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Using economic model predictive control in space heating systems, the heat demand can flexibly be adapted 
to varying scenarios of conflicting objectives such as thermal comfort, energy consumption, and peak demand. 
With a controller that minimizes the heating costs subject to thermal comfort constraints within occupancy 
hours, the resulting heat demand will depend on the cost mechanism. In the context of Swedish district heating 
networks, optimal demand side control is a multi-objective problem due to variable costs based on both energy 
consumption and peak demand. By simulating heat demand control using a gray-box model estimated from a 
Swedish space heating system, we investigate how the established price structures influence the heat load of 
a population of buildings with economic model predictive control. Our results suggest that by adjusting the 
incentives from the type of price structures commonly used today, the peak demand can often be reduced by 
10-20% with a minor increase in consumption of 1-2%. We also show that by charging the peak demand for 
multiple buildings collectively, it is financially beneficial to cooperatively control buildings which can reduce 
the combined consumption and peak demand even further.

1. Introduction

District heating provides efficient heat distribution in urban dense 
areas and is believed to play an important role in the transition to fu-
ture energy systems [1,2]. Yet, the International Energy Agency has 
pointed out that innovations must be exploited cleverly to facilitate 
the necessary advancements toward fully sustainable solutions [3]. In 
a present-day district heating plant, boilers can typically be catego-
rized as invariable base capacity or more variable peak capacity, where 
employment of the peak capacity is more expensive and often less en-
vironmentally friendly compared to the base capacity. To minimize the 
need for peak capacity boilers, or to facilitate other heat sources such 
as industrial waste heat and intermittent energy sources, different prac-
tices of flexibility solutions have been proposed and implemented for 
optimizing heat production [4]. The different practices of flexibility 
can be associated with one of the different levels of control within a 
district heating network, spanning from plant operation and flow con-
trol as performed by a supplier, down to the heat demand control as 
performed by a consumer. Currently, the employed flexibility solutions 
are mostly based on supplier-controlled thermal energy storage, such as 
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hot water tanks [5] and the heat storage available in the network pipes 
[6].

Another area of conceivably cheap, but less exploited, flexibility 
techniques involves demand side management, or demand response, by 
utilization of the pre-existing but customer-controlled building thermal 
inertia. Load shifting, which can be described as sequentially alternat-
ing between overheating and underheating compared to the normal 
levels [7], is one extensively studied approach in this area. In par-
allel to the research on demand side management, there has been a 
plethora of works on applying model predictive control, and in partic-
ular economic model predictive control (EMPC), for various types of 
space heating (SH) systems. Conceptually, a heat demand EMPC can be 
formulated as providing indoor comfort at a minimal heating cost. In 
many different case studies, substantial savings in energy consumption 
have been achieved by replacing various types of rule-based controllers 
such as on-off, weather compensation, or PID [8]. This recent develop-
ment can largely be attributed to the advancements of the Internet of 
Things (IoT), e.g., enabling reference signals from indoor temperature 
sensors and control via building energy management systems. Although 
the benefits of switching the heat demand control method to EMPC 
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depend on the efficiency of the preceding method, EMPC can be dis-
tinguished from the traditional rule-based methods due to its ability to 
adapt the heat demand to what is financially preferable.

In a survey performed in 2017, the price structures used among 
Swedish district heating suppliers were found to always include a tariff 
for the energy consumption (kWh) that was often accompanied by a tar-
iff for the peak demand (kW) [9]. The relative unit cost of each of the 
two components varied however largely between different suppliers. 
Up to this point, the rationale for a supplier to include a peak demand 
component has been to cover the peak capacity costs. However, a peak 
demand component may incentivize load shifting to some extent, which 
may automatically be applied when consumers employ demand-side 
EMPC. Due to an ongoing trend of more demand-side EMPC employ-
ments in Swedish SH systems [10,11], the financial incentives from such 
a price structure may have a significantly larger impact on the resulting 
heat load in the network with this shift in heat demand control.

With the established Swedish price structures, the resulting heat 
demand as given by an EMPC is retrieved via a multi-objective opti-
mization of the energy consumption and the peak demand, meaning 
that the relative unit cost of the price components will influence the 
obtained heat demand. The purpose of this paper is to investigate and 
enhance the understanding of how the relative unit cost of the Swedish 
district heating price structures affects the heat demand from EMPC-
controlled buildings. We perform simulations of one heating season 
using a gray-box model with parameters estimated from an SH system 
in Örebro, Sweden, where EMPC is currently employed.

1.1. Outline

In Section 2 we present the background of SH systems and EMPC, 
and how these have been utilized for demand side management. In Sec-
tion 3 we give a few numerical examples of how the price mechanism 
may affect the heat demand that motivates the simulation study. In 
Section 4 we present the methods for setting up the simulation with the 
gray-box modeling and the EMPC setup. The results from the simula-
tion are presented in Section 5. In Section 6 we discuss how the results 
can be interpreted. Finally, in Section 7 we present our conclusions.

2. Background

This work has been preceded by advancements in new equipment 
and control-oriented studies of SH systems, which enable large-scale 
demand-side management. In Section 2.1 we present the basic com-
ponents of typical Swedish SH systems, and how these nowadays are 
upgraded with computing and online metering tools. In Section 2.2 we 
briefly review the literature regarding demand-side management uti-
lizing building thermal inertia for district heating. In Section 2.3, we 
present the current state of the district heating pricing mechanisms. 
Lastly, in Section 2.4, we connect these aspects to prior works in the 
literature on heat demand EMPC.

2.1. System and control components

As of 2021, district heating accounted for about 60% of all Swedish 
heat deliveries used for SH and domestic hot water (DHW), being the 
dominant heat source for multi-family dwellings and non-residential 
buildings [12]. The district heating network, i.e., the primary side, 
transports hot water and is hydraulically separated from the SH sys-
tems and DHW systems, i.e., the secondary side [6]. The heat transfer 
from the primary side to the secondary side is performed via a heat 
exchanger in the substation where the primary side flow is varied to 
control the supply temperature on the secondary side. Traditionally, the 
SH supply temperature has often been set by a pre-defined piece-wise 
linear function from the outdoor temperature, referred to as weather 
compensation. The final heat transfer to the indoor air is typically lo-
cally regulated in each heating zone by a thermostatic radiator valve 

(TRV), which actuates the flow in a radiator to maintain a desired in-
door temperature.

