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Glued lattices are better quantizers than K12
Erik Agrell, Fellow, IEEE, Daniel Pook-Kolb, and Bruce Allen, Member, IEEE

Abstract—40 years ago, Conway and Sloane proposed using the
highly symmetrical Coxeter–Todd lattice K12 for quantization,
and estimated its second moment. Since then, all published
lists identify K12 as the best 12-dimensional lattice quantizer.
Surprisingly, K12 is not optimal: we construct two new 12-
dimensional lattices with lower normalized second moments. The
new lattices are obtained by gluing together products of two 6-
dimensional lattices.

Index Terms—Coxeter–Todd lattice, glue vectors, gluing the-
ory, lattice theory, mean square error, moment of inertia, nor-
malized second moment, product lattice, quantization constant,
quantization error, vector quantization, Voronoi region.

I. INTRODUCTION

ONE of the classical problems in lattice theory is to find
the best lattice quantizer, i.e., the lattice with minimum

normalized second moment in a given dimension [1, Ch. 2].
This problem has applications in data compression [2], [3,
Chs. 1, 3–5], geometric shaping of modulation formats [4],
[3, Ch. 9], coding for noisy channels [1, p. 70], experimental
design [5], and data analysis [6].

The lattice quantizer problem was pioneered by Fejes Tóth,
who showed that the hexagonal lattice is optimal in two di-
mensions [7]. The corresponding optimum in three dimensions
is the body-centered cubic lattice, as proved by Barnes and
Sloane in 1983 [8]. In higher dimensions n, the optimal
lattices are not known. Tables of the best known lattices
were presented for n ≤ 5 in [9], n ≤ 10 in [10], [11],
n = 1, . . . , 8, 12, 16, 24 in [12], [1, pp. 12, 61], [3, p. 135],
9 ≤ n ≤ 12 in [13], n = 1, . . . , 10, 12, 16, 24 in [14], n ≤ 15
in [6], n ≤ 24 in [15], and n ≤ 48 in [16].

The above-mentioned tables devote more attention to some
dimensions than others. One such dimension is n = 12,
and the reason for the interest in this dimension is the
existence of the highly symmetrical Coxeter–Todd lattice K12,
which was discovered by Coxeter and Todd in 1953 [17]. Its
second moment was computed numerically in 1984 [12] and
exactly in 2009 [13]. It is listed as the best 12-dimensional
lattice quantizer in all tables we have seen. The lattice was
conjectured optimal for both quantization and packing in [1,
p. 13]. Its construction, symmetry group, and other properties
are described in [18], [1, pp. 127–129].
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In this paper, we prove that K12, contrary to the popular
belief, is not the optimal lattice quantizer in 12 dimensions. We
do this by designing two better lattices and computing their
second moments exactly. These new lattices are constructed
using gluing theory, which was introduced by Conway et
al. for self-dual block codes in [19] and for integral lattices
in [20]. Using this theory, self-dual integral lattices were
constructed as the union of a finite number of translates of
a given base lattice, which is typically a product lattice [21],
[1, Sec. 3 in Ch. 4]. Gluing or similar techniques have not,
as far as we know, been applied in the quest for good lattice
quantizers, which are not necessarily integer lattices. That is
the scope of the present paper.

II. LATTICE FUNDAMENTALS

A lattice L is an infinite, countable set of real vectors that
forms a finitely generated group under addition. For n ≤ m,
it can be defined by an n×m real generator matrix B with
linearly independent rows, such that

L = {uB : u ∈ Zn}, (1)

where u are n-dimensional row vectors of integers. The rows
of B are called basis vectors. The dimension of L is n, and
the lattice is embedded in the Euclidean space Rm. There exist
infinitely many generator matrices for the same lattice.

The n × n symmetric, positive definite Gram matrix A ≜
BBT gives the inner products of all basis vectors with each
other. There exist infinitely many Gram matrices for the same
lattice, but their determinants are equal, and this value is called
the lattice determinant [1, p. 4].

