
Thesis for The Degree of Doctor of Philosophy

Once More, With Combinators: Designing a Low-Power
Architecture for Functional Programming

Jeremy Matthew Gardiner Pope

Division of Computing Science
Department of Computer Science & Engineering

Chalmers University of Technology | University of Gothenburg
Göteborg, Sweden, 2024

Once More, With Combinators: Designing a Low-Power Architecture for
Functional Programming

Jeremy Matthew Gardiner Pope

Copyright ©2024 Jeremy Ma�hew Gardiner Pope
except where otherwise stated.
All rights reserved.

ISBN 978-91-8103-062-4
Doktorsavhandlingar vid Chalmers tekniska högskola, Ny serie nr 5520
ISSN 0346-718X

Department of Computer Science & Engineering
Division of Computing Science
Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden

�is thesis has been prepared using LATEX.
Printed by Chalmers Digitaltryck,
Gothenburg, Sweden 2024.

ii

iv

Abstract
�e Internet of �ings (IoT) consists of a growing number of networked appli-
ances, from co�ee machines to door locks. Each of them contains one—or more—
microprocessors responsible for their operation and communication. While some
appliances may have an abundance of resources, others need to operate under signi�-
cant energy and size constraints, encouraging the use of low-power microcontrollers.

Unfortunately, many of these microcontrollers are programmed in low-level
languages due to their constraints, resulting in security vulnerabilities. �ese are
worsened by the physical presence that IoT devices have: as appliances, they can
usually interact with the environment through sensors and actuators, making vul-
nerabilities particularly concerning from privacy and safety perspectives. Lazy, pure
functional programming languages are promising both in ease of development and
correctness, but have historically been di�cult to run without considerable resources.

�is thesis aims to bring these languages to IoT devices through the creation of a
low-power processor architecture, Cephalopode, that carries out graph reduction in
hardware. Synthesis and simulation of Cephalopode indicates that it signi�cantly
outperforms a combinator-based so�ware implementation on a RISC-V core, and
suggests that it would match (and sometimes exceed) the performance of GHC if the
la�er were able to emit code for RISC-V. It is in turn outperformed by native C code
with �xed-width integers, but nears the performance of C with an arbitrary-precision
library. While designing Cephalopode several di�culties with hardware description
languages were identi�ed, leading to the development of Stately, an editor for a
simple but powerful extension of �nite state machines, and Bifröst, a high-level
language for modular hardware design. �e la�er provides a novel approach to
input-output that has proven to be both at a comfortable level of abstraction and
suitable for use in realistic hardware designs.

Keywords

Functional Programming, Internet of �ings, Architectures, Hardware Description
Languages, High-Level Synthesis

Acknowledgments

�is work was partially supported by the Wallenberg Autonomous Systems and
So�ware Program (WASP) funded by Knut and Alice Wallenberg Foundation and by
a grant from the Swedish Foundation for Strategic Research (SSF) under the project
Octopi (Ref. RIT17-0023).

I would like to thank my supervisor Carl Seger for his encouragement, patience,
gusto, and sharing of a wealth of uncommon knowledge, and my co-supervisor Mary
Sheeran for her invariably wise insights and guidance toward stronger research
foundations. I would also like to thank Henrik Valter for his invaluable contributions
to Cephalopode and its evaluation, and our visiting students from France—Jules
Saget, Nicolas Nardino, and Dorian Lesbre—for their various contributions to the
work described in this thesis.

�anks goes to all of my pals at CSE, including but not limited to: the original
o�ce ri�-ra� Agustı́n, Nachi, and Ma�i; my fellow hot chocolate a�cionado Iulia;
dom goa gubbarna Benjamin o Alexander; the new kids on the block Abhiroop
and Robert; the wizard Francisco; the well-typed Carlos; the gracious Mohammad;
the VLSI survivor Henrik; the mischievous Hannaneh; the cultured minister of
cappuccino, computing, and philosophy Ivan; and the venerably awesome Irene.

A great proportion of any knowledge and passion of mine I owe to wonderful
teachers I had during school, and I am eternally grateful to them for inspiring and
nurturing my interests in computer science, mathematics, and language.

Finally, I give my thanks and endless love to my partner Julia, my dear old friends
Anastasiya, Lawrence, and Daniel, my best brother Geo� and sister Lizzy, my fantastic
parents Janet and Norris, the esteemed Gilbert, and my other friends and family; old
and new, art and science, day and night, near and far, you all make things wonderful.

vii

List of Publications

Appended publications
�is thesis is based on the following publications:

1. Jeremy Pope, Carl-Johan H. Seger, Henrik Valter “Higher-order Hardware: Im-
plementation and Evaluation of the Cephalopode Graph Reduction Processor”
Under submission.

2. Jeremy Pope, Jules Saget, Carl-Johan H. Seger “Cephalopode: A Custom
Processor Aimed at Functional Language Execution for IoT Devices”
MEMOCODE, 2020.

3. Jeremy Pope, Jules Saget, Carl-Johan H. Seger “Stately: An FSM Design Tool”
MEMOCODE, 2020.

4. Jeremy Pope, Carl-Johan H. Seger “Bifröst: Creating Hardware With Building
Blocks”
FDL, 2023.

ix

x

Research Contribution
For papers A and B, the Cephalopode architecture was jointly designed by myself and
Carl Seger, and evaluated largely by Henrik Valter. In both versions I was responsible
for the high-level design of the graph traversal process, snapshot memory, and
garbage collection, and implemented parts of the reduction engine. For the newer
version (presented in Paper A), I also implemented the control unit of the garbage
collector and several other small parts of the processor.

For Paper C, I did the majority of the design work for Stately (with input and feedback
from Carl Seger and Jules Saget), and all of its implementation.

For Paper D and Chapter 6, I designed the Bifröst language with substantial input
and feedback from Carl Seger and Dorian Lesbre, and implemented its compiler.

xii

Contents

Abstract v

Acknowledgement vii

List of Publications ix

Personal Contribution xi

1 Introduction 1
1.1 �e Internet of �ings . 1
1.2 Pure functional programming . 2

1.2.1 Lambda calculus . 3
1.2.2 Graph reduction . 4
1.2.3 Combinators . 5
1.2.4 Super-combinators . 6
1.2.5 Abstract machines . 6
1.2.6 Combinators return . 6
1.2.7 Hardware for functional programs 7

1.3 Hardware design . 8
1.4 Research and contributions . 9

1.4.1 Cephalopode . 9
1.4.2 Stately . 15
1.4.3 Bifröst . 16
1.4.4 Conclusion . 18

1.5 Future work . 19
1.5.1 Low-power hardware for functional programs 19
1.5.2 Hardware design . 19

1.6 Reading this thesis . 20

2 Paper A 21
2.1 Introduction . 22

2.1.1 Our contribution . 23
2.1.2 Paper structure . 23

2.2 Related work . 24
2.3 Design . 24

2.3.1 Graph model . 25
2.3.2 Reduction algorithm . 26
2.3.3 Multiple-precision arithmetic 26

xiii

xiv CONTENTS

2.3.4 Indirection nodes . 26
2.3.5 Strictness . 27
2.3.6 Garbage collection . 27
2.3.7 Indirection chain compression 29
2.3.8 Snapshot memory . 30
2.3.9 Context switching . 32

2.4 Implementation environment . 32
2.5 Compiler . 32
2.6 Evaluation methods . 34

2.6.1 MicroHs . 35
2.6.2 Benchmark Programs . 35
2.6.3 Synthesis . 37
2.6.4 Memory energy model . 38

2.7 Evaluation . 38
2.7.1 Results . 38
2.7.2 Analysis . 39

2.8 Future work . 39
2.9 Conclusion . 40

3 Paper B 41
3.1 Introduction . 42
3.2 Cephalopode Architecture . 43
3.3 Graph reduction . 44
3.4 Arbitrary precision arithmetic . 45

