToLine Line

Change RenameKeyword Config.
AddAlternativeKeyword Rule

Rule Remove RemoveRule Global
Change RenameRule Rule

AddSymbolToRule Rule

Optionality Add AddOptionalityToAttr Attribute
AddOptionalityToKeyword Config.

Import Add AddImport Global
Remove RemoveImport Global

Brace Change ChangeBracesToSquare Attribute
Remove RemoveBraces Config.

• RemoveBraces is applied to the grammar rule NodeStmt and all
of its attributes. This removes all the curly braces (‘{’ and ‘}’ in
lines 4, 6, and 7) within the grammar rule.

• RemoveKeyword is applied to the grammar rule NodeStmt and
all of its attributes. This removes the keywords ‘NodeStmt’,
‘node’ and ‘attrLists’ (lines 3, 5, and 6) from this gram-
mar rule.

• RemoveOptionality is applied to both attributes. This removes the
question marks (‘?’) in lines 5 and 6.

• convert1toStarToStar is applied to the attribute attrLists.
This rule changes line 6. Before this change, this line is
‘‘attrLists+=AttrList (‘‘,’’ attrLists+=AttrList
)*’’ (the braces, keyword ‘attrLists’ and the optionality ‘?’
have been removed by previous transformation rules). After this
change, it becomes (attrLists+=AttrList)*. Note that the
DOT grammar is specified using a syntax that is slightly different
from standard EBNF. In that syntax, square brackets ([ and ])
enclose optional items (Graphviz Authors, 2022).

Note that line 2 in Listing 4 has no effect on the syntax of the grammar
but is required by and specific to Xtext, so that we do not adapt
such constructs. After the above steps, the grammar rule NodeStmt
is adapted from Listing 4 to Listing 7.

6. Solution: Design and implementation

The core of GrammarTransformer is a Java library that offers a simple
API to configure transformation rule applications and execute them
on Xtext grammars. Language engineers can use that API to create a
small program that executes GrammarTransformer, which in turn will
produce the transformed grammar. Alternatively, the programs can be
generated automatically, using an automated tool (Zhang et al., 2023).

In this section, we first present our envisioned workflow, before
describing in detail the specific components of our solution: its gram-
mar representation, the design of transformation rules and configura-
tions, and its execution engine. We wrap up with a comparison to an
alternative approach and a discussion of limitations and caveats.

6.1. Language evolution workflow

Fig. 3 depicts GrammarTransformer’s language evolution workflow
rom a conceptual as well as user point of view. We distinguish between
he roles of meta-model expert and grammar expert, which can be

held by the same person. The former one takes care of the meta-model
evolution, and the latter one takes care of the grammar adaptions and
particularly the transformation rule configurations.
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Fig. 3. Co-evolution workflow with GrammarTransformer. Dashed lines indicate grammar/meta-model conformance.
Fig. 4. The class design for representing grammar rules.

For the first meta-model version mmv1, the initial grammar gv1
as well as the complete Xtext editor environment are automatically
inferred via the Xtext project creation wizard. The initial grammar
follows Xtext’s default layouting and is not intended to be directly
usable. Creating the first usable version gv1’ of the grammar is the
responsibility of the grammar expert. In our approach, they do so in
a way that leads to the creation of a transformation rule configuration
cv1 that can automatically transform gv1 to gv1’. They have two options
for doing so: manually writing the configuration, or performing the in-
tended changes manually and then using ConfigGenerator (Zhang
et al., 2023) to extract the configuration.

Subsequently, the meta-model expert conducts a meta-model evo-
lution step that results in mmv2, leading to a need to co-evolve the
grammar. To this end, first, the grammar expert obtains a synchronized
version gv2 of the grammar, by having it inferred from the meta-model.
GrammarTransformer offers a custom user interface to infer gv2 without
the need to use the Xtext project creation wizard, which would result in
a cumbersome workflow due to the generation of the complete editor
environment. To replay the previously made concrete syntax changes,
the grammar expert re-applies the transformation rule configuration cv1
to gv2. The grammar engineer might then intend to perform further
changes to the grammar, for example, to change the concrete syntax for
new language elements. To this end, they proceed in the same way as
before, either by manually writing a configuration or by automatically
inferring one from manual changes.

All further meta-model and grammar co-evolution steps follow the
same principle.

6.2. Grammar representation

We designed GrammarTransformer to parse an Xtext grammar into
an internal data structure which is then modified and written out
again. This internal representation of the grammar follows the structure
depicted in Fig. 4. A Grammar contains a number of GrammarRules
that can be identified by their names. In turn, a GrammarRule consists
of a sorted list of LineEntrys with their textual lineContent and
an optional attrName that contains the name of the attribute defined
in the line. Note that we utilize the fact that Xtext generates a new line
for each attribute.
9

Fig. 5. Excerpt of the class diagram for transformation rules.

6.3. Transformation rule design

Internally, all transformation rules derive from the abstract class
TransformationRule as shown in Fig. 5. Derived classes overwrite
the apply()-method to perform the specific text modifications for this
rule. By doing so, the specific rule can access the necessary informa-
tion through the class members: grammar (i.e., the entire grammar
representation as explained in Section 6.2 and depicted in Fig. 4),
grammarRuleName (i.e., the name of the specified grammar rule that
a user wants to transform exclusively), and attrName (i.e., the name
of an attribute that a user wants to transform exclusively). Sub-classes
can also add additional members if necessary. This architecture makes
the GrammarTransformer extensible, as new transformation rules can
easily be defined in the future.

We built the transformation rules in a model-based manner by
first creating the meta-model shown in Fig. 5 and then using EMF
to automatically generate the class bodies of the transformation rules.
This way we only needed to overwrite the apply()-method for the
concrete rules. Internally, the apply()-methods of our transformation
rules are implemented using regular expressions. Each transformation
rule takes a number of parameters, e.g., the name of the grammar
rule to work on or an attribute name to identify the line to work
on. In addition, some transformation rules take a list of exceptions to
the scope. For example, the transformation rule to remove braces can
be applied to a global scope (i.e., all grammar rules) while excluding
a list of specific grammar rules from the processing. This allows to
configure transformation rule applications in a more efficient way.
We implemented all identified transformation rules.3 For testing, we

3 See folder ‘1_Source_Code/org.bumble.xtext.grammartransformer’ in our
supplemental material (Zhang et al., 2024), which contains the ‘transforma-
tionrule’ project with the full implementation.
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Listing 8: Excerpt of the configuration of GrammarTransformer for the
QVTo 1.0 language.)