The lattice generated by B∗ ≜ A−1B, which is the
transpose of the pseudoinverse of B, is the dual lattice L∗.
The Gram matrix of this dual lattice is A−1. If m = n, then
A−1 = (BT)

−1
B−1 and B∗ = (BT)−1. If L = L∗, then the

lattice is said to be self-dual.
The Voronoi region of the lattice generated by B is

Ω ≜
{
zB : z ∈ Rn, min

u∈Zn
∥zB − uB∥2 = ∥zB∥2

}
. (2)

This is the set of all vectors (in the space spanned by the lattice
vectors) whose closest lattice vector is the all-zero vector
0. The Voronoi region of any lattice is a convex polytope,
which is symmetric under reflection through 0 and has volume
V =

√
detA. The facets of the Voronoi region lie in (n− 1)-

dimensional planes that are equidistant from 0 and another
lattice vector; these lattice vectors are called relevant vectors.
The vertices of the Voronoi region are called holes of the
lattice, and the vertices farthest away from 0 are called deep
holes.

For many purposes, it is desirable that the Voronoi region is
as spherical as possible according to some criteria. For lattice
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quantizers, we seek to minimize the second moment (moment
of inertia) of the Voronoi region. Using the customary normal-
ization, the relevant figure of merit is the normalized second
moment (NSM) or quantizer constant

G =
1

nV 1+2/n

∫
Ω

∥x∥2 dx. (3)

The normalization by V 1+2/n makes G invariant under rescal-
ing, and normalization by n ensures that a product lattice
(defined below) of identical lattices L has the same NSM as
L.

The (Cartesian) product of two lattices (or any other vector
sets) is

L1 × L2 ≜ {[x1 x2] : x1 ∈ L1,x2 ∈ L2}. (4)

The Voronoi region of a product lattice is the product of the
Voronoi regions of each of its lower-dimensional component
lattices. Hence, the set of holes of a product lattice is the
Cartesian product of the set of holes of each component lattice.
The relevant vectors of a product lattice are [x1 0] and [0x2],
where xi are the relevant vectors of Li. Thus, the number
of facets of the product lattice is the sum of the number
of facets of the component lattices. Product lattices are the
currently best known lattice quantizers in many dimensions
[9], [15], [16], but they are not optimal, because their NSM can
always be decreased by small perturbations of the generator
matrix [16, Th. 7]. This motivates a search for systematic ways
to improve product lattices. The approach we follow here is
provided by gluing theory.

III. GLUING THEORY

Gluing theory was developed in the context of the well-
studied integer lattices, i.e., lattices whose Gram matrix con-
tains only integers. An interesting feature is that an integer
lattice L is always a sublattice of its dual L∗. This means that
L∗ can be written as the union of L and a finite number of
its translates

L∗ =
⋃

g∈L∗/L

(L+ g). (5)

Here L∗/L denotes a (finite) set of coset representatives of L
in L∗ [1, p. 48].

These coset representatives are called glue vectors of L. The
number of glue vectors is detA, and by convention we use 0
as the coset representative for L itself, so 0 is always a glue
vector. Glue vectors of the root lattices An, Dn, and En are
listed in [20, Tab. I], [1, Ch. 4]. We say that a vector x ∈ L∗

is of type g if x ∈ L+ g.
If some glue vectors are omitted from the union in (5), then

a more general construction [22]

L̃ ≜
⋃
g∈Γ

(L+ g) (6)

is obtained, where {0} ⊆ Γ ⊆ L∗/L. We call this construction
“gluing.” The term was introduced in [19]–[21] for the special
case when L is a product code or product lattice; as in [22],
we use it more generally for any lattice constructed by (6).