3.4.1 Integer representation . 46
3.4.2 Comparisons . 46
3.4.3 Arithmetic Operations . 46

3.5 Memory management . 47
3.5.1 Overview of memory management in Cephalopode 48
3.5.2 Snapshots . 49
3.5.3 Allocation and garbage collection 50

3.6 Results . 51
3.7 Future work . 51

4 Paper C 53
4.1 Introduction . 54
4.2 FSMs in Stately . 55

4.2.1 Virtual states . 57
4.2.2 Restrictions . 58
4.2.3 Compilation to an ordinary FSM 58

4.3 Interface and use . 58
4.3.1 HFL output and simulation 59

4.4 Case study: Cephalopode reduction FSM 60
4.5 FSMs in progress . 62
4.6 Comparison to other tools . 63
4.7 Future work . 63

CONTENTS xv

5 Paper D 67
5.1 Introduction . 68
5.2 Related Work . 68
5.3 Language . 69

5.3.1 Types . 70
5.3.2 � Expressions . 70
5.3.3 Actions . 70
5.3.4 Protocols . 71
5.3.5 Power Management . 72
5.3.6 Semantics . 73

5.4 Compilation . 76
5.4.1 Transformation into a Synchronous Program 76
5.4.2 Hardware Generation . 77

5.5 Supporting Libraries . 78
5.5.1 Memory Ports . 78
5.5.2 Dynamic Scheduling . 78

5.6 Results . 79
5.7 Future Work . 81

6 Bifröst Revisited 83
6.1 Introduction . 83
6.2 Motivation . 83

6.2.1 Wishlist and prior work . 83
6.3 Compilation . 84

6.3.1 Data types . 85
6.3.1.1 Expressions, types, and more 85
6.3.1.2 Statements and programs 86
6.3.1.3 Hardware . 88

6.3.2 Initial stages . 89
6.3.3 Scheduling: the plan stage 90

6.3.3.1 Assignments . 91
6.3.3.2 Action invocations 91
6.3.3.3 Functions . 92
6.3.3.4 Branches . 92
6.3.3.5 Shared expressions 93

6.3.4 Re�nement . 93
6.3.5 Hardware generation: the hardware stage 94

6.3.5.1 Actions . 94
6.3.5.2 Activity transitions 95
6.3.5.3 Variables . 95
6.3.5.4 Power management 96

6.3.6 Output . 96
6.4 Evaluation . 96

6.4.1 Hardware output . 96
6.4.2 General observations . 97
6.4.3 Case studies . 97

6.4.3.1 Fibonacci . 97
6.4.3.2 Arbitrary-precision division 97
6.4.3.3 Masked copy . 98

xvi CONTENTS

6.4.3.4 Cephalopode (version 2) 99
6.4.4 Further limitations . 100

6.5 Conclusion . 101

Bibliography 103

Chapter 1

Introduction

1.1 �e Internet of �ings
�e Internet of �ings, or IoT, describes the emerging network of internet-connected
appliances, ranging from smart light bulbs to humidity sensors to co�ee machines.
A unifying feature is that the devices are appliances rather than general-purpose
computers (as far as the user is concerned, at least): they ful�ll specialized roles
and functions, as opposed to o�ering the broad functionality of ordinary computers.
�is specialization typically involves more rich interaction with the physical world,
which takes place through sensors (e.g. a thermometer) and actuators (e.g. a heating
element).

Although some IoT devices have the luxury of ample resources, many are con-
strained in size, cost, and energy. Consider for example a smart light bulb: the size of
the housing, electricity cost to the user, and unit price all provide constraints on the
hardware within. Industry goals include an even more dramatic constraint, namely
being able to power a device from one ba�ery for ten years [1], and at least one
company sells wireless sensors powered entirely from harvesting energy in indoor
environments [2]. Although not suited for that degree of low energy, many IoT
devices contain low-power microcontrollers or systems-on-a-chip (SoC), which o�er
limited speed and memory compared to the hardware found in a desktop computer
or laptop. On the lower-power variants, running a conventional operating system is
out of the question in terms of both memory and speed.

�ese low-power IoT platforms are typically programmed in a low-level language—
o�en C—both for the sake of e�ciency, direct access to resources such as I/O pins,
and ubiquity. Such a programming environment poses two serious problems: �rst,
the di�culty and ine�ciency of programming without access to the abstractions that
are routinely used in higher-level programming languages, and second, the tendency
to introduce dangerous bugs due to the simultaneous complexity of the programming
model and lack of safety provided by the language. Memory safety is one such
mechanism commonly lacking, making it easy to inadvertently write to an invalid
or unexpected location in memory (dubbed memory corruption), in turn leading to
wildly erroneous behavior. A more subtle danger is that of integer over�ow, where
arithmetic on �xed-size data produces a result outside of what can be represented in
the �xed number of bits it occupies, silently resulting in a partial, incorrect value.
�is can happen in intermediate values inside of larger computations, even if the

1

2 CHAPTER 1. INTRODUCTION

�nal result would be within a safe range—for example, the sum over�owing when
computing the mean of a set of numbers, even though the mean itself is certainly
not too large to store—and even sub-expressions in a single line of code, making this
type of error particularly easy to make. It is worth noting that these types of errors
can also combine: reasoning about memory addresses using arithmetic that can
fail due to over�ow can in turn lead to writing to unintended areas of memory, for
example as seen in a glibc format string vulnerability [3]. Despite being well-known
for many years, both memory corruption and integer over�ow bugs have a long and
distinguished history of exploitation that continues through the present day.

Given also the networked nature of IoT devices, it is perhaps unsurprising that
security vulnerabilities abound—a recent example being the combination command
injection and bu�er over�ow a�ack on the widely-used �roughTek Kalay plat-
form [4]. �e capability of IoT devices to interact with the physical world makes this
especially concerning, as it introduces novel opportunities for a�ackers; in the case
of the previous example, complete control over a smart home camera.

�ese concerns are not lost on academia, industry, or hobbyists; a wide variety of
approaches are being investigated toward mitigating these risks. IoT-oriented operat-
ing systems like Zephyr [5], Mbed [6], and RIOT [7] provide some abstraction from
the underlying hardware as well as complex functionality such as cryptographic
support, networking facilities, and thread management. Since 2021, RIOT o�ers
support for the Rust programming language [8], an exciting development due to
Rust’s combination of high-level features, safety, and suitability for systems program-
ming. Zephyr and Mbed are both designed for applications to be wri�en in C or
C++, although one user [9] managed to use a limited form of Rust with Zephyr via
transcompilation to C. MicroPython [10] brings the Python programming language
to microcontrollers, another step toward high-level programming of IoT.

�ere are also several projects that utilize functional languages to program micro-
controllers. Juniper [11] is a functional reactive programming language for Arduino
microcontrollers [12], with a compiler that generates Arduino-compatible C++ code.
Copilot [13] is a Haskell EDSL for stream-based programming, also for Arduino. Hask-
ino [14] provides an imperative Haskell EDSL for programming Arduinos. mTask [15]
is an Clean EDSL for programming microcontrollers using the Task-Oriented Pro-
gramming [16] paradigm. A subsequent paper [17] discusses how to compile mTask
programs into bytecode suitable for microcontrollers; it appears that higher-order
functions are not allowed. LispBM [18] and uLisp [19] are small implementations of
LISP-like languages designed for microcontrollers. MicroHs [20]—to be discussed in
more detail in later section of this thesis—is a small, stand-alone Haskell compiler
that can generate code for both x86-64 and several microcontrollers. No IoT-oriented
features are included, however the foreign function interface can be used to run
platform-speci�c C code.

