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Abstract
High data rate optical communications are susceptible to phase noise and state of polar-
ization (SOP) perturbations. The dynamic nature of phase noise and SOP fluctuations
requires a comprehensive investigation of their effects on the channel capacity and the
development of robust and efficient communication technologies. This thesis unravels
phase and polarization challenges in optical communication systems by characterizing
polarization drift channels, introducing polarization tracking algorithms, utilizing polar-
ization data for fiber sensing, and investigating capacity implications.

The SOP drifts at a much slower rate than typical transmission rates in buried or un-
derwater fibers. Thus, we first characterize the capacity of the block-constant polarization
drift channel under an average power constraint and imperfect channel knowledge. An
achievable information rate is derived, showing strong dependence on the channel estima-
tion technique. A novel data-aided channel estimator is proposed, enforcing the unitary
constraint, and its superior performance is validated through Monte Carlo simulations.
However, in aerial fibers, the SOP drift does not follow the block-constant assumption
and can drift quickly over time. Hence, the next contribution involves investigating
the robustness of polarization tracking algorithms in the presence of fast SOP drift and
polarization-dependent loss. Novel tracking algorithms are proposed, showing a higher
tolerance to SOP drift compared to the gradient descent-based algorithms without the
need for parameter tuning. Thereafter, we explore the application of polarization for fiber
sensing by proposing a physics-based learning approach. The proposed approach shows
lower sensitivity to additive noise compared to previous inverse scattering methods.

Next, we turn our attention to phase noise and investigate the capacity of a discrete-
time multiple-input-multiple-output channel with correlated phase noises originating
from electro-optic frequency combs (EO-comb). We derive capacity bounds and show
that the multiplexing gain is M − 1 where M is the number of channels. Moreover, a
constant gap between the bounds is observed in the high signal-to-noise ratio regime,
which vanishes for the special case of M = 2. Finally, we study optimal pilot placement
for channels impaired by phase noise from EO-combs. Contrary to regular multichannel
systems, it is demonstrated that allocating the first and last channels for pilots is optimal
under a fixed pilot overhead.

Keywords: Capacity, duality bound, electro-optic frequency comb, fiber sensing, mis-
matched decoding, phase noise, polarization dependent loss, polarization drift.

i



ii



List of Papers
This thesis is based on the following publications:

[A] Mohammad Farsi, Magnus Karlsson, and Erik Agrell, “Capacity Bounds under
Imperfect Polarization Tracking,” IEEE Transactions on Communications, vol. 70, no.
11, pp. 7240–7249, Nov. 2022.

[B] Mohammad Farsi, Christian Häger, Magnus Karlsson, and Erik Agrell, “Polar-
ization Tracking in the Presence of PDL and Fast Temporal Drift,” IEEE Journal of
Lightwave Technology, vol. 40, no. 19, pp. 6408–6416, Oct. 2022.

[C] Mohammad Farsi, Christian Häger, Magnus Karlsson, and Erik Agrell, “Learning
to Extract Distributed Polarization Sensing Data from Noisy Jones Matrices,” in Proc.
Optical Fiber Communication Conference (OFC), San Diego, CA, Mar. 2024, Paper
Th2A.

[D] Mohammad Farsi, Hamdi Joudeh, Gabriele Liga, Alex Alvarado, Magnus Karls-
son, and Erik Agrell, “On the Capacity of Correlated MIMO Phase-Noise Channels: An
Electro-Optic Frequency Comb Example,” Submitted to IEEE Transactions on Infor-
mation Theory, May 2024.

[E] Mohammad Farsi, Magnus Karlsson, and Erik Agrell, “Pilot Distributions for
Phase Noise Estimation in Electro-Optic Frequency Comb Systems,” in Proc. European
Conference on Optical Communications (ECOC), Glasgow, Scotland, Oct. 2023, Paper
We.A.7.1.

Other publications by the author, not included in this thesis, are:

[F] Mohammad Farsi, Christian Häger, Magnus Karlsson, and Erik Agrell, “Improved
Polarization Tracking in the Presence of PDL,” in Proc. European Conference on Optical
Communication (ECOC), Basel, Switzerland, Sept. 2022, Paper We4C.3.

[G] Aditya S. Rajasekaran, Monireh Vameghestahbanati, Mohammad Farsi, Hamid
Saeedi, and Halim Yanikomeroglu, “Resource allocation-based PAPR analysis in uplink
SCMA-OFDM systems,” IEEE Access, vol. 7, pp. 162803–162817, 2019.

iii



iv



Acknowledgments
This thesis marks the most rewarding four years of my life, and I owe its completion to
the continuous support of many individuals whom I deeply appreciate.

First and foremost, I want to express my sincere appreciation to my main supervisor,
Prof. Erik Agrell, for his unwavering support and guidance throughout these years.
Erik, it has been a pleasure collaborating with you, and your approach to research has
left a lasting impression on me. You have always been patient and supportive of my
over-ambitious deep research dives. I am also thankful to Prof. Magnus Karlsson for
his guidance in the field of optical communications, which has significantly enriched my
understanding of this domain. Magnus, I appreciate your unwavering positivity and your
efforts to promote my work within the community.

Special thanks to Prof. Alex Alvarado for generously sharing his knowledge during my
visit to Eindhoven, and to Prof. Christian Häger for introducing me to machine learning
and its applications to fiber sensing. Christian, working with you was a delight because
of your unconditional support, and knowing you were only a Slack message away!

Thanks to the seniors and students in the FORCE group for their insights during our
project meetings. My sincere appreciation goes to all my colleagues, past and present,
in the COMSYS group. I am grateful to the seniors for fostering a friendly environment.
Thank you, Alex, for all the good discussions and hanging out, and also for having me
as your teaching assistant. Special thanks to Fredrik and Erik for perfectly managing
more than 50 nerds in the group. Javad, you’ve been not only a colleague but also a
lifelong friend, and I’ve cherished every conversation we’ve had since our bachelor days.
Morteza, our spirited discussions may make people think we are enemies, but they are
proof of our friendship. Moein, our shared journey as Ph.D. students has been filled with
enjoyable discussions, games, and travels. Your positivity has been contagious, and I
appreciate your companionship. To Jinxiang and Deekshith, I have cherished our time
as officemates and colleagues. And to all my other colleagues, thank you for making this
journey enjoyable. Special thanks to Nima, Shen, Ekaterina, Navid, Mohammadhosein,
Mohammad Nazari, Ehsan, Hoang, Mehdi, Karl, Roman, and José for your acquaintance.

Furthermore, I extend my thanks to my Iranian friends within and outside of Chalmers
for their companionship over the past four years. Especially Shokofeh, Moein, Zahra,
Mostafa, Maryam, Mohammadreza, Parisa, Kamran, Samin, Hadi, and Narges.

I acknowledge the unwavering support of my parents and brothers, to whom I owe a
debt of gratitude for their sacrifices. Finally, my heartfelt thanks go to my loving wife,
Neda. None of this would have been possible without you. You are my longest-lasting
friend and my biggest supporter. Thank you for everything!

Mohammad Farsi
Göteborg, May, 2024.

v



Financial support

This work was funded by the Knut and Alice Wallenberg Foundation, grant No. 2018.0090.
I would also like to acknowledge the Ericsson Research Foundation and The Solveig and
Karl G. Eliasson Memorial Foundation for funding my research travels. Moreover, the
computations were enabled by resources provided by Chalmers e-Commons.

vi



Acronyms

Φ-OTDR phase-sensitive optical time-domain
reflectometry

AIR achievable information rate

ASE amplified spontaneous emission

AWGN additive white Gaussian noise

BPS blind phase search

CD chromatic dispersion

CMA constant modulus algorithm

CW continuous wave

DAC digital to analog convertor

DAS distributed acoustic sensing

DD decision-directed

DDLMS decision-directed least mean squares

DGD differential group delay

DOFS distributed optical fiber sensing

DP dual-polarization

DSP digital signal processing

EDFA erbium-doped fiber-amplifier

EKF extended Kalman filter

EKS extended Kalman smoother

EO-comb electro-optic frequency comb

GD gradient descent

GMI generalized mutual information

i.i.d. identically and independently dis-
tributed

IQ in-phase-quadrature

ISA inverse scattering algorithm

JSAC joint sensing and communication

LMS least mean square

LO local oscillator

LS least-square error

MCT multi-core transmission

MI mutual information

MIMO multiple-input multiple-output

MMA multi-modulus algorithm

MMSE minimum mean square error

MMT multi-mode transmission

MSE mean square error

MZM Mach-Zehnder modulator

NLS nonlinear Schrödinger

pdf probability density function

PDL polarization-dependent loss

PMD polarization-mode dispersion

QAM quadrature amplitude modulation

QPSK quadrature phase-shift keying

RDE radially directed equalizer

RF radio frequency

SDM space-division multiplexing

SER symbol error rate

SNR signal-to-noise ratio

SOP state of polarization

SSAC separate sensing and communication

SW-Kabsch sliding window Kabsch

SW-LS sliding window least squares

WDM wavelength-division multiplexing

vii



viii



Contents

Abstract i

List of Papers iii

Acknowledgements v

Acronyms vii

I Overview 1

1 Background 3
1.1 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Fiber-Optic Communication Systems 7
2.1 The Optical Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 The laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 The Modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Modulation Formats . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Signal Propagation in Fibers . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 The Nonlinear Schrödinger Equation . . . . . . . . . . . . . . . . . 10
2.2.2 The Manakov–PMD Equation . . . . . . . . . . . . . . . . . . . . . 11

2.3 Transmission Impairments . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Attenuation and Additive Noise . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Chromatic Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 Kerr Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

ix



2.3.4 Carrier Frequency Offset and Phase Noise . . . . . . . . . . . . . . 16
2.3.5 State of Polarization Drift . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.6 Polarization-Mode Dispersion . . . . . . . . . . . . . . . . . . . . . 18
2.3.7 Polarization-Dependent Loss . . . . . . . . . . . . . . . . . . . . . 19

2.4 Coherent Wavelength Division Multiplexing Systems . . . . . . . . . . . . 20
2.4.1 Electro-Optic Frequency Combs . . . . . . . . . . . . . . . . . . . 20
2.4.2 Frequency-Comb Based WDM System . . . . . . . . . . . . . . . . 21

3 Channel Capacity 23
3.1 Entropy, Relative Entropy, and Mutual Information . . . . . . . . . . . . 23
3.2 Channel Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Information-Theoretic Tools for Bounding Capacity . . . . . . . . . . . . . 26

3.3.1 Maximum Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.2 Entropy in Polar Coordinates . . . . . . . . . . . . . . . . . . . . . 26
3.3.3 Duality Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Mismatched Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.1 LM Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.2 Generalized Mutual Information . . . . . . . . . . . . . . . . . . . 29

4 Channel Models 31
4.1 Linear Modulation, Matched Filtering, and Sampling . . . . . . . . . . . . 32
4.2 Block-Constant SOP Drift Model . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 PDL and SOP Drift Model . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.1 Modeling SOP Drift . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.2 Modeling PDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Concatenated PDL and DGD Model . . . . . . . . . . . . . . . . . . . . . 37
4.4.1 Modeling the Time-Dependency of the SOP Rotation Parameters . 38
4.4.2 Modeling the Noisy Channel Estimate . . . . . . . . . . . . . . . . 39

4.5 EO-Comb Phase-Noise Channel . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5.1 Phase and Frequency in EO-combs . . . . . . . . . . . . . . . . . . 39
4.5.2 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Digital Signal Processing 43
5.1 Static Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.1 Least Squares Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 44
5.1.2 Minimum Mean Square Error Algorithm . . . . . . . . . . . . . . . 46

5.2 Adaptive Equalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2.1 Least Mean Squares Algorithm . . . . . . . . . . . . . . . . . . . . 48
5.2.2 Constant Modulus Algorithm . . . . . . . . . . . . . . . . . . . . . 49
5.2.3 Decision-Directed Least Mean Squares Algorithm . . . . . . . . . . 50

5.3 SOP Drift Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.1 The Kabsch Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 51

x



5.3.2 The Czegledi Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3.3 The Proposed Algorithms . . . . . . . . . . . . . . . . . . . . . . . 53

5.4 Phase-Noise Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.4.1 Blind Phase Search Algorithm . . . . . . . . . . . . . . . . . . . . 54
5.4.2 Extended Kalman Filter Algorithm . . . . . . . . . . . . . . . . . . 55
5.4.3 Pilot-Symbol Placement . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Polarization-Based Fiber Sensing 57
6.1 Separate Sensing and Communication . . . . . . . . . . . . . . . . . . . . 58

6.1.1 Distributed Acoustic Sensing . . . . . . . . . . . . . . . . . . . . . 58
6.1.2 Phase-Sensitive Optical Time-Domain Reflectometry . . . . . . . . 59

6.2 Joint Communication and Sensing . . . . . . . . . . . . . . . . . . . . . . 59
6.2.1 Inverse Scattering Algorithm . . . . . . . . . . . . . . . . . . . . . 60
6.2.2 The Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . 60

6.3 Comparing SSAC and JSAC Techniques . . . . . . . . . . . . . . . . . . . 61

7 Summary of included papers 65
7.1 Paper A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.2 Paper B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.3 Paper C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.4 Paper D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.5 Paper E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.6 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

References 69

xi



xii



Part I

Overview
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CHAPTER 1

Background

Today global connectivity is no longer a dream; it is a reality that came true through
modern, robust, and efficient communication systems. The majority of the global internet
traffic is carried by fiber optic networks thanks to their exceptional bandwidth capacity
and low signal attenuation characteristics. The compact and lightweight design of optical
fibers differentiates them from traditional copper cables, making them the preferred
choice for long-distance and high-speed data transmissions. In addition, optical fibers
are resilient to electromagnetic and radio wave interference and lightning strikes.

Optical fibers, thin strands made of glass or plastic, were invented in the late 20th cen-
tury for communications purposes. The invention of the laser [1], and the low-loss fiber
[2] made commercial fiber-optic communication possible. Subsequently, the invention of
the erbium-doped fiber-amplifier (EDFA) [3] extended the reach to longer distances, and
coherent detection accompanied by the use of digital signal processing (DSP) further
increased the spectral efficiency of fiber-based communication systems. The invention of
wavelength-division multiplexing (WDM) systems [4] enabled the use of different light
wavelengths to simultaneously transmit multiple data streams over a single optical fiber,
significantly increasing the network’s capacity. However, internet traffic shows an ex-
ponential growth rate due to several factors such as ever-increasing connected devices,
bandwidth-intensive applications like streaming video and cloud computing, and the ad-
vanced 5G and beyond networks. Consequently, even with recent technological advances
in optical communication systems, it is predicted that we are rapidly approaching the
so-called capacity crisis [5], [6] where current optical communication systems will reach
their capacity limit.

The space-division multiplexing (SDM) technique led to achieving higher data rates
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Chapter 1 Background

by extending the data-carrying dimensions into the spatial domain. There are two gen-
eral approaches in SDM [5] namely multi-mode transmission (MMT) and multi-core
transmission (MCT). In MMT, the information is encoded onto different modes (spatial
eigenstates) of a multimode fiber. This technique can potentially handle up to hundreds
of strongly coupled spatial channels, which requires powerful DSP to decouple the chan-
nels [7]. On the other hand, in MCT the throughput is increased by transmitting the
data through a multicore fiber. The MCT technique requires much simpler DSP than
MMT, as the cores operate almost independently and can be processed individually.
However, the scalability of this approach is currently limited, as the maximum number
of cores that can be packed within a single fiber cladding while ensuring manageability
is currently below 50.

In addition to SDM, utilization of the phase and polarization of light has further im-
proved the performance of optical systems. Information is conveyed in two orthogonal
polarizations of light. These systems are known as dual-polarization (DP) [8] and can
double the throughput compared to a single-polarization transmission. However, the im-
proved spectral efficiency comes at the cost of reduced tolerance to impairments, such as
additive noise, nonlinearities, laser phase noise, or polarization drift. Therefore, future
higher-order modulation formats require more powerful DSP to mitigate these impair-
ments accurately.

Optical fibers are resilient to electromagnetic interference and highly sensitive to ex-
ternal environmental factors (e.g., temperature, strain, pressure, vibration, etc.), making
them favorable for use as sensors. Fiber sensing finds widespread applications across in-
dustries, including structural health monitoring [9], environmental monitoring [10], and
medical diagnostics. Additionally, fiber sensing technology plays a critical role in seis-
mic monitoring, oil and gas exploration, and infrastructure integrity assessment, further
highlighting its versatility and importance in diverse fields [11]. Recently, the phase and
polarization of the telecom signal have been utilized for environmental sensing purposes
[12]–[14]. Interestingly, the phase and polarization information is already available in
modern coherent transceivers and therefore can be used for sensing at no additional cost
and without requiring expensive instruments.