In one extreme, (6) yields L and in the other extreme L∗.
Intermediate choices of Γ can yield interesting families of
lattices or nonlattice packings, such as the Coxeter lattices
Ar

n [23], [13, Sec. 5.1] and D+
n [1, p. 119]. The so-called

Construction A can be seen as a special case of (6) with
L =

√
2Zn and Γ being a rescaled binary block code [1,

pp. 137–141, 182–185].
L̃ is a lattice if and only if Γ is a group under addition

modulo L. If so, Γ is called the glue group of L̃, and a
generator matrix for L̃ can be obtained as follows. Starting
with a generator matrix for L, we append the elements of
Γ as |Γ| additional rows. Then we carry out linear row
transformations with integer coefficients to make |Γ| rows all-
zero, and remove those all-zero rows.

The Voronoi region of L̃ is contained in the Voronoi region
of L. Specifically, if some elements of Γ are located in
holes of L, then the corresponding vertices of the Voronoi
region are “cut away.” This intuitively explains why gluing can
potentially make Voronoi regions more spherical and create
better lattice quantizers.

We exploit this construction technique, selecting L as the
product L = L1×· · ·×Lk of known integer lattices Li. Then
L is also an integer lattice and its glue vectors are Cartesian
products of the glue vectors of L1, . . . , Lk. When written as
row vectors, this concatenates them, so the glue vectors of a
product lattice L are called glue words.

When L is a product lattice, the set of glue words in (5)
is the Cartesian product of the sets of glue vectors of the
component lattices, L∗/L = (L∗

1/L1)×· · ·× (L∗
k/Lk). There

are (detA1) · · · (detAk) such glue words, where Ai is a
Gram matrix of Li, and hence many options when constructing
new lattices via (6).

Conway and Sloane studied a large number of glued lattices
L̃ generated from various product lattices L by (6). Their
goal was to construct integer lattices with determinant one,
which are self-dual. They successfully enumerated the lattice
components and glue words of all such lattices in dimensions
up to 24 [20], [21]. In the next section, we use the same
technique to find better lattice quantizers.

More generally, the construction (6) is also valid when
Γ is not a subset of L∗/L. For example, the 9-dimensional
lattice quantizer with the smallest known NSM is L∪ (L+g)
(corresponding to Γ = {0, g}), where L = D8 × 2aZ, g is
a deep hole of L, and a is an algebraic scalar constant [6],
[11]. In this case, L is not an integer lattice and L∗/L does
not exist. While interesting, such generalizations of (6) are not
considered further in this paper.

IV. NEW LATTICES

A. Glued E6 × E6

The integer lattice E6 is often defined as a sublattice of the
Gosset lattice E8. This approach gives rise to the rectangular
generator matrix in [1, p. 126], where m = 8. We find it more
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TABLE I
LATTICES L̃ GENERATED BY GLUING L = E6 × E6 ACCORDING TO (6).

Glue words Γ Estimated NSM of L̃ Exact NSM Comment

{g00} 0.074336± 0.000010 GE6
≈ 0.074347 L̃ = E6 × E6

{g00, g01, g02} 0.075557± 0.000010 7711/102 060 ≈ 0.075554 L̃ = E6 × E∗
6

{g00, g10, g20} 0.075556± 0.000010 Same as the previous L̃ = E∗
6 × E6, equivalent to the previous

{g00, g11, g22} 0.070060± 0.000007 Given by (10) L̃ is a better quantizer than K12!
{g00, g12, g21} 0.070063± 0.000007 Same as the previous Equivalent to the previous
{g00, g01, g02, g10, g11, g12, g20, g21, g22} 0.074237± 0.000009 GE∗

6
≈ 0.074244 L̃ = E∗

6 × E∗
6

convenient to work with the square generator matrix

2 0 0 0 0 0
1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1
2

1
2

1
2

1
2

1
2

√
3
2

 , (7)

which is obtained by applying linear row operations to [11,
Eq. (38)] and negating the sign of one column.

Since detA = (detB)2 = 3, the lattice has three glue vec-
tors E∗

6/E6. These are given in the traditional 8-dimensional
representation in [1, p. 126]. The corresponding glue vectors
in our 6-dimensional representation are

g0 = [ 0 0 0 0 0 0 ],

g1 =
[
− 1

2 − 1
2 − 1

2 − 1
2 − 1

2

√
3
6

]
,

g2 =
[

1
2

1
2

1
2

1
2

1
2 −

√
3
6

]
.