1.2 Pure functional programming

While there are plenty of high-level languages in other paradigms, pure functional pro-
gramming is of particular note for several reasons (many discussed by Hughes [21]).
First and foremost, it is highly composable: the ability to write higher-order func-
tions and the separation of pure computation from side-e�ects allow code reuse and
layering of abstractions with near-reckless abandon. Second, purity and referential

1.2. PURE FUNCTIONAL PROGRAMMING 3

transparency allow programs to be reasoned about equationally, without undue
consideration of operational semantics. �ird, the properties above—along with a
robust type system—make pure functional languages amenable to language-based
security techniques such as those used in LIO [22].

If one narrows the scope to pure functional languages that are lazy—in short,
that only evaluate sub-expressions on an as-needed basis—several more bene�ts
emerge. Directly, programs may be wri�en in a de�nitional manner rather than
a prescription for control �ow (e�ectful operations not withstanding), increasing
the level of abstraction. �is in turn bene�ts composition; managing control �ow
explicitly across the various parts of the program could be very cumbersome, which
is avoided with lazy evaluation.

�ese bene�ts of lazy functional programming make it a desirable paradigm for
programming, both in general and for IoT. It is not without drawbacks, however.
An inherent one is that laziness makes the question of when a value is computed
quite di�cult to answer; where an expression is created and where it is eventually
evaluated are not the same. A dramatic but perhaps less obvious drawback is the
apparent “semantic gap” between lazy, pure, functional programs and the stateful,
value-based architecture of traditional computer hardware. E�ciently implementing
the former on the la�er was initially elusive, and is still not a trivial ma�er.

1.2.1 Lambda calculus
Pure functional programming languages are based on Church’s lambda calculus,
which we look to for insights into evaluation. �e primary way in which expressions
are brought closer to a �nal value is β-reduction, which substitutes an argument into
the body of a function; for example, (λx.f x x)(y) becomes f y y. Even ignoring
other details such as α-equivalence and η-conversion, this is not enough to describe
an algorithm for evaluation: when there are several locations within an expression
that β-reduction could be applied, it does not indicate which one to reduce �rst.

Two orders are usually considered: applicative order, where function arguments
are reduced fully before being substituted into a function body, and normal order,
where arguments are substituted in prior to being evaluated. Applicative order is
the one used by most programming languages (functional and otherwise), whereas
normal order is the one used by lazy functional languages.

To illustrate the orders, consider two examples from lambda calculus extended
with arithmetic: (λx.x× x))(2 + 3) and (λx.(λy.y))(10!). With applicative order
reduction, the �rst expression would reduce to (λx.x × x)(5), then 5 × 5, then
25. �e second expression would reduce to (λx.(λy.y))(3628800), then λy.y. With
normal order reduction, the �rst expression would reduce to (2 + 3)× (2 + 3), then
5× (2 + 3), then 5× 5, then 25. �e second would reduce directly to λy.y.

Two facts become clear from these examples: (i) normal-order evaluation du-
plicates work that does need to be performed (e.g. 2 + 3), and (ii) normal-order
evaluation is “lazy” and avoids work that does not need to be performed (e.g. 10!).
�e former is a signi�cant performance concern, but it turns out the la�er is much
more fundamental. Consider the case where the 10! in the second example is instead
something that reduces forever without becoming a value; an in�nite loop or other-
wise diverging expression: (λx.(λy.y))(loop-forever). For this program, applicative
order will never terminate since it becomes stuck evaluating loop-forever, whereas
normal order successfully evaluates the program to λy.y.

4 CHAPTER 1. INTRODUCTION

One might imagine that the opposite could also occur, but this is not the case.
In fact, normal order evaluation is even more powerful than one might expect from
the above: if there exists a sequence of reductions from an expression e to a value
v, applying normal order evaluation to e will eventually result in v. In other words,
if there is an answer, normal order evaluation will always �nd it, while applicative
order may not.

1.2.2 Graph reduction
As we saw earlier, normal order evaluation can result in duplication of work due
to its substitution of not-yet-evaluated arguments into function bodies. �is can be
quite bad—for example, an algorithm to perform exponentiation by repeated squaring
will revert to the linear number of multiplications that a naı̈ve algorithm would use,
rather than the intended logarithmic number.

�ankfully, there is a remedy for this that does not require sacri�cing the bene�ts
of normal-order evaluation. If one considers the parse trees formed by expressions
during the reduction process, this duplication of work manifests through multiple
identical sub-trees that end up being evaluated independently. Consider for example
the following program:
let square x = x * x
in square (2 + 3)

�is corresponds to the lambda expression (λx.x× x)(2 + 3) seen earlier. Figure 1.1
demonstrates the problem that arises with normal-order reduction carried out with
expressions represented as trees.

Figure 1.1: Normal order reduction with trees duplicates work (namely 2 + 3).

Taking a cue from dynamic programming, we wish to unify these sub-trees and
ensure that they are only evaluated once. �is is accomplished by structuring the
program as a graph rather than a tree, thereby allowing sub-expressions to be shared.
In this scheme, dubbed graph reduction, the substitution performed in β-reduction
does not copy the argument into the function body as before, but instead creates
references to the argument, thereby sharing rather than duplicating it. �is approach
is shown in Figure 1.2.

With a caveat to be addressed in the next section, it is important that even (or
especially!) when a sub-expression is shared, we still evaluate it “in place” just as
before, updating it to re�ect its journey toward a value: this ensures that the work
going into this computation is also shared, not just the sub-expression’s original
form. �e soundness of this last point relies on the purity of the language.

Updating (shared) expressions as they are evaluated makes sense for ones that do
not require any context; for example 2 + 3 reduces to 5 everywhere in the program,

1.2. PURE FUNCTIONAL PROGRAMMING 5

Figure 1.2: Graph reduction still operates in normal order, but avoids the duplication
of the argument 2 + 3.

and replacing it with the la�er has no e�ect other than saving time in the future. But
imagine that we encounter a function application, for example square 7 (with the
prior de�nition of square). If we carried out substitution directly on the internal
structure of the square function’s body, replacing each instance of its parameter x
with a pointer to the argument 7, the function would be permanently applied to 7.
Prior to sharing, this was �ne, since other uses of the same function were in fact
separate copies of it and thus una�ected. With sharing, however, the function itself
may be applied to other arguments elsewhere, rendering this in-place substitution
unsound.

Abstractly, when one considers a function λx.e, the quanti�ed nature of x makes
its value contextual, precluding its replacement when it is shared between several
contexts. �e solution to this is to duplicate the function body and perform the
substitution on the duplicate, leaving the original intact, a process called instantiation.
Speci�cally, to reduce a function application (λx.e)(y) the body e is duplicated,
during which each (free) x in the duplicate is replaced with a pointer to y, resulting
in e′. �e root of the function application is then replaced with the root of e′ in some
manner.

�e process of instantiation requires traversing and duplicating an arbitrarily
large sub-graph, which may in turn contain cycles (due to recursive functions) and
references to other parts of the program that do not need to be duplicated as they do
not depend on the argument. �is is clearly not ideal.

1.2.3 Combinators

A solution to the di�culty of handling functions—or rather, the bound variables
therein—is to simply not have them in the �rst place. As described by Schön�nkel
and Curry, and applied to computer programming in 1979 by Turner [23], this can
be achieved by introducing a handful of primitive functions called combinators, and
translating functions de�ned using λ into expressions of these.