1 public s t a t i c boolean executeTransformation (\
grammartransformer go ) {

2 . . .
3 go . removeBraces ( " NodeStmt " , null , null ) ;
4 go . removeKeyword ( " NodeStmt " , null , null , null ) ;
5 go . removeOptionality ( " NodeStmt " , null ) ;
6 go . conver t1toStarToStar ( " NodeStmt " , " a t t r L i s t s " ) ;
7 . . .
8 }

built a comprehensive test suite, based on the transformed grammars
considered in our design methodology. We created one test case per
scenario, to ensure that the grammar produced by our implementation
after applying a full given configuration to an Xtext-generated grammar
exactly matches an expected ground-truth grammar, for which we
previously manually established that it agrees (in the sense of imitation)
with an expert-created one.

6.4. Configuration

The language engineer has to configure what transformation rules
the GrammarTransformer should apply and how. This is supported by
the API offered by GrammarTransformer. Listing 8 shows an example
of how to configure the transformation rule applications in a method
executeTransformation(), where the configuration revisits the
DOT grammar transformation example transforming Listing 4 into
Listing 7. Lines 3 to 6 configure transformation rule applications. For
example, line 3 removes all curly braces in the grammar rule NodeStmt.
The value of the first parameter is set to ‘‘NodeStmt’’, which means that
the operation of removing curly braces will occur in the grammar rule
NodeStmt. If this first parameter is set to ‘‘null’’, the operation would be
executed for all grammar rules in the grammar. The second parameter
is used to indicate the target attribute. Since it is set to ‘‘null’’, all
lines in the targeted grammar rule will be affected. However, if the
parameter is set to a name of an attribute, only curly braces in the line
containing that attribute will be removed. Finally, the third parameter
can be used to indicate names of attributes for which the braces should
not be removed. This can be used in case the second parameter is set
to ‘‘null’’.

Similarly, the transformation rule application in line 4 is used to
remove all keywords in the grammar rule NodeStmt. Again, the second
parameter can be used to specify which lines should be affected using
an attribute. The third parameter is used to indicate the target keyword.
Since it is set to ‘‘null’’, all keywords in the targeted lines will be
removed. However, if the keyword is set, only that keyword will be
removed. The last parameter can be used to indicate names of attributes
for which the keyword should not be removed. This can be used in case
the second parameter is set to ‘‘null’’.

Line 5 is used to remove the optionality from all lines in the
grammar rule NodeStmt. If the second parameter gets an argument that
carries the name of an attribute, the optionality is removed exclusively
from the grammar line specifying the syntax for this attribute.

Finally, line 6 changes the multiplicity of the attribute attrLists
in the grammar rule NodeStmt from 1..* to 0..*. If the second param-
eter would get the argument ‘‘null’’, this adaptation would have been
executed to all lines representing the respective attributes.

6.5. Execution

Once the language engineer has configured GrammarTransformer,
they can invoke the tool using GrammarTransformerRunner on
10

he command line and providing the paths to the input and output n
grammars there. Alternatively, instead of invoking GrammarTransformer
via the command line and modifying executeTransformation(),
it is also possible to use JUnit test cases to access the API and transform
grammars in known locations. This is the approach we have followed
in order to generate the results presented in this paper.

Fig. 6 uses the first transformation operation from Listing 8 re-
moving curly braces as an example to depict how GrammarTransformer
works internally when transforming grammars. The top of the figure
shows an example input, which is the grammar rule NodeStmt gen-
erated from the meta-model of DOT (cf. Listing 4). In the lower right
corner, the resulting transformed Xtext grammar rule is illustrated. In
both illustrated grammar rule excerpt, blue fonts are the keywords and
symbols (braces and commas).

In Step 1 (initialization), GrammarTransformer builds a data struc-
ture out of the grammar initially generated by Xtext. That is, it builds a
:Grammar object containing multiple :GrammarRule objects, with
each of them containing several :LineEntry objects in an ordered
list. For example, the :Grammar object contains a :GrammarRule
object with the name ‘‘NodeStmt’’. This :GrammarRule object
ontains seven :LineEntry objects, which represent the seven lines
f the grammar rule in Listing 4. Three of these :LineEntry objects
ontain at least one curly brace (‘‘ ‘{’ ’’ or ‘‘ ‘}’ ’’). These lines
re explicitly represented in order to later map relevant transformation
ules to them. Fig. 6 shows an excerpt of the object structure created
or the example with the three line objects for the NodeStmt rule.

In Step 2 (per Transformation Rule) each transformation rule
pplication is processed by executing the apply()-method. For our
xample, the transformation rule removeBraces is applied via the
rammarTransformer API as configured in line 3 of Listing 8.

In Step 2a (localization of affected grammar rules and lines),
he grammar rule and lines that need to be changed are located,
ased on the configuration of the transformation rule application. In
he case of our example, the grammar rule NodeStmt (cf. line 1
n Listing 4) is identified. Then, all lines of that grammar rule are
dentified that include a curly brace. For example, the lines represented
y :LineEntry objects as shown in Fig. 6 are identified.

In Step 2b (change), the code uses regular expressions for
haracter-level matching and searching. If it finds curly braces sur-
ounded by single quotes (i.e., ‘‘ ‘{’ ’’ and ‘‘ ‘}’ ’’), it removes
hem.

Finally, in Step 3 (finalization), the GrammarTransformer writes the
omplete data structure containing the transformed grammar rules to
new file by means of the call setFileText(...).

After the execution of these steps, the transformed versions of the
rammar is ready for use. The typical next step is to re-generate the
arser, textual editor and other artifacts for the grammar via Xtext.
e recommend that the language engineer should systematically test

he resulting grammar to check whether it matches their expectations,
ased on the generated artifacts and a test suite with diverse language
nstances. After evolution steps, previously developed tests can act as
egression tests.

.6. Post-processing vs. Changing grammar generation

GrammarTransformer is designed to modify grammars that Xtext
enerated out of meta-models. An alternative to this post-processing
pproach is to directly modify the Xtext grammar generator as, e.g., in
MLText (Neubauer et al., 2015, 2017). However, we deliberately
hose a post-processing approach, because the application of con-
entional regular expressions enables the transferability to other re-
ent language development frameworks like Langium (TypeFox GmbH,
022) or textX (Dejanović et al., 2017), if they support the grammar
eneration from a meta-model in a future point in time. While the trans-
ormation rules implemented in grammar transformer are currently
ailored to the structure of Xtext grammars, GrammarTransformer does

ot technically depend on Xtext and the rules could easily be adapted
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Fig. 6. Exemplary Interplay of the Building Blocks of the GrammarTransformer.
to a different grammar language. Furthermore, as the implementation
of an Xtext grammar generator necessarily depends on many version-
specific internal aspects of Xtext, the post-processing approach using
regular expressions is considerably more maintainable.

