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ABSTRACT: Quantum computing is emerging as a new computational paradigm with the potential to transform several research
fields including quantum chemistry. However, current hardware limitations (including limited coherence times, gate infidelities, and
connectivity) hamper the implementation of most quantum algorithms and call for more noise-resilient solutions. We propose an
explicitly correlated Ansatz based on the transcorrelated (TC) approach to target these major roadblocks directly. This method
transfers, without any approximation, correlations from the wave function directly into the Hamiltonian, thus reducing the resources
needed to achieve accurate results with noisy quantum devices. We show that the TC approach allows for shallower circuits and
improves the convergence toward the complete basis set limit, providing energies within chemical accuracy to experiment with
smaller basis sets and, thus, fewer qubits. We demonstrate our method by computing bond lengths, dissociation energies, and
vibrational frequencies close to experimental results for the hydrogen dimer and lithium hydride using two and four qubits,
respectively. To demonstrate our approach’s current and near-term potential, we perform hardware experiments, where our results
confirm that the TC method paves the way toward accurate quantum chemistry calculations already on today’s quantum hardware.

1. INTRODUCTION
Quantum computing1,2 has the potential for providing a
significant speedup in the simulation of natural sciences
compared to classical computational approaches. However, the
implementation and application of quantum algorithms to
relevant problems, e.g., in electronic structure theory, are still
in its infancy. In this work, we show that the solution of
molecular electronic structure problems using an explicitly
correlated approach based on the transcorrelated (TC)
method3−7 can take advantage of a quantum computing
implementation. In fact, by enabling accurate and affordable
quantum chemistry calculations for relevant problems, we
argue that TC can become the method of choice for near-term
demonstration of quantum advantage with state-of-the-art,
noisy quantum computers.
Computational quantum chemistry is concerned with the

solution of the electronic Schrödinger equation (SE) to obtain
ground and excited state wave functions, their energies, and

corresponding molecular properties.8 Sufficiently accurate
modeling of the correlated motion of electrons would allow
for the description of many groundbreaking yet unsolved
physical and chemical phenomena, such as unconventional
high-Tc superconductivity,

9 photosynthesis,10 and nitrogen
fixation.11 More generally, an efficient solver for the SE will
make it possible to predict and design materials with novel and
improved chemical and physical properties.
A wide variety of approximate quantum chemistry computa-

tional approaches have been developed, ranging from
inexpensive mean-field Hartree−Fock (HF)8 to more reliable
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but expensive density matrix renormalization group
(DMRG),12 coupled cluster (CC),13 and quantum Monte
Carlo (QMC) methods.14 At their limit, i.e., in the absence of
truncation and approximations, several such methods can
approach the exact result, named the full configuration
interaction (FCI) solution. FCI scales combinatorially with
the number of electrons in a system and the size of the utilized
basis set expansion; see Figure 1a,b.
The accuracy of typical quantum chemistry calculations is

strongly affected by the quality of the basis set, which is used to
expand the many-electron wave function in terms of one-
electron basis functions.8 Such functions are commonly
smooth Gaussian-type orbitals (GTOs),15,16 which produce
tractable one- and two-body integrals, but fail to capture the
electron-cusp condition.17 The cusp condition is a sharp
feature of the exact ground state wave function induced by the
divergence of the Coulomb potential at electron coalescence,
which can typically only be captured through large basis sets.
Using a larger number of basis functions results in a sizable

increase in the required computational resources (see Figure
1a,b). Thus, more accurate methods are practically limited to
small problem sizes even when using high-performance
computing resources.
Quantum processors, on the other hand, harness quantum

mechanical phenomena to potentially enable a significant leap
in computation.18 By using quantum bits (qubits) as the basic
unit of information and computation, quantum computers can
encode exponentially growing problem sizes, 2n, into the
Hilbert space of n qubits. Specifically designed quantum
algorithms can then leverage wave function superposition and
entanglement to solve certain classically challenging prob-
lems.19 Despite this potential, the sizes of quantum chemistry
systems treatable on current noisy quantum hardware are still
relatively modest and do not yet exceed the capability of
conventional computing approaches. The main challenges to
solve are qubit decoherence, gate noise, and the limited
number of available qubits as, in the case of quantum
chemistry, the number of qubits scales with the size of the