A convenient set of combinators is S, K , and I , with the following reduction
rules (instead of β-reduction): S x y z ⇒ (x z)(y z), K xz ⇒ x, and I z ⇒ z. �e
utility of these three is not immediately apparent. However, if one considers the
expressions S x y,K x, and I , these can be viewed as functions that take an argument
z and respectively: send it to both sides of an application, ignore it, and place it
as a leaf. In other words, they can be used to “guide” an argument to anywhere
inside an expression, with the restriction that the expression does not contain any

6 CHAPTER 1. INTRODUCTION

λ-abstractions.
By carrying out this step of translation recursively from the inside of an expression

out, we can translate an arbitrary λ-calculus expression (i.e., a program) into one
that uses these three combinators rather than any λ-abstractions. Without any
λ-abstractions, there are no bound variables to worry about, and furthermore β-
reduction has been replaced with a few much simpler reduction steps. As an example,
the square function de�ned in the previous section would translate to the cryptic
and verbose: S (S (K (×)) I) I . Applying it to an argument x results in x× x a�er
several reduction steps.

Although su�cient, the three combinators described above are not terribly e�-
cient: program sizes may increase quadratically [24]. Turner instead uses a larger—but
still �xed—set of combinators, reducing sizes in practice. �e selection of combinators
and how to emit them in the compiler appears to be as much an art as a science, with
MicroHs [20] and � [25] using their own extensions of Turner’s set.

�e resemblance of combinators to machine instructions was not at all lost
on Turner, who described a so�ware implementation but hinted at a hardware
one. Surely enough, several combinator-based processors were created in the years
therea�er, and will be discussed in a later section.

1.2.4 Super-combinators
In 1982 Hughes [26] introduced super-combinators as a way to take some bene�ts of
combinators, but avoid some of their detriments. Super-combinators are essentially
combinators derived from the source program in a manner that guarantees full
laziness. �ey have a clearer connection to the original source program, easing
debugging, and perform more work than the relatively simple �xed combinators. �ey
also have a smaller worst-case expansion, O(nlog(n)) [24]. �ey can be compiled
into code for a traditional architecture in a fairly straightforward manner, but do not
appear as hardware-friendly as �xed combinators due to their �exibility.

1.2.5 Abstract machines
�e G-machine [27], described by Johnsson in 1984, is an abstract machine for
carrying out graph reduction. It sits between the idealized view of graph reduction
and a traditional computer architecture, making it relatively easy to compile a lazy
language (in the paper, Lazy ML) to, and also easy to translate into machine code for
a real computer (VAX-11). As well as being well-suited for traditional architectures,
the G-machine makes it possible to avoid a substantial amount of intermediate
bookkeeping that graph reduction normally performs; according to the paper this
led to a 10x speedup for some programs.

In 1989 the Spineless Tagless G-machine (STG) was introduced by Peyton Jones [28].
It is based on the G-machine and the abstract machine Tim [29], but focuses on the
use of closures as opposed to an explicit representation of the graph, leading to a
further decrease in bookkeeping and improved mapping to traditional processors.
At the time of writing, the Haskell compiler GHC [30] uses an STG-based approach.

1.2.6 Combinators return
In addition to their continued use in VossII to implement the language �, two re-
emergences of �xed combinators for evaluating functional programs should be

1.2. PURE FUNCTIONAL PROGRAMMING 7

mentioned. �e �rst is MicroHs [20] (also discussed in Section 1.1), a small and
portable Haskell compiler wri�en by Lennart Augustsson (one of the creators of the
G-machine). Although described as a toy project, the compiler supports much of the
Haskell 2010 standard [31], and is self-hosting. �e second is Lambda-One [32], a
hardware architecture for running functional programs that will be discussed more
in the next section. Both make use of the simplicity and power of �xed combina-
tors; in MicroHs for the sake of a small compiler and runtime, and in Lambda-One
(presumably) to simplify the hardware.

1.2.7 Hardware for functional programs

A number of architectures speci�c to pure functional programming have been devel-
oped, in the decade following Turner’s 1979 paper [23] on the use of combinators for
program evaluation.

By the 1990s interest seems to have waned, likely due to the arrival of abstract
machines (such as STG) that work well on traditional architectures, which were
experiencing rapid gains in speed at the time. In recent years, however, interest has
renewed. �ere are several plausible reasons for this: slowed growth of single-thread
performance, increased interest in accelerators, new priorities in domains such as
IoT, availability of recon�gurable hardware such as FPGAs, and accessibility of high-
level design tools and languages. Several such (comparatively) recent projects are
discussed below.

�e Reduceron [33] is a processor for functional programs designed to be used
on FPGAs. By using wide words and extensive parallelism, it can perform substantial
reduction steps in a single cycle. �e program is stored in a form conducive to this.
While three to four times slower than a 3GHz PC running binaries compiled by GHC,
this is largely a product of the Reduceron’s lower clock speed on the FPGA (96Mhz).
�e authors’ estimates suggest that the Reduceron would compare favorably in run
time to an FPGA so�-processor (MicroBlaze) running GHC-compiled binaries by an
entire order of magnitude. Energy measurements are not given, however, and the
parallelism used by the Reduceron suggests a relatively high power consumption.
Additionally, the design relies on fast memory access, which is threatened in the
case of o�-chip RAM; the authors suggest either special types of RAM or the use of
caches/bu�ers.

Lambda-One [32] is a platform for embedded functional programming, with a
combinator-based graph reduction processor (Blackbird). It is realized as an FPGA on
an printed circuit board, complete with external RAM and a wide array of peripherals.
�e CPU uses several re�nements to accelerate the graph reduction process. However,
its performance is unclear in relation to a so�ware implementation of graph reduction
on an ordinary processor, as is its energy consumption. It also uses a stop-the-world
garbage collector, which creates negligible latency in the on-chip memory but appears
likely to create long delays when applied to the 512MB o�-chip memory.

Heron is a recent FPGA-oriented graph reduction processor, with source code [34]
available as of February 2024 and a forthcoming publication. A presentation given at
HAFDAL 2024 [35] indicates that the processor is similar in design to the Reduceron,
extending it with further performance-enhancing features. �e power consumption
appears to be at least 1W, considerably lower than desktop computers but one or
two orders of magnitude higher than commercial low-power processor cores such as
the ARM Cortex M0+ [36] (albeit at a considerably greater speed), limiting use in

8 CHAPTER 1. INTRODUCTION

ultra-low-power IoT devices.

1.3 Hardware design
In order to design computer hardware one typically uses a programming language,
called a hardware description language (HDL), to specify the structure or behavior of
a component or system. �e source code is then passed through a series of tools that
produces circuit descriptions at increasing levels of detail and decreasing levels of
abstraction, eventually culminating in a manufacturable design.

HDLs come in many varieties with di�ering programming models and levels
of abstraction. Since the introduction of High-Level Synthesis (HLS)—where the
designer describes the hardware at a high abstraction level, and a compiler generates
a circuit with (hopefully) the same behavior—there has been a tension between
the level of abstraction and the quality of the resulting hardware: a higher level of
abstraction makes life easier for the designer, but gives less control and can lead
to worse performance of the �nal design. �is section will brie�y discuss several
hardware description languages (and classes thereof) and the programming models
they o�er.

Traditional HDLs such as Verilog [37] and VHDL [38] o�er a low level of abstrac-
tion. Speci�cation can be structural or behavioral, but the behavioral parts are fairly
limited, and not all parts of the languages are synthesizable by popular tools. Due to
their ubiquity, these languages also serve as target languages for other tools such as
higher-level HDLs.