(8)

The (Abelian) glue group is the cyclic group on 3 elements
Z3. It has g0 as the identity, and multiplication table g2

1 = g2,
g2
2 = g1, and g1g2 = g2g1 = g0, where the group operation

is addition modulo E6.
The Voronoi region of E6 has 72 facets and 54 vertices. All

vertices have the same norm and hence constitute deep holes
of the lattice. These holes all lie in E∗

6 : 27 are of type g1 and
27 are of type g2.

From the multiplication table, it follows immediately that
no proper subset Γ ⊂ E∗

6/E6 = {g0, g1, g2} except {g0} is a
group. Thus, for L = E6, the construction (6) yields no lattices
other than E6 and E∗

6 . The NSMs of E6 and E∗
6 are GE6 ≜

5/(56 · 31/6) ≈ 0.074347 [10] and GE∗
6
≜ 12 619/(68 040 ·

35/6) ≈ 0.074244 [24], respectively.
The product lattice E6 × E6 has nine glue words, formed

by all Cartesian products gij ≜ [gi gj ] for i, j = 0, 1, 2.
The Voronoi region of E6 × E6 has 2 · 72 = 144 facets and
542 = 2916 vertices. All these vertices are lattice vectors in
E∗

6 × E∗
6 and are of four different types, namely, the glue

words gij for i, j = 1, 2.
We consider all subsets of the nine glue words (E∗

6/E6)×
(E∗

6/E6) such that L̃ is a lattice, i.e., subsets Γ that are groups
under addition modulo E6×E6. From the group multiplication
table it is seen that there are six such subsets, which are listed
in Table I. Each of them generates a lattice L̃ via (6).

We estimate the NSMs G of the obtained lattices by
Monte Carlo integration using 107 independent samples in

the Voronoi region of each lattice. To find the lattice vector
closest to an arbitrary vector in R12, which is an essential
step in generating samples in the Voronoi regions, we use [25,
Algorithm 5]. The estimated NSMs are presented in the form
Ĝ ± 2σ̂, where Ĝ is an unbiased estimate of G computed as
in [12, Eq. (2)] and σ̂ is an estimate of the standard deviation
of Ĝ computed as in [26, Eq. (15)]. Because some of the
constructed lattices are equivalent to each other by rotation
and/or reflection, there are only four lattices in the table whose
geometric properties such as the NSM differ.

Four of the six groups Γ are direct products of groups of 6-
dimensional vectors, namely, {g0} and/or {g0, g1, g2}, so the
corresponding lattices are product lattices. The NSMs of E6×
E6 and E∗

6 ×E∗
6 are GE6

and GE∗
6

, which are defined above.
The NSM of E6 × E∗

6 and E∗
6 × E6 can be calculated from

[16, Prop. 3] as (31/6GE6
+3−1/6GE∗

6
)/2 = 7711/102 060 ≈

0.075554. These exact NSMs are also shown in Table I.
As discussed in Section II, product lattices cannot be

optimal quantizers, so it comes as no surprise that the only
nonproduct lattice in Table I is also the best quantizer. This
lattice is obtained by applying (6) to L = E6 ×E6 with Γ =
{g00, g11, g22} or equivalently {g00, g12, g21}. What is sur-
prising is that its estimated NSM Ĝ ≈ 0.070060 is below the
NSM of the Coxeter–Todd lattice K12, which was suggested
for quantization by Conway and Sloane in 1984 [12] and has
remained unsurpassed since then. The exact NSM of K12 was
computed in [13] and is 797 361 941/(6 567 561 000