While these components and methods have conveniently been used 
for a long time, there are ongoing shifts in updating and integrating 
these systems with modern tools. One example is online connected 
TRVs, sometimes referred to as smart TRVs, which may allow for 
scheduling setpoints and remote control [13]. Another trend is the re-
placement of the weather compensation of the supply temperature with 
more sophisticated control based on feedback from indoor temperature 
sensors [10]. The main problem that is addressed with this development 
is that the weather compensation curve can only be shifted manually, 
which is normally only done after complaints from tenants experienc-
ing a cold climate. Thus, TRVs are given a large control authority, but 
they do not always operate as desired due to malfunctioning valves 
and poorly balanced SH systems [14,15]. The consequence of poor 
TRV control is a fluctuating indoor temperature, and to avoid regularly 
underheated zones the weather compensation curve is often shifted up-
wards to give a disproportionately high supply temperature [16]. The 
average indoor temperature is therefore well above the lower comfort 
limit and the energy consumption is unnecessarily large. With the feed-
back signals from the indoor temperature sensors, a better adaptation 
of the secondary side supply temperature can assist the TRV control. In 
some cases, TRVs have even been abandoned and feedback control of 
the supply temperature control has been established as the single heat 
demand control mechanism [10].

2.2. Load shifting with building thermal inertia

In the context of district heating, most of the studies about load 
shifting using building thermal inertia have focused on reducing the 
peak load using various techniques [4], whose applicability has been 
demonstrated in various settings. In one field study by Kensby et al. 
[17] the flexibility potential of a typical building in a Swedish district 
heating network was demonstrated by periodic offsets from the normal 
level of the secondary side supply temperature. Although this scheme 
effectively resulted in alternating overheating and underheating of the 
building, the indoor climate was kept within an acceptable range. Other 
field studies have focused on constraining the total heat demand by 
simultaneous control of the secondary side supply temperature of 14 
buildings [18] and prioritization of DHW over SH during peak demand 
hours [19]. Simultaneous control has also successfully been used for re-
ducing morning peak heat loads, by distributing slots for the start-up of 
different SH systems after being turned off during the night [20]. The 
value of these activities from the perspective of a district heating net-
work has also been suggested by numerous simulations, see for example 
Romanchenko et al. [21] or Dominkovic et al. [22].

The aforementioned field studies are examples of direct demand-
side management, i.e., the heat demand is directly modified whenever 
it is useful for production. On the contrary, indirect demand side man-
agement refers to adjusting the heat demand by giving the consumers 
financial incentives, which has been extensively studied for electricity-
powered heat sources [23]. Similar procedures have more recently also 
been studied for demand-side applications in the context of district 
heating, where the cost is minimized for a single building based on 
a time-varying heat price, as in Thilker et al. [13]. The large-scale im-
plications of such demand-side optimal control with time-varying costs, 
using historic real-time marginal costs, have shown great potential in 
reducing the operational cost [24]. While time-varying prices can be an 
attractive approach to motivate consumers to install flexible heat de-
mand control and enable demand-side management in the first place, 
there may be side effects. With the primary intention of peak load re-
duction, a dynamic price signal may be challenging to implement when 
many consumers can have a flexible heat demand. A relevant example 
is Hedegaard et al. [25], where optimal demand-side control of an en-
tire urban area was simulated under a time-varying price signal. The 
price signal, designed by the authors, introduced occurrences of new 
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peaks during the hours of lower prices, which could only be mitigated 
by constraining the degree of load shifting.

2.3. Price mechanisms

Swedish district heating is a deregulated market, but to enhance 
transparency the heat suppliers must report the costs and profits to the 
authorities [26]. With the price mechanisms that are commonly used 
among the Swedish district heating companies, the cost is dominantly 
variable of the heat demand but sometimes accompanied by a small 
fixed cost [9]. The structure of the variable components varies between 
different suppliers, but there are conventionally three different types of 
components: energy consumption, load demand, and efficiency.

The energy consumption component, which is virtually used by all 
suppliers, corresponds to the energy consumed in kWh and may be 
related to the average operating costs. The load demand component, 
which is typically the other dominating price component besides energy 
consumption, is often included to cover the costs related to the neces-
sary peak capacity. It has been implemented in many ways by different 
suppliers, and while some of them are based on averaged consumption, 
some suppliers use the largest peak demand in kW over a period [27]. 
The efficiency component, implemented by either flow or return tem-
perature, is included by many suppliers to motivate consumers to have 
efficient equipment.

2.4. Heat demand EMPC

Model predictive control [28] is a generic framework where a pro-
cess is controlled by repeated optimization over a receding horizon, 
where future values are predicted using a dynamic model of the process. 
When the objective function is based on a financial metric rather than 
the process itself, one uses to talk about economic model predictive con-
trol, EMPC. While its history is more profound in other industries, EMPC 
for SH demand has been extensively studied mainly from the 2010s 
and forward. Numerous experimental studies have shown remarkable 
energy-saving potential, even up to 40%, by employing EMPC [8,29]. 
Examples of building types where successful real-world implementa-
tions have been described in the literature include residential buildings, 
schools and universities, offices, and commercial buildings. The basic 
prerequisites for setting up a heat demand EMPC are computational re-
sources for solving the optimization problem, a digital feedback signal 
from indoor temperature, the ability to control the heat demand, and a 
dynamic model.

In buildings supplied by district heating, the EMPC implementa-
tions have been enabled by the newly installed components as dis-
cussed in Section 2.1, including indoor temperature sensors. As for 
the varying system setups, the heat demand is actuated differently, 
which gives slightly different EMPC formulations. In the cases with 
controllable TRVs, the control signal is an indoor temperature setpoint 
[13,30,31], but with supply temperature control it is the water tem-
perature [32–34]. In neither case, it is the actual heat demand that is 
controlled, although it can be estimated from the control signals and 
process values.

The dynamic model has frequently been pointed out as an obsta-
cle in the employment of EMPC. There have been different approaches 
proposed, in a range spanning from detailed white-box models to neu-
ral networks-based black-box models [35]. Gray-box models have been 
an increasingly popular alternative since they often require less effort 
than white-box modeling, but still allow for a physical interpretation 
of parameters [36,13]. With a given dynamic model and a sequence 
of control inputs, a control plan, the future indoor temperature can be 
predicted. To integrate the dynamics into the optimization, predicted 
thermal comfort can be included as a constraint [31,37], as a penalty 
term in the objective function [38], or by combining both strategies 
[39].

The price mechanism will have a direct control impact since it is 
used in the EMPC objective function. In the aforementioned studies of 
indirect demand-side management in Section 2.2, time-varying prices 
have been considered. However, as we will see in the next section, even 
the current district heating price structures may incentivize load shift-
ing via the load demand component.

3. Motivating examples

In this section, we discuss the heat demand EMPC under the price 
structures as presented in Section 2.3 with respect to load shifting. First, 
in Section 3.1, we establish the tradeoff between energy consumption 
and peak demand by an example. This perspective is extended in Sec-
tion 3.2, where we introduce the occurrences of nighttime setbacks and 
how this may affect the heat load.