High-Level Synthesis typically refers to commercial tools that turn C or C++
programs into circuits, such as Vivado HLS [39] and Cadence Stratus [40]. By o�ering
a high level of abstraction for the behavior of a process—especially with scheduling—
these can make the process of designing hardware or exploring di�erent design
alternatives signi�cantly simpler and faster. �e results can vary greatly in quality,
however, limiting adoption [41]. Bugs also abound in HLS tools [42], potentially
hampering design and decreasing con�dence in the resulting hardware. A more subtle
disadvantage is that the programming model does not lend itself to composition:
while one can call functions inside a module—a process requiring passing both data
and control back and forth—a similar interaction with an external piece of hardware
is not given �rst class status and needs to be carried out manually, encouraging a
more monolithic design.

Approaches based on functional programming o�en bring the compositionality
that the paradigm is known for. VossII [25], Lava [43], Blarney [44], and Chisel [45]
provide frameworks for describing hardware using �/h� (VossII), Haskell (Lava and
Blarney) and Scala [46] (Chisel). CλasH [47] is a Haskell-like language for describing
hardware directly, rather than through an embedding. None of these other than
Blarney o�er a direct way to write blocking, algorithm-like processes. Despite
working primarily at the register-transfer level (RTL), Blarney includes a higher-level
imperative EDSL that modules can be wri�en in.

BlueSpec [48] o�ers an entirely di�erent approach to hardware design, prioritizing
modularity and compositionality, and using a very elegant abstraction: guarded
atomic actions. �e la�er specify an atomic event and a precondition for its occurrence.
Although it satis�es the surprisingly rare combination of being elegant and able
to express a pipelined processor, this model has a drawback: procedures that take

1.4. RESEARCH AND CONTRIBUTIONS 9

multiple clock cycles (e.g. non-trivial algorithms) need to be broken down into these
atomic rules, obfuscating control �ow and requiring the designer to make scheduling
decisions.

Spade [49] is an HDL that incorporates niceties from modern languages such
as a proper type system and pa�ern matching, and supports pipelining as part of
the language. Scheduling and stall/bypass logic are manual, limiting the level of
abstraction, but can arguably be expressed more easily and clearly than in traditional
HDLs.

PDL [50] is a language for describing pipelined, speculative processors while
keeping one-instruction-at-a-time semantics. �e separation between stages is man-
ual; arguably a desirable lack of abstraction when designing processor cores, but
the compiler performs the typically complex task of verifying that a design satis�es
one-instruction-at-a-time semantics. Primitives for resource acquisition and specula-
tion abstract away details of this logic. �is makes a remarkable departure from the
usual abstraction-quality dichotomy: it seems to truly both have its cake and eat it.
Although not strictly con�ned to processors, the computation model does appear to
be somewhat limited in domain.

1.4 Research and contributions
�is thesis aims to answer two research questions. First, whether in a low-energy
context (such as IoT) a small, combinator-based microprocessor architecture is a
viable approach to running lazy functional programs. Exploration of this led to
a second question: whether a comparatively minimal high-level hardware design
language, with an emphasis on modularity rather than feature-completeness, is an
e�ective tool to create hardware of the scale and variety under consideration. Both
questions share a common theme: the potential value of simplicity.

�ree artifacts were ultimately developed to address these questions: Cephalopode,
a combinator-based graph reduction processor; Stately, an editor for �nite state ma-
chines; and Bifröst, a language for hardware design.

1.4.1 Cephalopode
Cephalopode, described in its latest revision in Paper A and in its infancy in Paper B,
is a microprocessor architecture for functional programs implemented using the
hardware design and veri�cation platform VossII [25], and the aforementioned Stately
and Bifröst.

�e processor aims to be as low energy as possible while still meeting several other
requirements aligned with an IoT context: low latency, in particular with regards to
garbage collection; safety, in both memory and arithmetic; and suitability for multi-
tasking. �e main criterion for success—indicating viability of a combinator-based
approach to functional programming on IoT—is that the processor’s performance
match or exceed that of a traditional processor running the same functional program.
Here “same functional program” refers to the source program—modulo minor dif-
ferences from the language/environment—not the resulting machine code, which
should be tailored to suit each architecture. �e processor’s performance must also
be in some sense reasonable relative to a more conventional, non-functional imple-
mentation such as native C code that performs the same task; this criterion is more
fuzzy due to the subjective valuation of language abstraction level and safety versus

10 CHAPTER 1. INTRODUCTION

program performance (a topic that still incites arguments to this day). For both
criteria the notion of “performance” refers primarily to energy consumption for a
given task, provided that the speed is in an acceptable range for an IoT platform.
Speed itself is considered an added bonus. �e remainder of this section will give an
overview of Cephalopode and its evaluation relative to these goals.

Regarding tooling, Cephalopode is implemented using the VossII platform. While
other platforms and languages o�er compelling programming models perhaps more
amenable at then outset to the processor’s implementation, VossII was chosen for
its integrated design and veri�cation capabilities. Speci�cally, long-term plans for
Cephalopode include re�nement of its design using provably correct transformations,
and veri�cation of important properties such as garbage collector soundness and
memory safety. Stately and—later and more extensively—Bifröst were used to bridge
the higher-level needs of many parts of the processor design to the comparatively
low-level RTL circuit model used by VossII, while preserving the integrated design
and veri�cation bene�ts of the la�er, o�ering a degree of integration, and avoiding
compatibility di�culties such as irreconcilable type systems. While the hardware
generated by Bifröst is not optimal (see Chapter 6), the tool was still used extensively
for several reasons: (i) to make the design and design space exploration process more
manageable, (ii) to reduce the risk of subtle bugs, (iii) to make use of its automatic
clock gating in order to reduce power consumption, (iv) in anticipation of future work
on the compiler (e.g., be�er circuit generation, more aggressive power management
features), and (iv) to serve as a “golden model” for re�nement using VossII, which
would likely be necessary to generate optimized hardware even if a di�erent language
were used.

In the Cephalopode architecture programs are expressed as graphs built from
a family of combinators, and the processor carries out graph reduction directly, i.e.
without any so�ware interpreter. �e set of combinators supported is an extension
of that described by Peyton Jones [24]. It is primarily a �xed set, though it contains
two combinators Cn and Ln with a numerical index, whose reduction rules are as
follows:

Cn f e1 . . . en x⇒ f x e1 . . . en,

Ln e1 . . . en x⇒ x e1 . . . en.

Normally the strict nature of operators requires recursive evaluation of their
arguments (e.g. �rst evaluating e1 and e2 in order to evaluate (+) e1 e2), but this is
avoided using a clever trick taken from the Reduceron: a reduction rule v f ⇒ f v is
added for all non-function values v, and the compiler turns strict functions inside out
(e.g. (+) e1 e2 becomes instead e2 (e1 (+))). �is works for saturated applications,
but not for partial ones, where instead the operator needs to be replaced by a function
that carries out this reordering dynamically; this is facilitated by the Ln combinator.

While I/O and multi-tasking primitives have not yet been implemented, the
processor contains primitives for integer and boolean arithmetic and list processing.
Arithmetic is variable-precision: integers may be stored in a single graph node or a
linked list of graph nodes. �e maximum size is bounded by that of the arithmetic
unit’s local memory (compared to all available memory, as with arbitrary-precision),
though a pending architectural change is to spill into main memory when the local
one becomes full. A bene�t of this approach is that even if extraordinarily large
numbers are not needed, the processor can be sized based on the average case of
integer size rather than the worst case, without incurring the overhead of a so�ware

1.4. RESEARCH AND CONTRIBUTIONS 11

arbitrary-precision implementation. As a result, this prevents integer over�ow bugs
in all but the most extreme cases.