In this thesis, we study the impact of phase and polarization on optical communication
systems, focusing on analyzing their influence on information capacity and designing
DSP techniques. In addition, we examine how polarization information can be utilized
in distributed sensing applications.

1.1 Thesis Outline
This thesis consists of two parts: the first part provides background information for the
second part, which contains the included publications. The first part is organized as
follows: Chapter 2 offers an overview of modern optical communication systems and
common signal impairments during transmission. Chapter 3 defines the channel capac-
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1.2 Notation

ity and introduces tools for bounding the channel capacity. Chapter 4 introduces the
channel models used in Papers A-E. Chapter 5 discusses DSP tools to compensate for
transmission impairments such as phase noise and polarization drift, and techniques for
channel estimation tracking. Chapter 6 briefly explores fiber-based environmental sens-
ing and state-of-the-art techniques for communication and sensing applications. Finally,
Chapter 7 summarizes the appended publications and suggests future research directions.

1.2 Notation
Throughout Part I, we use the following notational conventions. Column vectors are
denoted by underlined letters x = (x0, . . . , xM−1), and the M -dimensional vector of ones
is denoted by 1M = (1, 1, . . . , 1). Matrices are denoted by uppercase Roman letters X,
and the M -dimensional identity matrix is denoted by IM . Bold-face letters x are used
for random quantities and their corresponding nonbold counterparts x for their realiza-
tions. An M -tuple or a column vector of (xm+1, . . . , xm+M ) is denoted by {xi}m+M

i=m+1
or {xi}m+N

m+1 whenever it is clear from the context. Random processes are considered
ordered sequences and indicated inside braces, i.e., {xk} = {xk}∞

1 is a random process.
The log refers to the base-2 logarithm. The argument (phase) of a complex value is

denoted by x ∈ [−π, π). The wrapπ(θ) function wraps θ into [−π, π) and is defined as
wrapπ(θ) = mod 2π(θ + π) − π. Moreover, θ +π ϕ denotes wrapπ(θ + ϕ). We denote
Hadamard’s (component-wise) product by ◦. Absolute value is denoted by| · |, Euclidean
norm by ∥·∥, and Frobenius norm by ∥·∥F. Whenever a scalar function is applied to a
vector, e.g., |x|, x, max(x), etc., it stands for applying the function to each element
of the vector. Whenever inequalities are applied to a vector, e.g., x > c, it stands for
applying the inequalities to each element of the vector, i.e., x > c ⇐⇒ xi > c, ∀i.

Probability density functions (pdfs) are denoted by fx(x) and conditional pdfs by
fy|x(y|x), where arguments or subscripts may sometimes be omitted if clear from the
context. The expectation over random variables is denoted by E[·]. Sets and distributions
are indicated by uppercase calligraphic letters, e.g., X . The cardinality of the set X is
denoted by |X |. The uniform distribution on the range [a, b) is denoted by U [a, b). The
Gaussian distribution with mean µ and variance σ2 is denoted by N (µ, σ2). We denote
the standard zero-mean complex circularly symmetric Gaussian distribution for a scalar
by CN (0, 1) and for an M -dimensional vector by CN (0, IM ).

Notational Inconsistencies

We warn the reader regarding the following notational inconsistencies between the thesis
overview given in Part I and the appended papers in Part II:

• The input vector is denoted by xk throughout the entire thesis, except in Paper A
and Paper B where it is used as the channel output vector.

5



Chapter 1 Background

• The variable M denotes the channel dimensions across the entire thesis, except in
Paper B where it represents the number of constellation points.

• The variable ν denotes the exponent parameter in the generalized mutual informa-
tion formula throughout the thesis, but in Paper B, it denotes the sliding stride of
the equalization window.

• Constellation sets are denoted by C in Part I, whereas in Papers A and B, they are
denoted by S, and in Papers D, by X .

• The (†) sign denotes the conjugate transpose operator in this thesis, except in
Paper E where it denotes the pseudoinverse.

• The variable γ represents the nonlinearity parameter in Part I, while in Paper D,
it signifies the truncation parameter for truncated probability distributions.

• Throughout this thesis, p(·) denotes the probability mass function, except in pa-
per B where it denotes the probability density function.

• The variable µ denotes the step size in adaptive equalizers throughout the thesis,
except in Paper D where it denotes the scaling parameter of gamma distributions.

• The polarization-dependent loss matrix Γn is defined differently in the thesis overview
and in Paper C.

• In Part I, g(z) denotes the amplifier gain function, whereas in Paper D, it denotes
a function consisting of differential entropy terms.
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CHAPTER 2

Fiber-Optic Communication Systems

Optical communication is the core of modern telecommunication systems, offering reli-
able and efficient data transmission over long distances. Unlike conventional electrical
transmission methods, which are limited by factors such as signal attenuation and electro-
magnetic interference, optical communication takes advantage of the unique properties
of light to achieve high data transfer rates and reliability.

The optical transmission works by guiding the light beam through an optical fiber.
The optical fibers have a core made of silica surrounded by a cladding, where the core
has a higher refractive index than the cladding to ensure that light signals remain con-
fined within the core [15, Ch. 2]. Optical fibers come in various types to meet different
transmission requirements. Single-mode fibers (SMFs), designed to carry a single mode
of light, are the preferred choice for long-haul transmission due to their lower signal at-
tenuation. Few-mode and multimode fibers because of their larger core diameter support
multiple modes of light, making them suitable for scenarios where increased data capacity
and spatial multiplexing are required. In the beginning, the few-mode and multimode
fibers were used for short-haul applications. In the last decade, however, tremendous
progress has been reported in terms of transmission reach, bandwidth, and the number
of fiber modes used for transmission [16].

Although fibers are low-loss mediums, signal attenuation can still occur over long
transmission distances. To mitigate this attenuation, optical amplifiers are inserted along
the fiber optic link at regular intervals. These amplifiers effectively recover the optical
signal strength, resulting in reliable data transmission over longer distances. However,
the amplification process distorts the signal by adding white Gaussian noise, commonly
known as amplified spontaneous emission (ASE) noise. Besides the additive noise of
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Chapter 2 Fiber-Optic Communication Systems

Tx data Transmitter Amp Receiver

Optical Channel

×Nsp

Rx data

Figure 2.1: A typical fiber-optic long-distance link includes a transmitter, Nsp spans of optical fiber
with amplification, and a coherent receiver.

the amplifiers, transmission can be affected by stochastic and deterministic impairments,
which become more destructive as the link length increases.

This thesis focuses mainly on long-haul transmission, where the channel conditions can
significantly impact the data transmission performance. In this chapter, we provide an
overview of various transmission impairments in fiber-optic communication without delv-
ing into mathematical details. We also explore the deterministic and random effects that
influence signal propagation in fiber-optic channels by studying the signal propagation
equations.

In Fig. 2.1, a typical fiber-optic link is depicted. The transmitter converts the input
bits into an optical waveform, which then travels through the fiber and gets amplified
to reach the receiver. At the receiver, an estimate of the transmitted bits is generated
based on the received optical waveform. The following sections describe the underlying
elements of this system and their effect on the received signal.

2.1 The Optical Transmitter
Fig. 2.2 shows a typical scheme of a coherent optical transmitter for a single wavelength
and a single polarization. The light source serves as the carrier for transmitting the
information and is typically a laser or light-emitting diode. Then, the light enters the
in-phase-quadrature (IQ) modulator where the data signal gets encoded into one polar-
ization of the light. The data signals are created by converting information data into
waveforms using the digital to analog convertor (DAC) module. Data transmission over
both polarizations is enabled by utilizing a polarization splitter to divide the light into
two orthogonal polarizations. Each polarization is independently modulated using IQs,
and subsequently, the two modulated polarizations are combined using a polarization
combiner.

2.1.1 The laser
The laser is a key component in coherent communication systems as it functions both
as a carrier in the transmitter and as a local oscillator (LO) in the receiver. Commonly,
diode lasers due to their efficiency and reliability are favored to be used at both the trans-
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Light Source

90◦

MZM

DACIn-phase data

MZM

DACQuadrature data

IQ-Modulator

Figure 2.2: An optical transmitter consists of a laser, digital-to-analog converters, and an in-phase-
quadrature modulator made of parallel Mach-Zehnder modulators.

mitter and the receiver. The lasers’ efficiency relies on several factors such as wavelength
stability, launch power, and linewidth.

The laser’s launched power determines the amplifier (or repeater) spacing. Increasing
the launch power extends the spacing between the amplifiers, saving costs by reducing
the number of required amplifiers. However, the nonlinear effects of the fiber limit the
extent to which the launch power can be raised. Typically, launched power is denoted in
dBm units, with 1 mW acting as the reference level.

The laser linewidth determines the spread of optical frequencies around the laser’s
nominal output frequency, which directly impacts the phase noise of the laser. Thus,
narrower linewidth implies more stable frequency emission and larger linewidth indicates
higher frequency deviation. The impact of the laser phase noise on the performance of
optical transmission systems will be discussed later in Section 2.3.4.

2.1.2 The Modulator
The IQ modulators are commonly used to modulate the data on the optical field. A
Mach-Zehnder modulator (MZM) is a device commonly used for modulating optical
signals, and it consists of two arms with a phase modulator in each arm. The MZM can
control the interference between the two arms by modulating the phase of the light in
each arm. To perform IQ modulation, parallel MZMs are used to independently control
the in-phase and quadrature components of the optical signal [17]. Fig. 2.2 depicts an
MZM-based IQ modulator.

2.1.3 Modulation Formats
In telecommunication systems, a modulation format, commonly known as constellation,
refers to a method describing how bits are encoded onto a carrier wave. Modulation for-

9
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mats can be designed to modify certain aspects of the carrier wave, such as its amplitude,
frequency, or phase, to encode the desired information into the carrier wave.

A single-polarization constellation is typically a set C = {c1, c2, . . . , c|C|} consisting
of complex, zero-mean elements, with |C| denoting the number of constellation points.
Generally, having more points in C means better spectral efficiency because each point
in the constellation represents more bits. However, this improvement comes with a
downside, as the received signal becomes more sensitive to distortions after transmission.

In modern fiber-optic communications, common modulation formats include phase-
shift keying, and DP quadrature amplitude modulation (QAM). Here, DP means the
same constellation is used for both polarizations of the optical signal. Hence, a DP
constellation is referred to the set C2 = {c1, . . . , c|C2|} with its elements being complex
zero-mean 2-dimensional vectors.

In more complex systems, such as those involving multiple dimensions, constellation
points extend beyond single or dual polarizations. In an M -dimensional constellation,
denoted as CM = {c1, c2, . . . , c|CM |}, each constellation point is represented as an M -
dimensional vector. These vectors are complex, and zero-mean. The cardinality of CM
corresponds to the number of constellation points in the M -dimensional space.

2.2 Signal Propagation in Fibers
In this section, we briefly explain the underlying mechanism of signal propagation in the
fiber.

2.2.1 The Nonlinear Schrödinger Equation
The behavior of an optical signal can be characterized by the well-known Maxwell’s equa-
tions. These equations describe how electric and magnetic fields interact and propagate
through space and provide a theoretical framework for understanding the behavior of
optical signals in optical fiber communication systems.

The nonlinear Schrödinger (NLS) equation is a partial differential equation describing
the slow-varying envelope of the single-polarized electromagnetic field of light as [15, Ch.
2]

∂E
∂z

+ α

2 E︸︷︷︸
Attenuation

+j β2

2
∂2E
∂t2︸ ︷︷ ︸

Dispersion

−j γE |E|2︸ ︷︷ ︸
Nonlinearity

= 0. (2.1)

Here, E represent the complex baseband signal propagating in the x or y polarizations at
time t and location 0 ≤ z ≤ Lf , with Lf denoting the total length of the fiber. Addition-
ally, α represents the attenuation parameter, β2 denotes the group-velocity dispersion
coefficient, and γ denotes the Kerr nonlinearity coefficient. Moreover, t represents the
retarded time relative to the center of the propagating signal, rather than absolute time.

Note that (2.1) corresponds to the unamplified signal propagation in an SMF and
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does not account for additive noise. The validity of the NLS equation is confirmed
through numerous experiments, making it a reliable model for light propagation in optical
fibers. However, its accuracy depends on several critical assumptions, including single-
polarization transmission, narrow spectral width relative to the central frequency, specific
wavelength ranges for transmission, low fiber loss, spatially invariant refractive indices,
instantaneous nonlinear response, and weak higher-order nonlinearities and dispersion.
Therefore, the equation may not be accurate under extreme conditions of very high
powers or wavelengths and does not consider intrinsic fiber impairments. Further details
on these assumptions can be found in [18, Ch. 2].

2.2.2 The Manakov–PMD Equation
The NLS equation (2.1) applies to perfectly circular optical fibers under ideal conditions,
assuming no birefringence. However, real-world optical fibers may exhibit birefringence
that varies throughout the link. The birefringence causes different polarizations of light
to travel at different speeds, a phenomenon commonly known as polarization-mode dis-
persion (PMD)1.

Neglecting the nonlinear PMD terms which are usually negligible in communication
applications, the PMD-Manakov equation takes PMD into account and is given by [19,
Eq. (68)]

∂E
∂z

+ α

2 E − ∆β1
∂E
∂t

+ j
β2

2
∂2E
∂t2

− jγ
8
9E ∥E∥2 = 0. (2.2)

Here, E = (Ex(z, t),Ey(z, t)), where Ex(z, t) and Ey(z, t) represent the complex baseband
signals propagating in x and y polarizations. Moreover, the third term on the left-hand
side of (2.2) accounts for PMD and in contrast to the NLS equation (2.1), the nonlinear
term incorporates a factor of 8/9 [20]. The term ∆β1 = (β1,x − β1,y) represents the
group delay between polarizations x and y, characterized by propagation constants β1,x
and β1,y, respectively. The PMD coefficient of the fiber is defined as DPMD = 2

√
2Lc∆β1,

where Lc denotes the correlation length of the fiber and is typically within the range of
10 to 100 meters. The correlation length Lc determines the length over which the two
polarizations stay correlated. For modern fibers, PMD coefficient values typically range
between 0.04 and 0.1 ps/

√
km, with potential increases to several ps/

√
km for older fiber

generations.
The PMD-Manakov equation (2.2) describes signal propagation without any additive

noise (no amplification). The statistical PMD-Manakov equation can be obtained by a
straightforward modification: substituting the zero vector on the right-hand side of (2.2)
with a circularly symmetric and Gaussian vector n.

While PMD has been mitigated to varying degrees in modern optical fiber designs, it
can still be present in commercial systems utilizing standard SMF, dispersion-compensating
fiber, non-zero dispersion shifted fiber, polarization-maintaining fiber, and high-birefringence

1The PMD will be presented in more detail in Section 2.3.6.
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Table 2.1: Typical amplifier parameters

Parameter Symbol Value

Amplifier Gain G eαLsp

Carrier frequency v 191.1 − 196.1 THz

Number of spans Nsp ≥ 1

Planck’s constant h 6.626 · 10−34 Js

Span length Lsp 80 − 100 km

Spontaneous emission factor nsp 1 − 2.5

fiber. For instance, as we will see in Paper C, the presence of PMD could be useful for
fiber sensing applications.

2.3 Transmission Impairments
This section provides an overview of the main transmission impairments caused by either
hardware imperfections or fiber’s physical properties. While this thesis is mainly focused
on the phase and polarization effects, it is useful to consider other sources of impairments
in fiber-optic systems such as dispersion and nonlinearities for completeness.

2.3.1 Attenuation and Additive Noise
The standard SMFs exhibit a wavelength-dependent transmission loss with a minimum
around 0.2 dB/km at approximately 1550 nm. This loss mostly originates from the
Rayleigh scattering phenomenon that exists in all fibers [15, Sec. 2.5.3]. Unless com-
pensated, this loss limits the transmission reach in long-haul fibers by making the signal
undetectable to the receiver.