Figure 1. (a) Electronic cusp and increasing basis size to capture sharp features of the exact wave function. (b) Hierarchy of methods and basis size
toward the exact complete basis set (CBS) solution. (c) Jastrow Ansatz to capture the cusp feature, leaving a smoother |Φ({r})⟩ to solve for. (d)
VarQITE algorithm, where the metric, A, and the gradient, C, are measured on the QPU. The linear system of equations Aθ̇ = −C is solved on a
CPU to obtain the new parameters, which are fed back to the QPU. (e) Workflow of the TC-VarQITE approach to solve for the right eigenvector
and groundstate energy of the TC Hamiltonian. On a CPU, we did the following: (c1) Perform a Hartree−Fock in a chosen basis set and optionally
a MP2 calculation (using PySCF75,76 or OpenMolcas77 in this work) to obtain starting orbitals and |ϕ0⟩. (c2) Optimize the Jastrow factor with
variational Monte Carlo (VMC). (c3) Compute the 2- and 3-body integrals for the subsequent electronic structure calculation. Then, we enter the
quantum-classical optimization loop, sketched in (d), consisting of (q1) preparing a parametrized Ansatz and measuring the gradient (q2a) and the
metric (q2b). (f) Measurements of operators containing 2-body and 3-body terms, scale as N4 (solid blue line) and N6, respectively, where N is the
number of orbitals in the basis set. The TC method reduces the number of necessary orbitals by about an order of magnitude (green dash-dotted
line). Neglecting 3-body excitations with six unique indices59,60 or mean-field approximations78 reduces the scaling of the TC method to the fifth or
even the fourth power of N (with negligible errors in the systems studied in this work).
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required basis set. Thus, many methods to reduce the number
of necessary qubits have been recently proposed. Among
others, there are approaches leveraging system symmetries,
others based on concepts such as entanglement forging,20

tensor hypercontraction,21 low-rank representations,22 meth-
ods for reducing the basis set size23 using Daubechies
wavelets,24 basis-set-free solutions,25 or Hamiltonian down-
folding techniques.26−30

Explicitly correlated methods,31−36 like the R1237 or F12
approaches,38,39 can reduce the need for large basis set
expansions by directly incorporating the electronic cusp
condition in the wave function Ansatz. Recently, it has been
shown that methods based on these explicitly correlated
approaches can yield accurate results already with relatively
small basis sets and thus reduce the number of necessary qubits
on quantum hardware.23,40−43 Motta et al.23 have used
canonical transcorrelated F12 (CT-F12) theory44−46 to study
several small molecular species, requiring far less quantum
resource than conventional approaches. Kumar et al.43

extended CT-F12 to obtain accurate excited state energies
with reduced quantum resources, and Schleich et al. used
[2]R12 theory

47 to a posteriori correct energy estimates
obtained on quantum hardware.
In the TC approach,4,6,7,48−58 a correlated Ansatz−exactly

incorporating the cusp condition−is applied and used to
perform a similarity transformation of the electronic
Hamiltonian, Ĥ, describing the ab initio chemical system.
The undisputed benefit of the TC method is that it yields
highly accurate results with very small basis set expan-
sions49,59,60 and thus reduces the number of required qubits
as well as the circuit depth on a quantum computer. The
reduced circuit depth arises because the TC Hamiltonian has a
more compact ground state,41,42,48 which can be accurately
represented with shallower circuits.
The main challenge concerning implementing the TC

approach is that the corresponding Hamiltonian is non-
Hermitian. Most near-term quantum computing approaches
rely on the minimization of the expectation value of a
Hermitian operator (i.e., the energy as the expectation value of
the Hamiltonian Ĥ) using the variational quantum eigensolver
(VQE).61 To overcome this limitation, in this work, we use a
variational Ansatz-based formulation of the projective quantum
imaginary-time evolution (QITE),62−66 namely, the variational
QITE (VarQITE) algorithm.67,68 With minor modifications,
VarQITE enables the study of non-Hermitian problems,41,42