6.7. Limitations and caveats

Our solution has the following limitations and caveats.
First, we were not able to completely imitate one of the seven

languages. In order to do so, we would have had to provide an transfor-
mation rule that would require the GrammarTransformer user to input
a multitude of parameter options. This would have strongly increased
the effort and reduced the usability to use this one transformation rule,
and the rule is only required for this one language. Thus, we argue
that a manual post-adaptation is more meaningful for this one case.
However, the inherent extensibility of the GrammarTransformer allows
to add such an transformation rule if desired. We describe the issue
in a more detailed manner in Section 7.1.4, which summarizes the
evaluation results for the grammar adaptions of the seven analyzed
languages.

Second, our solution is non-commutative, that is, applying the same
rules with the same parametrization, but in a different order might
lead to different results. For example, if ChangeBracesToAngle
and ChangeBracesToSquare are successively applied to the same
grammar rule, the outcome is ‘‘last write wins’’, i.e., the rule obtains
square braces. Users should be aware of this property to ensure that
the achieved outcome is consistent with their intended outcome.

Third, our solution does not strive to maintain backwards com-
parability to previous grammar versions — in general, after rule ap-
plications, instances of the previous, un-transformed grammar can no
11
longer be parsed. This lack of backwards compatibility is generally
desirable, as the alternative would be support for a mixing of old and
new grammar elements (e.g., changed keywords and parentheses styles)
in the same instance, which would generally be confusing to the user,
and lead to issues with parsing and other tool support. However, to
reduce manual effort in cases where legacy grammar instances exist,
automated co-evolution of grammar instances after grammar changes
is generally possible and leads to a promising future work direction
(discussed in Section 8.4).

7. Evaluation

In this evaluation, we focus on two research questions:

• RQ1: Can our solution be used to adapt generated grammars so
that they produce the same language as available expert-created
grammars?
The goal of this question is to validate the claim that our approach
can automatically perform the changes that an expert would need
to do manually. To this end, we consider languages for which an
expert-created grammar exists, and validate the capability of our
approach to re-create an equivalent grammar.

• RQ2: Can our solution support the co-evolution of generated grammars
when the meta-model evolves?
Our original motivation for the work was to enable evolution and
rapid prototyping for textual languages built with a meta-model.
The aim here is to evaluate whether our approach is suitable for
supporting these evolution scenarios.
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In the following, we address both questions. Our supplemental
material (Zhang et al., 2024) contains the source code of the imple-
mentation as well as all experiments.

7.1. Grammar adaptation (RQ1)

To address the first question, we evaluate the GrammarTransformer
by transforming the generated grammars of the seven DSLs, so that they
parse the same syntax as the expert-created grammars.

7.1.1. Cases
Our goal is to evaluate whether the GrammarTransformer can be

used to transform the generated grammars so that their rules imitate
the rules of the expert-created grammars. We reused the meta-model
adaptations and generated grammars from Section 4.3. Furthermore,
we continued working with the versions of ATL and SML in which parts
of their languages were excluded as described in Section 4.2.

7.1.2. Method
For each DSL, we wrote a configuration for the final version of

GrammarTransformer which was the result of the work described in
Sections 4 to 6. The goal was to transform the generated grammar so as
to ‘imitate’ as many grammar rules as possible from the expert-created
grammar of the DSL. Note that this was an iterative process in which
we incrementally added new transformation rule applications to the
GrammarTransformer’s configuration, using the expert-created grammar
as a ground truth and using our notion of ‘imitation’ (cf. Section 4.4)
as the gold standard. Essentially, we updated the GrammarTransformer
configuration and then ran the tool before analyzing the transformed
grammar for imitation of the original. We repeated the process and
adjusted the GrammarTransformer configuration until the test grammar’s
ules ‘imitated’ the expert-created grammar. Note that in the case of
pectra, we did not reach that point. We explain this in more detail in
ection 7.1.4. For all experiments, we used the set of 56 transformation
ules that were identified after the two iterations described in Section 4
nd as summarized in Section 5.

To verify whether the transformed grammar imitates the expert-
reated grammar, we adopted a manual verification method, in which
e systematically compared the grammar rules in the transformed
rammar with the grammar rules in the expert-created grammar. An
xpert-created grammar is imitated by an transformed grammar if every
rammar rule in it is imitated by one (or several) grammar rules from
he transformed grammar. The procedure and results of this step are
ocumented in our supplementary materials (Zhang et al., 2024).4

.1.3. Metrics
To evaluate the transformation results of the GrammarTransformer

n the case DSLs, we assessed the following metrics.

GORA Number of GrammarTransformer rule applications used for the
configuration.

rammar rules The changes in grammar rules performed by the
GrammarTransformer when adapting the generated grammar to-
wards the expert-created grammar. We measure these changes
in terms of

• mod: Number of modified grammar rules
• add: Number of added grammar rules
• del: Number of deleted grammar rules

4 See directory ‘2_Supplemental_Material/Section_7_Evaluation’.
12

t

Listing 9: Example — grammar rule TemporalPrimaryExpr in the
generated grammar of Spectra

1 TemporalPrimaryExpr re tu rns TemporalPrimaryExpr:
2 {TemporalPrimaryExpr}
3 ’ TemporalPrimaryExpr ’
4 ’ { ’
5 ( ’ operator ’ operator=EStr ing ) ?
6 ( ’ predPatt ’ predPatt=[ Pred ica teOrPat te rnRe fe r rab le |

EStr ing ] ) ?
7 ( ’ po in ter ’ po in ter =[ Refe r rab le | EStr ing ] ) ?
8 ( ’ regexpPointer ’ regexpPointer=[DefineRegExpDecl |

EStr ing ] ) ?
9 ( ’ predPattParams ’ ’ { ’ predPattParams+=

TemporalExpression ( " , " predPattParams+=
TemporalExpression )∗ ’ } ’ ) ?

10 ( ’ tpe ’ tpe=TemporalExpression ) ?
11 ( ’ index ’ ’ { ’ index+=TemporalExpression ( " , " index

+=TemporalExpression )∗ ’ } ’ ) ?
12 ( ’ temporalExpress ion ’ temporalExpress ion=

TemporalExpression ) ?
13 ( ’ regexp ’ regexp=RegExp ) ?
14 ’ } ’ ;

Grammar lines The changes in the lines of the grammar performed by
the GrammarTransformer when adapting the generated grammar
towards the expert-created grammar. We measure these changes
in terms of

• mod: Number of modified lines
• add: Number of added lines
• del: Number of deleted lines

ransformed grammar Metrics about the resulting transformed gram-
mar. We assess

• lines: Number of overall lines
• rules: Number of grammar rules
• calls: Number of calls between grammar rules

iGR Number of grammar rules in the expert-created grammar that
were successfully imitated by the transformed grammar.

niGR Number of grammar rules in the expert-created grammar that
were not imitated by the transformed grammar.

