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Abstract
Frequencies at 100 GHz hold promise for the next generation of wireless com-
munication systems due to the vast unexplored spectrum resource. In these
high frequencies, high-gain phased arrays are strongly needed to overcome the
high free-space path loss and achieve flexible beamforming capabilities. Cur-
rent phased array solutions commonly have high integration, but also suffer
from low radiation efficiency due to high dielectric loss. To achieve high radia-
tion efficiency, all-metal phased array antennas emerge as a viable alternative
solution. Furthermore, with the assistance of gap waveguide (GWG) technol-
ogy, difficulty in fabricating all-metal antenna structures at high frequencies
can be significantly reduced.

This thesis presents our first beam scanning array design at 100GHz, a
high-efficiency one-dimensional wide-scanning solution based on GWG slot
array antenna. Utilizing a novel decoupling technique, for the first time,
the all-metal slot array achieves ±60° wide-angle scanning at E-plane, with
3-dB scan loss and >91% total efficiency. Subsequently, various slot array
decoupling techniques are also compared and studied to analyze their unique
properties and suitable application scenarios.

The proposed slot antenna will be used to manufacture a 100 GHz phased ar-
ray demonstrator, and it will also serve as the basis for future two-dimensional
scanning antenna designs.

Keywords: Slot antenna, wide scanning, decoupling, phased array, gap
waveguide.
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CHAPTER 1

Introduction

1.1 The State-of-the-art Phased Arrays at 100
GHz

The spectrum near and above 100 GHz holds immense promise for the next
generation of wireless communication systems [1]. With vast unexplored fre-
quencies, it has the potential to achieve very high data rates and support nu-
merous unprecedented features and functionalities, which can be suitable for
various applications such as ultra-high data-rate multi-user broadband com-
munication, ultra-low latency machine communications, wireless backhaul,
virtual/augmented reality, internet of things, security & sensing, imaging,
etc [1] [2].

Although the spectrum is less crowded in such high frequency ranges, it also
presents new challenges distinct from those at lower frequencies. The foremost
challenge is the much higher free-space path loss, coupled with weaker electro-
magnetic diffraction capability (relying more on line-of-sight transmission) [1].
To overcome the high free-space path loss and achieve flexible beamforming ca-
pabilities, utilizing high-gain phased arrays becomes a preferred choice [5] [6].
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Chapter 1 Introduction

(a)

(b)

Figure 1.1: Examples of AoC phased arrays at W-band: (a) in [3], (b) in [4].

Designing high-performance phased arrays in such high-frequency bands
still presents technical obstacles. Currently, the predominant solutions for
phased arrays at W-band (75-110 GHz) include antenna-on-chip (AoC) [3] [4],
antenna-in-package (AiP) [7] [8], and traditional PCB antennas [9], as illus-
trated in Fig. 1.1, 1.2 and 1.3. Among these technologies, both AoC and
AiP enable miniaturization and higher integration of antennas. By embedding
the antenna directly onto the chip or within the package, the overall system
size is minimized, alongside a reduction in the number of connections and
components on the PCB. This integration fosters a more cohesive interaction
between the antenna and RF circuitry, thereby elevating integration levels.

However, these methods are not without their challenges. Primarily, the
materials utilized for antenna integration onto the chip or within the package

4



1.1 The State-of-the-art Phased Arrays at 100 GHz

(a)

(b)

Figure 1.2: Examples of AiP phased arrays at W-band: (a) in [7], (b) in [8].

Figure 1.3: Example of a PCB phased array at W-band in [9].

can introduce additional losses. Such losses may lead to signal attenuation
and distortion, impacting the system’s performance. In [3] and [4], two AoC-
based phased array designs are presented which exhibit 45% and and above
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Chapter 1 Introduction

30% antenna efficiency at 110 GHz and 94 GHz, respectively. AiP solution
in [8] shows 41% efficiency at 94GHz. Similarly, phased arrays based on PCB
antennas are also challenged by low efficiency issues. In [9], the efficiency
of a single antenna element is round 62.5% at around 90 GHz. Moreover,
for large-scale analog phased arrays with numerous antenna elements, the
expanded power division network can significantly introduce greater losses,
further diminishing the overall radiation efficiency [10] (examples of analog
phased array architecture using division network are depicted in Fig. 1.4).

Figure 1.4: Examples of full-analog phased-array architecture using division net-
works: 1 to 16 in [11] (left), 1 to 64 in [12] (right).

On the other hand, the direct integration of the antenna onto the chip or
within the package can compromise heat dissipation. Insufficient heat manage-
ment could elevate the temperature of the chip or package, thereby affecting
the system’s reliability and stability [13].