3.1. The tradeoff between consumption and peak demand

With the established district heating price components, consump-
tion and load demand, the load demand component may incentivize 
load shifting when it is based on the peak demand. To exemplify this, 
we consider a single building, where the indoor temperature change is 
mainly driven by the supplied heat and the thermal loss by the heat 
transfer from the interior to the exterior. To provide the required in-
door climate, the consumer sets a control plan, i.e., a sequence of heat 
demand over time, that compensates for the time-varying thermal loss. 
Due to the thermal inertia of a building, there is not a unique control 
plan solving this problem, but typically a large set of plans with differ-
ent consumption and peak demand.

Narrowing the scope, we cannot typically obtain the least consump-
tion and the least peak demand from the same control plan. Under 
the assumption of perfect knowledge of the exact thermal loss at any 
time generated by any control plan, we can retrieve the least consump-
tion control plan by feeding an amount of heating power equaling the 
thermal loss. By feeding more heating power than the corresponding 
thermal loss, the indoor temperature will increase. To reduce the peak 
demand, a load shift procedure can be applied, meaning that the least 
consumption plan is modified by employing such an overheating pro-
cedure before a thermal loss peak. The heat demand at the time of the 
peak can then be reduced by utilizing the heat buffer that has been ac-
cumulated by the overheating. Since the thermal loss is driven by the 
difference in indoor and outdoor temperature, buffering heat will also 
increase the thermal loss per consumed heating power. Hence, there 
is a tradeoff where reduced peak demand also increases consumption, 
which is illustrated in Fig. 1.

To determine what is an optimal plan, the importance of reduc-
ing peak demand and consumption, respectively, must be defined. Re-
connecting to Section 2.3, the relative unit costs between the energy 
consumption component and the load demand component, when im-
plemented as the peak demand, will therefore dictate the optimal level 
of load shifting for buildings in the network. Thus, if a substantial num-
ber of customers employ optimal control, the price structure will have 
a significant impact on the total load.

3.2. Multi-building control with various scheduling

In the previous example, we discussed the control problem for a sin-
gle building with time-constant requirements. Such requirements may 
be suitable in a dwelling, where the indoor climate should be comfort-
able at any time. For buildings such as workplaces or schools, when 
occupancy is limited to work hours, time-dependent requirements are 
conceivable. To exemplify such a case, we consider a workplace build-
ing where the indoor climate must be comfortable only on workdays 
from 8 a.m. to 5 p.m., i.e., we can have a nighttime setback to reduce 
energy consumption. When comparing optimal plans for this case in 
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Fig. 1. Illustration of the tradeoff between consumption and peak demand with three different control plans for a dwelling. From the top, the first panel shows 
the heating power, the second panel shows the simulated indoor temperatures given the control plans, and the third panel shows the outdoor temperature. The 
rightmost panel shows the peak demand, the maximum heating power, against the consumption averaged over the period. (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

Fig. 2. Comparison of three simulated control plans for a workplace with varying consumption and peak demand. Time intervals marked with gray denote the
inactive hours when the comfort requirement is not applicable. For more details, see the caption of Fig. 1.

Fig. 2, concerning the same tradeoff as in Fig. 1, we see that the work-
place’s plans are considerably different from the dwelling’s.

One general remark from the two examples visualized in Figs. 1
and 2 is that the varying requirements cause the peak demand events 
of each building separately to not occur at the same time. Hence, the 
overall peak demand of both buildings does not equal the sum of the 
buildings’ peak demand separately. With this in mind, we consider a 
slightly different example, visualized in Fig. 3, where a dwelling and 
a workplace are connected to the same district heating network. We 
consider two different control plans where the consumption summed 
over the two buildings is the same for both control plans. The peak 
demand for control plan 2 is higher than for control plan 1 for each 
building separately, but considering the total load of both buildings, 
control plan 2 is lower than control plan 1.

As illustrated in this example, the control plan with the least peak 
demand of each building separately does not necessarily correspond to 
the one with the least total peak demand. Hence, control of all build-
ings must be included in one common computation to optimize the total 

peak load for the entire system. With the present-day price models, a 
housing company owning both the dwelling and the workplace would 
still benefit from selecting control plan 1 over 2 in Fig. 3 where peak 
demand is charged by each district heating connection individually. In 
other words, optimal scheduling will not be applied even when it is pos-
sible, because there is no financial upside for the consumer. By instead 
charging all connections that the consumer controls together, we see 
from the example that optimal scheduling may be financially advanta-
geous, which could contribute to reduced peak loads.

4. Methods

To investigate the influence of different price structures concerning 
the total heat load, we simulate EMPC heat demand control by using 
gray-box modeling of a template SH system located in Örebro, Sweden. 
The template SH system consists of 20 multi-family dwellings, with a 
total of almost 300 apartments, in Örebro, Sweden, which are all con-
nected to a substation where an EMPC algorithm controls the SH heat 



Energy & Buildings 309 (2024) 114051

5

H. Håkansson, M. Önnheim, E. Gustavsson et al.

Fig. 3. Example of two sets of control plans for a dwelling and a workplace with equal consumption but different peak demand. The two upper plots show the 
heating power for each building of both control plans. The third plot shows the total load from both buildings, which is equal to the sum of the two upper plots at 
each time step. Dashed horizontal lines correspond to the maximum power, the peak demand, in each plot.

demand. More details about the template SH system are given in Ap-
pendix A.

The simulations are based on a population of two buildings, a 
dwelling and a workplace, that have identical dynamics but different 
occupancy scheduling. The dwelling must maintain a comfortable in-
door climate all of the time, while the workplace indoor climate needs 
only to be comfortable during work hours. With variations of the price 
compositions and the corresponding sizes of the two types of build-
ings, which give different financial incentives, the heat demand control 
is simulated using the outdoor temperature for 14 weeks during win-
ter 2020/2021. We do this in two different settings: separable EMPC, 
in which the cost corresponds to the existing price mechanisms where 
the peak demand is calculated building-wise, and cooperative EMPC in 
which the peak demand is instead calculated group-wise.

In Section 4.1, we present our gray-box approach for modeling the 
heat demand of the template system. In Section 4.2, the describe the 
implementation of the heat demand EMPC. In Section 4.3, we give more 
details on how the simulation was implemented.

4.1. Simulated indoor temperature dynamics

For simulating the heat dynamics of buildings, we use a linear gray-
box model that outputs the average indoor temperature given inputs of 
outdoor temperature and heating power. The model can be described 
as a linear autoregressive model with exogenous inputs (ARX), whose 
parameters are recursively estimated. This model structure and identifi-
cation approach corresponds to the predictive model in the EMPC that 
is employed in the template SH system. The same estimated dynam-
ics are used for the simulation of both the dwelling and the workplace, 
although some modifications, which are presented in Appendix B, are 
implemented in the latter.