We can investigate the effect of attenuation on the signal by disregarding dispersion
and nonlinearities, i.e., setting β2 = 0 and γ = 0. This enables us to solve the NLS
equation (2.1) as

E(z, t) = E(0, t) exp(−αz/2), (2.3)

showing that the signal decays exponentially along the fiber due to the fiber loss.
Early solutions involved installing transceivers in multiple locations to detect and re-

peat the signal. However, this technique was expensive and incompatible with elastic
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Figure 2.3: A qualitative illustration of the amplification effect on signal and added noise as a function
of the number of spans.

optical networks since the repeaters were configured for a fixed location, wavelength,
baud rate, modulation format, code, and other transmission parameters. The invention
of the EDFA [3] and the Raman amplifier [21] enabled the transmission over very long
distances by simultaneously amplifying the signal in the optical domain. While the am-
plification mitigates the fiber loss, it also generates additive ASE noise, which degrades
signal-to-noise ratio (SNR) and limits the achievable transmission reach [22].

By considering optical amplification, the signal propagation through the fiber can be
described by the statistical NLS equation as

∂E
∂z

+ α− g(z)
2 E + j

β2

2
∂2E
∂t2

− jγE |E|2 = n, (2.4)

where n models the additive ASE noise which is circularly symmetric and Gaussian, and
g(z) is the gain profile. The amount of additive noise and the gain profile depend on the
amplification method. There are mainly two methods:

• Lumped Amplification: It is done by dividing the fiber in Nsp spans and insert-
ing an EDFA at the end of each span. This leads to

g(z) = αLsp

Nsp∑
n=1

δ(z − nLsp),

where δ(·) is the Dirac delta function. Fig. 2.3 shows a qualitative description of
the Lumped amplification effect on signal and added noise as a function of the
number of spans. With lumped amplification in place, the autocorrelation function
of the additive noise can be written as

E[n(z, t)n(z′, t′)] = nsp(G− 1)hvδ(t− t′)δ(z − z′)
Nsp∑
n=1

δ(z − nLsp), (2.5)
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Figure 2.4: The impact of dispersion on a signal after propagating the signal.

where the parameters are defined in Table 2.1.

• Distributed Amplification: In contrast to lumped amplification, distributed
amplification continuously compensates for transmission loss throughout propaga-
tion, maintaining a nearly constant signal power level. In this method, a pump
wave is transmitted at frequencies higher than those of the signal. The pump wave
co-propagates with the signal, transferring a portion of its energy to the signal
through the Raman effect. Ideally, Raman amplification leads to g(z) = α and

E[n(z, t)n(z′, t′)] = αKThvδ(t− t′)δ(z − z′), (2.6)

where KT is the photon occupancy factor, and it is approximately 1.13 for Raman
amplification.
The ideal Raman amplification, where each pump photon efficiently converts into
a corresponding signal photon without any losses or noise, is not achievable due
to several factors. The Raman amplification gain is wavelength-dependent, caus-
ing efficiency degradation outside a specific bandwidth. The stimulated Raman
scattering phenomenon sets a threshold on the pump power, beyond which some
pumps are lost due to scattering processes instead of being converted into signal
power. Moreover, high pump power also invokes nonlinear effects in the fiber, such
as self-phase modulation and four-wave mixing, which degrade amplification effi-
ciency by introducing crosstalk [23, Ch. 3.3.1]. Despite their limitations, modern
Raman amplification systems still offer substantial gains and noise reduction, which
are vital for long-distance optical communication.

2.3.2 Chromatic Dispersion
The optical fiber is a dispersive medium where the group velocity is wavelength dependent
which causes different wavelengths of light to travel at different speeds, a phenomenon
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Figure 2.5: The spectrum-broadening impact of nonlinearities is shown for three pulses with different
amplitudes in the frequency domain after propagation.

commonly known as chromatic dispersion (CD) or group velocity dispersion. In the
time domain, the CD leads to pulse broadening since different spectral components of
the light arrive at different times. This spreading effect can degrade the quality of
the transmitted signal, leading to intersymbol interference and ultimately reducing the
transmission distance and data rate of optical communication systems.

If we neglect the nonlinearity, we can investigate the effect of CD. The frequency
domain solution of (2.1) would be

E(z, f) = E(0, f) exp(j2β2π
2f2z) exp(−αz/2), (2.7)

where E(z, f) represents the Fourier transform of E(z, t). Thus, the CD behaves as an all-
pass filter, altering only the phase of the spectrum while leaving the amplitude unaffected.
Fig. 2.4 shows that the dispersion completely distorts the signal after propagation.

2.3.3 Kerr Nonlinearity
Kerr nonlinearity serves as one of the key distinguishing factors between optical com-
munication channels and linear wireless channels. Kerr nonlinearity in fibers originates
from the fact that the intensity of the electromagnetic field impacts the core and the
cladding refractive indices. The Kerr nonlinearity causes effects such as self-phase mod-
ulation, cross-phase modulation, and four-wave mixing which play an important role in
the performance of the long-haul transmission systems.

Neglecting the CD and the fiber loss by setting β2 = 0 and α = 0, we can solve (2.1)
as follows

E(z, t) = E(0, t) exp(jγ |E(0, t)|2 z). (2.8)

Thus, the Kerr nonlinear effects introduce an intensity-dependent phase shift while keep-
ing the signal amplitude unaltered in the time domain. Consequently, the signal spectrum
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Figure 2.6: Phase noise impact on 16-DP-QAM constellations. Colors represent the received vectors
corresponding to a certain transmitted point. Larger dots denote the transmitted constel-
lation points and the smaller dots denote their corresponding received vectors. Both x and
y polarizations experience the same phase noise.

broadens as a function of the signal intensity. Fig. 2.5 shows an example of the nonlinear
effects in the frequency domain. It can be seen that the spectrum of the signal broadens
as the input power increases.

2.3.4 Carrier Frequency Offset and Phase Noise
Coherent optical communication systems achieve high spectral efficiency by modulating
the phase and amplitude of the optical field in both polarizations. To access phase and
amplitude, the incoming modulated wave is down-converted to the baseband using a
continuous wave (CW) optical field. The required CW can be sourced from a separate
laser at the receiver, transmitted as a pilot tone orthogonal to the data, or on a separate
frequency or spatial channel. The preferred method involves obtaining the intended CW
from a laser at the receiver, known as the LO, to maintain spectral efficiency [24]. Ideally,
the receiver LO must match the transmitter carrier frequency, but in reality, the carrier
and the LO are not phase-locked which results in frequency and phase mismatch. While
the phase offset rotates the transmitted constellation points with a constant phase, the
frequency offset introduces a linear phase rotation to the phase of the received symbols.

As mentioned earlier, the linewidth ∆ν of a laser refers to the spectral width of its
optical output, indicating the range of frequencies over which its optical power is dis-
tributed. A perfect laser produces a perfect sinusoidal carrier wave which means its
optical spectrum is a delta function, i.e., ∆ν = 0. In reality, however, the spectrum of
a laser is broader which comes from the phase fluctuations of the optical field known
as laser phase noise. Phase noise in a laser represents instability in the optical phase
of its output, arising from factors such as spontaneous emission, cavity length fluctua-
tions, thermal effects, and frequency-to-phase conversion processes [25, Ch. 7.6]. The
relationship between linewidth and phase noise is direct: a laser with higher phase noise
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Figure 2.7: (a) Linear polarization when |Ex| = |Ey| and the relative phase is zero. (b) Circular
polarization with |Ex| = |Ey| and relative phase π/2. (c) Elliptical polarization with
|Ex| ̸= |Ey| and relative phase π/2.

typically exhibits a broader linewidth, while a laser with lower phase noise tends to have
a narrower linewidth.

At the constellation level, the phase noise results in random rotations of the received
constellations. Fig. 2.6 shows the effect of phase noise on 16-DP-QAM transmission.
In Sections 4.5 and 5.4, we delve more into the concept of phase noise, exploring its
modeling and various compensation techniques.

2.3.5 State of Polarization Drift
The state of polarization (SOP) of light describes the orientation of the electric field
vector as light propagates through the fiber. Light is an electromagnetic wave, and
its electric field oscillates perpendicularly to the direction of propagation. The state of
polarization specifies the direction of this oscillation in relation to a chosen reference axis.

The electric field E can be analyzed by breaking it down into two perpendicular com-
ponents denoted as Ex and Ey. Depending on their respective amplitudes and relative
phase differences, various types of polarization states can emerge. These include linear
polarization, wherein the electric field oscillates along a fixed direction, circular polar-
ization, where the electric field traces a circular path, and elliptical polarization, which
entails an elliptical trajectory for the electric field vector. Fig. 2.7 shows the three afore-
mentioned types of polarization states.

The Ex and Ey components, representing the electric fields of the x and y polarizations,
can be individually modulated in both phase and amplitude. In an ideal scenario, light
traveling through a straight fiber would maintain the same SOP in which it was initially
launched. However, in reality, fiber optic cables possess asymmetrical cores as a result
of manufacturing processes, mechanical/thermal stresses encountered during and after
installation, and environmental changes. These imperfections disrupt the orthogonality
between the Ex and Ey components, leading to a phenomenon known as SOP drift.
Because of the stochastic fluctuations in environmental conditions affecting the fiber,
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Figure 2.8: Illustration of the PMD effect on x and y polarizations. Two pulses, each having equal
power in the x and y polarizations, propagate through a short fiber of length Lf . The
pulses are depicted at three different propagation distances, where the time separation
between them increases as the distance grows.

the geometry of fibers undergoes random variations both longitudinally and temporally,
causing the SOP drift to be a random process. The drift in the SOP leads to a time-
variant power exchange between the two polarizations, disrupting their orthogonality
and consequently limiting the overall performance of the system.

Experimental measurements indicate that the drift in the SOP can exhibit vastly
different rates depending on the type of fiber and its environmental conditions. For
buried fibers, the SOP drift may occur over extended periods, spanning hours or even
days [26]. In contrast, aerial fibers experience much faster SOP drift, with timescales
measured in microseconds [27]–[29]. For example, field observations of an aerial fiber link
revealed that the SOP drift rate could reach up to 5.1 Mrad/s during lightning strikes
[30]. In Sections 4.2, 4.3, and 5.3 we will delve deeper into the modeling of the drift in
the SOP, and explore tracking schemes with a focus on their ability to tolerate rapid
drifts.

2.3.6 Polarization-Mode Dispersion
Due to the imperfections in the fiber’s geometry (asymmetry, stress, bending), the re-
fractive index differs for different polarizations, a phenomenon known as birefringence.
The birefringence causes different polarization states of light to travel at different speeds
[18, Ch. 2.2], which is known as PMD.

Fig. 2.8 depicts the PMD effect on the x and y polarizations of the signal. As the
light travels through the fiber, the two polarizations get separated in time due to the
different propagation speeds. The amount of this time separation is commonly known as
differential group delay (DGD). In practical terms, PMD limits the transmission capacity
and quality of optical communication systems by causing distortion and spreading of
optical signals. It becomes particularly significant in high-speed optical transmission
systems where pulses are packed closely in time.

As the impact of PMD on the signal differs based on polarization, and as mentioned
previously polarization drifts over time, PMD becomes a time-varying impairment. To
mitigate PMD, various techniques are employed, including using fibers with low PMD
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Figure 2.9: Qualitative impact of a PDL element resulting in a power imbalance between the two
different polarizations.

characteristics, employing PMD compensators, or using DSP techniques to mitigate its
effects. From a DSP perspective, PMD induces frequency-dependent crosstalk between
polarizations, which can be mitigated by adaptive equalizers.

2.3.7 Polarization-Dependent Loss
Polarization-dependent loss (PDL) refers to the phenomenon where the loss of transmit-
ted light through an optical system, such as a fiber optic network or a photonic device,
varies depending on the polarization state of the light. In other words, the loss expe-
rienced by light traveling through the system differs based on whether its polarization
aligns with the preferred axis of the system or not. PDL can occur due to asymmetries
in the optical components, such as isolators, multiplexers, and couplers [31]. Fig. 2.9
depicts the effect of PDL on two different polarizations. In this particular example, the
signal in x-polarization remained unchanged, while the signal in y polarization experi-
enced attenuation. Note that the amount of power imbalance and its orientation depends
on the preferred axis of the PDL element.

High levels of PDL can degrade the performance of optical communication systems by
inducing power imbalances and disrupting the orthogonality between polarizations [32].
Consequently, mitigating the PDL effects is important for maintaining the reliability
and efficiency of optical networks and devices. Additionally, when random SOP drift is
combined with PDL, the resulting power imbalances fluctuate over time, which makes
the polarization tracking more challenging.

In the literature, PDL has typically been characterized by concatenating many ran-
domly oriented PDL elements along the fiber, with its statistical properties extensively
examined in [33]–[35], which describe the aggregated PDL using a Maxwellian distribu-
tion. In [36] and [37] the effects of average PDL on the optical link’s performance are
investigated. Furthermore, the interaction between PDL and other phenomena such as
PMD and Kerr nonlinearity has been investigated in [38] and [39], respectively. In Sec-
tions 4.4 and 5.3, we provide more details into the modeling and compensation methods
of PDL.
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Figure 2.10: A standard WDM system, each channel comprises an optical transceiver that operates
autonomously, separate from all other co-propagating channels. Each WDM channel
requires two lasers, one at the transmitter side and another at the receiver end.

2.4 Coherent Wavelength Division Multiplexing Systems
The coherent WDM systems through utilizing multiple wavelengths enable simultane-
ous transmission of data over a single optical fiber. Thus, WDM systems effectively
increase the throughput by expanding transmission bandwidth and enhancing efficiency.
Neglecting all the impairments and the nonlinearities and by only considering additive
white Gaussian noise (AWGN), the capacity of a bandlimited channel with power con-
straint ρ and noise variance σ2 is denoted by the formula expressed in bits per second,
W log(1 + ρ/σ2), where W represents bandwidth [40, Ch. 9.3]. Considering the capacity
formula, one can grasp why WDM efficiently enhances throughput. Notably, capacity
increases linearly with bandwidth and logarithmically with power ρ. Therefore, doubling
throughput requires increasing the SNR from ρ/σ2 to ρ2/σ4. Alternatively, this increase
in throughput can be achieved by doubling bandwidth and only doubling power. Simi-
larly, modulating both polarizations enables doubling the throughput by merely doubling
the transmitted power.

Today, state-of-the-art experiments may employ hundreds of wavelengths within a
single fiber core [41], requiring large stacks of lasers in transmitters. Furthermore, the
growing popularity of coherent intradyne links [42], [43], which require LO lasers and
DSP in receivers, highlights the importance of coherent sources not only in transmitters
but also in receivers.

Fig. 2.10 shows the principle of a WDM system. For each WDM channel, a pair of
transmitters and receivers independent of all the other channels are used. The fiber and
the amplifier are shared between all the channels resulting in cost and power consumption
reduction.

2.4.1 Electro-Optic Frequency Combs
An electro-optic frequency comb (EO-comb) is a device that generates a spectrum of
equally spaced optical frequencies, typically spanning a broad range, using electro-optic
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Figure 2.11: A comb-based WDM system: All WDM channels are fed by a common comb source at the
transmitter, while the local oscillator lines at the receiver side are generated from receiver
combs. Modulation and receiver processing are typically conducted independently for
each wavelength channel.

modulation techniques. This technology relies on the nonlinear optical effects induced by
applying an electrical signal to an electro-optic modulator, which modulates the phase
or intensity of an optical carrier wave. The resulting optical spectrum consists of a
series of closely spaced frequency components, similar to the teeth of a comb, hence
the name “frequency comb” [44]. EO-combs have applications in various fields such
as spectroscopy, telecommunications, and frequency metrology, where their precise and
stable optical frequencies are highly beneficial.

2.4.2 Frequency-Comb Based WDM System
As illustrated in Fig. 2.10, each WDM channel typically requires a dedicated laser, re-
sulting in a large stack of lasers. However, this bulky setup could potentially be replaced
by an EO-comb both at the transmitter and the receiver, leading to cost reduction and
more efficient packaging, given that lasers (e.g., external cavity lasers and tunable lasers)
are known for their high expense and bulkiness. Utilizing a single light source results
in a strong phase correlation among the comb lines. This correlation can be leveraged
to enhance phase-noise tolerance [45] or simplify DSP required to compensate the phase
noise at the receiver [46].

