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A B S T R A C T

Traffic flow prediction in spatio-temporal networks is a crucial aspect of Intelligent Transportation Systems
(ITS). Existing traffic flow forecasting methods, particularly those utilizing graph neural networks, encounter
limitations. When processing large-scale graph data, the depth of these models can restrict their ability to
effectively capture complex relationships and patterns. Additionally, these methods often focus mainly on
local neighborhood information, which can limit their capability to recognize and analyze global relationships
and patterns within the graph data. Therefore, we proposed a deep knowledge distillation model, tailored to
effectively capture spatio-temporal patterns in traffic flow prediction. This model incorporates a bidirectional
random walk process on a directed graph, enabling it to effectively capture both spatial and temporal
dependencies. Utilizing a blend of mutual learning and self-distillation, our approach enhances the detection of
spatio-temporal relationships within traffic data and improves the feature perception ability at both local and
global levels. We tested our model on two real-world datasets, achieving notable improvements in prediction
accuracy, especially for predictions within a one-hour timeframe. In comparison to the baseline model, our
proposed model achieved accuracy improvements of 0.19 and 0.18 on the respective datasets. These results
highlight the success of using mutual learning and self-distillation to transfer knowledge effectively within and
between models and to improve the model’s capability in identifying and extracting features.
1. Introduction

The utilization of artificial intelligence (AI) has significant implica-
tions in the field of transportation (Fei et al., 2022; Liu et al., 2022;
Ma, Wang, Yang, & Yang, 2020), with traffic prediction serving as a
cornerstone of Intelligent Transportation Systems (ITS) (Jie, Xiaofei,
Bo, & Zhigang, 2022; Liu, Liu, Lyu, & Ye, 2019; Liu, Lyu et al., 2021).
Traffic prediction encompasses various aspects, including traffic flow
data forecasting (Li, Yu, Shahabi and Liu, 2017), trajectory prediction
(Bing et al., 2022; He, Liu, Yang, & Qu, 2024), vehicle dispatching
(Li, Li, Jia, Zeng, & Wang, 2022; Xu et al., 2022; Yue, Abdel-Aty, &
Wang, 2022) and traffic incident detection (Acharya & Mekker, 2022;
Dabiri & Kulcsár, 2022). Traffic flow prediction is used to estimate
upcoming traffic conditions, such as volume or speed, based on previ-
ously observed data from road networks (Fei, Shi, Li, Liu, & Qu, 2024;
Liu et al., 2023; Zhong, Wu, Zhang, & Ma, 2023). Accurate and real-
time traffic prediction is vital for our daily lives and can improve the
efficiency of decision-making for transportation agencies. Since traffic
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data is spatially correlated and time-dependent (Gan et al., 2022),
traffic prediction represents a typical spatio-temporal data forecasting
task. Based on the prediction duration, traffic flow predictions can be
primarily categorized into two types (Zhou et al., 2022): short-term
prediction (within 30 min) and long-term prediction (more than 30
min).

Over the past few years, the mainstream traffic prediction methods
have been divided into three categories: parametric, non-parametric,
and hybrid methods. Parametric methods, also known as statistical-
based models, primarily consider sequence correlations and have been
widely utilized in traffic prediction. One popular parametric method is
the auto-regressive integrated moving average (ARIMA) model (Ahmed
& Cook, 1979) and its related variants. The second category is machine
learning such as Support Vector Regression (SVR) (Li & Xu, 2021)
etc., which shows promise in enhancing the accuracy and reliability
of time series forecasting. However, they may need massive data to
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achieve high prediction accuracy. The third category comprises deep
learning methods. Among them, recurrent neural network (RNN) (Ma,
Yu, Wang, & Wang, 2015) and convolution neural network (CNN) (Ma
et al., 2017) are represented, which can capture temporal and spatial
correlation, respectively. However, they cannot fully capture the com-
plex features of traffic data. To address this limitation, researchers have
started modeling traffic data as a graph structure, with graph neural
networks (GNNs) (Jiang & Luo, 2022) becoming cutting-edge methods
for traffic prediction. This development has led to the emergence
of graph convolutional neural networks (GCN) (Zhao et al., 2020).
Current traffic flow prediction methods can still be improved in terms
of feature extraction and accuracy. Our research focuses on reducing
model complexity and improving prediction accuracy. We propose a
hybrid network, called deep knowledge distillation, based on the graph
neural network that combines self-distillation with mutual learning.
The model is composed of an encoder, which handles traffic features,
and a decoder, which produces sequence predictions. The contributions
of this paper are as follows:

(1) We introduce a novel deep knowledge distillation model to
capture spatio-temporal correlations, representing traffic flow as a
bidirectional random walk process on a directed graph and capturing
spatial dependencies. Furthermore, we employ an encoder–decoder
structure to capture temporal dependencies. Unlike existing methods,
our approach significantly enhances local and global feature perception
and extraction capabilities within graph neural networks, resulting in
improved accuracy in traffic flow forecasting.

(2) We add self-distillation and mutual learning based on the graph
neural networks. Self-distillation creates a stronger link between shal-
low and deep structures, enabling the shallow structure to acquire more
extensive knowledge from the deep structure, thereby enhancing the
model’s expressive and learning capabilities. Mutual learning encour-
ages the two networks to learn global information together, optimizing
the model to enhance connectivity within the graph neural network and
effectively utilize global information for prediction and reasoning.

(3) We have performed experiments on two well-known traffic
datasets to validate the model’s effectiveness. Our results suggest that
deep knowledge distillation accurately captures overall traffic flow
patterns. Additionally, our model surpasses other commonly utilized
models in terms of predictive accuracy. Compared to the baseline
model, the MAE (mean absolute error) decreases by 0.19 on the METR-
LA dataset. Meanwhile, the PEMS-BAY dataset, which contains more
sensors, exhibits a 0.18 decrease in MAE for the one-hour prediction
performance index.

The subsequent sections of this paper are organized as follows:
Section 2 reviews the existing methods of knowledge distillation and
traffic prediction. Section 3 elaborates on the architecture and specific
details of Deep Knowledge Distillation. Section 4 presents a thorough
experimental analysis, including a comparison of our results with those
of other models. Finally, Section 5 concludes the study, summarizing
the main findings and contributions.

2. Literature review

This section will examine the pertinent literature on knowledge
distillation and traffic flow forecasting, focusing on technical principles
and associated applications.