Although multi-tasking is not implemented, Cephalopode is well suited for it:
graph reduction does not use a stack (instead, it stores a pointer back up the graph
in each traversed node, at the expense of size), which means context switching is
a ma�er of pausing graph reduction and swapping several pointers. �is is espe-
cially bene�cial on an embedded system, where quickly servicing interrupts is o�en
important. Related to the desire to avoid an evaluation stack, in order to avoid
recursive evaluation a clever trick from the Reduceron is used to force the evaluation
of appropriately-typed expressions.

Garbage collection is given special a�ention in Cephalopode. Not only can it
not be implemented in so�ware by the nature of a graph reduction architecture, but
doing so in general comes with a signi�cant overhead. As discussed earlier, this is
especially the case when a pauseless garbage collector is used, as opposed to a naı̈ve
stop-the-world one. In order to avoid long delays—which could be pronounced and
problematic on an embedded device—Cephalopode implements a garbage collector
in hardware that runs in parallel to the program. Rather than using write barriers
(which require an additional read for each memory write) to ensure soundness,
Cephalopode’s garbage collector operates on a snapshot of a coherent state of the
graph. Taking this snapshot by duplicating the entire graph would result in signi�cant
latency, so instead the snapshot is taken lazily: memory writes a�er the moment
the snapshot is nominally taken are redirected to alternate locations, leaving the old
graph intact. �is does require an extra read prior to every write in order to know
which of the two possible locations an address is associated with should be used
(and even an extra write to update this information), but these metadata bits can be
stored in a high-speed, on-chip memory, meaning that this read can be performed
combinationally or with a very small delay compared to ordinary o�-chip memory.
A garbage collection unit runs an ordinary mark-and-sweep algorithm over the
snapshot, and any nodes that were garbage in the snapshot are safe to free despite
the graph having evolved since (the soundness of this is argued by Yuasa [51]).

Downsides of the garbage collection system are almost entirely in memory ele-
ments and sizes: the requirement that physical memory be twice the size of usable
memory in order to maintain the snapshot, the need for high-speed metadata memory
to facilitate the snapshot, the need for a stack memory to store as many pointers
as possible nodes in memory, and the need for a memory to store mark bits. While
these are quite dramatic, alternatives are not particularly appealing. A generational
garbage collector [52] would require greater complexity and bookkeeping to track
pointers from older generations to younger ones—the la�er likely requiring addi-
tional writes to main memory as opposed to an on-chip memory—and usually require
long pauses when tracing older generations (though this can be avoided [53]). In
order to satisfy the soundness criteria described by Yuasa, ordinary pauseless and
incremental garbage collector designs (generational or otherwise) evacuate pointers
before they are overwri�en for the �rst time during a marking phase, necessitat-
ing an extra read from main memory prior to each such write, as well as a write
to the garbage collector’s stack; this approach would avoid the costly doubling of
main memory for the snapshot, but with an increase memory tra�c and likely both
time and energy consumption as a consequence. �e simultaneous access to the
garbage collector’s stack from both the garbage collector and the reduction engine
during pointer evacuation also requires synchronization, increasing complexity and

12 CHAPTER 1. INTRODUCTION

potentially introducing further delays.
Graph reduction sometimes creates nodes called indirection nodes that simply

serve as aliases of other nodes. �e ratio between indirection and non-indirection
nodes is unfortunately not bounded, meaning that eventually indirection nodes can
occupy virtually all of memory. To lessen this, the sweep phase of the garbage collec-
tor additionally performs an operation similar to path compression from disjoint-set
data structures on chains of indirection nodes in the graph. �is does not immediately
remove any nodes—a di�cult task when accessing memory concurrently to the main
program—but ensures that no indirection node points to another one, i.e. there are
not any chains of two or more indirection nodes in a row. �is in turn implies that
there can only be one live indirection node per pointer per non-indirection node,
and others will be collected on the next garbage collection pass. If the program
creates indirection nodes at a negligibly slow speed relative to how o�en garbage
collection is run, this bounds the ratio at 2:1; unpleasant but manageable. Methods
for bypassing all indirection nodes without causing signi�cant delays in the program
or garbage collector remain to be explored.

Cephalopode was synthesized and evaluated in comparison to a publicly available
RISC-V core [54]. Both were synthesized using the using Cadence Genus 18.14 and
ASAP7 PDK [55], a 7nm predictive process design kit and standard cell library.

For the RISC-V core, code was generated using MicroHs [20] (for functional
programs) and GCC [56] (for native C implementations, and also used in the backend
of MicroHs). MicroHs was chosen as it is the only known way to run lazy functional
programs on microcontroller-sized processors; a comparison to GHC [30] would be
preferable as the la�er is more representative in its performance, but unfortunately it
is not yet able to emit code for RISC-V. Instead, a speculative, back-of-the-envelope
comparison with GHC was performed based on the relative performance of MicroHs
and GHC on a desktop computer; for a given program P we use the approximation:

EnergyP,GHC,RISC-V ≈ EnergyP,MicroHs,RISC-V ×
InstructionsP,GHC,x86-64

InstructionsP,MicroHs,x86-64
.

�e instruction counts were determined using Valgrind [57]. �is approximation
is carried out with and without GHC optimizations enabled: this was chosen since
many of the optimizations that occur early in the GHC pipeline are likely applicable
to Cephalopode as well, which currently uses a fairly naı̈ve compiler.1 Given the
resource constraints in an IoT device it is quite possible that GHC’s complex runtime
would need to be simpli�ed at the cost of performance, so the estimates for it may be
optimistic in this regard.

A selection of benchmark programs were compiled for the platforms, and the
resulting hardware-and-ROM combinations were simulated at 100MHz in order to
obtain running time, estimated energy consumption, and memory access counts. �e
programs, partially based on a small IoT-oriented set [58], consisted of a mixture of
basic arithmetic, matrix manipulation, and list processing, as well as an implementa-
tion of a small neural network. �ese were chosen due to their applicability to IoT
devices, particularly those that process sensor data. �e resulting relative energy,
running time, and memory accesses are shown in �gures 1.3, 1.4, and 1.5.

At equal clock frequencies (100MHz), Cephalopode appears to run approximately

1Since we are speculating about future developments of GHC here, it seems fair also to consider
improvements to Cephalopode’s compiler.

1.4. RESEARCH AND CONTRIBUTIONS 13

Figure 1.3: Simulated energy expenditure relative to Cephalopode.

Figure 1.4: Simulated running time relative to Cephalopode.

30 times faster than MicroHs on RISC-V using �xed-precision arithmetic,2 and con-
sumes about 16 times less energy.

�e speculative comparison to GHC (Figure 1.6) indicates that Cephalopode uses
approximately the same amount of energy as unoptimized GHC for RISC-V would
when the la�er uses �xed-precision arithmetic, and half as much energy when it
uses arbitrary-precision arithmetic. GHC’s optimizations—some likely applicable to
Cephalopode—result in it being estimated to use 3 times less energy than Cephalopode
with �xed-precision, and equal with arbitrary-precision. �e relative running times
match the relative energy usage but with an additional factor of two in favor of
Cephalopode, meaning that Cephalopode is expected to take less time in all cases
except for optimized GHC with �xed-precision integers.

When comparing to native C code that uses ordinary �xed-width integers,
Cephalopode uses about 50 times as much energy and 23 times as much time, appar-

2Arbitrary-precision arithmetic adds a factor of around 25x to MicroHs in both time and energy for
implementation reasons, even if all integers are small; benchmarking of GHC on x86-64 suggests this can
be reduced to around 2x.

14 CHAPTER 1. INTRODUCTION

Figure 1.5: Number of memory accesses relative to Cephalopode.