The basics of the gray-box model are given by a discrete-time linear 
dynamical system, which can be interpreted as the discrete-time coun-
terpart of an energy balance equation with linear loss and production 
terms (i.e., the rate of change in temperature is proportional to the net 
heat flux into the system). Hence, in discrete time the temperature dif-
ference between two consecutive points in time can be modeled as a 
linear combination of the difference between indoor and outdoor tem-
perature and the heating power. To allow for a more flexible model, we 
also let the linear combination include time-lagged heating power and 
a discrete-time signal with a period of 24 hours. This linear combina-

tion of terms is denoted 𝑓 below and constitutes the right-hand side of 
the following temperature difference equation
𝑥𝑡 − 𝑥𝑡−1

Δ𝑡
= 𝑓 (𝑦𝑡−1, 𝑥𝑡−1, 𝑢𝑡−1∶𝑡−1−𝐻 ;𝜃, 𝑐0∶23, 𝜈0∶𝐻 ) (1a)

=

(
𝜃 (𝑦𝑡−1 − 𝑥𝑡−1) + 𝑐mod(𝑡,24) +

𝐻∑
𝑛=1

𝜈𝑛 𝑢𝑡−𝑛

)
, (1b)

where 𝜃 is a coefficient for the heat transfer between the interior and 
the exterior of the building per hour, 𝑦𝑡 ∈𝐑 is the outdoor temperature 
in ◦C, 𝑥𝑡 ∈ 𝐑 is the indoor temperature in ◦C, 𝑐1∶24 ∈ 𝐑24 is a vector 
of hour-wise constants in ◦C/h and mod denotes the modulo operator 
(i.e., each hour of the day has a different constant), 𝜈1∶𝐻 ∈ 𝐑𝐻 are 
coefficients describing the heat transfer from the heating system into the 
building including inertia of the past 𝐻 hours in ◦C/Wh, and 𝒖 ∈ℝ𝐻 is 
the heat demand of the previous 𝐻 hours in W. In the simulations, we 
used 𝐻 = 6.

Although linear models with a similar structure as Eq. (1b) have 
been used in other works, see for example [40], the real dynamics may 
be non-linear [33,41]. Nevertheless, the temperature dynamics may be 
accurately described by a linear model in the short term for the tem-
plate SH system. As an identification procedure we use a Kalman filter 
approach to estimate model parameters recursively [42]. All the time 
steps from the first hour of the first simulation week up to the last hour 
of the simulation week are used when computing the estimates for that 
particular week. More details about the identification procedure and 
the obtained coefficient estimates are given in Appendix B. The error 
of an open-loop simulation of the estimated dynamics for a week-long 
horizon, which is visualized in Fig. 4, is typically limited to ±0.4 ◦C. 
In Fig. 4, we also see that the median simulation error over different 
weeks stays close to zero over the full week-long horizon.

4.2. Heat demand EMPC

From the numerical examples in Section 3, we have seen that control 
plans can be characterized by a tradeoff between minimizing the en-
ergy consumption and minimizing the peak demand and that the peak 
load can be lowered by aggregating multiple buildings into one single 
optimization problem. In this section, we present two different EMPC 
formulations, called separable and cooperative, intended for modeling 
heat demand control of building populations. These EMPC formulations 
can be applied to different populations and different price tariffs to form 
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Fig. 4. Distribution of error from multiple week-long open-loop simulations, 
using the estimated dynamic models. The error distribution, over the simulation 
weeks, at a given time since the start of each week is visualized by the range 
between minimum and maximum, the range between the first quartile (𝑄1) and 
the third quartile (𝑄3), and the median.

the basis of the simulated heat demand control presented in the next 
section.

Both the separable EMPC and the cooperative EMPC are based on 
multi-objective optimization of energy consumption and peak demand, 
but they differ in the way the peak demand is calculated. In the separa-
ble EMPC, the peak demand is calculated as the maximum heat demand 
of the optimization horizon for a single building, while in the cooper-
ative EMPC, we assume multiple buildings are controlled together and 
the peak demand is calculated as the maximum heat demand summed 
over all buildings. The separable EMPC corresponds to the setup of the 
EMPC in the template heating system, where the cost is optimized sep-
arately per district heating connection, i.e., per substation.

In a population  of buildings, each building 𝑏 ∈  may have dif-
ferent requirements and dynamics. The heat demand is set in W as the 
control signal, denoted as 𝑢𝑏

𝑡
for time step 𝑡 and building 𝑏. This control 

signal is updated every Δ𝑡 hour. In the separable setting, a sequence of 
control signals (a control plan) 𝒖𝑏 ∈𝐑𝑇 , for time horizon 𝑇 , and build-
ing 𝑏 ∈  is retrieved by solving

𝑧𝑏 =minimize
𝒖
𝑏

𝜆𝐶𝑏 + (1 − 𝜆)𝐷𝑏 (2a)

subject to

𝑢𝑏
𝑡
≥ 0 𝑡 = 1,… , 𝑇 (2b)|||𝑢𝑏𝑡−2 − 2𝑢𝑏

𝑡−1 + 𝑢𝑏
𝑡

|||≤𝐾Δ𝑡2 𝑡 = 3… , 𝑇 (2c)

𝐿𝑏
𝑡
≤ 𝑥𝑏

𝑡
≤𝑈𝑏

𝑡
𝑡 = 1,… , 𝑇 (2d)

𝑥𝑏
𝑡
− 𝑥𝑏

𝑡−1= Δ𝑡𝑓 𝑏(𝑦𝑡−1, 𝑥𝑏𝑡−1, 𝑢
𝑏
𝑡−1∶𝑡−1−𝐻 ) 𝑡 = 2,… , 𝑇 (2e)

1
𝑇 −𝐻

𝑇−𝐻∑
𝑡=1

(𝑢𝑏
𝑡
+𝑤𝑏

𝑡
)Δ𝑡= 𝐶𝑏 (2f)

max
𝑡=1,…,𝑇

𝑢𝑏
𝑡
+𝑤𝑏

𝑡
=𝐷𝑏 (2g)

where 𝐶𝑏 is the averaged consumption in W, 𝐷𝑏 is the peak demand 
in W, 0 ≤ 𝜆 ≤ 1 is a weighting of the cost per W between consumption 
and peak demand, 𝐾 is a smoothness constant in W/h2, 𝐿𝑏

𝑡
is the lower 

indoor temperature limit in ◦C, 𝑥𝑏
𝑡
is the indoor temperature in ◦C, 𝑈𝑏

𝑡

is the upper indoor temperature limit in ◦C, 𝑓𝑏 is the dynamic model of 
the building for simulating the indoor temperature change rate in ◦C/h, 
𝐻 is the number of time lags of the heating power used in Eq. (1b), 
and 𝑤𝑏

𝑡
is the DHW usage in W. The cost function in Eq. (2a) involves 

a weighted summation of the averaged consumption and peak demand, 
as defined in Eqs. (2f) and (2g), respectively. Note that the objective 
value 𝑧𝑏 needs to be scaled to obtain a cost corresponding to the prices 

discussed in Section 2.3. Eqs. (2b) and (2c) ensure that the heating 
power is non-negative and smooth over time. The comfort constraint 
Eq. (2d) bounds the indoor temperature 𝑥𝑏

𝑡
within the lower and upper 

limits, as specified for the particular building at each time step. Eq. (2e)
incorporates the simulation of the indoor temperature from the control 
plan 𝒖𝑏 via 𝑓𝑏.