2.1. Knowledge distillation

Knowledge distillation (Hinton, Vinyals, Dean, et al., 2015) is a
powerful method for compressing models, where the ‘‘knowledge’’
from a complex teacher model with superior learning capabilities is
transferred to a simpler student model, creating a teacher–student
network. By utilizing knowledge distillation, there is potential to en-
hance the performance of the student model by learning from the soft
targets provided by the teacher model. Due to its superior performance,
2

t

knowledge distillation has emerged as a popular research area in
deep learning. Some researchers have also applied it to transporta-
tion (Ji, Yu, & Lei, 2022). The current categorization of knowledge
distillation methods is based on the nature of the knowledge be-
ing transferred, which includes logits-based knowledge, feature-based
knowledge, relational-based knowledge, and related variations like self-
distillation and mutual learning (Gou, Yu, Maybank, & Tao, 2021).
Next, we will introduce the research status of knowledge distillation.

2.1.1. Classic knowledge distillation
Logit-based knowledge distillation: It focuses on the logit out-

put of the teacher’s last layer, which was proposed and published
by (Hinton et al., 2015), they introduced this novel approach and the
notion of distillation temperature 𝑇 . This technology works by training
a teacher network first and then distilling its knowledge to a student
network at a high temperature 𝑇 , where the distillation temperature
represents the softening degree of the label. As 𝑇 increases, the output
abel is smoother. The choice of 𝑇 is linked to the dimensions of the
tudent network. When the parameter amount in the student network is
elatively small, a relatively low 𝑇 is sufficient. Lately, (Li, Yang et al.,
017) demonstrated that in some cases, the student network can exceed
he performance of the teacher network, such as using it to solve the
oise label problem in supervised learning and achieving better results.
nd (Kobayashi, 2022) introduced extractive distillation. This method

s based on analyzing the temperature and uniformity of the teacher
robability, extracting the knowledge contained in the teacher model.
hile the above model is easy to implement, it may be challenging for

mall-scale student networks to absorb the knowledge imparted by the
eacher network.
Feature-based knowledge distillation: Its goal is to extract fea-

ures from a teacher model and transmit these features to a student
odel, and to help the student model learn and generalize better. (Adri-

na et al., 2015) first introduced this method, named FitNets, which
sed the intermediate representation of the teacher model as a ‘‘hint’’
o assist the student in training. During this time, the student model
s designed to approximate the intermediate representation of the
eacher model layer by layer to learn the ‘‘knowledge’’ of the teacher
odel. (Liu, Huang et al., 2021) proposed a novel inter-channel corre-

ation method for knowledge distillation that extracts retained feature
orrelations between the channels. The above model can provide more
ffective information when students are learning online. However,
he operation is difficult due to the dimension disparity between the
eacher and the intermediate layer of the student.
Relational-based knowledge distillation: This method combines

he output of multiple teacher models into structural units and focuses
n the correlation between the feature maps emphatically. (Park, Kim,
u, & Cho, 2019) first proposed this concept. By closely mirroring
he structural characteristics of the teacher model, we can furnish
he student with more efficient guidance. This model has stronger
eneralization and a better effect, but it has randomness when selecting
he intermediate layer’s output, so the interpretability is not strong.

.1.2. Variants based on classic knowledge distillation
The student model may not learn all the teacher’s knowledge due to

imitations of original knowledge distillation (Tzelepi, Passalis, & Tefas,
021). Training a large teacher model can also be computationally
xpensive, which may not be feasible in certain scenarios. To address
hese issues, researchers have introduced enhancements such as mu-
ual learning and self-distillation, building upon traditional knowledge
istillation.
Mutual Learning: (Zhang, Xiang, Hospedales, & Lu, 2018) in-

roduced the Deep Mutual learning (DML) approach. It disrupts the
onventional hierarchical relationship between teacher and student
odels in knowledge distillation, allowing multiple student models to

nteract and collaborate during the training process. This communica-
ion enables them to perform better and achieve higher accuracy in
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Table 1
Summary of literature review on knowledge distillation.

Category Approach Related research

Classic knowledge distillation
Logit-based knowledge distillation (Hinton et al., 2015) and (Li, Yang et al., 2017)
Feature-based knowledge distillation (Adriana et al., 2015) and (Liu, Huang et al., 2021)
Relational-based knowledge distillation (Park et al., 2019)

Variants based on classic knowledge distillation Mutual learning (Wu, Feng et al., 2019; Zhai et al., 2021) and (Zhang et al., 2018)
Self-distillation (Ji et al., 2022; Kim et al., 2021) and (Zhang et al., 2019)
completing their tasks. At each training iteration, DML computes the
predictions of both models and updates the parameters of both net-
works based on others’ predictions. (Wu, Feng et al., 2019) suggested
using multi-task interleaving supervision to guide deep networks for
salient detection. In (Zhai et al., 2021), the concept of mutual learning
has been expanded from regular grids to graphs by implementing
mutual graph learning.

Self-Distillation: This method was first proposed by (Zhang et al.,
2019), where a single neural network acts as both the teacher and
student network. The deeper portion is used to supervise the shallower
ones during self-learning, with the deeper portion used to supervise
the shallower ones during self-learning. This approach can drastically
reduce model size and computational requirements without sacrificing
accuracy, making the model easier to deploy in a resource-constrained
environment. (Kim, Ji, Yoon, & Hwang, 2021) introduced a method
called progressive self-knowledge distillation, it can improve the per-
formance and generalization ability of deep neural networks through
gradual learning while reducing the risk of overfitting. (Ji et al., 2022)
proposed to use the self-distillation mechanism in the pre-training
phase. This can assist the model in acquiring more abstract and high-
level feature representations by using the output of the pre-trained
model as the target distribution. Specifically, self-distillation does not
increase computational costs during inference. Table 1 is a summary of
literature related to knowledge distillation.

2.2. Traffic prediction

Traffic prediction is a typical task in analyzing time series data
(Qu, Lin, & Liu, 2023; Wu & Qu, 2022). It involves forecasting future
traffic conditions based on historical traffic data that has been provided.
The dynamic and constantly changing nature of traffic data across
both time and space (Chaniotakis, Abouelela, Antoniou, & Goulias,
2022; Zheng, Chai, & Katos, 2022), as well as its susceptibility to
various uncertain factors like weather, pedestrians (Yuanzhi, Tao, Xi, &
Youning, 2022), and traffic accidents (Dabiri & Kulcsár, 2022), makes
the task particularly difficult (Xu et al., 2023). It can be classified into
short-term prediction and long-term prediction based on the length of
prediction time. At present, some classic traffic prediction algorithms,
such as ARIMA (Chen, Hu, Meng, & Zhang, 2011) and SVR (Li &
Xu, 2021), only consider sequence information. However, the traffic
flow on nearby roads can significantly affect each other. Therefore,
effectively integrating all temporal and spatial dependencies into the
prediction model has become a major challenge. The objective is to
create a model that can accurately capture the complex interaction be-
tween various traffic variables and offer dependable predictions based
on this data.