In this regard, to achieve higher efficiency, all-metal phased array antennas,
benefiting from the inherent low-loss characteristics, emerge as a promising
alternative solution. The incorporation of metal structures can also facilitate
better heat dissipation, aiding in better thermal management.

6



1.2 Gap Waveguide Technology

1.2 Gap Waveguide Technology
The progress of all-metal phased arrays in the high-frequency band has been
traditionally limited by manufacturing complexities. In recent years, the de-
velopment of gap waveguide (GWG) technology, characterized by being free
of electrical contacts, has significantly reduced the manufacturing challenges
and expenses of all-metal antenna arrays at mmWave frequency bands [14].

Figure 1.5: Cross section of ideal GWG [15].

Figure 1.6: Different GWG geometries and their desired propagation modes [15].

GWG technoloy was firstly proposed in 2009 [15]. The concept derives
from the cutoff characteristic of a parallel-plate waveguide setup with per-
fect electric conductor (PEC) and perfect magnetic conductor (PMC) plates.
Specifically, when the air gap between the PEC and PMC is less than a quar-
ter wavelength, no wave can propagate between the plates, as is illustrated
in Fig. 1.5. While PMCs don’t exist in nature, the PMC condition can be
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Chapter 1 Introduction

Figure 1.7: Examples of GWG-based antenna arrays: (a) in [16], (b) in [17], (c)
in [18],(d) in [19].

emulated using an artificial magnetic conductor (AMC), manifested in peri-
odic textured structures such as metal pins or mushroom configurations. The
AMC possesses a sufficiently high surface impedance to generate a stopband,
inhibiting the propagation of parallel-plate modes.

In an actual gap waveguide structure, this textured AMC surface is com-
bined with guiding elements like ridges, grooves, or strips, completing the
waveguide design, as is shown in Fig. 1.6. Electromagnetic waves can propa-
gate along these guides, while the AMC surface effectively forms virtual lateral
walls on both sides of the guiding area, thereby preventing lateral field leakage.

The primary benefit of the gap waveguide design lies in its ability to be
implemented without the need for metal-to-metal contact between the smooth
metal surface and the textured AMC surface. This feature facilitates the low-
cost production of low-loss waveguide components, suitable for millimeter-
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1.2 Gap Waveguide Technology

Figure 1.8: Examples of GWG-based components: (a) filter in [26], (b) filter in [27],
(c) directional coupler [28],(d) orthomode transducer in [29].

wave (mmWave) frequency bands and potentially beyond.
In recent years, utilizing GWG technology, a great variety of waveguide-

based antennas [16]–[25] and components [26]–[29] have been implemented in
the high mmWave bands. GWG also aligns well with low-cost manufacturing
methods such as electrical discharge machining, plastic injection molding, 3D
printing, and polymer micromachining technologies[30]–[34] . Some represen-
tative designs of GWG-based antennas and components are shown in Fig. 1.7
and Fig. 1.8.

Moreover, the integration technology associate with GWG has significantly
progressed. Various designs of GWG to PCB transmission line transition have
been developed [35] [36], as illustrated in Fig. 1.9. These technological devel-
opments have been crucial in establishing the basis for GWG-based phased
array designs.

9



Chapter 1 Introduction

Figure 1.9: Examples of GWG-PCB transitions:(a) in [35], (b) in [36].

1.3 Outline of this thesis
The goal of this research is to explore high-efficient GWG-based phased arrays
for 100 GHz applications. We have proposed a 1-dimensional wide scanning
solution, which is discussed in Chapter 2. Chapter 3 gives a summary
of included papers. Conclusions and plans for future work are presented in
Chapter 4.
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CHAPTER 2

1-Dimensional Wide-scanning Linear Polarized Phased
Array

Our first work focuses on GWG-based linearly polarized 1-dimensional scan-
ning phased array. Waveguide slot array antenna (incorporated with broad
wall longitudinal slots) is chosen as the array element for its numerous ben-
efits, including simple and low-profile structure, robustness and durability,
high power handling ability, high-efficiency and high-gain capabilities, and
good polarization purity.

However, conventional slot array antennas typically offer a limited scanning
range due to their inherent characteristics. This chapter will analyze these
limitations and subsequently provide a wide scanning all-metal slot array so-
lution.