.1.4. Results
Table 4 shows the results of applying the GrammarTransformer to the

even DSLs. See Table 1 for the corresponding metrics of the initially
enerated grammars.

mitation. For all case DSLs in the first two iterations except Spectra,
e were able to achieve a complete adaptation, i.e., we were able to
odify the grammar by using GrammarTransformer so that the grammar

ules of the transformed grammar imitate all grammar rules of the
xpert-created grammar.

imitation regarding Spectra. For one of the languages, Spectra,
e were able to come very close to the expert-created grammar.
any grammar rules of Spectra could be nearly imitated. However,
e did not implement all grammar rules that would have been nec-
ssary to allow the full transformation of Spectra. Listing 9 shows
he grammar rule TemporalPrimaryExpr in Spectra’s generated
rammar, while Listing 10 shows what that grammar rule looks like
n the expert-created grammar. In order to transform the grammar
ule TemporalPrimaryExpr from Listing 9 to Listing 10, we need

o configure the GrammarTransformer so that it combines the attribute
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Table 4
Result of applying the GrammarTransformer to different DSLs (RQ1).

DSL Transformation #𝐺𝑂𝑅𝐴 Grammar Rules Lines in grammar Transformed grammar #𝑖𝐺𝑅 #𝑛𝑖𝐺𝑅

degree mod add del mod add del lines rules callsa

ATL Complete 178 30 0 0 187 0 23 187 30 76 28 0
BibTeX Complete 14 47 0 1 291 0 0 291 47 188 46 0
DOT Complete 79 24 1 3 112 2 0 114 25 41 13 0
SML Complete 421 40 5 56 267 18 2 285 45 121 44 0

Spectra Close 585 54 3 8 190 9 13 414 57 223 54 2
Xcore Complete 307 20 7 14 179 35 10 214 27 100 25 0
Xenia Complete 74 13 0 2 74 0 0 74 13 28 13 0

a The number includes the calls to dummy OCL and dummy SML expressions.
c
s
i
m

Listing 10: Example — grammar rule TemporalPrimaryExpr in the
expert-created grammar of Spectra

1 TemporalPrimaryExpr re turns TemporalExpression:
2 Constant | ’ ( ’ Quant i f ie rExpr ’ ) ’ | {

TemporalPrimaryExpr}
3 ( predPatt=[ Pred ica teOrPat te rnRe fe r rab le ]
4 ( ’ ( ’ predPattParams+=TemporalInExpr ( ’ , ’

predPattParams+=TemporalInExpr )∗ ’ ) ’ | ’ ( ) ’ ) |
5 operator =( ’− ’ | ’ ! ’ ) tpe=TemporalPrimaryExpr |
6 po in ter =[ Re fe r rab le ] ( ’ [ ’ index+=TemporalInExpr ’ ] ’ )

∗ |
7 operator= ’ next ’ ’ ( ’ temporalExpress ion=

TemporalInExpr ’ ) ’ |
8 operator= ’ regexp ’ ’ ( ’ ( regexp=RegExp |

regexpPointer=[DefineRegExpDecl ] ) ’ ) ’ |
9 po in ter =[ Re fe r rab le ] operator= ’ . a l l ’ |

10 poin ter =[ Re fe r rab le ] operator= ’ . any ’ |
11 poin ter =[ Re fe r rab le ] operator= ’ . prod ’ |
12 poin ter =[ Re fe r rab le ] operator= ’ . sum ’ |
13 poin ter =[ Re fe r rab le ] operator= ’ . min ’ |
14 poin ter =[ Re fe r rab le ] operator= ’ .max ’ ) ;

pointer and operator multiple times, and the default value of the
attribute operator is different each time. The language engineers
using the GrammarTransformer need to input multiple parameters to
nsure that the GrammarTransformer gets enough information, and this
omplex transformation requirement only appears in Spectra. Therefore
e did not do such an transformation.

ize of the changes. It is worth noting that the number of transformation
ule applications is significantly larger than the number of grammar
ules for all cases but BibTeX. This indicates that the effort required
o describe the transformations once is significant. However, the actual
hanges to the grammar, e.g., in terms of modified lines in the grammar
re in most cases comparable to the number of transformation rule
pplications (e.g., for ATL with 178 transformation rule applications
nd 187 changed lines in the grammar) or even much larger (e.g., for
ibTeX with 14 transformation rule applications and 291 modified

ines). Note that the number of changed, added, and deleted lines is
lso an underestimation of the amount of necessary changes, as many
ines will be changed in multiple ways, e.g., by changing keywords
nd braces in the same line. This explains why for some languages the
umber of transformation rule applications is bigger than the number
f changed lines (e.g., for SML we specified 421 transformation rule
pplications which changed, added, and deleted together 287 lines in
he grammar).

ffort for the language engineer. We acknowledge that the number of
ransformation rule applications that are necessary to adapt a generated
rammar to imitate the expert-created grammar indicates that it is
13

ore effort to configure GrammarTransformer than to apply the desired
hange in the grammar manually once. However, even with that as-
umption, we argue that the effort of configuring GrammarTransformer
s in the same order of magnitude as the effort of applying the changes
anually to the grammar.

Furthermore, we argue that it is more efficient to configure Gram-
marTransformer once than to manually rewrite grammar rules every
time the language changes — under the assumption that the config-
uration can be reused for new versions of the grammar. In that case,
the effort invested in configuring GrammarTransformer would quickly
pay off when a language is going through changes, e.g., while rapidly
prototyping modifications or when the language is evolving. In the next
section (Section 7.2), we evaluate this assumption.

In terms of reusability of the configurable transformation rules, we
observe that most of the languages we cover require at least one unique
transformation rule that is not needed by any other language. This
applies to DOT, BibTeX, ATL with one unique transformation rule, each.
Spectra was our most complicated case with six unique rules, whereas
Xcore requires four and SML requires five unique rules. This indicates
that using GrammarTransformer for a new language might require effort
by implementing a few new transformation rules. However, we argue
that this effort will be reduced as more transformation rules are added
to GrammarTransformer and that, in particular for evolving languages,
the small investment to create a new transformation rule will pay off
quickly.

7.2. Supporting evolution (RQ2)

To address the second question, we evaluate the GrammarTrans-
former on two languages’ evolution histories: The industrial case of
EAST-ADL and the evolution of the DSL QVTo. We focus on the question
to what degree a configuration of the GrammarTransformer that was
made for one language version can be applied to a new version of the
language.

7.2.1. Cases
The two cases we are using to evaluate how GrammarTransformer

supports the evolution of a DSL are a textual variant of EAST-ADL
(EAST-ADL Association, 2021) and QVT Operational (QVTo) (Object
Management Group, 2016a).