With the advances in deep learning, researchers have found that
neural networks are effective in identifying and analyzing the complex
non-linear systems present in traffic networks (Mohammadian, Zheng,
Haque, & Bhaskar, 2023). CNNs are particularly powerful in extracting
spatial features, while RNNs are well-suited for modeling temporal
correlations. As a result, they have become a popular choice for traffic
forecasting. (Qu, Lyu, Li, Ma, & Fan, 2021) incorporated features into
RNNs, and used stacked RNNs to extract sequential features from traffic
data. However, RNNs can encounter issues such as gradient explosion
when processing lengthy sequences. These problems are effectively
3

addressed through the implementation of gating structures, which are
present in variants like Long Short-Term Memory (LSTM) (Cui, Ke,
Pu, & Wang, 2018) and Gated Recurrent Neural Networks (GRU).
(Dai, Ma, & Xu, 2019) primarily discussed the utilization of GRU to
forecast short-term traffic flow in urban road segments. The method
also incorporates spatiotemporal information. Besides, CNNs are com-
monly used to address spatial correlation in traffic flow analysis. For
instance, (Ma et al., 2017) proposed a new method to transform traffic
flow data into an image-like form and used a deep convolutional
neural network to process and predict it. (Liu, Zheng, Feng, & Chen,
2017) introduced a mixed approach called Conv-LSTM, which inte-
grates convolution and LSTM techniques to accurately capture the
spatial–temporal characteristics of traffic data.

However, CNN can only model Euclidean data and cannot directly
extract the topological relationship of road space. It needs to convert
the topological structure of the road into the form of a traffic grid to
model. Therefore, CNN has limitations in extracting the spatial char-
acteristics of traffic data. There has been increasing interest in using
GNN and GCN for traffic prediction tasks (Huang, Ye, Yang, & Xiong,
2023; Yuanzhi et al., 2022). These methods are more appropriate for
modeling the complex relationships between various traffic variables
and can effectively capture the non-linear dependencies found within
traffic data (Jiang & Luo, 2022). Li, Yu, Shahabi, and Liu (2018)
proposed a diffusion convolutional RNN for predicting traffic flow.
They utilized diffusion convolutional networks and GRU to extract
and analyze spatial and temporal features. This combination allows
the model to capture complex dependencies within traffic data, lead-
ing to more accurate predictions. (Yu, Yin, & Zhu, 2018) proposed
Spatial–Temporal Graph Convolutional Networks (STGCN), combining
one-dimensional convolution and graph convolution to extract spa-
tiotemporal features, while (Song, Lin, Guo, & Wan, 2020) introduced
a spatial–temporal synchronous GCN, this is capable of capturing local
spatiotemporal correlations without necessitating the merging of mul-
tiple modules. Moreover, (Zheng, Fan, Wang, & Qi, 2020) introduced
a graph multi-attention network (Gman) that employs an encoder–
decoder architecture to forecast traffic situations. This method takes
into account spatial and temporal factors at different positions within
the road network. Furthermore, the application of other neural net-
works like the attention and the transformer to graphs has shown
promising outcomes. (Zhang & Guo, 2020) proposed a new graph
with attention to LSTM, aiming to model the interaction between
spatial and temporal factors in traffic flow dynamics. The research
uses graph attention to effectively model non-Euclidean data structures
and LSTM cells to extract time-dependent features from time series
data. In (Yan, Ma, & Pu, 2021), a traffic transformer was proposed to
address spatial–temporal features and mitigate challenges in long-term
traffic prediction. (Wu, Pan, Long, Jiang and Zhang, 2019) introduced
the Graph WaveNet (GWN), a graph convolutional network using the
adaptive adjacency matrix for spatial features and dilated convolutions
for temporal features. Table 2 is a summary of the current mainstream
traffic flow prediction models.

3. Methods

This section introduces our proposed deep knowledge distillation
model, depicted in Fig. 1. It consists of two networks, Net-𝛩1 and
Net-𝛩2, both with encoder–decoder structures. The main idea of our

model is: (1) Two networks engage in bidirectional distillation through
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Table 2
Summary of literature review on traffic prediction.
Category Application task Related studies

Statistical methods Flow ARIMA (Chen et al., 2011)
Flow SVR (Li & Xu, 2021)

Deep Learning

Based on temporal

Speed FI-RNN (Qu et al., 2021)
Flow LSTM (Cui et al., 2018)
Flow GRU (Dai et al., 2019)
Flow Transformer (Yan et al., 2021)

Based on spatial

Flow CNN (Ma et al., 2017)
Flow GCN (Jiang & Luo, 2022)
Speed STGCN (Yu et al., 2018)
Speed GWN (Wu, Pan et al., 2019)

Mixed model

Speed DCRNN (Li et al., 2018)
Flow & speed GMAN (Zheng et al., 2020)
Flow Conv-LSTM (Liu et al., 2017)
Speed ADSTGCN (Zhao et al., 2022)
Fig. 1. The overall architecture of deep knowledge distillation.
mutual learning. (2) Two networks engage in cross-distillation through
self-distillation.

To model traffic flow, we utilize the concept of graph neural net-
works as described in prior research (Li, Yu et al., 2017). Specifically,
we model traffic flow as a directed graph and apply a bidirectional ran-
dom walk process on a graph to model spatial correlation. Additionally,
we incorporate temporal dependence by employing the GRU. Based
on this, we introduce self-distillation and mutual learning to further
extract spatio-temporal features from traffic flow data and enhance
prediction accuracy.

In Fig. 1, our model integrates the GNN architecture with mutual
learning and self-distillation techniques. To evaluate the similarity of
predictions made by the two student networks, our model implements
two distinct loss functions. The Kullback–Leibler loss measures the
disparity between probability distributions, while the Cross-Entropy
loss evaluates how closely the predictions align with the actual ground
truth. Additionally, both networks utilize each other’s shallow struc-
tures for self-distillation, where ‘𝑃1’ and ‘𝑃2’ in Fig. 1 represent the
outputs from the softmax layer of the respective network decoders.
For ease of reference, throughout the remainder of the paper, ‘Cross
Entropy loss’ will be abbreviated as ‘CE loss’, and ‘Kullback–Leibler
divergence’ as ‘KL loss’.

3.1. Preliminary

The basic idea of knowledge distillation is to allow a student model
to learn the behavior of a teacher model, including the output probabil-
ity distribution. This enables the student model to mimic the prediction
4

results of the teacher model. In our research, we refer to the teacher
and student networks as Net-T and Net-S, respectively. The traditional
knowledge distillation process begins with training Net-T and then
transferring its knowledge to Net-S, using the ‘temperature’ parameter
𝑇 specific to knowledge distillation. This process can be represented as
follows:

𝐿 = 𝛼𝐿𝑠𝑜𝑓𝑡 + 𝛽𝐿ℎ𝑎𝑟𝑑 (1)

where 𝛼 is the weight hyperparameter used to weight the soft loss and
𝛽 is the weight hyperparameter used to weight the hard loss. The soft
target is the output of Net-T, so 𝐿𝑠𝑜𝑓𝑡 is calculated as the KL divergence
between the softmax output of Net-S and the soft target. In addition,
𝐿ℎ𝑎𝑟𝑑 is computed as the CE loss between the softmax output of Net-T
and the ground truth.