Figure 1.6: Estimated GHC energy expenditure relative to Cephalopode.

ently a result of its signi�cantly higher memory tra�c. �is is not ideal, although it
is not far from the sacri�ces made for JavaScript through the V8 engine, and Python
through CPython: one study found that these respectively incur an 8x and 29x slow-
down over C++ [59], suggesting that Cephalopode may in fact be more performant
as far as speed is concerned than CPython. When the native C code uses an arbitrary-
precision library3 to match the arithmetic safety guarantees of Cephalopode, the
performance di�erences shrink dramatically: Cephalopode uses on average twice
as much energy and the same running time as the native C implementation, while
o�ering a much higher level of abstraction to the programmer.

To summarize, while Cephalopode is unlikely to compete with a �xed-precision C
implementation, it o�ers a much higher level of safety and abstraction for nearly the
same price as adding arbitrary-precision code alone. It is over an order of magnitude
more performant than existing lazy functional programming implementations for
IoT-scale processors (MicroHs), and appears competitive with hypothetical ones
(GHC). As a result, one may conclude that Cephalopode successfully meets the goals
and criteria described at the beginning of the section.

3In our benchmarks, the one from VossII.

1.4. RESEARCH AND CONTRIBUTIONS 15

1.4.2 Stately
Stately, described in Paper C, is a visual editor for �nite state machines, providing a
graphical interface for creating, editing, and testing them. In addition to providing
a more intuitive view than a textual (code) representation, it provides two primary
bene�ts: (i) separation of all logic by state, and (ii) a mechanism for making states
that are transitioned to immediately, rather than on the next clock cycle.

�e �rst means that next-state logic and output logic are de�ned inside of each
state, not globally.4 �is is done by giving each state its own source code, appearing
in a text �eld in the editor when the state is selected. A state that initiates a memory
read could be programmed as follows:
if not mem_ack:

emit mem_req
goto reading

If the mem ack signal is high, the machine remains in the same state, and if it is
low then the mem req signal is raised (for the current clock cycle) and the machine
transitions (on the next cycle) to the state named reading.

�is matches how we usually think about state machines during their design,
namely what happens in each state rather than for which states each thing happens.
As a result, the behavior of the state machine is clearer, and easier to modify without
introducing errors.

�e second, dubbed virtual states, are states that will not exist in the compiled
hardware because they are instead absorbed into previous states in a manner similar
to inlining a function. Formally, if a stateA transitions to a virtual stateB if condition
c holds, then all of B’s behavior will occur in A, predicated by c. A speci�c example
is given in Listing 1.1. While quite simple, this solves a frequent dilemma: whether
to make a state machine that is clear and maintainable but uses more states, or one
with fewer states but convoluted or duplicated logic. By making states virtual, they
can be folded together with other states at compile time, ge�ing the best of both
worlds.
-- Regular state A
if foo:

emit x
goto B

-- Virtual state B
if bar:

emit y
goto C

else:
goto D

-- Effective behavior of A
if foo:

emit x
if bar:

emit y
goto C

else:
goto D

Listing 1.1: Example of virtual state behavior.
4For certain signals this may be undesirable, so Stately also allows global signal de�nitions such as

de�ning is reading to equal not rw.

16 CHAPTER 1. INTRODUCTION

�is is especially true for bo�lenecks in an FSM, where N states all transition to
a single state S, which based on some conditions transitions to one of M states. It
might be desirable to skip S in order to save a clock cycle, but with an ordinary FSM
this would turn the N +M transitions of the original machine into a substantially
greater N ×M transitions, complicating it and making maintenance a challenge.

While not too dramatic of a departure from existing models of computation,
Stately proved quite useful in the early development of Cephalopode. More specif-
ically it was used for the control logic of the �rst versions of the graph reduction
engine and arbitrary-precision divider, among other components. Both of these are
quite substantial, and having created the former FSM, the author suspects that it
would have been signi�cantly less e�cient or taken far longer to construct without
Stately and virtual states in particular. �e visual nature of the editor was also appre-
ciated; while not amenable to very tiny nor enormous state machines, in the case of
those mentioned previously it made them organized and readable at a glance, and
by making transitions visually explicit it helped avoid careless mistakes that could
otherwise go unnoticed.

1.4.3 Bifröst

Bifröst, described in Paper D and elaborated upon in Chapter 6, is a language for
designing modular hardware at a high level. It arose from the frustration of separately
developing the datapath (in h�) and control logic (with Stately), and the observation
that many of the more di�cult to implement parts of Cephalopode had behavior
resembling “algorithmic” imperative programs. �e sequential nature of this behavior
meant that most gains from parallelism within these modules—at least in the designs
under consideration—would come from tedious packing of operations into a single
cycle, rather than complex re-ordering or clever tricks. A language—Bifröst—was
created that could express these operations, along with a compiler to translate such
programs into RTL circuit descriptions in h�. Development continued in parallel to
Cephalopode, the la�er serving as both a case study for evaluation and a source of
inspiration for functionality and design decisions.

�e motivation for Bifröst is discussed in more detail in Chapter 6, but its goal can
be summarized as follows: to create a language with an algorithm-friendly, high-level
semantics that is suitable for use for small modules in a diverse environment; and
in doing so to create a higher-level starting point for re�nement and veri�cation in
VossII. Since compiler implementations are o�en improved over long time frames, the
success of Bifröst in the context of this thesis mainly concerns its design—does the
programming model it provides realize the goals above? �is can be divided into two
criteria: (i) whether the programming model is well-suited from the programmer’s
perspective to describing hardware of the variety it aims to, and (ii) whether it is
possible to generate circuits of acceptable quality from these descriptions. As with
Cephalopode, the subjective valuation of abstraction level and performance precludes
a purely objective judgement, however through the quantitative and qualitative
evaluation both in this section and in greater detail in Chapter 6 we argue that Bifröst
successfully meets both criteria described above.

Syntax quirks and not-yet-implemented features aside, Bifröst largely resembles
an ordinary imperative language: there is a main function, variable declarations,
assignments, branching, loops, return statements, function calls, etc. Its semantics
are sequential; each statement nominally runs before the next. �ere are, however,

1.4. RESEARCH AND CONTRIBUTIONS 17

language aspects that di�erentiate it from both ordinary imperative languages and
from other HDLs. Unlike the former, (i) it is compiled to a hardware module rather
than to so�ware, precluding behavior such as dynamic memory allocation; (ii) it
includes two di�erent notions of function calls, one ordinary and one for I/O oper-
ations; and (iii) it may instantiate and run other modules. Unlike the la�er, (i) the
circuit is de�ned in terms of a main function, rather than continuous behavior; (ii) it
is strongly and statically typed, but details such as the sizes of types are not declared;
and (iii) all I/O takes place through function call-like constructs called actions, rather
than se�ing values of signals.

Actions are arguably the de�ning feature of Bifröst. �ey are, in essence, external
function calls to other hardware components (including instantiated children), the
idea being to bring the semantic bene�ts of function calls to hardware. �ey are
unrelated to the notion of actions in Blarney, and di�er from the guarded atomic
actions in BlueSpec in that they may block and how they are used. By merging the
act of transmi�ing data to another component and receiving a response back, not
only is programming simpli�ed but the language can operate at a higher level of
abstraction. A simple example of an action invocation follows:
temp = do read_temperature SENSOR_OUTSIDE;

Information �ows out through the argument SENSOR OUTSIDE and (at some point)
back in through the returned temperature.