EAST-ADL. EAST-ADL is an architecture description language used
in the automotive domain (EAST-ADL Association, 2021). Together
with an industrial language engineer for EAST-ADL, we are currently
developing a textual notation for version 2.2 of the language (Holtmann
et al., 2023). We started this work with a simplified version of the
meta-model to limit the complexity of the resulting grammar. In a later
step, we switched to the full meta-model. We treat this switch as an
evolution step here. The meta-model of EAST-ADL is taken from the
EATOP repository (EAST-ADL Association, 2022). The meta-model of
the simplified version contains 91 classes and enumerations, and the

meta-model of the full version contains 291 classes and enumerations.
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Table 5
Result of supporting evolution (RQ2).

DSL Meta-m. Generated grammar Transformed grammar Grammar rules Lines in grammar #𝐺𝑂𝑅𝐴 #𝑐𝑂𝑅𝐴

classesa lines rules calls lines rules callsb mod add del mod add del

EAST-ADL 91 755 91 735 767 103 782 70 12 0 517 14 2 22 /
(simple)
EAST-ADL 291 2839 291 3062 2851 303 3074 233 12 1 2046 16 4 31 10
(full)

QVTo 1.0 85 1026 109 910 444 77 181 66 1 33 228 2 580 733 /
QVTo 1.1 85 992 110 836 444 77 181 66 1 34 228 2 546 733 2
QVTo 1.2 85 992 110 836 444 77 181 66 1 34 228 2 546 733 0
QVTo 1.3 85 991 110 835 443 77 180 66 1 34 228 2 546 733 1

a The number is after adaptation, and it contains both classes and enumerations.
b The number includes the calls to dummy OCL and dummy SML expressions.
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QVTo. QVTo is one of the languages in the OMG QVT standard (Object
anagement Group, 2016a). We use the original meta-models available

n Ecore format on the OMG website (Object Management Group,
016a). The baseline version is QVTo 1.0 (Object Management Group,
008) and we simulate evolution to version 1.1 (Object Management
roup, 2011), 1.2 (Object Management Group, 2015) and 1.3 (Ob-

ect Management Group, 2016b). Our original intention was to use
he Eclipse reference implementation of QVTo (Eclipse Foundation,
022b), but due to the differences in abstract syntax and concrete
yntax (see Section 2), we chose to use the official meta-models
nstead. We analyzed four versions of QVTo’s OMG official Ecore meta-
odel. There are 50 differences between the meta-models of version
.0 and 1.1, 29 of which are parts that do not contain OCL (as for
TL as described in Section 4.2, we exclude OCL in our solution for
VTo). These 29 differences include different types, for example, (1)

he same set of attributes has different arrangement orders in the same
lass in different versions of the meta-model; (2) the same class has
ifferent superclasses in different versions; (3) the same attribute has
ifferent multiplicities in different versions, etc. There are 3 differences
etween versions 1.1 and 1.2, all of which are from the OCL part.
here is only one difference between versions 1.2 and 1.3, and it is
bout the same attribute having a different lower bound for the multi-
licity in the same class in the two versions. Altogether we observed
4 meta-model differences in QVTo between the different versions
cf. the file ‘‘Comparison of QVTo metamodel versions’’ in the folder
‘Section_7_Evaluation/Subsection_7.2_Support’’ lists all the metamodel
ifferences).

The OMG website provides an EBNF grammar for each version of
VTo, which is the basis for our imitations of the QVTo languages.
mong them, versions 1.0, 1.1, and 1.2 share the same EBNF grammar

or the QVTo part except for the OCL parts, despite the differences in
he meta-model. The EBNF grammar of QVTo in version 1.3 is different
rom the other three versions.

.2.2. Preparation of the QVTo case
In contrast to the EAST-ADL case, we needed to perform some

reparations of the grammar and the meta-model to study the QVTo
ase. All adaptations were done the same way on all versions of QVTo.

xclusion of OCL. As described in detail in Section 4.2, we excluded
he embedded OCL language part from QVTo. For the meta-model, we
ntroduced a dummy class for OCL, changed all calls to OCL types into
alls to that dummy class, and removed the OCL metaclasses from the
eta-model.

As described in Section 4.2, excluding a language part such as the
mbedded OCL from the scope of the investigation also implies that we
eed to exclude this language part when it comes to judging whether
grammar is imitated. Therefore, we substituted all grammar rules

rom the excluded OCL part with a placeholder grammar rule called
xpressionGO where an OCL grammar rule would have been called.
his change allows us to compare the expert-created grammar of the
ifferent QVTo versions to the transformed grammar versions.
14

t

QVTo meta-model adaptations. We found that some non-terminals of
QVTo’s EBNF grammar are missing in the QVTo meta-model provided
by OMG. For example, there is a non-terminal <top_level> in
the EBNF grammar, but there is no counterpart for it in the meta-
model. Therefore, we need to adapt the meta-model to ensure that it
contains all the non-terminals in the EBNF grammar. To ensure that
the adaptation of the meta-model is done systematically, we defined
seven general adaptation rules that we followed when adapting the
meta-models of the different versions. We list these adaptation rules
in the supplemental material (Zhang et al., 2024).

As a result, we added 62 classes and enumerations with their
corresponding references to each version of the meta-model. Note
that this number is high compared to the original number of classes
in the meta-model (24 classes). This massive change was necessary,
because the available Ecore meta-models were too abstract to cover all
elements of the language. The original meta-model did contain most
key concepts, but would not allow to actually specify a complete QVTo
transformation. For example, with the original meta-model, it was not
possible to represent the scope of a mapping or helper.

These changes enable us to imitate the QVTo grammar. However,
they do not bias the results concerning the effects of the observed meta-
model evolution as, with exception of a single case, these evolutionary
differences are neither erased nor increased by the changes we per-
formed to the meta-model. The exception is a meta-model evolution
change between version 1.0 and 1.1 where the class MappingOper-
ation has super types Operation and NamedElement, while the
ame class in V1.1 does not. The meta-model change performed by
s removes the superclass Operation from MappingOperation in

version 1.0. We did this change to prevent conflicts as the attribute
name would have been inherited multiple times by MappingOpera-
tion. This in turn would cause problems in the generation process.
Thus, only two of the 54 meta-model evolutionary differences could
not be studied. The differences and their analysis can be found in the
supplemental material (Zhang et al., 2024).