Problem definition: In simpler terms, traffic prediction involves
using historical data about traffic to create a model that can predict
future traffic patterns. The road network is represented as a graph
network 𝐺, which is composed of nodes that represent sensors located
on the road, and edges that symbolize the links or connections between
these sensors. The spatially weighted adjacency matrix captures the
relationships between different sensors. At each time step, features of
traffic flow are observed and represented as 𝑋(𝑚). Using this graph
representation, we can frame the prediction problem as the search
for a function 𝑓 (⋅) that can make accurate predictions about traffic
patterns in the future using data from the past. Given a graph 𝐺, we
can formulate the prediction problem as follows:

[𝑋(𝑚−𝑀0+1),… , 𝑋(𝑚);𝐺]
𝑓 (⋅)
←←←←←←←←←←←←←←←→ [𝑋(𝑚+1),… , 𝑋(𝑚+𝑀)] (2)
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Fig. 2. The architecture of the mutual learning.
where 𝑋(𝑡) ∈ 𝑅𝑁×𝐶 is the traffic flow features at time step t, and 𝐶
is the number of traffic features. 𝑓 (⋅) is a mapping function that maps
traffic data at historical moments to the future.

3.2. Overall architecture

Mutual learning describes two student networks learning from
each other, without the need for supervision from a teacher network. It
is an extension of traditional knowledge distillation. and has the advan-
tage of breaking the pre-defined strong and weak relationships. Another
benefit is its applicability to various network architectures, including
heterogeneous networks with a mix of large and small networks, en-
abling them to learn from each other. Moreover, This approach can
also be used to create a queue of networks trained in this way, which
can serve as an ensemble to further improve performance. Based on the
above advantages, we apply mutual learning in our method, letting two
small neural networks learn simultaneously, and supervise each other.

In Fig. 2, we illustrate the application of mutual learning in the
model’s architecture. Two neural-network graphs, Net-𝛩1 and Net-𝛩2,
are employed to create a mutual learning model, enabling reciprocal
learning. Each network has two loss functions: a Cross-Entropy (CE)
loss, represented by a red dotted line, and a Kullback–Leibler (KL)
divergence loss, shown by an orange dotted line. Traffic flow features
𝑋(𝑚) pass through Net-𝛩1 and Net-𝛩2, resulting in two different pre-
dicted probabilities 𝑃1 and 𝑃2. The KL divergence between 𝑃1 and 𝑃2
is then calculated to determine if the predictions of the two networks
match, thus enhancing the model’s generalization performance. The KL
divergence formulas for 𝑃1 and 𝑃2 are:

𝐷𝐾𝐿(𝑃2∥𝑃1) = 𝑃2 log
𝑃2
𝑃1

(3)

Besides, traditional supervision loss is essential, represented by CE
loss. To simplify the notation, we represent the self-supervision loss and
the matching loss between the two networks as 𝐿1 and 𝐿2, respectively.

𝐿1 = 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (4)

𝐿2 = 𝐷𝐾𝐿(𝑃2∥𝑃1) = 𝑃2 log
𝑃2
𝑃1

(5)

where 𝑃1 and 𝑃2 represent input data into two networks for training,
and two different predictions output after training. 𝐷𝐾𝐿(𝑃2∥𝑃1) to
calculate the difference between the two network prediction values. It
is smaller, which means that the difference between the two prediction
values is smaller.

Self-distillation can improve accuracy without adding computa-
tional cost. The main idea is to use a single network as both the
teacher and student, removing the need to train a separate teacher
5

Table 3
Deep knowledge distillation prediction algorithm process.
1. Algorithm: Deep knowledge distillation to predict traffic flow

2. Input: training data, learning rate r
3. Initialization: Network θ1 and Network θ2
4. t = 0
5. do:

6. t = t + 1
7. Randomly extract data
8. inputs, labels = get_random_data()
9. Compute predictions P1 and P2 from the two networks respectively
10. P𝟏 = network_1(inputs)
11. P𝟐 = network_2(inputs)
12. Calculate mutual learning loss: CE loss and KL loss
13. Calculate self-distillation loss: KL loss
14. Compute the total loss: Mutual learning loss + Self-distillation loss
15. Update network θ1: 𝜃1 ← 𝜃1 + 𝑟

𝜕𝐿𝜃1

𝜕𝜃1
16. Update prediction P1: P1 = network_1(inputs)
17. Update network θ2: 𝜃2 ← 𝜃2 + 𝑟

𝜕𝐿𝜃2

𝜕𝜃2
18. Update prediction P2: P2 = network_2(inputs)
19. While: The objective function has not converged

model. Distillation is usually performed between different layers within
the network. Expanding upon mutual learning, we incorporate self-
distillation to enhance prediction accuracy even further. Fig. 3 depicts
the architecture of self-distillation applied in the graph neural network.
Self-distillation divides the model into shallow and deep structures,
with dimension transformation performed on the encoder layer, and
uses this part as a shallow network. During training, the deeper struc-
ture distills the shallow, with the deep structure acting as a teacher
network to transfer knowledge to the shallow student network. In
Fig. 3, two types of losses are depicted: the Cross-Entropy (CE) loss,
represented by the red dotted line, and the Kullback–Leibler (KL)
divergence loss from the distillation of encoder output, shown by the
blue dotted line.

Deep knowledge distillation: To enhance the spatio-temporal fea-
ture extraction ability of two graph neural networks for traffic data, our
method employs deep knowledge distillation through a deep mixture
modeling approach. The process of extracting features is depicted in
Fig. 1, where the traffic data is passed through two networks 𝛩1 and
𝛩2 as input to extract features. Firstly, we employ the self-distillation
algorithm to enhance the sensitivity of the shallow and deep structures
of the model toward the features. Then the mutual learning algorithm
is utilized to guide the two graph neural networks to improve their
feature learning ability, thereby enhancing the model’s performance in
prediction. Each network has a classification loss function for the hard
label and a loss function that mimics another student network. Table 3
is the overall algorithm flow of our model.
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Fig. 3. The architecture of self-distillation.
Typically, we utilize the decoder output from Net-𝛩2 to extract and
enhance the encoder output of Net-𝛩1 via a distillation process, since
they are of equal size. The distillation supervision of the two models
can be represented as 𝐿3:

𝐿3 = 𝐾𝐿(𝑞𝐸𝜃1 , 𝑞𝐷𝜃2 ) (6)

where 𝑞𝐸𝜃1 is the encoder output of Net-𝛩1, 𝑞𝐷𝜃2 is the decoder output
of Net-𝛩2, which is KL divergence between 𝑞𝐸𝜃1 and 𝑞𝐷𝜃2 .