such as optimizing the TC Ansatz in a quantum computing
setting.
The main differences between CT-F12 and the TC approach

are (a) CT-F12 uses a unitary operator in the similarity
transformation, which does not terminate naturally. Con-
sequently, however, the transformed Hamiltonian remains
Hermitian. (b) Two major approximations are used in CT-F12
theory. The Baker−Campbell−Hausdorff (BCH) expansion of
the similarity transformation is truncated at the second order,
and in the double commutator term, an effective 1-body Fock
operator is used instead of the full Hamiltonian. The benefits
of CT-F12 are that the Hamiltonian remains Hermitian and
contains only up to 2-body terms. Additionally, by using a F12
Slater-type geminal,38 the spin dependence of the electron−
electron cusp69 can be taken into account.70 Drawbacks
include (i) that the BCH expansion in CT-F12 is truncated at
the second commutator, and any higher-than-two-body
interactions are ignored. This truncation induces errors that

are not easy to eliminate, especially in the case of strong static
correlations;45,71 (ii) the need to use a projection to ensure the
orthogonality between the small and the augmented basis set,
which can make the use of more sophisticated correlators, as
used in our study, very complicated. As a result, CT-F12 uses a
simpler correlated Ansatz and does not correct 1-body
incompleteness,43 which can lead to worse results compared
to TC approaches. The 1-body incompleteness was recently
addressed in the work by Kumar et al.43 Opposed to the TC
and CT-F12 approach, [2]R12 is an a posteriori correction,
where one- and two-particle reduced density matrices,
measured on quantum hardware, are used to improve final
energy estimates.
To date, the largest quantum chemistry calculations

performed on real quantum computers include Hartree−
Fock calculations of a 12-atom hydrogen chain and a diazene
isomerization72 along with correlated calculations of BeH2

73

and H2O.
74 The primary purpose of these calculations was to

showcase the proof-of-concept of quantum computing using
small basis sets rather than accuracy. In contrast, the TC
method will pave the way toward accurate quantum chemistry
calculations on quantum computers, allowing for precise
calculations close to the CBS limit using small basis sets.
Although explicitly correlated approaches, such as TC,
significantly reduce the resource requirements for conventional
methods such as FCIQMC or DMRG, practical problem sizes
still quickly surpass those that these approaches can handle.
We, therefore, believe that by reducing the number of qubits
and gate operations the TC approach will make reliable
quantum chemistry calculations of relevant problems with
current and future error-mitigated quantum devices possible.
Potentially surpassing the capabilities of conventional
approaches in the future.

2. THEORY AND ALGORITHMS
Within the Born−Oppenheimer approximation, the molecular
Hamiltonian in first quantization (in atomic units, ℏ = |e| = me
= 4πϵ0 = 1) is given by

i
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r R r r
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In eq 1, ne is the number of electrons, Na is the number of
nuclei, Ra and Za are the position and atomic number of
nucleus a, and ri is the position of electron i. The divergence of
the Coulomb potential,

r
1

ij
, induces a sharp cusp-like feature of

the exact electronic wave function, |Ψ0(r)⟩, at electron
coalescence, rij = |ri − rj| = 017 (Figure 1a). This sharp feature
of |Ψ0(r)⟩ is challenging to capture using basis functions based
on smooth GTOs and requires the use of large basis sets for
accurate quantum chemical results (Figure 1b).
By introducing an explicit dependence on the electron−

electron distances into the wave function via a Jastrow
Ansatz,79 e J| = | , it is possible to exactly describe the
nonsmooth behavior of |Ψ⟩, while leaving a much smoother
wave function, |Φ⟩, to solve for (Figure 1c). J J r r( , ..., )n1= is
an optimizable correlator depending on the positions of the
electrons. The TC method4 incorporates this correlated Ansatz
directly into the Hamiltonian of the system via a similarity
transformation,
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H E

original: correlated ansatz:

, with e J| = | = | (2)

H E H H

transcorrelated problem:

, e eJ J| = | = (3)