7.2.3. Method
To evaluate how GrammarTransformer supports the evolution of

eta-models we look at the effort that is required to update the
ransformation rule applications after an update of the meta-models of
AST-ADL and QVTo.

aseline grammartransformer configuration. First, we generated the
rammar for the initial version of a language’s meta-model (i.e., the
imple version for EAST-ADL and version 1.0 for QVTo). Then we de-
ined the configuration of transformation rule applications that allows
he GrammarTransformer to modify the generated grammar so that its
rammar rules imitate the expert-created grammar for each case. Doing
o confirmed the observation from the first part of the evaluation that
new language of sufficient complexity requires at least some new

ransformation rules (see Section 7.1.4). Consequently, we identified

he need for four additional transformation rules for QVTo, which we
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implemented accordingly as part of the GrammarTransformer (this is
also summarized in Section 5 in Table 2). This step provided us with a
baseline configuration for the GrammarTransformer.

volution. For the following language versions, i.e., the full version of
AST-ADL and QVTo 1.1, we then generated the grammar from the
orresponding version of the meta-model and applied the Grammar-
ransformer with the configuration of the previous version (i.e., simple
AST-ADL and QVTo 1.0). We then identified whether this was already
ufficient to imitate the language’s grammar or whether changes and
dditions to the transformation rule applications were required. We
ontinued adjusting the transformation rule applications accordingly to
ain a GrammarTransformer configuration valid for the new version (full
AST-ADL and QVTo 1.1, respectively). For QVTo, we repeated that
rocess two more times: For QVTo 1.2, we took the configuration of
VTo 1.1 as a baseline, and for QVTo 1.3, we took the configuration
f QVTo 1.2 as a baseline.

.2.4. Metrics
We documented the metrics used in Section 7.1.3 for EAST-ADL and

VTo in their different versions. In addition, we also documented the
ollowing metric:

cORA The number of changed, added, and deleted transformation
rule applications compared to the previous language version.

7.2.5. Results
Table 5 shows the results of the evolution cases.

EAST-ADL. Compared with the simplified version of EAST-ADL, the
full version is much larger. It contains 291 metaclasses, i.e., 200
metaclasses more than the simple version of EAST-ADL, which leads
to a generated grammar with 291 grammar rules and 2839 non-blank
lines in the generated grammar file (cf. Table 5).

The 22 transformation rule applications for the simple version of
EAST-ADL already change the grammar significantly, causing modi-
fications of all 91 grammar rules and changes in nearly every line
of the grammar. This also illustrates how massive the changes to the
generated grammar are to reach the desired grammar. The number of
changes is even larger with the full version of EAST-ADL.

We only needed to change and add a total of 10 grammar transfor-
mation rule applications to complete the transformation of the gram-
mar of full EAST-ADL. For example, we excluded the primary type
String0 from the full version of the EAST-ADL grammar, which led
us to add a line of configuration go.removeRule(String0). While
this is increasing the GrammarTransformer configuration from the simple
EAST-ADL version quite a bit (from 22 transformation rule applications
to 31 transformation rule applications), the increase is fairly small
given that the meta-model increased massively (with 200 additional
metaclasses).

The reason is that our grammar transformation requirements for
the simplified version and the full version of EAST-ADL are almost the
same. This transformation requirement is mainly based on the look
and feel of the language and is provided by an industrial partner.
These transformation rule applications have been configured for the
simplified version. When we applied them to the generated grammar of
the full version of EAST-ADL, we found that we can reuse all of these
transformation rule applications. Furthermore, we benefit from the fact
that many transformation rule applications are formulated for the scope
of the whole grammar and thus can also influence grammar rules added
during the evolution step. We do not list a number of grammar rules
in a expert-created grammar of EAST-ADL in Table 5, because there
is no ‘‘original’’ text grammar of EAST-ADL. Instead, we transform the
generated grammar of EAST-ADL according to our industrial partner’s
15

requirements for EAST-ADL’s textual concrete syntax. a
QVTo. The baseline configuration of the GrammarTransformer for QVTo
includes 733 transformation rule applications, which is a lot given that
the expert-created grammar of QVTo 1.0 has 115 non-terminals. Note
that the transformed grammar has even fewer grammar rules (77) as
some of the rules in the transformed grammar imitate multiple rules
rom the expert-created grammar at once. This again is a testament to
ow different the expert-created grammar is from the generated one
over 228 lines in the grammar are modified, 2 lines are added, and
80 lines are deleted by these 733 transformation rule applications).

However, if we look at the evolution towards versions 1.1, 1.2,
nd 1.3 we witness that very few changes to the GrammarTransformer
onfiguration are required. In fact, only between 0 and 2 out of the
33 transformation rule applications needed adjustments. This signifi-
antly reduces the effort required compared to manually modifying a
rammar generated from a new version of the QVTo metamodel, which
ould require modifying hundreds of lines. The reason is that, even

hough there are many differences between different versions of the
VTo meta-model, there are only 0 to 2 differences that affect the

ransformation rule applications.
For example, version 1.0 of the QVTo meta-model has an attribute

alled bindParameter in the class VarParameter, whereas it is
alled representedParameter in version 1.1. This attribute is not
eeded according to the expert-created grammars, so the Grammar-
ransformer configuration includes a call to the transformation rule
emoveAttribute to remove the grammar line that was generated based
n that attribute. The second parameter of the transformation rule
emoveAttribute needs to specify the name of the attribute. As a con-
equence of the evolution, we had to change that name in the transfor-
ation rule application. Another example concerns the class TypeDef,
hich contains an attribute typedef_condition in version 1.2 of

he QVTo meta-model. We added square brackets to it by applying the
ransformation rule AddSquareBracketsToAttr in the grammar transfor-
ation. However, in version 1.3 of the QVTo meta-model, the class
ypeDef does not contain such an attribute, so the transformation rule
pplication AddSquareBracketsToAttr was unnecessary.

Most of the differences between different versions of the meta-
odel do not lead to changes in the transformation rule applica-

ions. For example, the multiplicity of the attribute when in the class
appingOperation is different in version 1.0 and 1.1. We used
emoveAttribute to remove the attribute during the transformation of
rammar version 1.0. The same command can still be used in version
.1, as the removal operation does not need to consider the multi-
licity of an attribute. Therefore, this difference does not affect the
onfiguration of transformation rule applications.

. Discussion

In the following, we discuss the threats to validity of the evaluation,
ifferent aspects of the GrammarTransformer, and future work implied
y the current limitations.

.1. Threats to validity

The threats to validity structured according to the taxonomy of
uneson and Höst (2008) and Runeson et al. (2012) are as follows.