Each network in our approach incurs multiple losses. For Net-𝛩1,
the overall loss function comprises three components: (1) the self-
supervised loss function; (2) the matching loss function from Net-𝛩2;
(3) the loss from encoder output.

𝐿𝜃1 = (1 − 𝛼)𝐶𝐸𝐿𝑜𝑠𝑠1 + 𝛼𝐷𝐾𝐿(𝑃2∥𝑃1) +𝐾𝐿(𝑞𝐸𝜃1 , 𝑞𝐷𝜃2 ) (7)

Similarly

𝐿𝜃2 = (1 − 𝛼)𝐶𝐸𝐿𝑜𝑠𝑠2 + 𝛼𝐷𝐾𝐿(𝑃1∥𝑃2) +𝐾𝐿(𝑞𝐸𝜃2 , 𝑞𝐷𝜃1 ) (8)

where 𝛼 is the weight coefficient 𝛼 that measures the proportion of
mutual learning loss to the total loss. It comes from the process of
calculating the total loss. Different weight coefficients indicate that the
two parts of the loss have different proportions to the network supervi-
sion, which will affect the performance of the network. Normally, the
value of 𝛼 can be adjusted between 0 and 1, we experiment with it in
subsequent chapters.

In particular, we attempt to use a hyperparameter to balance these
different losses, but the effect is not significant.

4. Experiments

In this section, we will start by introducing two commonly used
datasets 4.1, along with the relevant experiment settings 4.2, including
evaluation metrics and baseline models. Then, we will systematically
analyze the experimental results 4.3. After that, we will validate several
parameters and conduct ablation experiments of the model in supple-
mentary experiments 4.4. Additionally, to ensure the efficiency of every
module within our model, we will carry out extended experiments and
hyperparameter experiments 4.5. The details are as follows:

4.1. Datasets

Our method’s effectiveness is validated through experiments on two
commonly used datasets, collected at five-minute intervals. We divided
them into training, validation, and testing subsets with respective
proportions of 70%, 20%, and 10%. Detailed information about these
datasets is presented in Table 4.

METR-LA includes data from 207 sensors placed on highways in
Los Angeles County. The study mainly used four months of data, from
March 1, 2012, to June 30, 2012. Subsequently will be recorded as
dataset 1.

PEMS-BAY contains 325 sensors deployed in the San Francisco Bay
Area, mainly experimenting with data collected over 6 months from
January 1, 2017, to May 31, 2017. Subsequently will be recorded as
dataset 2.
6

Table 4 provides a concise overview of two extensive traffic flow
datasets, each equipped with a significant number of vehicle sensors.
These sensors offer comprehensive traffic information and wide spatial
coverage, making them highly valuable for traffic forecasting. Fig. 4
displays the locations of the 207 sensors in dataset 1.

4.2. Experiment settings

We trained using the Pytorch framework on a server with four
GeForce RTX 3090 graphics cards. We applied Z-Score to standard-
ize the two data sets separately to improve convergence speed dur-
ing gradient descent. Additionally, we used end-to-end training with
the ‘‘Adam’’ optimizer and a learning rate of 0.001 to simplify the
project and optimize the model. To prevent overfitting, we imple-
mented dropout and early stopping during training. Specific settings
are shown in Table 5.

Metrics: Our study uses various metrics to assess performance,
such as mean absolute error (MAE), mean absolute percentage error
(MAPE), and root mean squared error (RMSE). Here are their detailed
explanations (Moreno, Mariani, & dos Santos Coelho, 2021):

Mean Absolute Error (MAE): represents the average absolute error
between the predicted value and the ground truth, the formula is:

𝑀𝐴𝐸 = 1
𝑛
𝛴𝑛
𝑖=1|𝑦𝑖 − 𝑓 (𝑥𝑖)| (9)

Mean Absolute Percentage Error (MAPE): represents the average abso-
lute percentage error between the predicted value and the true value,
the formula is:

𝑀𝐴𝑃𝐸 = 100%
𝑛

1
𝑛

𝑛
∑

𝑖=1

|

|

|

|

𝑦𝑖 − 𝑓 (𝑥𝑖)
𝑦𝑖

|

|

|

|

(10)

Root Mean Squared Error (RMSE): represents the root mean square
error between the predicted value and the true value, the formula is:

𝑅𝑀𝑆𝐸 =
√

1
𝑛
𝛴𝑛
𝑖=1

(

𝑦𝑖 − 𝑓 (𝑥𝑖)
)2 (11)

where 𝑛 is the time step, 𝑦𝑖 and 𝑓 (𝑥𝑖) represent the true value and
predicted value of the 𝑖th time step respectively. The smaller the
calculated results of the three metrics, the higher the accuracy of the
prediction results.

Baseline Models: In this paper, when comparing with other models,
we use the same optimizer (Adam) and learning rate (0.001). These
models are as follows:

(1) HA (Historical Average Liu & Guan, 2004): Calculates the aver-
age of historical data points.

(2) ARIMA (Auto-Regressive Integrated Moving Average Ahmed &
Cook, 1979): A method for time series analysis, implemented using the
‘statsmodels’ Python package, which is a software library for statistical
modeling in Python.

(3) VAR (Vector Auto-Regression Lütkepohl, 2013): An advanced
time series model capturing pairwise relationships between traffic flow
sequences, also implemented using the ‘statsmodels’ Python package.
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Table 4
Basic information of the datasets.
Dataset #sensors Region #training_set #validation_set #testing_set

METR-LA 207 Los Angeles County 23 974 3425 6850
PEMS-BAY 325 Bay Area 36 465 5209 10 419
Fig. 4. Visualization of sensors distribution in dataset 1.
Table 5
Basic parameter setting.

RNN layers 2 Optimizer Adam
Batch size 64 Initial learning rate 0.001
Training epoach 100 Maximum migration step 2
Number of RNN neurons 64 Distillation temperature T 8

(4) SVR (Support vector regression model Li & Xu, 2021): Utilizes
linear support vector machine models for regression problems. Key
parameters include a penalty term C = 0.1 and a historical observation
count of 5.

(5) FNN (Feedforward Neural Network More, Mugal, Rajgure, Ad-
hao, & Pachghare, 2016): Configured with two hidden layers, each
containing 256 units. The model is trained with a batch size of 64 and
uses MAE as the loss function.

(6) FC-LSTM (Fully Connected Long Short-Term Memory Sutskever,
Vinyals, & Le, 2014): A variant of RNN with 4 layers of LSTM units.
The input sequence is encoded with one LSTM layer, and the output
sequence is decoded with another. Each layer has 256 LSTM units, the
batch size is 64, and the model is trained using the MAE loss function.