�ere are two main rami�cations of this abstraction, both arising from the com-
piler’s understanding of exactly how and when communication is occurring. First,
the compiler can easily synthesize logic for a handshake protocol for the communi-
cation. Returning to the example above, the declaration of read temperature could
indicate that a four-phase handshake is to be used when communicating with the
temperature sensor controller. �is protocol �exibility makes it easy to interact with
a wide variety of hardware modules not wri�en in Bifröst, facilitating integration.
Furthermore, protocols in Bifröst can include signals not only for data transfer but
also for power management, allowing Bifröst to synthesize clock gating5 circuitry
for modules wri�en in Bifröst, and control that of other (compatible) modules that
are called via actions. Generating this logic is an error-prone activity, so having
the compiler generate it at the outset—when the information about control �ow
is available at an appropriate abstraction level—avoids the risks and di�culty of
retro��ing it later.

Second, with some cooperation from the user Bifröst can safely parallelize parts
of the program without sacri�cing its sequential semantics, even taking side-e�ects
of I/O operations into account. �e cooperation needed from the user is to declare
these side-e�ects: the outside world is characterized based on a �nite set of aspects,
and for each action, the aspects the outside world it depends on (or reads) and the
aspects it modi�es (or writes) are listed. �ese aspects are arbitrary atoms such as
STACK or MEMORY; the compiler does not need to understand what they represent, but
they do need to re�ect the relationships of the I/O operations in question. Provided
these are de�ned appropriately, the compiler can determine whether running two
actions at the same time is guaranteed to have the same e�ect as running them in
sequence, i.e. whether they may be parallelized without changing the program’s
semantics.

5A way to dramatically reduce power consumption by temporarily disabling the clock signal in dormant
parts of a circuit.

18 CHAPTER 1. INTRODUCTION

Scheduling makes an assumption that appears to hold in Cephalopode: that in
most cases, the work done by combinational logic is trivial glue between invocations
of actions (such as RAM access). Bifröst is therefore quite aggressive when scheduling
combinational logic, essentially treating it as free. What guides scheduling instead are
dependencies between action invocations (one depending on the results of another,
or a pair being unsafe to parallelize), and manual cycle-breaks inserted by the user.
To keep scheduling predictable and relatively stable, the scheduler does not make
any a�empts to re-order statements; it simply packs as much into the current cycle
as possible and begins a new one as needed.

A notable downside of this model—imperative programs that invoke dynamically-
timed actions—is that it is not amenable to pipelining. Although re�nements could
be made to introduce pipelining in some situations, it is not clear how this would be
done generally and circuits created by the Bifröst compiler currently resemble those
of multi-cycle processors in their operation.

�e main evaluation of Bifröst has come through the development and evaluation
of the Cephalopode processor. �e �rst version of Cephalopode used Stately for
much of the control logic, the datapath and remaining control logic being wri�en by
hand in h�. Soon a�er Bifröst’s introduction, the (complicated) arbitrary-precision
divider was re-implemented in it, and it became apparent that this was advantageous
from exploration and maintenance perspectives. When several major architectural
revisions to Cephalopode were planned, it was decided to write a second version of
the processor using Bifröst wherever possible. Although it did not �t everywhere,
and sometimes required some contortion,6 it comprises a substantial proportion
of Cephalopode and made the design process faster and more �exible, allowing
signi�cant changes to be made in a ma�er of hours rather than weeks. In addition to
the bene�ts on the programming side, the performance of Cephalopode with respect
to energy, computation speed, and timing reveals that the hardware generated by
Bifröst is (a�er synthesis) su�ciently performant for real-world use cases.

Direct comparisons (detailed in Chapter 6) between hardware created by hand in
h� and using Bifröst indicate that the la�er carries a performance penalty, but—at least
in the cases tested—only a moderate one. While determining the interaction between
the hardware pa�erns used by Bifröst and the re�nement capabilities of VossII is
beyond the scope of the research in this thesis, it is hoped that re�nement would
lessen the performance di�erence, while preserving the bene�ts o�ered by Bifröst.
�e direct comparisons also corroborate the experience developing Cephalopode in
terms of Bifröst’s programming model; the la�er proved to be quite advantageous
for describing the algorithmic computations it was envisioned for.

1.4.4 Conclusion

�rough these three artifacts, this thesis claims to provide an a�rmative answer to
both research questions: in a low-energy context, custom architectures for functional
programming—including combinator machines—are shown not only to be viable, but
competitive today; and small, modular, high-level hardware design languages are
demonstrated to be extremely useful for the realization of novel architectures. Fur-
thermore, the exploration carried out suggests several avenues for further research.

6�e memory controller was a good candidate for Bifröst due to its complexity, but had to be reformu-
lated to work with Bifröst’s single-entry-point program model.

1.5. FUTURE WORK 19

1.5 Future work

1.5.1 Low-power hardware for functional programs

Cephalopode itself has many improvements that can be made, �rst and foremost the
addition of I/O and multi-tasking operations. Possible gains in performance gains
may be had through alterations to the memory structure—in particular, the trade-o�s
related to garbage collection may bene�t from further experimentation—and through
a plethora of local re�nements. A very interesting experiment would be to port GHC
to Cephalopode as well, to obtain a both fair and state-of-the-art comparison.

Regardless, it is clear that if a hardware implementation alone is enough to
resurrect a graph reduction strategy largely superseded over thirty years ago, perhaps
one ought to investigate applying similar techniques to other strategies that have less
of an interpretative overhead. �e Reduceron—and more recently, Heron—indeed
do so with template code. �e former prioritizes speed (as opposed to energy), and
both would appear to be constrained as FPGA-centric designs. A hybrid between
this approach and that of Cephalopode seems promising. Alternatively, one of the
abstract machines described in Section 1.2.5 may also be a good suitable candidate
for low-power hardware implementation.

Finally, veri�cation of desirable properties of the design, such as memory safety,
correctness of the garbage collector, and process isolation seem an appealing way to
leverage the design’s comparative simplicity and implementation using VossII.

1.5.2 Hardware design

Working with hardware description languages it is nearly impossible not to come
to the conclusion that there is a glaring semantic gap. Languages that excel in
description of parallel happenings seem to be lousy for programs that are (mostly)
sequential in nature, especially with complex control �ow; the forest is not seen for
the trees. On the other hand, languages that express the la�er types of processes
succinctly (like Bifröst in some aspects, though not all) appear miles away from the
hardware, and handle important performance concerns such as pipelining poorly if
at all. And, most concerning, there are very few languages that can be considered to
be anywhere in between.

�oughts on this issue are o�en expressed in relation to high-level synthesis:
naysayers view the e�ective translation from behavioral to structural as intractable,
whereas those with more optimism anticipate smarter, be�er HLS systems that can
accomplish it as well as the translation from Haskell to machine code. Both of these,
however, miss the point: we seem to want to express computation somewhere on a
continuum, but we only have the endpoints.

�ankfully, this seems to be undergoing change: languages like BlueSpec [48]
and PDL [50] o�er models that begin to blur the distinction (or at least give a radically
di�erent view). It could be that the trade-o� is fundamental, and that somewhere
along the scale of abstraction there is an unavoidable leap. It is also possible, however,
that there as an as-yet-undiscovered model that sits somewhere in the middle, and
makes itself useful across a good portion of the abstraction spectrum. �is would be
a very exciting direction to explore in future, Bifröst-esque endeavors.

20 CHAPTER 1. INTRODUCTION

1.6 Reading this thesis
�e remainder of the thesis consists of four papers (A through D), and one supple-
mental chapter. Paper A is the most recent, and describes the completed Cephalopode
processor. It largely supersedes the design described in Paper B, although the la�er
contains some additional details on the snapshot memory and garbage collection.
Paper C describes Stately. Paper D and Chapter 6 describe Bifröst: the language in
the former, and the compiler and evaluation in the la�er. �e author suggests that a
hurried reader might most enjoy Paper A and Paper D.