There are also challenges with introducing combs to replace the stack of lasers in WDM
systems. The most important one is the limited line power inherent in a multi-wavelength
source, which poses optical SNR limitations on comb-based transmitters. The insuffi-
cient optical SNR reduces the transmission reach, especially for higher-order modulation
formats. Various comb technologies have shown potential to replace free-running lasers
in WDM systems. Examples include Kerr effect-based micro-ring resonators [47], mode-
locked lasers [48], and parametric mixers [44]. However, these technologies are beyond
the scope of this thesis.
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The principle of a WDM system employing frequency combs is depicted in Fig. 2.11
where the stack of lasers is replaced with EO-comb at both ends. In Section 4.5 we
provide a channel model for the phase noise of such systems. Moreover, in Section 5.4 we
discuss the phase noise compensation techniques which are more suitable to EO-comb-
based systems.
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CHAPTER 3

Channel Capacity

This chapter introduces the concept of channel capacity. Differential entropy and mutual
information are defined in Section 3.1. Section 3.2 provides the definition of the capacity
of discrete-time channels. Section 3.3 provides some information-theory tools to bound
the channel capacity. Finally, Section 3.4 defines the achievable information rate (AIR)
and provides a detailed description of how to compute it for some auxiliary channels.
All the definitions are given in vector form, as the scalar expressions are special cases of
vector expressions.

3.1 Entropy, Relative Entropy, and Mutual Information
Definition 3.1 (Entropy). Consider an arbitrary vector, M -dimensional vector x

taking values from the discrete alphabet XM and distributed according to the probability
mass function px(x). The entropy of x is defined as

H(x) = −
∑
x∈X M

px(x) log
(
px(x)

)
. (3.1)

The entropy quantifies the information content of a random variable. Moreover, it is
nonnegative H(x) ≥ 0 and when XM is finite, we have H(x) ≤ log |XM |.

Definition 3.2 (Differential entropy). Consider two arbitrary vectors, x and y, with
values in RM , and distributed according to the joint pdf fx,y(x, y). The differential en-
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tropy of x is defined as [40, Sec. 8]

h(x) = −
∫
RM

fx(x) log
(
fx(x)

)
dx. (3.2)

Similarly, the joint differential entropy of x and y is

h(x,y) = −
∫
RM

∫
RM

fx,y(x, y) log
(
fx,y(x, y)

)
dxdy. (3.3)

The differential entropy is a measure of the information content of a random quantity
and is defined over continuous alphabets. Unlike the entropy, the differential entropy can
be either positive or negative with h(x) = −∞ corresponding to a deterministic vector.

Definition 3.3 (Conditional entropy). Suppose x and y are M -dimensional real ran-
dom vectors. The conditional entropy of x given y is defined as

h(x|y) = −
∫
RM

∫
RM

fx,y(x, y) log
(
fx,y(x, y)
fy(y)

)
dxdy. (3.4)

It is a fact that conditioning decreases entropy, expressed as h(x | y) ≤ h(x), with
equality only when x and y are independent. Moreover, the chain rule can be proved
from (3.2)–(3.4) as

h(x,y) = h(x) + h(y | x)
= h(y) + h(x | y). (3.5)

Definition 3.4 (Mutual information). The mutual information (MI) between random
vectors x and y can be defined as

I(x; y) = h(y) − h(y | x)
= h(x) − h(x | y). (3.6)

MI measures the amount of information shared between two random variables, indi-
cating the degree to which knowledge about one variable reduces uncertainty about the
other. An important feature of the MI is that no clever manipulation of y or x can
increase the MI. This property is known as the data processing inequality and states
that if x–y–z form a Markov chain2, then I(x; z) ≤ min{I(x; y), I(y; z)}.

Definition 3.5 (Relative entropy). The relative entropy between two pdfs fx(x) and

2In a Markov chain, denoted as x–y–z, the pair (z, x) are independent when y is given, that is fz|x,y =
fz|y.
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qx(x) is a nonnegative function and defined as

DKL(fx(x) ∥ qx(x)) =
∫
fx(x) log

(
fx(x)
qx(x)

)
dx. (3.7)

Another way to represent the MI is to define it in terms of relative entropy also known
as Kullback–Leibler divergence as [40, Thm. 8.6.1]

I(x; y) = DKL

(
fx,y(x, y) ∥ fx(x)fy(y)

)
. (3.8)

Lastly, considering a complex vector x with values in CM , we define its differential
entropy as

h(x) = h(xr,xi), (3.9)

where xr and xi represent the real and imaginary components of the complex random vec-
tor x. Analogously, all previously mentioned metrics—conditional entropy, joint entropy,
MI, and relative entropy—can be similarly defined for complex vectors.

3.2 Channel Capacity
Channel capacity refers to the maximum rate at which information can be reliably trans-
mitted through a communication channel, considering noise and limitations inherent to
the channel. The concept, often expressed in bits per second, represents the upper limit
of data transfer that can be achieved with minimal error. Channel capacity theory, pi-
oneered by Claude Shannon [49], provides a framework for optimizing communication
systems to approach this theoretical limit.

Definition 3.6 (Capacity of a memoryless channel). The channel capacity for a mem-
oryless channel with input x and output y can be defined as [49]

C(ρ) = sup I
(
x; y

)
, (3.10)

where the supremum is over all probability distributions on x that satisfy the average-
power constraint E[∥x∥2] ≤ ρ.

The following definition outlines the capacity of a channel with memory that maintains
information stability. Loosely speaking, in an information-stable channel the input that
maximizes MI and its corresponding channel output behave ergodically [50].

Definition 3.7 (Capacity of a channel with memory). Consider an information-stable
discrete-time complex channel with memory with random input vector xk and random
output vector y

k
where k is the time index. Then, the capacity under an average power
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constraint ρ > 0 is given by [50]

C(ρ) = lim
K→∞

sup 1
K
I
(
{xk}K1 ; {y

k
}K1
)
, (3.11)

where the supremum is over all probability distributions on {xk}K1 that satisfy the average-
power constraint

1
K

K∑
k=1

E
[
∥xk∥2

]
≤ ρ. (3.12)

3.3 Information-Theoretic Tools for Bounding Capacity
This section presents conventional information-theoretic tools for establishing upper and
lower bounds on capacity.

3.3.1 Maximum Entropy
For any real random vector x ∈ RM with a fixed nonsingular correlation matrix Rx =
E[xxT ], it is known that the joint Gaussian distribution achieves the maximum differen-
tial entropy [40, Thm. 8.6.5]

h(x) ≤ 1
2 log

(
(2πe)M det Rx

)
. (3.13)

3.3.2 Entropy in Polar Coordinates
It is useful to define the differential entropy of a complex random variable in polar
coordinates as [51, Lemma 6.16]

h(x) = h(|x| , x) + E[log |x|]
= h(|x|) + h( x | |x|) + E[log |x|], (3.14)

where x is the phase of x. Moreover, the entropy of a squared magnitude of a random
variable can be written as [51, Lemma 6.15]

h(|x|2) = h(|x|) + E[log |x|] + log 2. (3.15)

Combining (3.14) and (3.15), we can write

h(x) = h(|x|2) + h( x | |x|) − log 2. (3.16)

In case x is circularly symmetric, (3.16) can be simplified to

h(x) = h(|x|2) + log π, (3.17)
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3.3 Information-Theoretic Tools for Bounding Capacity

which follows from that the amplitude |x| and the phase x are independent and x ∼
U [−π, π).

3.3.3 Duality Bound
The duality bound provides an upper bound on the MI. It is particularly useful when
the true output distribution is not analytically well-behaved or hard to compute.

Theorem 3.1 (Duality bound). The MI between x and y with joint pdf fx,y(x, y) can
be upper bounded as [51]–[53]

I(x; y) ≤ E

[
log
(
fy | x(y |x)
qy(y)

)]
= −E[log qy(y)] − h(y|x), (3.18)

where qy(y) is any arbitrary distribution on y and the bound is tight for qy(y) = fy(y).
Moreover, the expectation is with respect to the marginal distribution fy(y).

By employing the duality bound in conjunction with the Lagrange multiplier method,
we can derive upper bounds on the capacity of a memoryless channel subject to the
average power constraint ρ, expressed as

C(ρ) = sup
fx

I(x; y)

≤ sup
fx

−E[log qy(y)] − h(y | x)

≤ sup
fx

−E[log qy(y)] − h(y | x) + λ(ρ− E[∥x∥2])

= sup
fx

Ex

[
−Ey|x[log qy(y)] − h(y | x) + λ(ρ− ∥x∥2)

]
(a)
≤ sup

x

[
−Ey|x=x[log qy(y)] − h(y | x = x) + λ(ρ− ∥x∥2)

]
, (3.19)

where λ ≥ 0 is the Lagrange multiplier and (a) follows as the expectation is replaced with
deterministic x that maximizes inside the expectation subject to ∥x∥2 ≤ ρ. Therefore,
an upper bound on the capacity can be determined by choosing any distribution qy on y
and any λ ≥ 0. To enhance the tightness of the upper bound, the parameters of qy and
λ can be optimized jointly. We utilized (3.19) in Paper D to upper-bound the MI of a
memoryless channel by selecting the auxiliary distribution qy to be circularly symmetric
with the squared magnitude of y following a gamma distribution. Interested readers are
referred to Paper D.

In Paper D, we employed (3.19) to establish an upper bound on the MI of a memoryless
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channel. This was achieved by selecting the auxiliary distribution qy to be circular
symmetry, with the squared magnitude of y following a gamma distribution. For further
details, interested readers are encouraged to refer to Paper D.

3.4 Mismatched Decoding
An AIR is the rate at which reliable communication is possible over a specific channel,
considering a given decoding rule that may not be optimal. This situation arises organ-
ically when imprecise channel measurements lead to the receiver employing maximum-
likelihood decoding based on an incorrect channel law. Alternatively, intentional design
choices may lead the receiver to adopt a suboptimal decoding rule for the sake of simpli-
fying implementation [54].

A common way to compute mismatched AIR between the input x and the output y
with joint distribution of fx,y(x, y) is to evaluate

Iq(x; y) =
∫
fx,y(x, y) log

(
qy | x(y |x)
qy(y)

)
dxdy, (3.20)

for suitable choices of the auxiliary channel law qy|x(y |x) and the input distribution
fx(x). Note that Iq(x; y) ≤ I(x; y) with equality when qy|x(y|x) = fy|x(y|x).

In its simplest form, the problem involves a memoryless channel with finite input and
output alphabets, using a single-symbol decoding rule where each symbol is decoded
independently based solely on the information available from that particular symbol.
Despite its simplicity, the mismatch capacity—defined as the highest AIR—is not known
for many channels. Addressing this problem could provide a solution to the longstanding
challenge of computing the zero-error capacity3 of a channel, as demonstrated in [55].

3.4.1 LM Rate
The pioneering studies on mismatched decoding, notably by Hui [56] and Csiszár and
Körner [57], employed constant-composition random coding. They derived an AIR for
mismatched discrete memoryless channelss (DMCs), commonly referred to as the LM
rate. The LM stands for lower bound on mismatched decoding MI.

Definition 3.8. The LM rate can be used as a lower bound on the MI (3.6) between
complex vectors x and y with joint pdf of fx,y(x, y) as following [54, Eq. (11)]

I(x; y) ≥ ILM(x,y) = sup
ν≥0,a(·)

Ex,y

[
log

q̃(x,y)νe−a(x)

Ex′
[
q̃(x′,y)νe−a(x)

]] , (3.21)

3The zero-error capacity is defined as the maximum rate at which information can be reliably commu-
nicated over a noisy channel with zero probability of error.
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3.4 Mismatched Decoding

where q̃(x, y) = e−d(x,y) is the decoding metric and d(x, y) is any function that satisfies
Ex,y

[
d(x,y)

]
≤ ∞. Moreover, a(x) belongs to the class of functions that are integrable

with respect to fx(x) that is Ex[|a(x)|] ≤ ∞.

By choosing q̃(x, y) = fy|x(y|x) and letting a(x) = 0, the LM rate can achieve the true
MI (3.6). It is important to mention that the decoding metric is not a pdf; however, it
can be chosen to be.

3.4.2 Generalized Mutual Information
The generalized mutual information (GMI) extends MI application to scenarios where the
joint distribution has tails that do not decay rapidly. It is a versatile metric that finds
utility in various fields such as machine learning, signal processing, and neuroscience,
enabling a more nuanced understanding of the relationships within complex systems.

Definition 3.9 (GMI). The GMI is a lower bound on the MI and can be defined as
a special case of LM rate by setting a(x) = 0 [54, Eq. (12)] which gives

IGMI(x,y) = sup
ν≥0

Ex,y

[
log

q̃(x,y)ν

Ex′
[
q̃(x′,y)ν

]] . (3.22)

Here, q̃(x, y) = exp(−d(x, y)) is known as decoding metric and can be any function that
satisfies Ex,y

[
d(x, y)

]
≤ ∞.

The GMI (3.22) is bounded by the LM rate (3.21), and the latter can remain strictly
higher even after optimizing the input distribution. This observation is utilized in [54]
to establish the achievability of (3.21) in scenarios involving general alphabets.

The GMI could be useful to design suboptimal mismatched receivers by optimizing an
auxiliary channel when the optimal receiver is absent. The choice of the decoding metric
q̃(x, y) gives birth to different auxiliary channels.

Example 3.1. Consider a memoryless channel y = Hx + z, where z ∼ CN (0, σ2
zIn).

Assuming that the receiver has access only to the estimated channel matrix Ĥ, a natural
choice for the decoding metric could be q̃(x, y) = qy|x(y|x) ∼ CN (Ĥx, σ2

zIn) that is

q̃(x, y) = 1
πnσ2n

z

exp

−

∥∥∥y − Ĥx
∥∥∥2

σ2
z

 . (3.23)

Substituting (3.23) into (3.22) and optimizing over ν will result in a lower bound on
the MI. This has been utilized in Paper A to derive a lower bound on the MI of a unitary
channel in the presence of channel estimation error.

•
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CHAPTER 4

Channel Models

A channel model mathematically relates the received signal to the transmitted signal.
The model may include the transmission impairments as well as the transmitter and the
receiver elements. Channel models play a crucial role in simulating, testing, and verifying
the transmission schemes and designing efficient DSP algorithms before experimental
trials. This can significantly decrease the cost and energy required for running real-
world experiments. Moreover, the optimality of the designed DSP algorithms highly
depends on the accuracy of the channel model. Often, there is a trade-off between the
accuracy of the model and its practicality as usually, the most accurate models are very
complex to be analyzed.

Channel models are especially useful for deriving fundamental limits imposed by the
transmission medium, such as channel capacity. As performing capacity analysis of-
ten involves solving very complex optimizations, the simplest nontrivial channel models
are commonly used to derive AIR and gain insights regarding the optimal transmission
schemes.

This chapter provides mathematical models that describe how various transmission
impairments impact the electric field of the signal propagating through optical fibers. In
particular, Section 4.2 describes the block-constant SOP drift channel, Section 4.3 models
a channel impaired by fast SOP drift and PDL. Section 4.4.2 combines DGD with SOP
scramblers along with PDL to define a channel model that is useful for polarization sens-
ing applications. Then, changing the focus on phase noise models, Section 4.5 provides
a model for the correlated phase noise observed in WDM systems employing EO-combs.
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4.1 Linear Modulation, Matched Filtering, and Sampling
Linear modulation refers to techniques to modulate information to a carrier signal by
linearly varying its amplitude, frequency, or phase. The dual-polarized transmitted signal
E(0, t) over the transmission medium can be described as

E(0, t) =
∑
k

xkps(t− kT ) (4.1)

where xk = (xx,k,xy,k) ∈ C2 are the information symbols with an average energy of
E[∥xk∥2], the real-valued pulse shape is denoted by ps(t), T is the symbol duration, and
k ∈ Z is the discrete-time index. The pulse shape is usually chosen such that it forms an
orthonormal basis for any k, k′ ∈ Z, i.e.,∫ ∞

−∞
ps(t− kT )ps(t− k′T )dt =

{
1, k = k′.

0, otherwise.
(4.2)

We use matched filtering and sampling techniques to extract the discrete symbols at
the distance Lf from the continuous time received signal E(Lf , t). Here is how it works:

• Matched filtering: The received signal is passed through a matched filter, which
has an impulse response matched to the pulse shape used at the transmitter. This
matched filter enhances the desired signal while suppressing noise and interference,
maximizing the SNR.

• Sampling: After the signal has been filtered by the matched filter, the output of
the filter is sampled at regular intervals.