2.1 Challenges to Achieve Wide Scanning for Slot
Array

To achieve wide scanning, the spacing between elements in phased arrays
typically should be around 0.5λ0 to avoid grating lobes, where λ0 is the free-

11



Chapter 2 1-Dimensional Wide-scanning Linear Polarized Phased Array

(a) (b)

Figure 2.1: Geometries of slot arrays based on (a) rectangular waveguide and (b)
ridge waveguide .

space wavelength. For traditional slot array fed by rectangular waveguide,
the width of each element is usually about 0.7λ0, including the width of the
waveguide broad wall and the thickness of the side wall. This dimension
restricts the scanning range to approximately ±25°. To overcome this, ridge-
loaded waveguide is often employed which can decrease the size of the antenna
element to 0.5λ0. However, limitation still exists due to the inherent strong
E-plane mutual coupling in slot array antennas [37], which can cause the
degradation of active reflection coefficient (ARC) at large scanning angles
and further cause mismatch between antenna and power amplifier, affecting
the overall system performance [38]. As a result, the typical scanning range
of ridge waveguide slot array is only ±45° [39].

Hence, an effective decoupling technique is needed to realize wide scanning
capability (±60°) for slot array antennas.

2.2 Existing Decoupling Techniques for Slot Array
Over the past few decades, various methods have been explored to reduce the
mutual coupling of waveguide slot array antenna, such as baffles [40], cavi-
ties [41], grooves (corrugation) [42], fences [43] [48], quasi-gap waveguide [44],
electromagnetic band-gap [45], metasurface [46] and decoupling network [47].
However, these existing decoupling structures are not applicable for wide scan-

12



2.2 Existing Decoupling Techniques for Slot Array

Figure 2.2: Existing decoupling techniques for slot Array: (a) baffles [40], (b) cav-
ities [41], (c) grooves [42], (d) fences [43], (e) quasi-gap waveguide [44],
(f) electromagnetic band-gap [45], (g) metasurface [46] and (h) decou-
pling network [47].

13



Chapter 2 1-Dimensional Wide-scanning Linear Polarized Phased Array

ning need of all-metal slot arrays.
First of all, most of those report techniques (except the metasurface pro-

posed in [46]) are initially designed for slot arrays with larger than 0.5λ0,
or in other words, they are not for wide scanning. Metal structures like baf-
fles [40], cavities [41], quasi-gap waveguide [44] are too bulky to implement in
the limited space between slot arrays with 0.5λ0 spacing. Two widely used
decoupling technologies grooves [42] and fences [43] [48] show promise to ac-
commodate this narrow spacing due to their relatively compact structures.
However, base on our investigation, they can only operate well when they are
slightly away from the radiation slots and start to lose their efficacy under
0.5λ0 element spacing (analyis of grooves and fences is given in 2.4). Electro-
magnetic band-gap in [45] also has the oversize problem for implementation,
and its PCB structure is not suitable for the incorporation with all-metal
antenna structure in the first place.

It should be noted that, all these techniques discussed above (i.e., baf-
fles [40], cavities [41], quasi-gap waveguide [44], grooves [42], fences [43] [48],
electromagnetic band-gap [45]) result in antenna element with narrower E-
plane beamwidth and higher gain, which contradicts the need for wide scan-
ning. In the other words, their decoupling effect should actually be realized
by preventing the lateral radiation in E-plane (along the metal ground).

Among the decoupling technologies mentioned above, only metasurface
in [46] is proposed for wide scanning. In this design, metasurface is placed
vertically between the slot array elements to deal with the E-plane mutual
coupling, and 3-dB scanning loss within ±60° scanning range is achieved. Al-
though this technique provides a possible solution, the metasurface structure
will bring certain structural complexity and processing difficulty (also this de-
sign is not fabricated for measurement and verification in the paper). Again, as
mentioned before, any structures involving PCB are not suitable for all-metal
slot array in high-frequencies (including the PCB-based decoupling network
in [47].A comparison table of these decoupling techniques is summarized in
Table 2.1.

Hence, to the best of the authors’ knowledge, no well-established decoupling
methods are currently available that effectively address the wide scanning
requirement of full-metal waveguide slot arrays, even at low frequency band.
In this context, designing feasible decoupling technique will therefore be the
key to achieving good scanning performance.
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2.2 Existing Decoupling Techniques for Slot Array
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Chapter 2 1-Dimensional Wide-scanning Linear Polarized Phased Array

2.3 Wide Scanning Slot Array Solution Using
Novel Decoupling Technique

A feasible decoupling technique for wide scanning all-metal phased arrays
should meet several requirements, i.e., it should be as simple as possible for
easy fabrication at high frequencies, compact enough to be accommodated
within the 0.5λ0 element spacing, provide a good decoupling effect, and not
alter the original embedded pattern (without reducing the beamwidth at the
scanning plane).

Figure 2.3: GWG Slot Array incorporated with half wall decoupling structure.