This similarity transformation removes the Coulomb
singularity of the original molecular Hamiltonian, as shown
in eq 1,80 and consequently increases the smoothness of the
sought-after ground state wave function |Φ⟩.81 For the
molecular Hamiltonian, eq 1, the TC Hamiltonian,
H He eJ J= , can be calculated exactly.49 H possesses non-
Hermitian two-body and three-body interaction terms.
In our applications, we use a Drummond−Towler−Needs

Jastrow factor,82,83 which we optimize with VMC84−86 (with
an efficient scaling of n( )e

3 on conventional hardware) using
the CASINO package.87,88 We optimize the Jastrow factor by
minimizing the variance of the TC reference energy, as
proposed recently in ref 86. We then use the TC Hamiltonian
integral (TCHint) library to calculate the 2- and 3-body
integrals required to construct the molecular Hamiltonian in
second quantization (Figure 1e). We want to point the
interested reader to the recent ref 86, the Methods Section and
the Supporting Information89 for more details. Sample input
files of the VMC optimization and integral calculation can be
found in the Github repository accompanying the paper.90

Due to it being non-Hermitian, the TC Hamiltonian can
theoretically yield energies below the exact CBS limit when
using a finite basis set. However, since the TC Hamiltonian
originates from a similarity transformation, the correct
eigenvalues are obtained when using a large enough basis
(approaching the CBS limit). The issue of nonvariationality
has been thoroughly studied in ref 86 for the Jastrow factors
and VMC optimization used in this work. It has been found
that when optimizing the Jastrow factor by minimizing the
variance of the TC reference energy, as done in this work, the
results usually converge to the CBS limit from above.
Additionally, in this and all recent studies using the TC
approach (combined with a variety of methods and applied to
different types of problems),48,49,55−57,78,86 the amount by
which the TC results falls below the CBS limit is in all cases
small enough to be safely ignored in practice.
Due to it being non-Hermitian, H̅ has different left

E H( )i
L

i i
L| = | and right H E( )i

R
i i

R| = | , eigenvector
solutions, which form a biorthonormal basis, i

L
i
R

i j,| = .
Another consequence of the non-Hermiticity of the TC
Hamiltonian is that VQE cannot be used to solve for the
ground state as the variational principle does not apply. To
circumvent this obstacle, in this work, we solve for the right
ground state wave function, |Φ0R⟩, (we drop the superscript “R”
from here on), with the VarQITE algorithm.41,68 An additional
benefit of the TC method is that the right ground-eigenvector
of H̅, |Φ0⟩, has a more compact form compared to the non-TC
ground state solution, |Ψ0⟩.42,48 Consequently, |Φ0⟩ is easier to
prepare on quantum hardware with shallower circuits.42

QITE can be recast into a hybrid quantum-classical
variational form (VarQITE)41,68 (Figure 1d), obtained by
applying McLachlan’s variational principle to the imaginary-
time SE

H E( / ) ( ) 0+ | = (4)

where τ = it is imaginary time, | = | is the norm
of a quantum state |Φ⟩, and E H( ) ( )= | | is the
expected energy at time τ. With a parametrized circuit Ansatz,
U( ( )), with nθ parameters, to represent/approximate the
target right eigenvector, U( ( )) ( )0| =| , of the TC
Hamiltonian, eq 4 leads to a linear system of equations

A C= (5)

which is solved on a classical computer. The updated
parameters are obtained from θ(τ + Δτ) = θ(τ) + Δτθ̇ for a
chosen time-step, Δτ. The vector C is composed of energy
gradients, while the matrix A is related to the quantum Fischer
information matrix or Fubini-Study metric91 and encodes the
metric in parameter space of the Ansatz Û(θ). The VarQITE
method can circumvent potential parameter optimization
pitfalls,91,92 by a deterministic update of the circuit parameters
according to eq 5. Both quantities C and A in eq 5 are sampled
from the quantum circuit. This comes at the cost of n( )2

circuit evaluations to measure the matrix A at each iteration.
However, accurate approximations93 have been proposed,
which reduce the measurement scaling to linear,91,94 or even
constant scaling,95 and it was recently shown by van Straaten
and Koczor96 that the measurement cost of the gradient will
dominate for large-scale quantum chemistry applications. The
implementation of the VarQITE algorithm and the necessary
modifications for non-Hermitian Hamiltonians (TC-Var-
QITE) are detailed in Methods Section.
The evaluation of the 3-body terms of the TC Hamiltonian