.1.1. Construct validity
We limited our analysis to languages for which we could find

eta-models in the Ecore format. Some of these meta-models were
ot ‘‘official’’, in the sense that they had been reconstructed from a
anguage in order to include them in one of the ‘‘zoos’’. An example
f that is the meta-model for BibTeX we used in our study. In the case
f the DOT language, we reconstructed the meta-model from an Xtext
rammar we found online. We adopted a reverse-engineering strategy
here we generated the meta-model from the expert-created grammar

nd then generated a new grammar out of this meta-model. This poses
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a threat to validity since many of the languages we looked at can be
considered ‘‘artificial’’ in the sense that they were not developed based
on meta-models. However, we do not think this affects the construct
validity of our analysis since our purpose is to analyze what changes
need to be made from an Xtext grammar file that has been generated. In
addition, we address this threat to validity by also including a number
of languages (e.g., Xenia and Xcore) that are based on meta-models and
using the meta-models provided by the developers of the language.

Furthermore, we had to make some changes to some of the meta-
models to be able to generate Xtext grammars out of them at all
(cf. Section 4.3) or to introduce certain language constructs required
by the textual concrete syntax (cf. Section 7.2.2). These meta-model
adaptations might have introduced biased changes and thereby impose
a threat to construct validity. However, we reduced these adaptations
to a minimum as far as possible to mitigate this threat and documented
all of them in our supplemental material (Zhang et al., 2024) to ensure
their reproducibility.

8.1.2. Internal validity
In the evaluation (cf. Section 7), we set up and quantitatively eval-

uate size and complexity metrics regarding the considered meta-models
and grammars as well as regarding the GrammarTransformer configura-
ions for the use cases of one-time grammar adaptations and language
volution. Based on that, we conclude and argue in Sections 7.1.4 and
.2 about the effort required for creating and evolving languages as
ell as the effort to create and re-use GrammarTransformer configura-

ions. These relations might be incorrect. However, the applied metrics
rovide objective and obvious indications about the particular sizes and
omplexities and thereby the associated engineering efforts.

.1.3. External validity
As discussed in the analysis part, we analyzed a total of seven

SLs to identify generic transformation rules. Whereas we believe that
e have achieved significant coverage by selecting languages from
ifferent domains and with very different grammar structures, we
annot deny that analysis of further languages could have led to more
ransformation rules. However, due to the extensible nature of Gram-
arTransformer, the practical impact of this threat to generalizability is

ow since it is easy to add additional generic transformation rules once
ore languages are analyzed.

Generalizability is further affected by the question of how repre-
entative our cases are for other cases encountered in practice. Our
valuation would be most insightful if the considered languages resem-
le typical practical cases, instead of corner cases. The fact that we
ere able to derive rules from a subset of cases that were sufficient

or largely—in one case, entirely— covering the other cases is a first
ndication that we did not exclusively deal with corner cases. However,

nuanced assessment of how typical our considered cases are for
ther cases would require systematic studies of evolution histories of
etamodel-driven DSLs, which, to, our knowledge, are not available

et and would be a worthwhile direction for future work.
A related threat is with the software quality of our considered lan-

uages. Arguably, a language that was designed following best practices
ight require less evolution and would then also benefit less from our

pproach. Our approach is designed for practical use-cases, in which
uality issues might be common. By supporting language evolution,
ur approach can contribute to changes that improve the quality of a
anguage (e.g., introduce clearer keywords, more consistent parenthesis
ayout). The responsibility to use our tool in such way is with the user of
ur technique. Offering guidance for language design is an orthogonal
16

ssue addressed by other studies (Czech et al., 2018).
8.1.4. Reliability
Our overall procedure to conceive and develop the GrammarTrans-

former encompassed multiple steps. That is, we first determined the
differences between the particular initially generated Xtext grammars
and the grammars of the actual languages in two iterations as described
in Section 4. This analysis yielded the corresponding identified con-
ceptual grammar transformation rules summarized in Section 5. Based
on these identified conceptual grammar transformation rules, we then
implemented them as described in Section 6. This procedure imposes
multiple threats to reliability. For example, analyzing a different set
of languages could have led to a different set of identified transforma-
tion rules, which then would have led to a different implementation.
Furthermore, analyzing the languages in a different order or as part
of different iterations could have led to a different abstraction level of
the rules and thereby a different number of rule. Finally, the design
decisions that we made during the identification of the conceptual
transformation rules and during their implementation could also have
led to different kinds of rules or of the implementation. However, we
discussed all of these aspects repeatedly amongst all authors to mitigate
this threat and documented the results as part of our supplemental
material (Zhang et al., 2024) to ensure their reproducibility.

8.2. The Effort of Creating and Evolving a Language with the Grammar-
Transformer

The results of our evaluation show three things. First, the expert-
created grammars of all studied languages differ greatly in appearance
from the generated grammars. Thus, in most cases, creating a DSL with
Xtext will require the language engineer to perform big changes to the
generated grammar. Second, in the case of complex changes, manually
writing a GrammarTransformer configuration can lead to considerably
less effort for the language engineer compared to manually adapting
the grammar. Third, there seems to be a large potential for the reuse
of GrammarTransformer configurations between different versions of a
language, thus supporting the evolution of textual languages.

These observations can be combined with the experience that most
languages evolve with time and that especially DSLs go through a
rapid prototyping phase at the beginning where language versions are
built for practical evaluation (Wang and Gupta, 2005). Therefore, we
conclude that the GrammarTransformer has big potential to save manual
effort when it comes to developing DSLs.

Additionally, a topic worth mentioning is how the involvement of
different people and their skill sets affect the effort when creating and
reusing transformation rule configurations. For example, in case that
updates to an existing configuration are needed after an evolution step,
the maintainers need to understand the transformation rule configura-
tion of the previous version, which could take a new contributor more
time than the original contributor. Assessing the impact of this aspect
is a subject for future work.

8.3. Implications for practitioners and researchers

Our results have several implications for language engineers and
researchers.

Blended modeling. Ciccozzi et al. (2019) coin the term blended modeling
for the activity of interacting with one model through multiple nota-
tions (e.g., both textual and graphical notations), which would increase
the usability and flexibility for different kinds of model stakeholders.
However, enabling blended modeling shifts more effort to language
engineers. This is due to the fact that the realization of the different
editors for the different notations requires many manual steps when
using conventional modeling frameworks. In this context, Cicozzi and
colleagues particularly stress the issue of the manual customization of
grammars in the case of meta-model evolution. Thus, as one research

direction to enable blended modeling, Ciccozzi et al. formulate the



The Journal of Systems & Software 214 (2024) 112069W. Zhang et al.
need to automatically generate the different editors from a given meta-
model. Our work serves as one building block toward realizing this
research direction and opens up the possibility to develop and evolve
blended modeling languages that include textual versions.