(7) DCRNN (Diffusion Convolutional Recurrent Neural Network Li
et al., 2018): Combines diffusion convolutional networks and GRU to
extract spatial and temporal features. Both the encoder and decoder
have two recurrent layers, with each layer comprising 64 units.

(8) STGCN (Spatial–Temporal Graph Convolutional Networks Yu
et al., 2018): Consists of multiple spatial–temporal convolution blocks
(ST-Conv Block), with three-layer channels in each ST-Conv block
having 64, 16, and 64 units, respectively. The graph convolution kernel
size is 3.

(9) GWN (Graph Wave Net Wu, Pan et al., 2019): Features adaptive
graphs for capturing hidden spatial features and dilated convolutions
for temporal features. The network uses 8 layers, each with a different
dilation factor (1,2,1,2,1,2,1,2), and the diffusion step size in the graph
convolution layer is 2.
7

4.3. Experiment results

Tables 6 and 7 present a comparison of our deep knowledge dis-
tillation model with other baselines in terms of performance on two
datasets. The evaluation metrics used are MAE, MAPE, and RMSE, with
a prediction horizon of 15, 30, and 60 min. The results indicate that
our model performs well on both datasets. In comparison to the latest
prediction graph model GWN, our model exhibits a slightly higher
prediction error at 15 min, but as the prediction horizon increases
(i.e., beyond 30 min), our model’s prediction error is lower than that of
GWN. This suggests that the deep knowledge distillation model is more
suitable for long-term prediction.

Compared to the benchmark model, our model achieves lower MAE
(3.41 vs. 3.60), MAPE (9.80% vs. 10.50%), and RMSE (7.10 vs. 7.59)
values on dataset 1. Similarly, on dataset 2, our model also outper-
formed DCRNN, with a lower MAE by 0.18, a lower MAPE by 0.40%,
and a lower RMSE by 0.41. In summary, our model improves prediction
accuracy on both datasets, with dataset 2 showing a more significant
improvement.

Through Tables 6 and 7, we can also draw the following conclu-
sions:

(1) Among the four graph convolution methods, DCRNN and STGCN
utilize prior knowledge to capture spatial dependencies in constructing
the graph topology. They use a static graph. In contrast, GWN uses an
adaptive graph matrix, allowing it to capture hidden spatial features,
resulting in better prediction effects than DCRNN and STGCN.

(2) In traffic flow prediction, the longer the forecast time, the more
uncertain factors are involved, and our approach is similar to DCRNN in
short-term prediction. However, as the forecast time increases, the per-
formance gap between the two models gradually widens, demonstrating
that our model has greater robustness.

(3) Based on the benchmark model, we incorporated mutual learn-
ing and self-distillation to enhance feature extraction and perception,
resulting in improved prediction performance.

For prediction, both DCRNN and our method randomly select a
sensor’s 1-day data on two datasets, and Figs. 5 and 6 present the speed
trends. Blue, green, and orange colors correspond to the ground truth,
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Fig. 5. We conduct an evaluation of our model and DCRNN’s performance on dataset 1 by assessing the level of alignment between their predictions and the ground truth values.
Table 6
Performance comparison of deep knowledge distillation and other benchmark models
on dataset 1.

Model 15 min 30 min 60 min

Metric MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

HA 4.16 13.00% 7.80 4.16 13.00% 7.80 4.16 13.00% 7.80
ARIMA 3.99 9.60% 8.21 5.15 12.70% 10.45 6.90 17.40% 13.23
FNN 3.99 9.90% 7.94 4.23 12.90% 8.17 4.49 14.00% 8.69
FC-LSTM 3.44 9.60% 6.30 3.77 10.90% 7.23 4.37 13.20% 8.69
DCRNN 2.77 7.30% 5.38 3.15 8.80% 6.45 3.60 10.50% 7.59
STGCN 2.88 7.60% 5.74 3.47 9.60% 7.24 4.59 12.70% 9.40
GWN 2.69 6.90% 5.15 3.07 8.40% 6.22 3.53 10.00% 7.37
Ours 2.70 7.00% 5.17 3.05 8.30% 6.10 3.41 9.80% 7.01

Table 7
Performance comparison of deep knowledge distillation and other benchmark models
on dataset 2.

Model 15 min 30 min 60 min

Metric MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

HA 2.88 6.80% 5.59 2.88 6.80% 5.59 2.88 6.80% 5.59
ARIMA 1.62 3.50% 8.21 2.33 5.40% 4.76 3.38 8.30% 6.50
VAR 1.74 3.60% 3.16 2.32 5.00% 4.25 2.93 6.50% 5.44
SVR 1.85 3.80% 3.59 2.48 5.50% 5.18 3.28 8.00% 7.08
FNN 2.20 5.20% 4.42 2.30 5.40% 4.63 2.46 5.90% 4.98
FC-LSTM 2.05 4.80% 4.19 2.20 5.20% 4.55 2.37 5.70% 4.96
DCRNN 1.38 2.90% 2.95 1.74 3.90% 3.97 2.07 4.90% 4.74
STGCN 1.36 2.90% 2.96 1.81 4.20% 4.27 2.49 5.80% 5.69
GWN 1.30 2.90% 2.74 1.63 3.70% 3.70 1.95 4.60% 4.52
Ours 1.31 2.80% 2.75 1.63 3.70% 3.65 1.89 4.50% 4.33

DCRNN, and our model’s speed predictions, respectively. The figures
indicate that our model’s speed predictions are more accurate, as they
closely align with the ground truth. In contrast, the DCRNN model’s
predictions exhibit significant hysteresis. It can be seen that there is an
obvious hysteresis in the prediction of the DCRNN model when there is
a peak change, and our model’s predictions are closer to the true value.
Besides, there is a considerable slowdown in traffic during peak hours,
such as morning rush hour, afternoon rush hour, and evening rush hour.
This indicates a higher volume of traffic during these times. The traffic
management department may consider implementing measures such
as traffic restrictions or route planning reminders to address this issue
(Siri, Siri, & Sacone, 2022).

To be more precise, when using the validation subset of dataset 1
as an example, we compare the performance of our model and DCRNN
across three metrics in our experimental results, as shown in Figs. 7,
8, and 9. It is clear that on the validation set, the DCRNN model
8

starts to converge after 20 training epochs, while the error of the deep
knowledge distillation model continues to decrease, indicating that the
performance of our model continues to improve. We attribute this to
the increased mixed distillation method. On one hand, the two models
perform self-distillation through each other’s shallow network, and
on the other hand, they complete the transfer of knowledge through
mutual learning. Therefore, the model converges faster during the
training process, the final convergence value is lower, and the predicted
error value is also smaller.