Thus, by matched filtering and sampling we can extract the discrete received symbols
as

y
k

=
∫ ∞

−∞
E(Lf , t)ps(t− kT )dt. (4.3)

Example 4.1. By neglecting all fiber transmission impairments except for ASE noise,
we can model the fiber optic channel as a memoryless complex AWGN channel. The
received symbols after filtering and sampling can then be expressed as

y
k

= xk + zk, (4.4)

where zk = (zx,k, zy,k) ∼ (0, σ2
zI2) models the accumulated complex ASE noise with

zx,k =
∫ ∞

−∞

(∫ Lf

0
nx(z, t)dz

)
︸ ︷︷ ︸

Accumulated noise

ps(t− kT )dt (4.5)
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and similarly for zy,k. Here, nx(z, t) denotes the amplification noise for polarization x at
time t and location z with its autocorrelation function depending on the amplification
method introduced in Section 2.3.1. Referring to equations (2.5) and (2.6), for lumped
amplification, the noise variance is expressed as σ2

z = nsp(G − 1)hvNspW , while for
distributed amplification, it is denoted as σ2

z = αKThvLfW , with W representing the
signal bandwidth. •

4.2 Block-Constant SOP Drift Model
In this section, we consider a 2-dimensional complex channel that is impaired by block-
constant SOP drift and ASE noise. We assume the channel remains constant during a
transmission block of length K with changes occurring randomly and independently be-
tween these blocks. This assumption arises from observations in scenarios such as buried
and underwater fibers, where the SOP drifts at a considerably slower rate compared to
the typical transmission rates encountered in optical links [26], [58].

The selection of the block length K depends on both the specific application and the
rate of channel drift. We also assume that PMD is negligible, and all channel impair-
ments, such as nonlinearities and CD, are ideally mitigated, except for SOP fluctuation
and ASE noise. In many studies, the fluctuation of the SOP is often represented as
either constant randomly selected rotations [59], [60] or deterministic cyclic/quasi-cyclic
changes [61]–[63]. While widely accepted in the literature [64], [65], the assumption of
independence between random blocks is somewhat idealized and may not fully reflect
real-world conditions.

Here, we establish the channel model for M ≥ 2 dimensions, with M = 2 representing
the block-constant SOP drift channel. This is because the generalized version of the
channel model has been utilized in Paper A to derive the capacity of block-constant
channels in the presence of channel estimation error covering both general multiple-input
multiple-output (MIMO) and SOP drift channels.

Given the independence of different blocks, we focus exclusively on modeling the sym-
bols within a single transmission block hereafter. The transmitted signal in each channel
at time k = 0, . . . ,K−1 is represented by an M -dimensional random complex vector xk,
and when M = 2 it indicates DP, single-mode, single-core transmission. The elements
of the vector xk are chosen from a set of complex zero-mean constellation points CM .
Following filtering and resampling of the received signals to one sample per symbol, we
can represent the vector of received samples y

k
as

y
k

= Hxk + zk. (4.6)

Here, the M×M matrix H represents a block-constant MIMO channel, and the complex
ASE noise samples at time k are denoted by zk ∼ CN (0, σ2

zIM ), and are independent of
xk. The block-constant SOP drift channel model can be obtained by setting M = 2 and
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Jk,1 Γ1 Jk,2 Γ2 Jk,N ΓN

Figure 4.1: At the time index k, the physical model of a fiber can be considered as a concatenation
of N sections. Each section contains a PDL component denoted as Γn, along with a drift
element for the SOP represented as Jk,n. This figure is borrowed from Paper B.

enforcing H to be a unitary matrix, i.e., HH† = H†H = I2.

4.3 PDL and SOP Drift Model
In this section, we consider DP transmission impaired by PDL, SOP drift, and ASE noise
at the receiver. We assume that the PMD and nonlinearities are negligible and the CD
is ideally compensated. To represent the channel, we merge the SOP drift model from
[66] with concatenated PDL elements.

Following matched filtering and sampling, where each received signal corresponds to
one sample per symbol, the vector of received complex samples y

k
can be formulated as

y
k

= Hkxk + zk. (4.7)

Here, the 2-dimensional random vector xk denotes the transmitted symbols, Hk rep-
resents a 2 × 2 complex channel matrix modeling both SOP drift and PDL, and zk ∼
CN (0, σ2

zI2) represents the ASE noise.
The physical model at time k is illustrated in Fig. 4.1, depicting a link including N

sections. Each section is composed of an SOP element Jk,n and a PDL element Γn, where
n denotes the section index. The dual-polarized channel matrix Hk merging PDL with
SOP drift can be described as

Hk = ΓnJk,N · · · Γ1Jk,1 =
N∏
n=1

ΓnJk,n, (4.8)

where Γn represents a 2 × 2 diagonal matrix with positive real values, characterizing the
polarization power imbalance resulting from PDL. In the following, we describe how the
SOP and PDL elements can be modeled.
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Figure 4.2: The evolution of SOP on the Poincaré sphere in a time period of 1 microsecond is depicted.
The symbol rate is 28 Gbaud (i.e., the symbol duration T = 3.57 · 10−11 s) and N = 20.
(a) ∆ptot · T = 10−8 s, (b) ∆ptot · T = 10−6, and (c) ∆ptot · T = 10−4 s.

4.3.1 Modeling SOP Drift
Various forms of polarization drift models have been suggested and applied in the liter-
ature. In [59], [60], a block-constant assumption is utilized. We used a similar block-
constant model in Section 4.2 and consequently in Paper A to derive the capacity bounds
on a unitary channel with imperfect channel estimation. However, the block-constant as-
sumption does not hold for aerial fibers where rapid drift occurs, necessitating a dynamic
and stochastic model instead of a static one.

Here, we model the SOP as a dynamic stochastic model as proposed in [66]. We
consider Jk,n as a complex random 2 × 2 matrix that belongs to the special unitary
group of degree two, denoted by SU(2), that is

Jk,nJ†
k,n = J†

k,nJk,n = I2, (4.9)

det Jk,n = 1. (4.10)

Typically, complex 2 × 2 matrices have eight degrees of freedoms (DOFs), that is the
real and imaginary components of the four elements in the matrix. However, unitary
matrices belonging to the special unitary group SU(2) are limited to three DOFs. Thus,
we can model the SOP drift matrix Jk,n as a random walk on a unit sphere using a
matrix exponential parameterized by three variables as [66]

Jk+1,n = exp(−jαk,n · −→σ )Jk,n, (4.11)

where exp (·) is the matrix exponential and

αk,n ∼ N (0, σ2
pI3). (4.12)

Here, σ2
p = 2π∆pT , where ∆p is referred to as the polarization linewidth, governing the

rate of SOP drift, and T denotes the symbol duration. Finally, −→σ = (σ1, σ2, σ3) is a
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Figure 4.3: The evolution of aggregated PDL ratio ρk in dB for different SOP drifts in a time period
of 1 microsecond is plotted. The symbol rate is 28 Gbaud (i.e., the symbol duration
T = 3.57 · 10−11) and N = 20. (a) ∆ptot · T = 10−8, (b) ∆ptot · T = 10−6, and (c)
∆ptot · T = 10−4.

tensor of the Pauli spin matrices [67, eq. (2.5.19)]

σ1 =
[
1 0
0 −1

]
, σ2 =

[
0 1
1 0

]
, σ3 =

[
0 −j
j 0

]
. (4.13)

The total polarization linewidth scales with N and can be defined as

∆ptot = N · ∆p. (4.14)

The initial matrices J0,1, . . . ,J0,N are randomly selected from the set of all 2×2 special
unitary matrices SU(2). This ensures that the SOP achieves a uniform distribution over
the Poincaré sphere [66]. Fig. 4.2 demonstrates the evolution of SOP on the Poincaré
sphere over a one-microsecond window under three different SOP drift speeds.

4.3.2 Modeling PDL
The PDL matrices could potentially modeled as time-varying matrices, but to simplify
matters, we assume that each PDL component can be adequately described by a deter-
ministic matrix that remains constant over time and can be described as[34]

Γn =
[√

1 + γn 0
0

√
1 − γn

]
, (4.15)

where 0 ≤ γn ≤ 1 represents the PDL ratio for each section. In an extreme scenario
where γn = 1, only one active polarization persists, while in the opposite extreme with
γn = 0, both polarizations experience no PDL.

For the channel (4.8), we define the section-wise PDL in dB as

φn = 10 log10

(
1 + γn
1 − γn

)
, (4.16)
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and the aggregated PDL ratio at time k as

ρk = ∥λmax
k ∥2

∥λmin
k ∥2 , (4.17)

where λmax
k and λmin

k are the singular values of Hk. The average aggregated PDL for K
symbol transmissions is defined in dB as

ρ̄ = 10 log10

(
EH

[
1
K

K−1∑
k=0

ρk

])
. (4.18)

Although each PDL component Γn is assumed to remain constant, ρk will vary over
time due to SOP drift. Fig. 4.3 demonstrates how ρk is influenced by SOP drift. The
graph illustrates PDL evolution over a one-microsecond window under three different
SOP drift speeds. In Section 5.3, we will further explore the existing and proposed
channel tracking algorithms designed to effectively manage channels affected by both
SOP drift and PDL.

The model presented in this section is used in Paper B to develop algorithms that are
resilient to fast SOP drift in the presence of PDL.

4.4 Concatenated PDL and DGD Model
Here, we consider a DP optical transmission system, which accounts for PDL, SOP
scramblers (rotations), and DGD resulting from PMD. The SOP scrambling is considered
a deterministic phenomenon, unlike the SOP drift introduced in Section 4.3, which is
modeled as a random process. We also assume negligible nonlinearities and perfect
compensation for CD. Specifically, we adopt a channel model similar to the one utilized
in [68] which characterizes the channel response at time index k and frequency ωi as
a concatenation of N sections, each including elements of SOP scramblers, PDL, and
DGD. Thus, the 2 × 2 complex-valued Jones matrix is defined as follows

H(ωi,Θk) =
N∏
n=1

ΓnR (ϕn,k, ψn,k) T(ωi). (4.19)

Here, n denotes the section index, and to avoid confusion with the matrix multiplication
ordering, the product operator is defined as

∏N
n=1 An = ANAN−1 · · ·A1. The PDL

elements Γn are defined as in (4.15) and are assumed to remain constant over time for
all n. Moreover, the SOP scramblers are described as

R(ϕn,k, ψn,k) =
[

cosϕn,k jejψn,k sinϕn,k
je−jψn,k sinϕn,k cosϕn,k

]
, (4.20)
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where ϕn,k and ψn,k are rotation angles. Here, the rotation parameters are considered
to be static when no environmental disturbance is present. Finally, the DGD elements
are modeled as

T(ωi) =
[
ejωiτ/2 0

0 e−jωiτ/2

]
, (4.21)

where τ is the DGD per section.
In general, τ can be modeled as random and possibly dynamic. For instance, in [69],

the DGD elements are modeled as Gaussian random variables with a specific mean and
variance. Here, the DGD elements are assumed to be deterministic and constant over
time for simplicity. Finally, we define Θk = {γn, ϕn,k, ψn,k}Nn=1 to denote all channel
parameters with γn denoting the PDL ratio parameter and ϕn,k, ψn,k denoting SOP
scrambling parameters.

4.4.1 Modeling the Time-Dependency of the SOP Rotation
Parameters

The channel model (4.19) is used in Paper C for sensing purposes. To enable this model
for sensing, one needs to define a relation between the environmental perturbations with
the time-dependency of the model parameters. As an early step, in [13], it has been
demonstrated that dynamic polarization fluctuations induced by strain or pressure result
in relative birefringence fluctuations. However, various disturbances can impact the fiber
without a proper model describing how they impact the parameters in the mathematical
model. This presents an open and undiscovered opportunity to develop such models,
which could simplify fiber sensing study through simulations and enable the use of various
data-driven algorithms.

Here, acknowledging the lack of a model for translating the environmental disturbances
into the SOP drift, we expand upon [68] and assume that the SOP is static when the
fiber is undisturbed and dynamic under disturbances. Specifically, we assume that envi-
ronmental disturbances introduce temporal fluctuations in the rotation angles ϕn,k and
ψn,k which are as Wiener processes, characterized by

ϕn,k = ϕn,k−1 + Φn,k, (4.22)
ψn,k = ψn,k−1 + Ψn,k. (4.23)

Here, Φn,k and Ψn,k are normally distributed with mean zero and variances σ2
n,k and ϱ2

n,k

respectively, representing the intensity of environmental fluctuations. Larger values of
σ2
n,k and ϱ2

n(k) indicate more substantial environmental changes. Modeling the rotation
parameters according to (4.23) makes (4.20) a special case of SOP drift model (4.11).
Unlike the SOP drift model in (4.11), the SOP scrambler model in (4.20) does not
generate a uniform distribution over the Poincaré sphere. It is important to note that the
model (4.19) assumes a timescale for the dynamic polarization perturbation significantly
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slower than the DGD parameters τ .

4.4.2 Modeling the Noisy Channel Estimate
In the coherent receivers, the Jones matrix (4.19) is typically estimated through adaptive
equalization (see Section 5.2). Therefore, we assume that we have only access to a noisy
version of the Jones matrix

H̃(ωi; Θk) = H(ωi; Θk) + Zk(ωi), (4.24)

where H(ωi; Θk) is defined in (4.19) and Zk(ωi) is a 2 × 2 matrix with zero-mean in-
dependent complex normal elements with variance σ2

Z modeling the estimation error,
i.e.,

E[Zk(ωi) ◦ Zk(ωi)†] = σ2
Z

[
1 1
1 1

]
, (4.25)

where (◦) is the element-wise product. The estimation noise variance σ2
Z depends on

various factors such as the choice of estimation algorithm and the channel SNR, where
better algorithms and higher SNR lead to lower σ2

Z.
In Section 6.2, we elaborate on the potential applications of this model in fiber sensing

and discuss the algorithms developed for this purpose.

4.5 EO-Comb Phase-Noise Channel
In this section, we initially establish the relationship between the phase and frequency
of comb lines in an EO-comb. Subsequently, we present a MIMO channel model that
details the input-output relationship of a WDM system utilizing EO-combs at both the
transmitter and receiver sides.

4.5.1 Phase and Frequency in EO-combs
Let us consider a common configuration of an EO-comb displayed in Fig. 4.4. Consider
a CW laser source oscillating at the frequency ωc with the phase noise θc(t) and the
amplitude of A. Thus, the electrical field of the CW laser is given by

Ec(t) = A exp j(ωct+ θc(t)). (4.26)

This laser is then coupled with a phase modulator that is driven by a radio frequency
(RF) source operating at frequency ωr [46], [70]. The electrical field of the normalized
RF source is given by

Er(t) = sin(ωrt+ θr(t)), (4.27)
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Ec(t) = Aej(ωct+θc(t))

Er(t) = sin (ωrt + θr(t))

Figure 4.4: A common configuration of an EO-comb involves a CW laser operating at frequency ωc with
phase noise θc(t), coupled to a phase modulator driven by a radio frequency (RF) oscillator
at frequency ωr with phase noise θr(t). This modulation process yields the generation of
M comb lines distinguished by a central frequency ωc and a frequency spacing of ωr. This
figure is borrowed from Paper D.

where θr(t) denotes the phase noise of the RF oscillator. Consequently, the output optical
field Ecomb(t) after the phase modulator can be expressed as

Ecomb(t) = Ec(t) · ejV sin(ωrt+θr(t)), (4.28)

where V is the modulation index of the phase modulator. By using the Jacobi-Anger
expansion4 [71, Ch. 17, Eq. (17.1.7)] we can write [72]

Ecomb(t) = Ec(t)
∞∑

m=−∞
Jm(V )jnejm(ωrt+θr(t))

=
∞∑

m=−∞
Jm(V )jnej(ω

c+mωr)ej(θc(t)+mθr(t))t, (4.29)

where Jm(V ) denotes m-th order Bessel function. Therefore, the output field consists of
discrete frequencies (comb lines)

ωm = ωc +mωr, (4.30)

and the net phase noise at each comb line is a linear combination of the CW laser and
RF oscillator phase noises and can be written as [72]

θm(t) = θc(t) +mθr(t). (4.31)

By cascading multiple phase modulators and also amplitude modulators, the comb lines
can be altered to provide a relatively flat amplitude over a large bandwidth (number of
lines) [70]. However, this cascading technique will not affect the phase noise, which will
still be given by (4.31). For a finite modulation index V and sufficiently large m, however,
the amplitudes will eventually fall off, limiting the practical EO-combs to employ 50−100

4ejx sin(θ) =
∑∞

m=−∞ jmJm(x)ejmθ
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Figure 4.5: The structure of a comb-based WDM link employing free-running (uncorrelated) EO-combs
at both the transmitter and receiver. This figure is borrowed from Paper D.

frequency lines.