A relevant question is to which extent our approach enables cost
savings in a larger context, as the cost for evolving the existing tools
and applications working with existing languages might be higher than
the cost for evolving the languages themselves. We benefit from the
extensive tool support offered by Xtext, which can automatically re-
generate large parts of the available textual editor after changes of the
underlying grammar, including features such as, e.g., auto-formatting,
auto-completion, and syntax highlighting. In consequence, by support-
ing automated grammar changes (in particular, after evolution steps),
we also save effort for the overall adaptation of the textual editor.
However, in MDE contexts, other applications and tools typically refer
to the metamodel, instead of the grammar, and hence, are outside our
scope.

Prevention of language flaws. Willink (2020) reflects on the version
history of the Object Constraint Language (OCL) and the flaws that
were introduced during the development of the different OCL 2.x speci-
fications by the Object Management Group (Object Management Group
(OMG), 2014). Particularly, he points out that the lack of a parser for
the proposed grammar led to several grammar inaccuracies and thereby
to ambiguities in the concrete textual syntax. This in turn led to the
fact that the concrete syntax and the abstract syntax in the Eclipse
OCL implementation (Eclipse Foundation, 2022a) are so divergent that
two distinct meta-models with a dedicated transformation between
both are required, which also holds for the QVTo specification and
its Eclipse implementation (Willink, 2020) (cf. Section 2). The Gram-
marTransformer will help to prevent and bridge such flaws in language
engineering in the future. Xtext already enables the generation of the
complete infrastructure for a textual concrete syntax from an abstract
syntax represented by a meta-model. Our approach adds the ability
to transform the grammar (i.e., the concrete syntax), as we show in
the evaluation by deriving an applicable parser with an transformed
grammar from the QVTo specification meta-models.

8.4. Future work

The GrammarTransformer is a first step in the direction of supporting
the evolution of textual grammars for DSLs. However, there are, of
course, still open questions and challenges that we discuss in the
following.

Name changes to meta-model elements. In the GrammarTransformer con-
figurations, we currently reference the grammar concepts derived from
the meta-model classes and attributes by means of the class and at-
tribute names (cf. Listing 8). Thus, if a meta-model evolution involves
many name changes, likewise many changes to transformation rule
applications are required. Consequently, we plan as future work to
improve the GrammarTransformerwith a more flexible concept, in which
we more closely align the grammar transformation rule applications
with the meta-model based on name-independent references.

More efficient rules and libraries. We think that there is a lot of potential
to make the available set of transformation rules more efficient. This
could for example be done by providing libraries of more complex,
recurring changes that can be reused. Such a library can contain a
default set of transformation rule configurations to make the generated
grammar follow a particular style (e.g., mimicking an existing lan-
guage, to be appealing for users of that language). Language engineers
can use it as a basis and with minimal effort define transformation
rule configurations that perform DSL-specific changes. Such a change
might make the application of the GrammarTransformer attractive even
in those cases where no evolution of the language is expected. While
this use-case still requires effort for defining configurations, the over-
17

all effort compared to manual editing can be reduced especially in
cases with applicable large-scoped rules that, e.g., globally change the
parenthesis style in the grammar.

In addition, the API of GrammarTransformer could be changed to a
fluent version where the transformation rule application is configured
via method calls before they are executed instead of using the current
API that contains many null parameters. This could also lead to a
reduction of the number of grammar transformation rule applications
that need to be executed since some executions could be performed at
the same time.

Another interesting idea would be to use artificial intelligence to
learn existing examples of grammar transformations in existing lan-
guages to provide transformation suggestions for new languages and
even automatically create configurations for the GrammarTransformer.

Expression languages. In this paper, we excluded the expression lan-
guage parts (e.g., OCL) of two of the example languages (cf. Sec-
tion 4.2). However, expression languages define low-level concepts
and have different kinds of grammars and underlying meta-models
than conventional languages. In future work, we want to further ex-
plore expression languages specifically, in order to ensure that the
GrammarTransformer can be used for these types of syntaxes as well.

Visualization of configuration. Currently, we configure the Grammar-
Transformer by calling the methods of transformation rules, which is
a code-based way of working. In the future, we intend to improve the
tooling for GrammarTransformer and embed the current library into a
more sophisticated workbench that allows the language engineer to
select and parameterize transformation rule applications either using a
DSL or a graphical user interface and provides previews of the modified
grammar as well as a view of what valid instances of the language look
like.

Co-evolving model instances. We also intend to couple GrammarTrans-
former with an approach for language evolution that also addresses the
model instances. In principle, a model instance represented by a textual
grammar instance can be read using the old grammar and parsed into
an instance of the old meta-model. It can then be transformed, e.g., us-
ing QVTo to conform to the new meta-model, and then be serialized
again using the new grammar. However, following this approach means
that formatting and comments can be lost. Instead, we intend to derive
a textual transformation from the differences in the grammars and
the transformation rule applications that can be applied to the model
instances and maintain formatting and comments as much as possible.

Alternative implementation strategy. Our implementation strategy relies
on the format of textual grammars produced by Xtext, which is sta-
ble across recent versions of Xtext. This implementation strategy was
suitable for positively answering our evaluation questions and thus,
substantiating the scientific contribution of our paper. An alternative,
arguably more elegant implementation strategy would be to use Xtext’s
abstract syntax tree representation of the grammar. A benefit of such
an implementation would be that it would be more robust in case that
the output format of Xtext changes, rendering it a desirable direction
for future work.

9. Conclusion

In this paper, we have presented GrammarTransformer, a tool that
supports language engineers in the rapid prototyping and evolution
of textual domain-specific languages which are based on meta-models.
GrammarTransformer uses a number of transformation rules to modify a
grammar generated by Xtext from a meta-model. These transformation
rules have been derived from an analysis of the difference between the
actual and the generated grammars of seven DSLs.

We have shown how GrammarTransformer can be used to modify
grammars generated by Xtext based on these transformation rules. This

automation is particularly useful while a language is being developed
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to allow for rapid prototyping without cumbersome manual configura-
tion of grammars and when the language evolves. We have evaluated
GrammarTransformer on seven grammars to gauge the feasibility and
ffort required for defining the transformation rules. We have also
hown how GrammarTransformer supports evolution with the examples
f EAST-ADL and QVTo.

Overall, our tool enables language engineers to use a meta-model-
ased language engineering workflow and still produce high-quality
rammars that are very close in quality to hand-crafted ones. We
elieve that this will reduce the development time and effort for
omain-specific languages and will allow language engineers and users
o leverage the advantages of using meta-models, e.g., in terms of
odifiability and documentation.

In future work, we plan to extend GrammarTransformer into a more
ull-fledged language workbench that supports advanced features like
efactoring of meta-models, a ‘‘what you see is what you get’’ view of
he transformation of the grammar, and the ability to co-evolve model
nstances alongside the underlying language. We will also explore the
ntegration into workflows that generate graphical editors to enable
lended modeling.
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