Figs. 10 and 11 display boxplots that compare the errors of our
model and DCRNN on the test datasets. The red box represents our
model, while the blue box represents DCRNN. The upper and lower
boundaries of each box indicate the highest and lowest error values,
respectively. The lines in the middle of each box indicate the median er-
ror. To generate these visual representations, we individually compute
the prediction errors of both our model and DCRNN by comparing them
against the ground truth values. Next, we calculate the mean errors over
intervals of two hours, which is represented by the center line of the
box in the figure. As shown in the figures, the median line for our model
is slightly below that of DCRNN, which indicates that our model has a
lower error and is more robust.

4.4. Supplementary experiment

To further corroborate our experimental results, we conduct rele-
vant supplementary experiments in this part, including ablation exper-
iments 4.4.1 and extension experiments 4.4.2.

4.4.1. Ablation experiment
In this section, we conduct experiments with various parameters in

the model to determine the optimal ones. For instance, we experiment
with the learning rate and optimizer using the METR-LA dataset. We
test the learning rate at 0.01, 0.001, and 0.0001, and compare the
optimization results of the Adam optimizer and the SGD optimizer.
Ultimately, we select 0.001 as the initial learning rate for our exper-
iment and opt for the Adam optimizer. Table 8 is the experimental
results of different learning rates, and Table 9 is the results of different
optimizers.

Then we verify the effect of each part of the model, the deep
knowledge distillation model is mainly composed of three important
parts, namely the DCRNN module, the self-distillation module, and the
mutual learning module. we compare the effects of self-distillation and
mutual learning modules on two datasets to optimize the benchmark
model alone and optimize it after the fusion of the two modules on the
experimental results. The results are shown in Table 10. We can see:
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Fig. 6. We conduct an evaluation of our model and DCRNN’s performance on dataset 2 by assessing the level of alignment between their predictions and the ground truth values.
Fig. 7. MAE curve visualization between two models.
Table 8
Training results at different learning rates.

Learning 15 30 60

rate MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

0.01 2.81 7.73% 5.45 3.17 9.39% 6.44 3.70 11.70% 7.69
0.001 2.70 7.00% 5.17 3.05 8.30% 6.10 3.41 9.80% 7.01
0.0001 2.77 7.46% 5.45 3.19 9.24% 6.51 3.76 11.79% 7.78

(1) Combining the benchmark model with self-distillation and mu-
tual learning modules, the experimental results are significantly better.

(2) Mutual learning alone improves model performance more sig-
nificantly than self-distillation.

(3) The performance of adding mutual learning and self-distillation
models at the same time is better than adding mutual learning or
self-distillation alone.

We analyze the reason because after adding the hybrid distillation,
the two models not only perform self-distillation through each other’s
shallow network but also complete the transfer of knowledge through
9

mutual learning. Therefore, the model converges faster during the train-
ing process, the final convergence value is lower, and the prediction
error is also smaller. Compared with the self-distillation model, the
mutual learning optimization method has smaller errors, which proves
that the mutual learning-based optimization method performs better
than the self-distillation. We speculate that the reason is that mutual
learning makes the knowledge learned between the networks more
sufficient.

Furthermore, we also verify the impact of the three different self-
distillation methods on the prediction performance through experi-
ments. In addition to distillation based on an encoder and decoder, we
also use self-distillation from the Last Mini-Batch (DLB) method (Shen,
Xu, Yang, Li, & Guo, 2022), which uses its historical information for
self-distillation. The results are shown in Table 11. Among the three
methods based on self-distillation and mutual learning, the prediction
results of the Encoder and Decoder methods that divide the model
according to the structure and distill the shallow structure on the two
datasets are more significant than the DLB. We guess the reason is that
after combining the mutual learning module, the self-distillation based
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Fig. 8. MAPE curve visualization between two models.
Fig. 9. RMSE curve visualization between two models.
Table 9
Training results under different optimizers.
Optimizer 15 30 60

MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

Adam 2.70 7.00% 5.17 3.05 8.30% 6.10 3.41 9.80% 7.01
SGD (momentum = 0.9) 3.03 8.13% 5.81 3.57 10.23% 7.03 4.33 13.45% 8.55
able 10
blation experiment: verify the effectiveness of each part of deep knowledge
istillation.
DCRNN Mutual Self METR-LA PEMS-BAY

learning -distillation MAE MAPE RMSE MAE MAPE RMSE

✓ 3.54 10.20% 7.45 1.97 4.70% 4.63
✓ ✓ 3.45 10.00% 7.07 1.95 4.60% 4.43
✓ ✓ 3.59 9.80% 7.48 1.96 4.60% 4.53
✓ ✓ ✓ 3.41 9.80% 9.80% 1.89 4.50% 4.33
10
on the network structure enables the learning of diverse knowledge
between the two networks.

When selecting different shallow structures, the prediction results
based on the Encoder are better than those of the Decoder. We specu-
late that this is due to the shallower network structure of the Encoder,
which allows for better knowledge retention from the deep network.
This, in turn, has a stronger impact on the overall network. By en-
hancing the feature extraction and perception of the shallow part
between the two networks, the features of the shallow part are fully
extracted, thereby improving the learning ability of the entire network
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Fig. 10. Error analysis boxplots about our model and DCRNN on dataset 1: For the METR-LA dataset, we select all sensor predictions on June 25, 2012, for processing.
Fig. 11. Error analysis boxplots about our model and DCRNN on dataset 2: For the PEMS-BAY data set, we select the predicted values on all sensors on May 29, 2017, for
processing.
Table 11
Controlled experiment: verify the effect of different self-distillation methods combined with mutual learning.
Self-Mutual Encoder Decoder DLB METR-LA PEMS-BAY

MAE MAPE RMSE MAE MAPE RMSE

✓ ✓ 3.41 9.80% 7.01 1.89 4.50% 4.33
✓ ✓ 3.43 9.90% 6.99 1.91 4.60% 4.37
✓ ✓ 3.50 10.20% 7.12 1.92 4.60% 4.41
and enhancing prediction performance. This is also the reason why the
deep knowledge distillation model is based on Encoder self-distillation.

To better compare the experimental results of three self-distillation-
mutual learning methods, we visualize their prediction results on the
PEMS-BAY dataset. Fig. 12 shows that the self-distillation-prediction
curve based on the Encoder method closely aligns with the real value
curve.

Overall, our proposed method utilizes both mutual learning and self-
distillation modules. Experimental findings prove that incorporating
mutual learning or self-distillation modules individually contributes
to enhanced performance. However, when they are combined, the
performance is further enhanced.
11
4.4.2. Extended experiment
To further validate the effectiveness of deep knowledge distillation

in enhancing traffic flow prediction based on graph neural network,
we conducted experimental verification on the DCRNN model and
compared it with the GTS (Graph For Time Series, GTS) model proposed
by (Shang & Chen, 2021), as a benchmark method. A novel method
is proposed in GTS for optimizing graph structures, which aims to
enhance the forecasting of multiple multivariate time series when the
graph is unknown. This method utilizes the DCRNN model as the
benchmark and improves the prediction performance by optimizing the
graph structure. GTS is used as the benchmark model, and a mutual
learning module is added. Two GTS networks are also employed as the
student model, and they learn from each other to facilitate knowledge
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Fig. 12. Prediction results of three different self-distillation methods on the PEMS-BAY dataset: We chose the 1-day true value on 1 sensor on May 29, 2019, and the predicted
results of these three different self-distillation methods.
Table 12
Extended experiment: using GTS as a benchmark model to verify the universality of
mutual learning.