4.5.2 Channel Model
As mentioned earlier, in Section 2.4, EO-combs can replace the transmitter and receiver
laser arrays in WDM systems as illustrated in Fig. 4.5. The EO-combs employed at
both sides are considered to be independent, commonly referred to as “free-running EO-
combs” [73]. In such systems, the combined phase noise arises from the summation of
transmitter and receiver phase noises. In practice, numerous comb lines are commonly
employed which directs our attention towards scenarios with M ≥ 2, where M represents
the number of WDM channels.

We assume a single-polarization M -dimensional MIMO transmission in the presence
of CW laser and RF oscillator phase noises, along with ASE noise at the receiver. Addi-
tionally, we assume negligible PMD and nonlinearities, and perfectly compensated CD.
The EO-comb channel model can be expressed as

y
k

= ejθk ◦ xk + zk, (4.32)

Here, k denotes the discrete time index, xk = {xk,m}M−1
m=0 represents the M -dimensional

input vector, while θk = {θk,m}M−1
m=0 denotes the phase-noise process. Additionally, the

additive noise zk = {zk,m}M−1
m=0 follows a complex normal distribution CN (0, σ2

zIM ) and
is independent for all k and m.

The channel (4.32) can potentially represent a variety of wireless MIMO links and
optical MIMO channels. For example, when θk = θk ·1M and θk follows a Wiener process,
it describes the scenario of common phase noise as investigated in [74]. Furthermore, if
we assume θk = (θk,0, . . . ,θk,M−1) with independent and stationary θk,m, it corresponds
to the model examined in [75, Model B3], where only receiver phase noise is considered,
and the channel matrix is an identity matrix. Here, we introduce the EO-comb phase-
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noise model, where two independent phase-noise sources are present and the phase noise
of each channel is a linear combination of these two independent sources. As a result,
the EO-comb phase-noise model fills the gap between the models proposed in [74] and
[75].

The EO-comb phase-noise of channel index m ∈ {0, . . . ,M − 1} at time k is obtained
by sampling the continuous time phase noise (4.31) and can be written as 5 [72]

θk,m = θc
k +π mθr

k, (4.33)

where θc
k and θr

k are the combined (transmitter and receiver) phase noises induced by
the CW lasers and RF sources, respectively.

We introduce the convention c/r to prevent repeating similar equations multiple times.
The phase-noise sources are modeled as{

θ
c/r
k = ∆c/r

k +π θc/r
k−1, if k = 1, 2, . . .

θ
c/r
k ∼ U [−π, π), if k = 0,

. (4.34)

Here, ∆c/r
k ∼ WN (0, σ2

c/r) with variances σ2
c/r = 2πBc/r/Rs where Rs represents the

symbol rate. Moreover, Bc/r > 0 denote the linewidths of the CW laser and RF oscillator,
respectively.

The processes {θc/r
k } and {θk,m} are stationary due to that the initial phases are

θ
c/r
0 ∼ U [−π, π). Also, the identically and independently distributed (i.i.d.) assumption

on {∆c/r
k } implies that {θc/r

k } are Markov processes [74] and consequently the process
{θk} becomes a multivariate Wiener process.

In Paper D, we employ the concepts of duality and escape-to-infinity (refer to Sec-
tion 3.3) to investigate the capacity of the channel (4.32)–(4.34). In Paper E, we explore
the optimal pilot placement for EO-comb based WDM systems, assuming the presence
of the channel (4.32)–(4.34).

5θ +π ϕ denotes wrapπ(θ + ϕ) where wrapπ(θ) = mod 2π(θ + π) − π.
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Digital Signal Processing

In this chapter, we discuss estimation, compensation, and tracking techniques applicable
to the channel models introduced in Chapter 4. First, static estimators that are suit-
able for block-constant channels are discussed in Section 5.1. Thereafter, in Section 5.2,
adaptive equalization techniques relevant to dynamic channels are discussed. In Sec-
tion 5.3, tracking algorithms specially designed for channels impaired by SOP drift and
PDL are presented. Finally, Section 5.4 discusses methods for phase noise compensation
and tracking, as well as pilot placement strategies for channels impaired by correlated
EO-comb phase noise.

5.1 Static Estimators
In this section, we present channel estimation techniques typically applied in scenarios
where the parameter requiring estimation remains static and stable over time. Conse-
quently, these methods are particularly suitable for estimating block-constant channels
like the one introduced earlier in Section 4.2. Additionally, many types of block-constant
wireless channels can be effectively estimated using simple static methods, including the
commonly encountered block-fading channels [52].

Here, we concentrate on data-aided (pilot-based) channel estimation methods where
at each transmission block, a sequence of known symbols (pilots) with length Lp ≥
M is transmitted with M representing the number of channels. These pilots form an
M × Lp matrix of complex-valued symbols D = (d0, ..., dLp−1) with di being known
M -dimensional pilot vectors for all i ∈ {0, . . . , Lp − 1}. Figure 5.1 depicts a typical

43



Chapter 5 Digital Signal Processing
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Figure 5.1: Typical pilot placement in a MIMO channel.

transmission block in a MIMO channel. Subsequently, the receiver attempts to estimate
the unknown channel matrix using the provided pilots.

In the following subsections, we introduce pilot-aided techniques to estimate memory-
less MIMO-AWGN channels similar to (4.6) with one difference that the channel is not
necessarily unitary as relaxing the unitary condition allows for considering PDL as well.
Considering the channel model in (4.6), and known pilots transmission, we can form the
complex matrix of received symbols as Y = (y0, ...,yLp−1) and the complex noise matrix
as Z = (z0, ..., zLp−1). Here, Z is an M × Lp matrix made of i.i.d. noise vectors, each
assumed to be CN (0, σ2

zIM ). We can write the matrix form as

Y = HD + Z, (5.1)

where H is an M × M random channel matrix assumed to remain constant during a
transmission block.

5.1.1 Least Squares Algorithm
The least-square error (LS) estimator derives the channel estimate by minimizing the
squared error between the desired (pilot) and received signals. For MIMO-AWGN chan-
nels, the LS optimization problem can be simplified to [76]

ĤLS = arg min
Ĥ

∥∥∥Y − ĤD
∥∥∥2

F
. (5.2)
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Given the matrix of pilots D and the matrix of received symbols Y, the solution of (5.2)
is given by [76], [77, Ch. 8]

ĤLS = YD†(DD†)−1. (5.3)

The optimal choice of pilot symbols when the total transmission power is constrained
has been extensively studied in the literature [78]–[80]. Let us consider the following
power constraint on pilot transmission

∥D∥2
F ≤ Lpρ, (5.4)

where ρ ≥ 0. Thus, the optimal pilot matrix D that satisfies (5.4) and minimizes the
channel estimation error, can be obtained as follows

D̄ = arg min
D

E
[∥∥∥H − ĤLS

∥∥∥2

F

]
, s.t ∥D∥2 ≤ Lpρ. (5.5)

It can be shown that the optimal pilot matrix D̄ has orthogonal rows, that is [78]

D̄D̄† = Lpρ

M
IM . (5.6)

Thus, any pilot matrix with orthogonal rows, each having the same norm
√
ρLp/M , is

optimal [79], [80]. It’s worth noting that numerous pilot sequences satisfy these condi-
tions.

Substituting (5.6) into (5.3) we obtain

ĤLS = M

ρLp
YD̄† = H + M

ρLp
ZD̄†. (5.7)

Define the estimation error matrix as E = H − ĤLS. Then, it has been shown that the
error correlation matrix is [76]

RE = E
[
E†E

]
(a)= M3

ρ2L2 D̄D̄†

(b)= M2σ2
z

ρLp
IM = M

ηLp
IM , (5.8)

where (a) follows since E[Z†Z] = Mσ2
zILp , (b) follows from (5.6), and and η = ρ/(Mσ2

z)
denotes the SNR per channel. It is evident that the estimation error of the LS algorithm
decreases with increasing SNR and pilot length Lp.
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5.1.2 Minimum Mean Square Error Algorithm
Let us obtain a linear estimator that minimizes the estimation error in the mean square
error (MSE) sense. The solution of minimum mean square error (MMSE) estimator can
be expressed in the following general form [81]

ĤMMSE = YA∗, (5.9)

where

A∗ = arg min
A

EH,Z

[
∥H − YA∥2

F

]
(5.10)

minimizes the MSE.
The solution of the MMSE problem is given [82] as

A∗ =
(
D†RHD + σ2

zM ILp

)−1 D†RH, (5.11)

where RH = E[H†H] is the channel correlation matrix 6. Thus, the MMSE solution is

ĤMMSE = Y
(
D†RHD + σ2

zM ILp

)−1 D†RH. (5.12)

Let E = H − ĤMMSE. Then, the error correlation matrix is [82]

RE = E[E†E] =
(

R−1
H + DD†

σ2
zM

)−1

. (5.13)

Note that, unlike the LS estimation, the MMSE requires knowledge of both the channel
and noise correlation matrices. In practice, these matrices are often estimated, which
can introduce errors affecting the performance of the MMSE estimator. Furthermore, in
low SNRs, MMSE provides better estimation than the LS for any valid RH , and as the
SNR increases, it converges towards the performance of the LS estimator when using the
same pilot matrix for both algorithms [78], [82].

The optimal pilot matrix can also be investigated from the MMSE viewpoint. The
optimal pilot selection follows the water-filling principle where the pilot power allocated
to each channel is carefully selected considering factors such as SNR and the channel
correlation matrix RH. For a deeper understanding of the optimal pilot matrix design,
interested readers are referred to [82, Sec. V].

The estimated channel matrices ĤLS and ĤMMSE can be used at the receiver for
channel equalization and symbol detection. For instance, channel equalization using
MMSE estimation can be done by forming Ŷ = Ĥ−1

MMSEY. Then, symbol detection can
be done on Ŷ. A less computationally expensive way to use the estimated channel matrix

6This matrix differs from the traditional definition of the channel correlation matrix, which is typically
expressed as E[vec(H)vec(H)†]. Here, the vec(·) operator stacks the columns of a matrix vertically.
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wxx

wxy

wyx

wyyyy,k

yx,k

+

+

ry,k
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Figure 5.2: A general scheme for 2 × 2 feed-forward adaptive filters where yx, yy denote the received
signal in x and y polarizations, wxx, wxy, wyx, wyy denote the equalizer weights, and rx, ry
denote the equalized signal in both polarizations.

for symbol detection is to use ĤLS or ĤMMSE to modify the constellations and hence
modify the decision regions.

5.2 Adaptive Equalization
Static estimators perform well under the block-constant assumption. In practice, how-
ever, certain transmission impairments show dynamic characteristics, causing the channel
response to vary over time. In this section, we present dynamic equalization techniques
where a filter is continuously adjusted at the receiver to minimize a specific error func-
tion [83]. The choice of the filter and error function depends on the channel model under
investigation. A dynamic equalizer tries to reduce the error caused by the combination
of transmission impairments (e.g., phase noise and SOP drift) and the residual distor-
tions that are not mitigated by the static filtering stage. The general schematic for
feed-forward equalizers is shown in Figure 5.2.

Depending on the channel’s memory, the equalization can be done in time or frequency
domains. For instance, when the memory is large, frequency domain equalization can
significantly reduce the computational complexity. Here, we focus on the time-domain
DP channel defined as

y
k

= Hkxk + zk, (5.14)

where k is the time index and Hk is a random 2 × 2 complex channel matrix. The
DP received vector is denoted by y

k
= (yx,k,yy,k), the transmitted vector by xk =

(xx,k,xy,k), and the noise vector by zk = (zx,k, zy,k) ∼ CN (0, σ2
zI2). The subscripts

denote the x and y polarizations.
The equalization is done by utilizing a finite impulse response matrix with one tap per
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polarization7 as
rk = Wky

k
, (5.15)

where rk = (rx,k, ry,k) denotes the equalized vector and Wk denotes the 2 × 2 complex-
valued equalization matrix. The estimated channel matrix Ĥk can be defined as

Ĥk = W−1
k . (5.16)

The equalization problem can be solved by selecting an optimization cost function.
Here, we focus on equalizers that minimize the expected equalization error in the MSE
sense with the cost function

ϵk = E
[
e†
kek
]
, (5.17)

where ek = (ex,k, ey,k) is the equalization error vector. The selection of the ek and hence
cost function depends on the availability of known pilots, availability of feedback signal,
allowed computational complexity, the memory of the channel, etc. This equalization
problem can be solved using stochastic gradient descent and the update rule is given as
[84]

Wk+1 = Wk − µ∇Wk
ϵk, (5.18)

where µ denotes the step size also known as the convergence parameter, and ∇Wk
denotes

the gradient with respect to the matrix Wk.

5.2.1 Least Mean Squares Algorithm
The LS estimator requires all pilots simultaneously, and in scenarios with a high number
of pilots and channels, computing the estimated channel can introduce delays. This issue
can be elevated by using an iterative equalization algorithm. The least mean square
(LMS) algorithm is an adaptive gradient search method that iteratively updates a weight
vector at each sampling instant to minimize the MSE [85], [86].

The integration of the LMS algorithm into the adaptive equalization framework, as
outlined in Section 5.2, is seamless. For the LMS algorithm, the equalization error is
selected as

eLMS
k = dk − rk, (5.19)

where rk is defined in (5.15) and dk is the desired symbols (pilots known to the receiver)
at time k. Then, replacing (5.19) into (5.17) and computing the gradient, we get

∇Wk
ϵk = −eLMS

k y†
k
. (5.20)

7It is rather straightforward to extend the equalizers to accommodate more taps which is useful when
the channel has memory. However, such equalizers are not utilized in the appended papers.
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Replacing (5.20) into (5.18) the LMS update rule becomes

Wk+1 = Wk + µeLMS
k y†

k
. (5.21)

In case the LMS algorithm is applied to a channel that remains constant over time
like the block-constant channel in (4.6), [86] demonstrated that as k approaches infinity,
using (5.16), the solution of LMS algorithm converges to the optimal solution of the LS
algorithm given in (5.3).

When the LMS algorithm is employed on a channel that remains constant over time,
such as the block-constant channel described in (4.6), [86] demonstrated that as k tends
to infinity, the solution of the LMS algorithm converges to the optimal solution of the
LS algorithm, as given in (5.3).

Although optical channels in the presence of polarization impairments are not constant
over time, the LMS algorithm can still be employed for tracking the channel. Moreover,
a well-known trade-off exists between misadjustment and convergence speed, where a
smaller step size µ leads to reduced misadjustment but slower convergence [86]. The op-
timization of step size has been investigated in [87] and [88], proposing a straightforward
variable step size algorithm that provides both rapid tracking and minimal misadjust-
ment.

5.2.2 Constant Modulus Algorithm
The constant modulus algorithm (CMA) was originally proposed as a blind equalizer for
constant modulus constellations such as quadrature phase-shift keying (QPSK) [89]. The
CMA and its variants such as modified CMA [90] and multi-modulus algorithm (MMA)
[91] are the most popular adaptive equalizers in the field of optical communications. The
CMA as its name suggests aims to minimize the MSE between a given reference level aref
and the equalized symbols rk. Thus, the error vector of the CMA algorithm is defined
as [89], [90]

eCMA
k = aref − |rk|2 , (5.22)

where |rk| = (|rx,k| , |ry,k|).
Note that aref denotes the reference level for both polarizations and is a constant vector

regardless of the number of amplitude levels of the transmitted constellations. Thus, the
CMA works well for constant modulus constellations like DP-QPSK but its performance
reduces for higher order constellations such as general DP-QAM. With a performance
penalty, one can use the CMA for general QAM constellations by selecting aref as8 [90]

aref = E[|c|4]
E[|c|2]

, (5.23)

8|c| = (|cx| , |cy|) as mentioned in Section 1.2.
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where c ∈ C2 are the DP constellation points. Replacing (5.22) into (5.17) and computing
the gradient, we get

∇Wk
ϵk = −

(
eCMA
k ◦ rk

)
y†
k
, (5.24)

where (◦) denotes the element-wise product. Finally, substituting (5.24) into (5.18) gives
the estimated equalization matrix for CMA.

CMA implementation in a fully blind mode is generally reliable. However, due to the
unconstrained nature of the equalizer outputs, there is a chance of convergence to the
same output in both polarizations, resulting in a singular Jones matrix. Nonetheless,
numerous established methods exist to effectively address such singularity issues [32],
[92], [93].

As mentioned, the CMA is not suitable for multi-level constellations, but modifications
in the error function can make it more suitable. For example, the radially directed
equalizer (RDE) [94] can be obtained by modifying the error function to

eRDE
k = Qr(|rk|2) − |rk|2 , (5.25)

where Qr(·) is a function that quantizes the radius of each polarization based on the
number of possible rings of the utilized constellation scheme. The probability of each
ring is different, and thus the error function of the RDE can be modified to obtain
probabilistic RDE [95].