√
3) ≈

0.070096.
To confirm the record, we investigated the new lattice

analytically. A generator matrix of an equivalent lattice is

2 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0
1
2

1
2

1
2

1
2

1
2

√
3
2 0 0 0 0 0 0

0 0 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 2√

3
− 1

2 − 1
2 − 1

2 − 1
2 − 1

2
1

2
√
3



, (9)

which was obtained as described after (6) followed by negation
of some columns for cosmetic reasons. Using the same method
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as in [26], which builds upon [27], the face hierarchy of
the Voronoi region was fully determined. It has in total
11 432 765 485 faces in dimensions 0 through 12, of which
1 is in dimension 12 (the Voronoi region itself), 1602 are
in dimension 11 (facets), and 65 665 350 are in dimension
0 (vertices). The faces lie in 702 equivalence classes under
the action of the lattice’s symmetry group, which has order
10 749 542 400. Using the methods in [26], [27], the exact
NSM of the new lattice is determined to be

G =
200 359 601 790 277

2 859 883 842 816 000
≈ 0.070 058 650, (10)

confirming the numerical estimate in Table I. Its covariance
matrix is proportional to the identity, which is a necessary
but not sufficient condition for global and local optimality
[16], [28]. The complete face catalog is available online [29,
Ancillary files].

In comparison with K12, which has a symmetry group of
order 78 382 080 [1, p. 129], the lattice (9) is much more
symmetric with a symmetry group whose order is about 137
times as large. Despite this, with 11 971 901 593 faces in 809
classes (determined with the methods in [26]), K12 has about
5% more faces than (9).

The Voronoi region inherits some properties from (unglued)
E6 × E6, having the same packing radius 1/

√
2 and kissing

number 144. It has however three times the packing density,
which is 0.02086. Its covering radius is 2/

√
3, which is a

factor
√
2 less than the covering radius of E6 × E6, and its

thickness is 7.502. The lattice is equivalent to its dual, but it
is not strictly self-dual, because the dual is a rotated version
of the lattice itself.

B. Glued D6 ×D6

A generator matrix for the integer lattice D6 is
2 0 0 0 0 0
1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1

 . (11)

Since detA = (detB)2 = 4, the lattice has four glue vectors
D∗

6/D6. These can be taken as [1, p. 117]

g0 = [ 0 0 0 0 0 0 ],
g1 =

[
1
2

1
2

1
2

1
2

1
2

1
2

]
,

g2 = [ 1 0 0 0 0 0 ],
g3 =

[
− 1

2
1
2

1
2

1
2

1
2

1
2

]
.

(12)

This glue group is the point group C2v, which has order four.
The group identity is g0, and the multiplication table reads
g2
1 = g2

2 = g2
3 = g0, g1g2 = g3, g1g3 = g2, and g2g3 = g1,

where the (Abelian) group operation is addition modulo D6.
The Voronoi region of D6 has 60 facets and 76 vertices,

which are elements of D∗
6 . The vertices consist of 64 deep

holes, which are of type g1 or g3, and 12 shallow holes of
type g2. Setting L = D6 in (6), the glued lattice L̃ is one of
D6, D+

6 , Z6, or D∗
6 , depending on the choice of Γ. In addition,

TABLE II
LATTICES L̃ GENERATED BY GLUING L = D6 ×D6 ACCORDING TO (6).

PRODUCT LATTICES AND MULTIPLE OCCURRENCES OF EQUIVALENT
LATTICES ARE EXCLUDED.

Glue words Γ Estimated NSM of L̃

{g00, g11} 0.071771± 0.000008

{g00, g12} 0.074092± 0.000010

{g00, g22} 0.077095± 0.000012

{g00, g01, g12, g13} 0.072099± 0.000008

{g00, g01, g22, g23} 0.075170± 0.000010

{g00, g02, g11, g13} 0.073558± 0.000009

{g00, g02, g21, g23} 0.075909± 0.000010

{g00, g11, g22, g33} 0.070705± 0.000008

{g00, g11, g23, g32} 0.070034± 0.000007

{g00, g01, g10, g11, g22, g23, g32, g33} 0.071753± 0.000008

{g00, g01, g12, g13, g20, g21, g32, g33} 0.072887± 0.000008

{g00, g02, g11, g13, g20, g22, g31, g33} 0.074801± 0.000009

(6) yields several nonlattice packings if Γ is not a group under
addition modulo D6.