might raise the question of scalability, as a 3-body term
requires N( )6 measurements, where N is the number of basis
functions/(spin-)orbitals in the basis set. However, one should
consider that for an efficient implementation of the TC-
VarQITE algorithm, one does not need an accurate evaluation
of the energy (with all 3-body terms) at each iteration until
convergence is reached. This can be monitored by calculating
the norm ∥A−1C∥. Furthermore, as the TC method enables a
faster convergence toward the CBS limit than conventional
approaches, we expect an overall decrease in the number of
orbitals N (and thus qubits) by an order of magnitude. This
leads to a N( /10)6[ ] scaling, i.e., to a decrease of the
prefactor by 6 orders of magnitude. Overall, this reduction
implies that in the regime up to 1000 qubits, the TC-VarQITE
method entails orders of magnitude fewer measurements than
in the non-TC case (see Figure 1f). Furthermore, recent
studies59,78,86 show that the number of terms in the TC
Hamiltonian can be reduced to (N/10)5 (by neglecting 3-body
excitations with six unique indices59) or even to (N/10)4 by
neglecting the pure normal ordered97 three-body operators and
incorporating the remaining 3-body contributions in the two-,
one-, and zero-body integrals78 (shifting the crossover far
beyond 1000 qubits). The applicability of these types of
approximations must be carefully considered for each studied
system. However, the N4-scaling method introduced in ref 78
has recently been applied to the entire “HEAT” benchmark
set98 and the N5 scaling approximation has been used in ref 59
for all first-row atoms, as well as the molecular systems CH2,
FH and H2O, and in ref 55 for relative energies of molecular
systems.
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According to the work by Loaiza et al.,99 the 1-norm, ∑i|ci|
of the coefficients, ci, of the linear combination of unitaries
decompositions for molecular electronic structure Hamilto-
nians

H c Pi i= (6)

is the main figure of merit associated with the quantum circuit
complexity to measure the Hamiltonian. We measured the 1-
norm of the coefficients corresponding to diagonal, one-, two-
and three-body operators of the LiH (TC) Hamiltonian and
compiled the results in Table S9 in the Supporting
Information.89 We found that the normalized one-norm of
the three-body operators, ∑i,3‑body|ci|/∑i|ci|, is substantially
smaller (below 0.1%) than the remaining contributions in the
qubit Hamiltonians. Consequently, appropriate measurement
cost reduction schemes99−104 can substantially lower the
overhead due to the 3-body terms. Additionally, one can
ameliorate the quantum computing measurement cost problem
with approaches like informationally complete positive
operator-valued measures105−108 classical shadows109 or
shadow spectroscopy.110

Concerning the VMC optimization of the Jastrow factor, this
considers only occupied orbitals in the initial HF solution.
Virtual orbitals, constructed, e.g., from commonly used
correlation-consistent basis sets16 are not optimized for the
TC method. Following refs 111−113, we will therefore use
preoptimized natural orbitals (NOs) from second-order
Møller−Plesset (MP2) perturbation theory calculations. In
particular, orbital preoptimization works exceptionally well in
conjunction with the TC method by efficiently truncating the
virtual orbital space and reducing the resource (qubit)
requirements further (see the Methods Section and the
Supporting Information89 for details). For a detailed
comparison between the use of HF orbitals and MP2-NOs
for LiH calculations, see the Sections IC and II of the
Supporting Information.89 The overall workflow of the TC-
VarQITE algorithm is shown in Figure 1e.
We want to summarize the additional computational cost of

our proposed TC-VarQITE approach using VMC-optimized
Jastrow factors and MP2-NOs compared with running VQE
using HF orbitals. The baseline cost of VQE + HF is as a
formally quartic scaling of HF with the number of orbitals,

N( )4 , (although practically the cost is usually closer to
N( )3 ) and a quantum measurement scaling of VQE of
N( )4 . These estimates assume “vanilla” implementations of

HF (ignoring optimized implementations, i.e., using local
approximation or density-fitting) and VQE (with no gradient
information, optimized classical optimizers, or advanced
grouping and measurement strategies). The additional cost
of our proposed method is

• In the case of using MP2-NOs: Assuming a standard
implementation, ignoring, i.e., local or density fitting/
resolution of identity approximation, MP2 formally
scales as N( )5 .