To fulfill these requirements, we propose a novel decoupling structure named
"half wall" (as depicted in Fig. 2.3) which can also improve the reflection co-
efficient of the slot array element at the same time. With the help of this de-
coupling method, the proposed GWG-based slot array achieves a more stable
ARC, >91% total efficiency, and 3-dB scanning loss within the ±60° scanning
range at 100 GHz band (Fig. 2.4 2.5).

Relevant details of half wall technique are given in Paper A.
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2.4 Comparative Study of Three All-metal Slot Array Decoupling Techniques
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Figure 2.4: Simulated and measured S11 of the prototype for (a) broadside (0°)
and (b) 60° scanning.
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Figure 2.5: Simulated and measured E-plane realized gain pattern (102 GHz) of
the prototype.(a) broadside (0°), (b) 60° scanning.

2.4 Comparative Study of Three All-metal Slot
Array Decoupling Techniques

To develop a comprehensive understanding of different decoupling techniques
for slot array, we undertook a comparative analysis of the the proposed half
wall, and two prevalent decoupling structures, i.e., grooves [42] and fences [43] [48],
which are also full-metal (as shown in Fig. 2.6). Their decoupling efficacy and
impact on element patterns are investigated under two typical element spac-
ings: 0.5λ0 and 1λ0.
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Chapter 2 1-Dimensional Wide-scanning Linear Polarized Phased Array

Figure 2.6: Slot array decoupling techniques: half wall, corrugation and fence.

(a)

(b)

Figure 2.7: Comparison of simulated (a) mutual coupling S12 and (b) normalized
E-plane embedded pattern (dB) of the central element at center fre-
quency (100GHz), under 0.5λ0 element Spacing.

18



2.4 Comparative Study of Three All-metal Slot Array Decoupling Techniques

(a)

(b)

Figure 2.8: Comparison of simulated (a) mutual coupling S12 and (b) normalized
E-plane embedded pattern (dB) of the central element at center fre-
quency (100GHz), under 1λ0 element Spacing.

For small element spacing ( 0.5λ0), only the half wall technique provides
effective decoupling (2.7), while the other two techniques become invalid. For
larger element spacing (1λ0), all three techniques are effective for decoupling
(2.8). However, while the half wall can still provide a wide element pattern,
corrugation and fence result in much narrower beamwidth and higher direc-
tivity and these variations in beamwidth are suitable for different application
scenarios.

Further details of the discussion are given in Paper B.
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CHAPTER 3

Summary of included papers

This chapter provides a summary of the included papers.

3.1 Paper A
Mu Fang, Jian Yang, Thomas Emanuelsson, Ingmar Andersson, Ashraf
Uz Zaman
1-Dimensional Wide Scanning Gap Waveguide Based Slot Array An-
tenna using Decoupling Technique for 100 GHz Applications
Published in IEEE Transactions on Antennas and Propagation,
vol. 72, no. 4, pp. 3438–3450, Apr. 2024
©IEEE DOI: 10.1109/TAP.2024.3372147 .

This paper presents a 1-dimenional wide scanning slot array antenna based
on ridge gap waveguide (RGW), operating at a 100 GHz band. A novel
half wall decoupling structure is proposed to reduce the mutual coupling and
the reflection coefficient simultaneously, thus achieving a more stable active
reflection coefficient (ARC) within the ±60° scanning range. At the same time,
special attention has been given in retaining the embedded pattern suitable
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Chapter 3 Summary of included papers

for wide scanning performance.

3.2 Paper B
Mu Fang, Jian Yang, Ashraf Uz Zaman
A Comparative Study of Decoupling Techniques for Waveguide Slot Ar-
ray Antennas
Accepted by EUCAP2024,
Apr. 2024
©IEEE .

In this paper, we present a comparative study of three decoupling techniques
for waveguide slot array antennas, including half wall, corrugation and fence.
Their decoupling efficacy and impact on element patterns are investigated
under two typical element spacings: 0.5λ0 and 1λ0. A summary highlighting
the differences among these decoupling techniques is provided to gain insight
into which specific application scenarios are best suited for each technique.
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CHAPTER 4

Concluding Remarks and Future Work

This thesis presents our first work of GWG phased array design, a 1-dimensional
wide scanning solution based on RGW slot array antenna with novel decou-
pling technique. The proposed design exhibits good scanning performance
and high efficiency, demonstrating the feasibility and advantages of GWG
phased array solutions at 100 GHz. Our future work will focus on exploring 1-
dimensional scanning solution with wider bandwidth, as well as 2-dimensional
scanning solution. Additionnally, we will also investigate GWG-based co-
aperture dual-band filtering antenna array for 100 GHz application.
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