5.2.3 Decision-Directed Least Mean Squares Algorithm
The CMA, with its single-level aref , is not well suited to multi-level constellations. The
RDE, on the other hand, addresses this limitation by expanding the number of reference
levels using a decision-directed (DD) approach. To further elevate the dependency on
modulation formats, a fully DD scheme known as decision-directed least mean squares
(DDLMS) is employed in [96], where the most likely decided symbol

d̂k = arg min
c∈C2

∥rk − c∥2
, (5.26)

replaces the fixed reference levels. Moreover, unlike the LMS algorithm that requires the
complete knowledge of desired symbols dk at the receiver, the DDLMS algorithm can be
considered blind. This saves throughput compared to LMS as the pilot symbols required
in LMS contain redundant information.

Assume that the transmitted signal at time k is a 2-dimensional random vector xk,
which takes on values from a set C2. Then, the error vector of the DDLMS is defined as
[96]

eDDLMS
k = d̂k − y

k
. (5.27)
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Consequently, the DDLMS algorithm aims to reduce the variance between the detected
symbol and the decided symbol.

The convergence speed and accuracy of the DDLMS algorithm are highly dependent
on the symbol error rate (SER)9 of the decision symbols d̂k. In general, the SER is
affected by the SNR as it determines how well the constellation points are separated.
while DDLMS shows robust performance at higher SNRs, it may not be reliable at lower
SNRs.

Since the initial decisions are more likely to be wrong (high SER), the blind startup
of the DDLMS is not reliable, especially at low SNRs. Therefore, to ensure reliable
convergence, either the pilot-based LMS algorithm or the CMA are employed for the pre-
convergence phase, then switched to the DDLMS algorithm. While CMA and DDLMS
share similar mathematical models, DDLMS has an extra feedback latency due to its DD
circuitry [97].

5.3 SOP Drift Compensation
In this section, we first introduce the Kabsch algorithm [98] which is useful to estimate the
block-constant SOP drift channel introduced in Section 4.2. Then, we briefly introduce
the Czegledi algorithm [99] which is designed to track the fast SOP drift channels e.g., the
model introduced in Section 4.3 when PDL and PMD are negligible. Finally, we briefly
introduce the proposed algorithms in Paper B, which, unlike the Kabsch and Czegledi
algorithms, account for the PDL as well as fast SOP drift.

The proposed algorithms do not compensate for PMD which does not reflect realistic
fiber channels where PMD typically is present. However, these algorithms can be used
in a hybrid fashion, as demonstrated in [100], where PMD compensation is done in the
frequency domain, while SOP tracking is performed in the time domain.

5.3.1 The Kabsch Algorithm
With negligible nonlinearities, PMD, and PDL, the SOP drift channel models introduced
in Sections 4.2 and 4.3 can be regarded as unitary channels. However, both blind esti-
mation algorithms (e.g., CMA, RDE, and MMA) and pilot-aided estimation algorithms
(e.g., LS and LMS) face a common issue: their optimization problems are not tailored
for unitary channel estimation. Consequently, their solutions are suboptimal when the
channel matrix is unitary, i.e., H†H = HH† = IM where M ≥ 1 denotes the number of
channels.

Here, we incorporate the unitary constraint of the channel into the estimation problem

9The SER quantifies the probability of symbol errors.
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described by (5.2) and formulate it as

min
Ĥ

∥∥∥Y − ĤD
∥∥∥2

s.t. ĤĤ† = IM , (5.28)

where D denotes the pilot matrix with orthogonal rows defined in (5.6). The Kabsch
algorithm [98] provides the optimal solution to this problem as

ĤKabsch = UV†. (5.29)

Here, UΣV† represents the singular value decomposition of YD†. In simple words, the
Kabsch algorithm gives the closest unitary matrix to the LS solution. In the case of
the DP channel. i.e., M = 2, the singular value decomposition is deployed only on a
two-by-two matrix, making it less computationally complex than for higher M .

Unlike blind estimators, the Kabsch algorithm is independent of the modulation format
because it estimates the channel from the pilot symbols. This is also useful in scenarios
where the pilots and transmitted data have different modulation formats. However,
complete dependence on pilot symbols reduces the applicability of the Kabsch algorithm.
This issue is partly addressed in [101] where the DD symbols are utilized instead of
pilots. As previously mentioned, it is better to use DD-based equalizers in combination
with pilot-based or blind algorithms as they perform poorly during the pre-convergence
phase.

5.3.2 The Czegledi Algorithm
The Czegledi algorithm [99] is designed to track both the carrier phase and SOP drift
jointly utilizing a DD-based architecture. The Czegledi algorithm shows a fast conver-
gence rate and high tolerance to fast SOP drifts, and it is modulation format independent.
In the following, we briefly describe the Czegledi algorithm while discarding its carrier
phase estimation part. We refer the reader to [99] for the complete description of the
algorithm and its performance analysis.

The Czegledi algorithm is designed for the channel model (4.8) in Section 4.3 when
no concatenation N = 1 is done and PDL is neglected, which gives Hk = Jk,1. Using
(4.11), the channel matrix can be simplified to

Hk = exp
(
−jαk,1 · −→σ

)
Hk−1, (5.30)

which is then used in (4.7) to define the input–output relation.
Assume that the 2-dimensional random transmitted vector xk takes on values from a

set C2 with complex, zero-mean, and equiprobable DP constellation points. Assuming
that Hk does not change significantly over a symbol duration, the most likely estimate
of the transmitted symbol can be obtained using the previous estimate of the channel
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Ĥk and employing the minimum Euclidean distance criterion as [99, Eq. (16)]

x̂k = arg min
c∈C2

∥∥∥Ĥ−1
k y

k
− c
∥∥∥2
, (5.31)

where y
k

= Hkxk + zk denotes the DP vector of received symbols as defined in (4.7).
Then, the estimated channel at time k + 1 is updated as

Ĥk+1 = exp(−jα̂k,1 · −→σ )Ĥk, (5.32)

where −→σ is the Pauli tensors (4.13) and α̂k,1 is the estimate of the innovation vector
αk,1 defined in (4.12). The estimate of the innovation can be calculated by solving the
following optimization problem

α̂k,1 = arg min
α∈N3

∥∥∥∥(exp(−jα · −→σ )Ĥk

)−1
y
k

− x̂k
∥∥∥∥2
, (5.33)

Using the gradient descent method, the innovation vector can be estimated as

α̂k,1 = −2µαR
(
j
(

Ĥ−1
k y

k
− x̂k

)†
Ĥ−1
k

−→σ y
k

)
, (5.34)

where µα ≥ 0 is the tracking step size and R(·) extracts the real part of a complex scalar
or vector. The tracking step size controls the speed of the convergence, the tracking
accuracy, and the tolerance of the algorithm to fast changes.

5.3.3 The Proposed Algorithms
As discussed earlier, the Kabsch algorithm [92], [98] performs well for block-constant
channels but is not suitable when the channel shows dynamic behavior as the one de-
scribed in Section 4.3. In Paper B, we propose the sliding window Kabsch (SW-Kabsch)
algorithm, an adaptive extension of the Kabsch algorithm tailored to handle SOP drift
channels. Our SW-Kabsch algorithm demonstrates superior tolerance to rapid SOP drift
compared to existing benchmarks.

While the Czegledi algorithm [99] tracks SOP drift, it does not consider PDL. There-
fore, in Paper B, we also introduce the sliding window least squares (SW-LS) algorithm,
which addresses both SOP drift and PDL effects.

When the PDL is negligible, SW-Kabsch shows greater tolerance to SOP drift com-
pared to SW-LS and gradient descent (GD)-based algorithms (such as the Czegledi al-
gorithm, CMA, and their variations). However, when considering PDL, the channel
loses its unitary property, and SW-LS shows the highest SOP drift tolerance. Addition-
ally, unlike GD-based algorithms, which require adjustment of step sizes, the proposed
algorithms need no further parameter tuning, making them promising choices for mem-
oryless fast-drifting optical systems. Further details about the algorithm can be found
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in Paper B.

5.4 Phase-Noise Compensation
The presence of phase noise limits the use of high-order modulation formats and hence
limits the transmission throughput. The problem of phase noise compensation has been
extensively studied in both wireless [102]–[105] and optical domains [106]–[109]. In this
section, we focus mainly on tracking the correlated phase noise encountered in EO-
comb-based WDM systems. Thus, we begin with introducing the blind phase search
(BPS) algorithm, a popular blind phase recovery algorithm. Thereafter, we introduce a
Kalman-based filter designed for correlated phase noise tracking. Finally, we discuss how
the phase noise correlation can influence the pilot placement strategy.

5.4.1 Blind Phase Search Algorithm
The BPS algorithm [110] is a blind algorithm to estimate the carrier phase noise by
rotating the received signal B > 0 times and selecting the rotation that gives the lowest
Euclidean distance to the closest constellation point. The BPS workflow is presented in
the following.

Let
ϕb = 2πb

B
, b = 0, 1, . . . , B − 1 (5.35)

denote the test phases and Φ = {ϕ0, . . . , ϕB−1} denote the set of all the test phases.
For constellations with four-fold symmetry, e.g., QAM, the test phases can be limited to
the range of [0, π/2]. Also, let the M -dimensional random transmitted vector xk take
on values from a set of complex, zero-mean, and equiprobable DP constellation points,
denoted as C2.

At the first step of the BPS algorithm, the received signal y
k

is rotated with all the test
phases simultaneously and the error function is calculated using the Euclidean distance
to the closest constellation point as

ek,b =
∥∥∥e−jϕby

k
− x̂k,b

∥∥∥2
, (5.36)

where
x̂k,b = arg min

c∈C2

∥∥∥e−jϕby
k

− c
∥∥∥2

(5.37)

is the closest constellation point to e−jϕby
k
.

Then, to suppress the impact of the additive noise, the error function is averaged over
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a window of length LBPS ≥ 1

ēk,b =
∑

|k′|≤LBPS/2

ek−k′,b. (5.38)

Finally, the estimated phase is chosen as

ϕ∗
b = arg min

ϕb∈Φ
ēk,b (5.39)

The size of the window LBPS in the BPS algorithm is dependent on the speed of phase
noise variation, imposing a trade-off between noise level and phase noise adaptability.
The accuracy of the BPS algorithm grows linearly with the number of test phases B,
leading to increased computational complexity. As a result, for higher-order modulation
schemes like 64-QAM, the algorithm’s applicability is constrained by computational com-
plexity. To address this issue, multiple adaptations and extensions of the BPS algorithm
have emerged, often employing a multi-stage approach for phase estimation [110]–[112],
combining coarse and precise estimation steps with different algorithms.

5.4.2 Extended Kalman Filter Algorithm
The extended Kalman filter (EKF) [83, Ch. 7.2] serves as a powerful tool in estimation
and prediction tasks, particularly in nonlinear systems. By extending the principles of the
traditional Kalman Filter to nonlinear models through linearization, the EKF provides an
efficient means of estimating the state of a dynamic system based on noisy measurements.
The use of EKF for phase noise tracking involves initializing parameters, predicting the
next state based on a model accounting for phase noise, correcting estimates using the
received data (decision-directed or pilots), and iteratively refining phase noise parameters
for accurate tracking in dynamic systems.

The iterated EKF, also known as extended Kalman smoother (EKS) [83, Ch. 4.7], is an
enhanced version of the EKF. It involves iteratively updating the EKF using linearization
at predicted phase noise values. By repeating this process, initially based on predicted
phase noise and then on updated estimates, we progressively refine our understanding of
the phase noise, resulting in improved estimation accuracy.

The EKS estimator for correlated phase noise tracking in optical communication sys-
tems is introduced in [109, Algorithm 1]. This method is utilized in Paper E to track the
phase noise θk within the EO-comb phase noise model described by (4.32)–(4.34). For
more detailed information on implementing the algorithm, interested readers are referred
to [83, Ch. 7.4] and [109, Algorithm 1].
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5.4.3 Pilot-Symbol Placement
In general, the choice of where to place pilot symbols can significantly affect how well
pilot-aided estimation algorithms perform [113], [114]. Previous research has shown that
spreading pilots out evenly in time and across channels, similar to a grid, works best
for systems with multiple channels [115]. Additionally, [116], [117] have demonstrated
that the best pilot placement for space-division multiplexing systems depends on how
much correlation there is between channels. However, there has not been much investi-
gation into pilot placement for systems using EO-combs, where channels are completely
correlated.

In Paper E, we investigate how phase correlation in EO-comb channels (see Section 4.5)
affects the pilot placement strategy. We analyze different methods for placing pilots op-
timally. Unlike in a typical multichannel system, we find that placing pilots on the outer
comb lines (carrier frequencies) is optimal for certain estimation techniques. Further
details can be found in Paper E.
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CHAPTER 6

Polarization-Based Fiber Sensing

The optical fibers serve not only as mediums for data transmission but also as sensors. It
has been shown that optical fiber sensors are highly sensitive to external physical factors
such as acoustic vibration, electric and magnetic fields, temperature, strain, humidity,
and pressure. They are immune to electromagnetic interference and can withstand high
temperatures and corrosive chemicals making them suitable for various harsh environ-
ments. The compactness and flexibility of optic fibers accompanied by their lightweight
offer versatility in applications with space constraints and portability needs [118].

The application environments range from dangerous scenarios where there are ra-
dioactive, chemical, and other industrial-based hazards to more common and simple
uses. Various industries and fields have benefited from fiber sensors, including health-
care systems, biomedical fields, food and water quality monitoring, and standard product
manufacturing in the industry. The immunity to electromagnetic interference along with
less frequent calibration needs, makes them ideal for remote monitoring and sensing ap-
plications [119]–[121] such as underwater sensing which enables monitoring of oil and
gas infrastructure, seismic activity, and oceanographic parameters, ensuring the safety
of underwater structures, and understanding marine ecosystems.

Distributed optical fiber sensing (DOFS) stands out among various sensor types by
enabling the interrogation of numerous points along a single fiber, offering significant
advantages over traditional node-type sensors for long-distance measurements [120]–[123].
The DOFS techniques can primarily be classified into two categories (separate and joint
sensing and communication), which will be discussed in the subsequent subsections.
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6.1 Separate Sensing and Communication
The separate sensing and communication (SSAC) techniques assign dedicated fibers or
time and frequency channels for sensing. Among these, the methods utilizing backscat-
tered light, such as Rayleigh [123]–[125], Brillouin [126], and Raman [127], have gained
considerable attention over recent decades due to their ability to balance measurement
accuracy and sensing distance. These techniques exploit different intrinsic fiber char-
acteristics, such as length, attenuation, and breakpoints [128], as well as a wide range
of physical parameters including temperature [129], strain [130], pressure [131], seismic
waves [132], and refractive index [133], with high resolution.

Recently, a bidirectional method that relies on phase detection through ultra-low phase
noise laser interferometry was proposed in [12]. This method involves transmitting CW
pulses from each end of a fiber cable. When vibrations occur, the phases detected by
coherent receivers at both ends can be correlated to pinpoint the location nearest to the
incidence.

In the following, we provide a brief introduction to two of the most popular SSAC
methods, followed by a discussion of their limitations.

6.1.1 Distributed Acoustic Sensing
Distributed acoustic sensing (DAS) [129] as a SSAC technique has become increas-
ingly popular for geophysical applications, leveraging intrinsic Rayleigh backscattering
to transform long stretches of fiber-optic cables into thousands of acoustic sensors. The
term “acoustic” indicates that DAS is primarily used to detect sound waves or acous-
tic vibrations propagating through the medium surrounding the optical fiber, such as
in seismic monitoring, underwater detection, and infrastructure monitoring applications.
Offering high spatial resolution and sensitivity to external disturbances, DAS is widely
used to monitor various geomechanical responses, including micro-fracturing within the
earth and oceanic processes [134]. As fiber optic cables are widely deployed in urban
areas, DAS is progressively being integrated into seismic detection systems, crucial for
earthquake early warning and potentially integral to smart-city sensing networks [135],
[136].