GTS Mutual learning METR-LA PEMS-BAY

MAE MAPE RMSE MAE MAPE RMSE

✓ 3.44 10.00% 7.28 1.95 4.60% 4.46
✓ ✓ 3.37 10.00% 6.98 1.93 4.50% 4.43

transfer. The experiment was conducted on the METR-LA and PEMS-
BAY datasets, and the prediction results for the next 15 min, 30 min,
and 1 h were evaluated. The 1-h forecast results were selected for
comparison.

Table 12 demonstrates that the inclusion of mutual learning leads
to reductions in MAE, MAPE, and RMSE when compared to GTS. This
effect is particularly notable in the METR-LA dataset, where the RMSE
value decreases by 0.3 in comparison to the GTS model. This provides
further evidence that mutual learning has the potential to enhance the
performance of traffic flow prediction models based on graph neural
networks.

4.5. Hyperparametric experiments

We conduct a parameter sensitivity analysis on two important hy-
perparameters when optimizing the deep knowledge distillation model,
both of which come from the loss function: one is the weight coefficient
𝛼 that measures the proportion of different losses to the total loss, which
has almost no effect on self-distillation. Therefore, we only analyze the
weight coefficient 𝛼 of the proportion of mutual learning loss to the
total loss. The other is the effect of distillation temperature 𝑇 on model
prediction performance.

Firstly, analyzing the influence of different weights 𝛼, set the 𝛼 coef-
ficient to [0.1,0.3,0.5,0.7,0.9] to conduct experiments on the METR-LA
dataset, the results are shown in Fig. 13, when 𝛼 = 0.9 or 𝛼 = 0.1, with
the worst effect. 𝛼 = 0.9 means that the mutual learning loss weight is
too large, and the loss weight of the network itself is too low, which
greatly affects the prediction performance of the model. 𝛼 = 0.1 means
that the weight of mutual learning loss is too low, and the mutual
learning ability between networks becomes weaker, which also affects
the prediction performance. The influence of the other three different
weight coefficients on the model is not much different. Among them,
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Table 13
Hyperparameter experiment: verify the influence of different distillation temperatures
T on the experimental results.

T 15 min 30 min 60 min
MAE/RMSE/MAPE MAE/RMSE/MAPE MAE/RMSE/MAPE

1 2.71/5.19/7.13% 3.07/6.13/8.48% 3.43/7.07/9.95%
2 2.71/5.19/7.10% 3.06/6.11/8.42% 3.42/7.03/9.91%
3 2.71/5.18/7.06% 3.06/6.10/8.36% 3.43/7.01/9.81%
4 2.70/5.17/7.06% 3.05/6.10/8.39% 3.41/7.01/9.82%
5 2.72/5.18/7.12% 3.07/6.09/8.46% 3.43/6.99/9.96%
6 2.71/5.19/7.10% 3.06/6.09/8.39% 3.44/7.00/9.82%

the value of 𝛼 = 0.5 on the validation set and the final convergence of
the MAE and loss curves is a little lower than the curve convergence
results of the other two weight coefficients.

It is worth noting that we don’t add the self-distillation to the model
for the sensitivity analysis of 𝛼, so the optimal distillation temperature
should be the 𝑇 when the benchmark only adds mutual learning, which
is different from the selection of the next distillation temperature 𝑇
different.

Next, we explore the effect of the distillation temperature 𝑇 . When
𝑇 = 1, an ordinary softmax is used. When 𝑇 > 1, the value after
softmax will be more evenly and gently distributed. The experimental
results obtained through different distillation temperatures are shown
in Table 13. During our experiments, we adjust the value of different
distillation temperature parameters 𝑇 and observe its effect on the
output of intermediate layer self-distillation and mutual learning loss.
Fig. 14 illustrates the MAE obtained for different values of 𝑇 and
durations used in our model. The comparison on the METR-LA dataset
reveals that the optimal loss value is achieved when the distillation
temperature is set to 𝑇 = 4, irrespective of the time intervals (15 min,
30 min, or 60 min), which outperforms other distillation temper-
atures.

5. Conclusions

Our primary research goal is to develop a hybrid model for traf-
fic prediction. In our case study, we introduce a deep knowledge
distillation model that combines self-distillation and mutual learning
techniques to enhance its feature extraction capabilities and improve
prediction accuracy. To evaluate the performance of our model, we con-
ducted experiments on two real-world datasets. We used a GCN model
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Fig. 13. The influence of different weight coefficients 𝛼: 𝛼 adopts [0.1,0.3,0.5,0.7,0.9] and plot their Loss variation.
Fig. 14. The results obtained at different distillation temperatures T. In the experiment, the coefficient of temperature 𝑇 adopts [1,2,3,4,5,6].
with an encoder–decoder structure as the baseline and incorporated
self-distillation and mutual learning to create a self-learning knowledge
distillation module. Upon verification, integrating this module into
the baseline model results in a noticeable improvement in prediction
accuracy. This approach is applicable for forecasting traffic-related
variables such as volume and density and can be extended to prediction
tasks in various domains.

Our model faces challenges due to using the same neural network
for mutual learning during training. This creates two sets of parameters,
which increases computing resources and yields minimal additional
knowledge. Additionally, we selected two graph neural networks with
the same structure as the student network, resulting in little difference
between their structures and limited additional knowledge gained dur-
ing mutual learning. Furthermore, when extracting traffic flow data
characteristics, we only take into account temporal correlation and
spatial dependence, neglecting other factors such as complex weather
conditions that also affect traffic flow changes.

To tackle the challenges of the model, firstly, we plan to reduce the
parameter count of both networks. One potential approach is refining
13
the parallel connection between the two student networks. Alterna-
tively, employing two distinct networks as student models could enable
mutual learning, thereby extracting more comprehensive knowledge.
Furthermore, we intend to consider other factors impacting traffic flow,
such as weather, and integrate them into the model. For instance, we
propose adopting a multi-task learning framework that simultaneously
predicts traffic flow and weather patterns. Utilizing the interdepen-
dence between these factors can result in more holistic and accurate
traffic predictions, overcoming the current model’s limitation of relying
solely on time and spatial dependencies. Finally, we aim to conduct
further data analysis to uncover potential patterns and trends, thereby
enhancing the model’s performance.
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