The product lattice L = D6×D6 has 16 glue words, which
are all Cartesian products gij ≜ [gi gj ] for i, j = 0, 1, 2, 3. Its
Voronoi region has 2·60 = 120 facets and 762 = 5776 vertices.
All vertices are lattice vectors in D∗

6 × D∗
6 and are of nine

different types, namely, the glue words gij for i, j = 1, 2, 3.

We consider all subsets Γ of the glue words (D∗
6/D6) ×

(D∗
6/D6) such that L̃ in (6) is a lattice, i.e., subsets that are

groups under addition modulo L. There are 67 such subsets.
However, several of these subsets are equivalent to each other,
in the sense that a rotation and/or reflection operation in the
symmetry group of L transforms all elements of one subset
into the element of another subset. The relevant symmetry
operations are (i) interchanging gij with gji throughout Γ,
i.e. swapping the first set of 6 coordinates with the last 6; (ii)
replacing all occurrences of g1j with g3j and vice versa; and
(iii) replacing all occurrences of gi1 with gi3 and vice versa.
If only inequivalent subsets of glue words are considered, 22
subsets remain. We furthermore exclude the 10 subsets that are
direct products of 6-dimensional glue groups, which generate
product lattices. The remaining 12 glue groups Γ are listed
in Table II. The NSM of each corresponding lattice L̃ was
estimated as in Section IV-A.

Numerical studies indicated that one lattice stands out
among the dozen new lattices. When Γ = {g00, g11, g23, g32},
we estimate an NSM of Ĝ ≈ 0.070034, which is the smallest
value reported to date for 12-dimensional lattices. It is slightly
smaller than for the best E6×E6-based lattice in Section IV-A,
and therefore also better than K12.

With this as motivation, we again investigated the new
lattice analytically. A generator matrix of an equivalent lattice
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is 

2 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0
1
2

1
2

1
2

1
2

1
2

1
2 1 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 1 0
1 0 0 0 0 0 1

2
1
2

1
2

1
2

1
2

1
2



. (13)

Using the same method as before, it was found that the Voronoi
region has 1912 facets, 21 273 456 vertices, and 10 395 549 553
faces overall. The faces fall into 2 542 equivalence classes
under its symmetry group, which has order 1 061 683 200. The
face catalog is available online [29, Ancillary files]. The NSM
of the new lattice is

G =
6492 178 537 549

92 704 053 657 600
≈ 0.070 031 226 (14)

and the covariance matrix is proportional to the identity.
The packing radius and kissing number of the lattice (13)

are 1/
√
2 and 120, respectively, which are the same as for

D6 × D6. The packing density is 0.02086, four times larger
than for D6 × D6 and the same as for the lattice (9). The
covering radius is

√
3/2, which is a factor of

√
2 smaller

than for D6 × D6, and the thickness is 15.21. Like (9), the
lattice generated by (13) is equivalent to its own dual.

V. CONCLUSIONS

Contrary to the common belief, there exist lattices with
lower second moments than K12. One such lattice is a union
of three translated copies of E6 × E6 and another is a union
of four translated copies of D6 × D6. The latter sets a new
record for 12-dimensional lattice quantizers.

As a byproduct, an improved 13-dimensional lattice quan-
tizer is obtained. The previously best published lattice for
n = 13 is a product of K12 and a scaled integer lattice
aZ, with an NSM of 0.071035 [15, Tab. I]. Replacing K12

with the new best 12-dimensional lattice in a similar product
construction yields a slightly improved NSM of 0.070974
(which is however inferior to a yet unpublished laminated
lattice [27]).

Applying gluing theory to the design of lattice quantizers
clearly holds great promise, and can probably lead to better
quantizers in other dimensions as well. Even in 12 dimensions,
the fundamental question remains open: Can even better lattice
quantizers be found, by gluing theory or other methods?
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