To obtain a variance for different outcomes of control plans we solve 
Eq. (2) for multiple consecutive week-long plans, rather than bunching 
the whole heating season into one single control plan. However, the 
terminal indoor temperature and the last 𝐻 input signals may be un-
favorable for the control plan for the consecutive week. To mitigate 
this side effect, we exclude the last 𝐻 time steps in the consumption 
calculation in Eq. (2f). Thus, given a preceding control plan ending at 
𝑡 = 𝑇 −𝐻 −1, the first 𝐻 hours of the consecutive control plan starting 
at 𝑡 = 𝑇 −𝐻 can provide a comfortable climate as in Eq. (2d) without 
violating the smoothness assumption in Eq. (2c) and to a peak demand 
𝐷𝑏 that is at most the peak demand of the preceding control plan.

In the separable setting, we use the same kind of program Eq. (2)
for each building, but 𝐿𝑏

𝑡
, 𝑈𝑏

𝑡
, and 𝑓𝑏 vary for different buildings. The 

control of all buildings in the population is retrieved by

𝑧separable = minimize
𝒖
𝑏,∀𝑏 ∈ 

∑
𝑏∈

𝑧𝑏

=
∑
𝑏∈

minimize
𝒖
𝑏

𝑧𝑏.
(3)

In the cooperative setting, where we assume that the price is cal-
culated for all buildings of the population jointly, the population peak 
demand 𝐷 is used instead of the building-wise computed peak demand 
𝐷𝑏. The cooperative EMPC problem is formulated to

𝑧cooperative = minimize
𝒖
𝑏,∀𝑏 ∈ 

𝜆
∑
𝑏∈

𝐶𝑏 + (1 − 𝜆)𝐷 (4a)

subject to

Eqs. (2b) to (2f) ∀𝑏 ∈  (4b)

max
𝑡=1,…,𝑇

(∑
𝑏∈𝑃

𝑢𝑏
𝑡
+𝑤𝑏

𝑡

)
=𝐷. (4c)

4.3. Heat demand simulation

To simulate heat demand control, we use the gray-box model pre-
sented in Section 4.1, and the two EMPC formulations introduced in 
Section 4.2 with Δ𝑡 =1 hour. In the simulations, there are two types of 
buildings: a dwelling and a workplace. Both share most of the param-
eters of their corresponding gray-box models, but they differ mainly 
concerning occupancy scheduling. In the dwelling, the comfort require-
ments in Eq. (2d) are set to give a comfortable climate all the time, i.e., 
𝐿𝑏
𝑡
= 21.9 ◦C and 𝑈𝑏

𝑡
= 23 ◦C for all 𝑡 = 1, … , 𝑇 . On the contrary, for 

the workplace, these limits are only applied during normal work hours 
Monday to Friday from 8 a.m. to 5 p.m., and outside these hours the 
indoor climate is unconstrained.

We simulate heat demand control for different populations of two 
buildings, one of each type, with varying relative sizes by introducing 
a population parameter 𝛾 ∈ [0, 1]. This parameter is used in Eqs. (2f),
(2g) and (4c) for scaling the heating power at each time step accord-
ing to the building size when calculating the consumption and peak 
demand. For example, at time 𝑡 the heating power of the workplace is 
calculated by 𝛾

(
𝑢
workplace
𝑡

+𝑤
workplace
𝑡

)
and the heating power of the 

dwelling is calculated by (1 − 𝛾) 
(
𝑢
dwelling
𝑡

+𝑤
dwelling
𝑡

)
. We simulate 20 

different populations, represented by 20 evenly spaced values, where 
the workplace heating power is multiplied by 𝛾 = 0, 0.05, …, 0.95, 1, 
and the dwelling heating power is multiplied with 1 − 𝛾 = 1, 0.95, …, 
0.05, 0.

For modeling the DHW usage of the dwelling, we estimate a daily 
usage profile based on data from the template SH system. This estima-
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Fig. 5. Consumption and peak demand over varying populations of separable EMPC with either least peak demand (𝜆 ≈ 0 in Eq. (3)) in the left column plots, or the 
least consumption (𝜆 = 1 in Eq. (3)) in right column plots. Each plot shows, for a population with a workplace size given by the horizontal axis, how the separable 
EMPC’s consumption (upper row) or peak demand (lower row), relative to the baseline performance for the corresponding simulation week, is distributed over the 
14 different simulation weeks. This distribution is visualized by the range between minimum and maximum, the range between the first quartile (𝑄1) and the third 
quartile (𝑄3), and the median.

tion procedure is further explained in Appendix A, and the DHW usage 
estimates correspond to the blue line in Fig. A.12. Thus, the simulated 
dwelling DHW varies throughout the day but is the same for a given 
time each day. For the workplace, we assume very low usage all the 
time, but there may still be excess heat due to DHW circulation. We 
therefore use the minimum average DHW usage of the dwelling, occur-
ring at 2 a.m. of about 80 kW, for the workplace all of the time.

The peak demand component in the price model is based on a 
week-long period. To simulate the effect of varying price models, con-
trol plans for 100 values of 𝜆 ∈ [0.001, 1] are computed. With 𝜆 = 0, 
meaning only peak demand is of interest in the optimization, the heat 
demand can be set as large as the peak demand all the time, without 
affecting the objective. However, by setting 𝜆 to a value only slightly 
larger than 0, the peak demand hardly changes but the consumption 
is lowered substantially. Hence, 𝜆 = 0 should not be of any practical 
interest, and therefore it is not included in the simulations.

To simulate control plans with EMPC we use Eqs. (3) and (4), with 
the heating power scaled according to the sizes as given by 𝛾 . Both 
formulations are simulated for 14 different weeks, spanning from De-
cember 2020 to March 2021. In both settings, the optimization prob-
lems are linear, meaning that a linear programming solver can be used. 
Each simulated control plan spans a single week-long simulation pe-
riod, with the different gray-box parameter estimates, as explained in 
Section 4.1, for that particular week. In contrast to the EMPC running in 
the template SH system, where the employed control plan is retrieved 
by an hourly re-computation, we only use the control plan computed at 
the start of the simulation period. The smoothness constant in Eq. (2c)
is set to 𝐾 = 0.4. For the dwelling, the indoor temperature limits in 
Eq. (2d) are set to 𝐿 = 21.9 ◦C and 𝑈 = 23 ◦C all the time. For the work-
place, the limits on 8 a.m. to 5 p.m. Monday to Friday are 𝐿 = 21.9 ◦C 
and 𝑈 = 23 ◦C, and outside those hours they are set to 𝐿 = −∞ and 
𝑈 =∞.