However, its spatial range is limited to approximately 150 km due to fiber attenuation,
requiring the use of high-power lasers. Therefore, DAS is most effective when deployed on
dark fibers without active telecommunication channels to minimize crosstalk and avoid
potential traffic disruptions [14]. However, long-haul submarine cables typically have 2
to 8 pairs of fiber. This means that the unused (dark) fiber strands, which are needed
for DAS, are rare [13].
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6.1.2 Phase-Sensitive Optical Time-Domain Reflectometry
Phase-sensitive optical time-domain reflectometry (Φ-OTDR) [133] is another common
backscattering-based DOFS technique which provides the basis for DAS. The Φ-OTDR
technique has been successfully applied in many fields, including seismic wave detection
(underground and undersea), traffic flow monitoring, and geological monitoring.

In Φ-OTDR, the inherent fiber characteristic of Rayleigh backscattering is utilized to
measure dynamic strains (vibrations/intrusions) along the fiber. Although the sensing
distance of Φ-OTDR is generally limited to a few tens of kilometers, it offers remark-
able advantages of high sensitivity, high accuracy, fast response, and fully distributed
measurements.

Initially, Φ-OTDR only utilized dedicated or idle undersea fiber cables as the sens-
ing medium to detect seismic waves [137], [138]. In recent years, Φ-OTDR has been
integrated into coherent optical communication networks by WDM to enable both data
transmission and distributed vibration detection [139].

Both DAS and Φ-OTDR rely on the detection of backscattered light, but with differ-
ent applications. The Φ-OTDR is mostly used for high-resolution sensing applications
such as structural health monitoring [140], reservoir exploration [141], and environmental
monitoring [142], [143]. On the other hand, DAS is mainly used for detecting acoustic
disturbances with applications such as pipeline monitoring [129] and seismic monitoring
[144].

6.2 Joint Communication and Sensing
Joint sensing and communication (JSAC) techniques involve methods that allow for
both communication and sensing applications at the same time. Implementing JSAC
techniques can potentially elevate challenges such as cost, scalability, and compatibility
that are commonly faced in the SSAC techniques.

Recently, some sensing methods that depend on the phase and SOP of the forward
transmission have been proposed [14], [132], [145]. Modern optical transceivers need to
estimate the SOP and phase to demodulate the data from the received signal. Therefore,
unlike SSAC techniques such as DAS, the SOP and phase are already accessible in the
receiver without requiring a dark fiber, dedicated frequency channel, or special hardware.

In [146], the SOP of a terrestrial cable is monitored span-by-span to detect construction
vehicles and hence avoid damaging the cable. Another study detected a magnitude 7.7
earthquake using in-service telecom signals transmitted through a submarine cable [13],
[14].

The prior studies on utilizing polarization information for sensing, often relied on
assumptions such as having access to multiple optical paths [12], [145], [147], reading
outputs from each span [146], or utilizing loop-back configurations [148]. A question yet
to be answered is how much location information about external environmental events
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can be extracted by polarization sensing at the end of a single fiber.
In the upcoming subsections, we introduce techniques that extract spatially resolved

polarization data directly from the estimated Jones matrix at the output of the DSP at
the receiver. We briefly describe how these techniques can be used to obtain polarization
information from the noisy estimate of the Jones matrix H̃(ωi; Θk) (4.24) introduced in
Section 4.4.2.

6.2.1 Inverse Scattering Algorithm
The use of an inverse scattering algorithm (ISA) to extract the DGD profile from the
overall impulse response (i.e., the time-domain Jones matrix) is explored. The ISA
technique was further developed in [68] to handle PDL, allowing for the recovery of both
DGD and PDL profiles. The ISA is theoretically accurate for the scenarios discussed in
the cited works, under the assumption that the overall impulse response is completely
known and free from noise.

The ISA algorithm analytically calculates the values of the unknown parameters Θk

(4.19) containing the rotation, PDL, and DGD parameters for each section and is per-
formed iteratively in the time domain by first taking the inverse Fourier transform of the
noisy estimate of the Jones matrix H̃(ωi,Θk) (4.24). Then it calculates the unknown
parameter values for the last section N , i.e., γN , ϕN (k), and ψN (k), and subsequently
employs these values to construct the equivalent total channel response for sections 1 to
N − 1, effectively removing the last section from the model. By repeating these steps, all
the subsequent parameters will be obtained. Note that in the ISA algorithm proposed
in [68], the DGD parameters τ are assumed to be the same and known for all sections.

6.2.2 The Proposed Algorithm
In Paper C, we introduce a physics-based machine learning method that directly char-
acterizes the propagation model (4.19) and simultaneously optimizes all its associated
parameters.

We represent the set of trainable parameters as Θ̂k = {γ̂n, ϕ̂n(k), ψ̂n(k)}Nn=1 and define
the frequency-averaged cost function as

L(Θ̂k) =
L∑
i=1

∥∥∥H̃(ωi; Θk) − H(ωi; Θ̂k)
∥∥∥2
, (6.1)

where L denotes the number of frequency samples. This loss function is then minimized
iteratively using a gradient-descent optimizer. Here, we only have access to the overall
noisy channel response H̃(ωi; Θk) without knowing its underlying parameters Θk.

The proposed algorithm exhibits better resilience to additive channel estimation noise
when compared to the ISA algorithm. For further details, please refer to Paper C.

It is important to note that estimating the underlying parameters Θk is not the end
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goal. The ultimate goal is to recognize and interpret the perturbations in the esti-
mated parameters as environmental disturbances and then draw conclusions about their
potential physical causes (such as earthquakes, seismic waves, or traffic disturbances).
However, there are numerous challenges even in these initial stages. For instance, estab-
lishing a clear link between a specific parameter perturbation and its cause requires a
descriptive model, which may not always be available for various types of disturbances.
Furthermore, in Section 4.4.1, we assumed that environmental changes only affect the
SOP rotation elements, and modeled their impact on the parameters using Wiener pro-
cesses. We made this simplifying assumption due to the lack of realistic models, but there
is no reason to believe that it holds true in an actual fiber-optic system. This highlights
the critical need for developing realistic and practical models that accurately describe
the effects of environmental changes on the SOP of the transmitted light beam.

6.3 Comparing SSAC and JSAC Techniques
Here, we compare the SSAC and JSAC techniques at an abstract level. We also provide
Table 6.1 which summarizes the subsequent points.

• Compatibility with current networks: Most of the SSAC techniques depend
on Rayleigh backscattering, which poses compatibility issues with current tele-
com cables because of isolators at the output of inline amplifiers. Even if future
submarine cables are reconfigured to support these techniques, achieving function-
ality over thousands of kilometers remains challenging due to the limited power
of Rayleigh scattering and the low SNR of the received backscatter [145]. On the
other hand, the JSAC techniques based on SOP or phase are entirely compatible
with the current optical networks and require no adaptation.

• Scalability: The scalability of a technique refers to its ability to expand and be
applied on a large scale efficiently and cost-effectively. In general the JSAC tech-
niques are easy to scale while the SSAC ones require special hardware or dedicated
bandwidth or fibers and are costly which reduces their scalability.

• Sensing versatility: Without question the SSAC techniques provide more pow-
erful tools for detecting a wide variety of fiber stressors e.g., temperature, strain,
vibration, etc.

• Localization: The SSAC techniques provide more accurate localization due to
their distributed nature. Specific to DAS, it is capable of painting a comprehensive
picture of strain along different spatial sections of fiber. Such information can be
used to derive information about the conditions of the physical placement of the
fiber (e.g. aerial vs. terrestrial), and the dynamics of its surrounding environment.
On the other hand, JSAC techniques do not rely on back-scattering; instead, they
integrate mechanical disturbance along the fiber length, which typically does not
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Table 6.1: Comparison of JSAC and SSAC Techniques

Criteria JSAC SSAC

Compatibility Minimal or no adaptation
required.

Compatibility issues due to
Rayleigh backscattering.

Scalability Easy to scale. Require special hardware or
dedicated bandwidth/fibers.

Sensing Versatil-
ity Limited. More powerful in detecting var-

ious fiber stressors.

Localization
Limited in single-link se-
tups; may require multiple
links.

More accurate localization due
to distributed nature; capable of
providing comprehensive strain
picture.

Interference Interference-free.

Interference between communi-
cation and sensing signals can
occur, affecting reliability and
accuracy.

Throughput Con-
straints

Minimal impact on commu-
nication throughput.

Poses bandwidth constraints,
reducing the nominal through-
put of the communication sys-
tem.

Cost & Security Generally lower cost and
fewer security concerns.

Costly equipment and security
concerns related to eavesdrop-
ping and service disruption.

allow localization in a single link setup. For instance, the localization capability of
the ISA and the proposed algorithms in a single link setup is still under question.
However, simultaneous measurements on spatially diverse links or synchronization
of multiple transmitter/receiver pairs on the same links can aid in localizing the
disturbance source through interferometric measurements [12], [13], [145].

• Signal interference: While the JSAC techniques are interference-free, interfer-
ence can occur between communication and sensing signals for SSAC methods,
particularly affecting the reliability and accuracy of both functions. For example,
in integrated systems like WDM-based Φ-OTDR, the transmission quality may
degrade because the strong probe used in Φ-OTDR can easily trigger non-linear
effects [149].

• Throughput constraints: The SSAC methods pose bandwidth constraints, espe-
cially when aiming to support both high-speed communication and high-resolution
sensing simultaneously on the same fiber. These methods typically allocate either
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an entire fiber cable or a portion of the frequency and time grids, consequently
reducing the nominal throughput of the communication system [149].

• Cost and security concerns: The SSAC techniques using costly equipment like
ultra-stable laser sources or specialized repeaters with built-in geophysical sensors
raise concerns over cost, security, and data policies. Installing sensing equipment
alongside telecommunications gear also raises security issues related to eavesdrop-
ping and service disruption [13].
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CHAPTER 7

Summary of included papers

This chapter provides a summary of the included papers.

7.1 Paper A
“Capacity bounds under imperfect polarization tracking”

In this paper, motivated by the stability of SOP in buried and undersea fibers over
long periods, we investigated the capacity of the block-constant polarization drift chan-
nel when polarization demultiplexing is not perfect. We developed an AIR using the
mismatched decoding method and found that a unitary estimation of the channel leads
to a more accurate AIR as the SOP channel behaves as a unitary matrix. Additionally,
we introduced a data-aided version of the Kabsch algorithm and demonstrated through
simulations that it achieves a higher AIR compared to the LS estimation algorithm.

Contributions: Magnus Karlsson (MK) proposed the channel model. Mohammad Farsi
(MF) and Erik Agrell (EA) formulated the problem. MF derived the bounds, performed
the simulations, and wrote the paper. EA also helped with the derivations and results
validation. All authors reviewed and revised the paper.

Context: Sections 3.4, 4.2, 5.1.
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7.2 Paper B
In Paper B, we remove the block-constant assumption of the channel from Paper A
and extend the channel model to incorporate both SOP drift and PDL. We propose
two polarization tracking algorithms, namely SW-Kabsch and SW-LS. Unlike GD-based
techniques that require step size adjustments, these algorithms require no parameter
tuning, rendering them promising choices for memoryless fast-drifting optical systems.
We compare the performance and complexity of the proposed algorithms with state-of-
the-art methods in the literature. Our analysis demonstrates that when PDL is negligible,
the channel can be treated as a unitary matrix and SW-Kabsch, which ensures a unitary
estimate of the channel, exhibits superior SOP drift tolerance compared to SW-LS and
GD-based methods. However, when considering PDL, the power imbalance between the
channels makes the channel nonunitary, resulting in SW-LS displaying the highest SOP
drift tolerance.

Contributions: MF proposed the algorithms, performed the simulations, and wrote the
paper. EA, MK, and Christian Häger (CH) helped with the problem formulation and
results validations. All authors reviewed and revised the paper.

Context: Sections 4.3, 5.1, 5.2, 5.3.

7.3 Paper C
“Learning to Extract Distributed Polarization Sensing Data from Noisy Jones
Matrices”

In this paper, we extended the model in Paper B to account for DGD and utilized
the model to extract the polarization information from noisy estimates of the Jones
matrices at the receiver. Our investigation showed that the performance of the existing
ISA method quickly drops in the presence of the channel estimation noise. Thus, we
proposed a novel physics-based learning strategy leveraging the proposed model that
simultaneously optimizes all the underlying model parameters accounting for per section
PDL, rotations, and DGD. We showcased its effectiveness in accurately recovering the
location of time-varying polarization perturbations using the noisy channel estimates.
However, we acknowledged persistent challenges, particularly concerning cases of model
overparameterization which needs further exploration.

Contributions: MK and CH suggested the channel model, while MF devised the al-
gorithm, conducted simulations, and wrote the paper. EA, MK, and CH contributed
mathematical expertise, aiding in problem formulation and results validation. All au-
thors participated in reviewing and revising the manuscript.

Context: Sections 4.4, 6.1, 6.2.
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7.4 Paper D
“On the Capacity of Correlated MIMO Phase-Noise Channels: An Electro-
Optic Frequency Comb Example”

In Paper D, we examined how a MIMO channel’s capacity is affected by correlated
phase noises from EO-combs. We established both lower and upper bounds determining
the channel capacity for various values of SNR and phase-noise parameters. Additionally,
we derived upper and lower capacity bounds for high-SNR scenarios, resulting in the
multiplexing gain (pre-log) of M − 1, where M is the number of channels (comb lines).
Intuitively, the loss of one complex channel is the result of sacrificing two real dimensions
to gain full knowledge about two unknown phase noise sources. Therefore, a feasible
transmission strategy could involve using the phase of two channels (which carry no
data) to estimate and eliminate phase noises from the other channels. Additionally, a
constant gap, determined by the number of channels M , persists between the upper
and lower bounds at high SNRs. When M = 2, this gap disappears, allowing for a
characterization of the high-SNR capacity.

Contributions: MK developed the channel model and collaborated with EA and MF
to define the problem. MF derived the bounds, conducted simulations, and authored the
paper. EA contributed to the proof of multiple lemmas. EA and Hamdi Joudeh (HJ)
contributed to the validation of the proofs and interpretation of the results. EA, Alex
Alvarado (AA), Gabriele Liga (GL), and HJ offered mathematical insights and assisted in
structuring the paper. All authors participated in reviewing and refining the manuscript.

Context: Sections 3.2 , 3.3, 3.4, 4.5.

7.5 Paper E
“Pilot Distributions for Phase Noise Estimation in Electro-Optic Frequency
Comb Systems”

In this study, we explored the pilot placement issue in MIMO channels impacted by
correlated phase noise from EO-combs and additive ASE noise. Through theoretical
analysis and simulations, we demonstrated that for certain phase estimators, placing
pilots at the outer channels (first and last) is optimal, in contrast to standard WDM
channels where pilots are distributed across all channels. Furthermore, we conducted
Monte Carlo simulations to compare various pilot distributions in terms of their effect
on bit error rate performance when tracking correlated phase noise originating from
EO-combs.

Contributions: MK introduced the channel model, while MF and EA conceptualized
the problem. MF developed the theoretical framework, conducted simulations, and wrote
the paper. All authors contributed to reviewing and revising the manuscript.

Context: Sections 4.5, 5.2.
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Chapter 7 Summary of included papers

7.6 Future Work
Regarding Papers A and B, a possible future direction is to adjust the studied channel
models to account for PMD. This adaptation introduces memory in the channel and
complicates the capacity analysis and the DSP algorithm required for channel tracking.
To deal with the memory, algorithms in Papers B could be altered by increasing the
equalization window and replacing the closed-form solutions with adaptive filters. It
might be worthwhile to take advantage of that various transmission impairment drift in
different time scales and employ the Bayesian filtering framework (e.g., Kalman filter,
particle filter) to get more robust channel tracking algorithms.

There are multiple potential research directions regarding Paper C. For instance, there
is a lack of mathematical models describing the impact of environmental perturbation on
the phase and polarization of the transmitted telecommunication signal. Such models,
if found, significantly improve the remote simulation, testing, and verification of future
sensing algorithms. It also enables exploiting sophisticated learning algorithms to detect,
classify, and predict environmental perturbations. Moreover, the results in Paper C
are far from practical scenarios, as we only considered a concatenation of five sections.
Another potential future work involves extending the learning model in Paper C to
account for higher numbers of sections and elevating the overparameterized cases.

While the capacity bounds on the correlated EO-comb phase noise channel in Paper D
are relatively tight in the high-SNR regime, they need to be improved for low SNRs. Novel
information theoretic tricks are required to achieve this. Another interesting direction
would be identifying scenarios where correlated phase noise could appear and using the
framework employed in Paper D to obtain capacity bounds. Moreover, the results in
Paper D and E suggest that a practical transmission system employing EO-combs could
potentially utilize the inherent phase noise correlation of these systems to design simpler
yet more effective DSP algorithms.
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