To summarize, we have 2 types of EMPCs, 20 populations, 14 sim-
ulation weeks, and 100 different price models. Therefore, we have in 
total 2 ⋅ 20 ⋅ 14 ⋅ 100 = 56000 linear programs, for which we use GLPK to 
solve for obtaining all control plans.

5. Results

In this section, we present the simulation results, focusing on the to-
tal heat demand of the simulated population. As a baseline, we consider 
a traditional control with weather compensation and TRVs without 
any nighttime setbacks in the workplace. Assuming all components are 
functioning properly, the baseline should still be energy-efficient and 
maintain a comfortable climate all of the time. In terms of our simu-
lation, this translates to the population consisting of only a dwelling 
(𝛾 = 1) and a price composition only charging consumption (𝜆 = 1). 
However, since the relative sizes affect the accumulated DHW usage 
profile, and thereby the total heat demand, the baseline heat demand is 
different for the different populations.

In Fig. 5, we see that a separable EMPC can achieve a substantial 
reduction in peak demand up to 10% - 20% under the price composition 
with 𝜆 ≈ 0 or up to a 4% reduction in consumption under 𝜆 = 1. There 
may however be downsides with both of these price compositions, as 
most visible with 𝜆 = 1 where the peak demand is about 100% of the 
baseline with the dwelling-only population and 230% of the baseline 
with the workplace-only population. With 𝜆 ≈ 0, the consumption is 
comparable and often larger than the baseline, despite having a large 
workplace that allows for night-time setbacks and consumption savings. 
This can also be viewed the other way around: with approximately the 
same consumption as the baseline, a separable EMPC can reduce the 
peak demand substantially under 𝜆 ≈ 0 for all populations.

Considering the consumption and the peak demand for the separa-
ble EMPC, all price compositions for a single simulation week, i.e., the 
Pareto front as visualized in Fig. 6, there is a larger sensitivity with re-
spect to consumption and peak demand as the workplace size increases. 
Comparing the cooperative EMPC to the separable EMPC, we see in 
Fig. 6 that the cooperative EMPC can produce lower peak demand given 
a consumption and vice versa. This however only applies to the popu-
lations not fully dominated by one of the building types, i.e., 𝛾 ≠ 0 and 
𝛾 ≠ 1. For the cases with 𝛾 = 0 and 𝛾 = 1, the cooperative EMPC and 
separable EMPC boil down to the same problem since the peak demand 
component is calculated for the only building of the population.
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Fig. 6. Consumption and peak demand for all price compositions of four different populations with separable EMPC and cooperative EMPC for one week. The scales 
of the axes are relative to the baseline consumption on the horizontal and the peak demand on the vertical axis, respectively. The baseline solutions, i.e., 100%, are 
marked by the dot and dashed lines.

Fig. 7. Consumption and peak demand for separable EMPC compared with base-
line for all populations and price compositions. In both plots, the population is 
given as the workplace size 𝛾 on the horizontal axis, and the price composition 
of the separable EMPC, indicated by 𝜆 in Eq. (3), is given by the vertical axis. 
The color is given by the median consumption or the peak demand, relative to 
the baseline, over the 14 simulation weeks. The black and white lines show the 
contour levels of consumption and peak demand, respectively, as indicated by 
the color bars.

The overall trend of the median simulation week for all populations 
and price composition, which is depicted in Fig. 7, is consistently an 
interpolation between the least consumption EMPC and the least peak 
demand EMPC, as visualized in Fig. 5. Similarly to Fig. 6, the reduction 
with cooperative EMPC visualized in Fig. 8 is most apparent among the 
inhomogeneous populations where the workplace size is 0.2-0.5. The 
reduction in peak demand is larger than for consumption, up to 7% of 
the baseline peak demand and up to 0.5% of the baseline consumption. 
This gain does however also depend on the price composition of the 
separable EMPC. With a consumption component that is large but not 
exclusively dominating the price composition, e.g., 𝜆 ≈ 0.8, the peak 
demand is reduced more compared to price compositions with both a 
smaller and a larger 𝜆. For the consumption reduction, we have the 
inverse trend that reductions are larger when the peak demand compo-
nent is larger.

To illustrate the difference between a separable and cooperative 
EMPC, we consider the control plans produced in one week in Jan-
uary 2021 and a population with a workplace size of 0.32, as shown 
in Fig. 9. In both of these plans, the peak demand is minimized while 
constraining the consumption to 99.5% of the corresponding baseline 
consumption of this week, meaning they correspond to solutions inter-
secting a vertical line at 99.5% of the upper right plot in Fig. 6. Overall, 
the complexity of optimal planning makes it hard to explain the rea-

Fig. 8. Reduction in consumption and peak demand with cooperative EMPC 
compared to separable EMPC for the different populations and price composi-
tions. The black and white lines correspond to the contour levels of Fig. 7.

son behind every single action of the controllers by visual inspection. 
However, one noticeable difference is that the cooperative EMPC uti-
lizes more overheating in the dwelling and utilizes a faster re-heating of 
the workplace after the weekend. On the other hand, the peak demand 
hours for the separable EMPC that are avoided with the cooperative 
EMPC are more likely to be connected to the cold outdoor temperature 
during the night between Thursday and Friday.

6. Discussion

With these simulations, we have studied the impact of the financial 
incentives given by the price composition on EMPC-controlled build-
ing populations. While the studied populations only consist of two 
buildings, the results can also be interpreted through populations with 
multiple dwellings and workplaces where 𝛾 denotes the relative size of 
all workplaces with respect to the total size of the building population. 
Due to the linearity of the problem, and by assuming the same dynamic 
model for all buildings of the same type, Eqs. (3) and (4) still gives the 
optimal heat demand control for each type of building. To account for 
the different sizes of buildings of the same type, the control plan may 
then be scaled by the corresponding size.

6.1. Modeling limitations

In many aspects, the modeling choices of this work are characterized 
by simplifications which may reduce the accuracy, but also enable more 
in-depth analysis and eliminate potential side-effects. The most obvious 



Energy & Buildings 309 (2024) 114051

9

H. Håkansson, M. Önnheim, E. Gustavsson et al.

Fig. 9. Comparison of plans from separable EMPC and cooperative EMPC for a week in January 2021 for a population with 𝛾 = 0.32. The upper plot shows the 
outdoor temperature, the middle plot shows the simulated indoor temperature and the lower plot shows the heating power fed to each group of buildings at a given 
time with the different controllers. Gray-colored time slots mark the inactive hours, i.e., when the comfort requirement is not applied.

example of such a simplification is to not use a sophisticated model of 
the template SH system, but only a gray-box model. Realistically, fore-
casting errors may affect the control and re-plannings of the EMPC, but 
these are hence omitted in our approach. Still, the gray-box model pre-
dicts the dynamics of the average indoor temperature accurately most 
of the time, with an error of ±0.2 ◦C in 50% of the simulation weeks 
as seen in Fig. 4. It should be reemphasized that our analysis focuses 
on thermal properties on an aggregated level of multiple buildings, and 
more comprehensive characteristics such as room-level climate are left 
out in the modeling. While these modeling simplifications facilitate our 
exhaustive investigation of different populations and price composi-
tions, a natural extension from this work would be to consider more 
fine-grained models. That could be detailed and accurate white-box 
models, but also more complex, potentially non-linear, gray-box models 
that address the varying behavior of different thermal zones.

Another simplification is the DHW usage profiles, which are as-
sumed to be the same every week, although there is a certain variance. 
Also, the DHW usage of the workplace is based on assumptions, rather 
than modeling of a real counterpart. Still, the relative power between 
SH and DHW should be representative of a real scenario, and despite the 
presence of the non-avoidable DHW heat demand, the SH load shifting 
is applicable to affect the total heat demand.

In the EMPC formulations in Eq. (2), there is no upper limit of heat-
ing power, only a lower bound. In practice, such an upper bound may 
be given by the installed capacity and the primary supply tempera-
ture. Still, many SH systems are oversized since they typically operate 
well below their maximum installed capacity. This affects the results 
through control plans with an enormously large peak demand, for ex-
ample in Fig. 5 where the peak demand is 230% of the baseline for the 
workplace-only population. Considering an SH system in a workplace 
where the baseline control is replaced by EMPC, the installed capacity 
will in most cases constrain the realizable peak demand. Nevertheless, 
our simulation still shows what is optimal for the consumer given these 
incentives and an infinite capacity, and the high peak demand can be 
avoided by another price composition.

6.2. Implications for district heating networks

To this date, load shifting has rarely been employed in the tem-
plate SH system since the financial incentives given by the heat supplier 
are not sufficient. Our simulations show that substantial load shifting 

may be applicable under a sufficiently large peak demand component, 
even with the dwelling-only population. While this work has focused 
on such an incentive, how the heat supplier may design the actual price 
mechanism is of course a broader question. In the first place, it may be 
problematic for the supplier to use a peak demand component, that is 
implicitly temperature-dependent, for covering the peak capacity costs 
since much of those costs are present every year, but the income will be 
less in a warm winter than in a cold winter. Also, during a mild week, 
a load-shifting strategy may just give unnecessary consumption if the 
peak capacity is not needed even without load shifting. One solution 
could be a slightly different price mechanism used by some Swedish 
district heating companies called “power subscription”, where the con-
sumer selects a maximum capacity in W that the heating power cannot 
exceed at all during the heating season.

Our simulation results may suggest that both separable and cooper-
ative EMPC are useful for reducing the peak demand by utilizing load 
shifting. We should however recall that this is compared to a baseline 
where the consumption is already minimal for the case of a dwelling, 
but EMPC has been employed by many housing companies primarily as 
an energy-saving measure. For the case of the template SH system, the 
energy savings by switching from weather compensation to EMPC were 
estimated to be 15%.

Encouraging load shifting using the building inertia cannot be 
achieved by having a price model with only a consumption component. 
But when combined with another load-shifting incentive mechanism, 
e.g., a power subscription or a peak demand component, the multi-
objective dilemma between consumption and peak demand arises. Even 
with our simulations, where a plethora of crude simplifications have 
been made, the results are very sensitive to the price composition. This 
observation is particularly relevant for populations where nighttime set-
backs are common, corresponding to a large 𝛾 in our simulations. The 
increase in consumption that a large peak demand component brings 
compared to the baseline is however much smaller than many of the 
reported savings by employing EMPC in the first place. The worst case 
on the other end, a very small peak demand component, appears more 
problematic with a substantially increased peak demand. Thus, from 
this perspective of the financial incentive, a low peak demand tariff is 
more questionable than a high.

Another new aspect for the heat supplier that comes with penaliz-
ing high peak demand is that prediction of the heat load may be more 
challenging. With the traditional control methods, the heat load may 
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accurately be described by the current outdoor temperature and a daily 
pattern of DHW use. By introducing demand-side load shifting and occu-
pancy schedules, forecasting the heat load by using the same variables 
may no longer be sufficient for production planning. How this should 
be handled is however a broad question that is left for future work.

6.3. Benefits of cooperative control

Based on our simulations, the cooperative EMPC is advantageous 
in populations where a fraction of the buildings have varying occu-
pancy. When comparing the results in Fig. 8 with the statistics of the 
Swedish district heating systems presented in Section 1, where buildings 
with a varying occupancy may account for 40% of the buildings, there 
may be potential for applying cooperative EMPC control. However, with 
the current price mechanisms, there is no reason for consumers to em-
ploy such a strategy. By charging all substations owned by the same 
housing company as a group, instead of each district heating connec-
tion separately, the housing company could potentially benefit from 
cooperative control of their buildings. Still, there are typically many 
different housing companies in a single district heating system, and it is 
not obvious that they have access to a sufficiently heterogeneous set of 
buildings to make any significant gains from cooperative control. There-
fore, this change in billing strategy may be weakly reflected by our 
simulations where the cooperative EMPC always has access to all build-
ings connected to the system. In summary, cooperative control may be 
beneficial, but how it should be implemented to encourage consumers 
to employ optimal schemes with respect to the full system is left for 
future work.

7. Conclusions

We have investigated the financial incentives that affect the heat 
load when EMPC is used for SH systems connected to a district heating 
network. Our simulations indicate that tweaks to the established price 
mechanisms used by companies today can be used as a tool for moti-
vating load shifting using the pre-existing building thermal inertia. The 
crucial element for achieving this is to have a sufficiently large tariff 
for penalizing a high peak demand, which will increase consumption 
slightly as a side effect. By charging the peak demand for multiple SH 
systems together, it is possible and financially favorable to reduce the 
overall peak demand further via cooperative control of the multiple SH 
systems.

We obtain these results by simulating the heat demand of different 
populations of two buildings, one dwelling and one workplace, where 
a demand-side EMPC is employed in each of them. The dwelling must 
maintain a comfortable climate all of the time, while the workplace 
must only do so 8 a.m. to 5 p.m. during the workdays. By varying the 
relative size of the dwelling and the workplace, we obtain different 
populations. We also consider different price compositions consisting of 
a consumption component and a peak demand component, where the 
relative tariffs between the two are varied. We also implement two dif-
ferent calculation methods for the peak demand component: one as the 
weekly maximum per building, where the separable EMPC formulation 
is used, or the weekly accumulated maximum, where the cooperative 
formulation is used.

A peak demand component that is large relative to the consump-
tion component incentivizes indirect demand side management via load 
shifting using the building inertia. On the other way around, a large con-
sumption component motivates full utilization of the allowed nighttime 
setback in the workplace, which also comes with a high peak demand. 
In our simulations, a price composition that primarily penalizes high 
peak demand gives a 10%-20% reduction in peak demand relative to a 
baseline, to only a slightly larger consumption than our baseline. With a 
price composition that only penalizes high consumption, corresponding 
to what is implemented among many Swedish district heating compa-

nies, the consumption is reduced at the cost of large peak demand, 
especially when the workplace is of substantial size.
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Appendix A. Template SH system

The template SH system used in this study is located in Örebro, 
Sweden, and was constructed in the early 1970s. It consists of multi-
ple buildings connected to the same district heating substation, which 
is schematically visualized in Fig. A.10. The substation consists of mul-
tiple heat exchangers so that heating power is supplied for both SH and 
circulation of DHW. In Fig. A.10 we also see the measurement points 
that allow sampling the total heating power, of both the SH and DHW 
demand, via the heat meter on the primary side, together with the SH 
supply temperature and SH return temperature.

Fig. A.10. Schematic of the template building heating system and the substa-
tion. The district heating supply is used for both DHW and SH on the secondary 
side, with two separate heat exchangers and valves controlling the primary 
flow. The supply temperature and the return temperature are measured on both 
the primary side and the SH on the secondary side. The total heating power, for 
both DHW and SH, is measured by a heat meter on the primary side, multiply-
ing the flow rate with the difference of primary supply and return temperature.
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Fig. A.11. Left plot: Scatter plot of sampled supply temperature on the x-axis 
and return temperature on the y-axis at the same time steps. Right plot: scatter 
plot (blue dots) of the difference between the supply temperature and the return 
temperature of the SH system on the x-axis and the heating power, measured 
on the primary side, on the y-axis. The red line is a linear regression line fitted 
to the data with least squares.

Fig. A.12. Upper plot: Scatter of samples during the heating season of estimated 
DHW usage calculated from the residual of the linear regression in the right-
hand side panel of Fig. A.11, with the corresponding hour of the day on the 
x-axis. Lower plot: Scatter of samples of the measured heat demand during 
summer, when SH is turned off, with the corresponding hour of the day on the 
x-axis. In both plots, the blue line shows the hour-wise mean of the estimated 
DHW usage of the upper plot, and the red line is the hour-wise mean of the 
summer heat demand in the lower plot.

In the SH system, there are no TRVs and the flow is close to constant. 
Thus, the variation of the SH supply temperature is the only active heat 
demand control mechanism. There is a significant spread in the indoor 
temperature among different apartments, typically with a standard de-
viation of about 0.4 ◦C, but the supply temperature can still be used to 
control the total heat demand, which can be seen in Fig. A.11. From 
the left-hand side plot in Fig. A.11, we see that the SH return tempera-
ture can accurately be modeled as a linear function from the SH supply 
temperature. In the right-hand side plot of the same figure, we see sim-
ilarly that the total heating power is well correlated with the difference 
between the SH supply temperature and the SH return temperature. 
However, there is a remarkable variance in the second regression, which 
can mainly be explained by the DHW usage. This explanation can be 
justified by inspecting Fig. A.12, where the daily patterns of the DHW 
usage as estimated by the residuals of the regression are compared to 
the total heat demand when the SH is turned off during the summer. 
In both of these cases, similar daily patterns arise, although with some 
variance from day to day.

Before the winter of 2019/2020, the supply temperature was con-
trolled using weather compensation. By utilizing temperature sensors 

Fig. A.13. Average indoor temperature of the template SH system before 
and after switching from weather compensation to EMPC, which occurred on 
12/24/2019.

inside the buildings, one in each apartment, and remote control of 
the supply temperature an EMPC algorithm was employed in Decem-
ber 2019. After the employment of the EMPC, which is visualized in 
Fig. A.13, the average indoor temperature could be reduced and kept 
on a steady level compared to the situation with weather compensa-
tion.

Appendix B. Simulation model

The recursive identification of parameters in Eq. (1b) uses a Kalman 
filter approach to obtain the parameter estimate Θ̂𝑡 = [𝜃, 𝑐𝑇0∶24, 𝜈

𝑇
0∶𝐻 ]𝑇

at time 𝑡 according to

Θ̂𝑡 = Θ̂𝑡−1 +𝐾𝑡𝜀𝑡,

where 𝐾𝑡 is the Kalman gain matrix and

𝜀𝑡 = 𝑥𝑡 − 𝑥𝑡−1 − 𝑓 (𝑦𝑡−1, 𝑥𝑡−1, 𝑢𝑡−1∶𝑡−1−𝐻 ;𝜃, 𝑐0∶24, 𝜈0∶𝐻 )Δ𝑡.

The Kalman gain is given by

𝐾𝑡

𝑃𝑡−1Θ̂𝑡

𝑅+ Θ̂𝑇
𝑡
𝑃𝑡−1Θ̂𝑡

, 𝑃𝑡 = 𝑃𝑡−1 −
𝑃𝑡−1Θ̂𝑡Θ̂𝑇

𝑡
𝑃𝑡−1

𝑅+ Θ̂𝑇
𝑡
𝑃𝑡−1Θ̂𝑡

+𝑄,

where 𝑄 = 10−13 ⋅ 𝕀, and 𝑅 = 10−3. Θ0 is obtained by ordinary least 
squares (OLS) estimate using data from one month before the first sim-
ulation week and 𝑃0 is the covariance matrix of that OLS estimate. This 
strategy is applied recursively for each time step, meaning that new pa-
rameter estimates are computed every time step. However, we use only 
14 different sets of parameter estimates: one corresponding to the last 
date or each simulation week.

In Fig. B.14, we see that the estimated heat transfer coefficients 𝜈̂
using this estimation method become negative for some of the lags and 
therefore fail to preserve a fully realistic physical interpretation per lag. 
However, the sum of all lag coefficients, corresponding to an integrated 
impulse response of the heating, is still positive. For the outdoor tem-
perature coefficient, the estimate remains positive for all weeks.

Comparing a dwelling and a workplace, we expect a difference in 
the daily seasonality, i.e., the hour-wise constants. Therefore, the work-
place model constants are modified to have one value for every hour 
during the work hours and another value outside these hours. These 
values are selected so that the mean and standard deviation of the con-
stants over the day are the same as for the dwelling constants. The other 
model parameters have the same value for both the workplace and the 
dwelling. The estimated hour-wise constants of the dwelling model and 
the modified constants of the workplace are shown in Fig. B.15.
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Fig. B.14. Heat transfer coefficients of the simulation model in Eq. (1b) per week for the 6 different lags. The integrated impulse response is given by summing the 
coefficients of all lags of the same week.

Fig. B.15. Hour-wise constants 𝑐 of the simulation model Eq. (1b) for the dwelling and the workplace for all simulation weeks.
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