• The optimization of the Jastrow factor using VMC has a
square scaling, n( )e

2 , in memory and a cubic time
scaling with the number of electrons, n( )e

3 (ignoring,
i.e., optimizations based on partitioning or subsampling).

• Ignoring any approximations to the 3-body terms, the
calculation (time) and the storage (memory) of the TC
integrals formally scale as N( )6 .

• Measuring the metric for (TC−)VarQITE (ignoring any
approximations) scales as n( )2 and measuring the
gradient (with TC 3-body terms) scales as n N( )6· .

In quantum chemistry applications, the number of electrons
is usually (much) smaller than the number of orbitals, ne < N.
Thus, the main increase in computational cost is the N( )6

scaling due to the TC 3-body terms. However, as argued above
and shown in Figure 1f, the drastic reduction in the number of
necessary orbitals (up to an order of magnitude in this work, N
→ N/10) due to the TC method outweighs this computational
overhead in the range of up to 1000 qubits. Accurate
approximations to the 3-body terms can reduce the scaling
overhead of TC-VarQITE to N( )5 , extending its range of
advantage compared to “vanilla” VQE well beyond 1000s of
qubits.114−131

3. RESULTS AND DISCUSSION
We demonstrate the advantages of the TC approach with three
applications on atomic and molecular systems: the beryllium
atom and the hydrogen and lithium hydride molecules. If not
specified differently, simulations are performed using HF
orbitals and the unitary coupled cluster singles doubles
(UCCSD) Ansatz,132,133 which gives reasonable indications
about the performance of the TC method compared to the
non-TC one. To demonstrate its potential, in this study, we
initially solve the TC-VarQITE algorithm in the matrix
formalism (statevector simulation), implying that all gates are
implemented exactly (neither qubit decoherence nor gate
infidelities are considered), and sampling noise is ignored. Up
to 12 qubits, these noise-free results were obtained by
simulation of quantum hardware. In contrast, data of larger
calculations were obtained with a classical solver in the form of
the TC-full configuration QMC (TC-FCIQMC) meth-
od.48,49,134

To enable hardware calculations, we also evaluated LiH with
TC-VarQITE using a hardware-efficient Ansatz (HEA)73 and
compared the results with non-TC calculations. Finally, to
demonstrate the current and near-term hardware applicability
of the TC approach, we calculated the LiH dissociation energy
both with a noisy quantum circuit simulator and with actual
hardware (HW) experiments on the 7-qubit ibm_lagos device.
Note that since the number of qubits needed to do a

practical quantum computation is approximately equal to the
number of spin−orbitals, in what follows, we use these two
terms interchangeably. Details on the basis sets used in our
calculations are provided in the figure captions and the
Supporting Information.89

3.1. Beryllium Atom. Figure 2 shows all-electron TC-
VarQITE results as a function of the basis set size for the
beryllium atom. To achieve results within chemical accuracy
compared to the CBS limit (i.e., 1 kcal/mol = 1.6 mHartree)
(the gray area in Figure 2) with an FCI calculation, one would
need 168 qubits, far beyond what can currently be used
efficiently. The TC method, on the other hand, provides
energies within chemical accuracy of the exact CBS limit while
requiring only 18 qubits. This near-CBS accuracy shows the
potential of utilizing an explicitly correlated method (without
any approximation) in the form of the TC approach to enable
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near-term quantum devices to yield accurate results for
relevant quantum chemical problems. We want to note that
Schleich et al.40 have recently also obtained highly accurate
results for the beryllium atom using small basis sets using the
approximate VQE+[2]R12 explicitly correlated method.
3.2. Hydrogen Molecule. Figure 3a compares TC-

VarQITE results for the H2 bond dissociation with CBS
limit results. We also compare this to conventional FCI
calculations in a cc-pVDZ basis set (corresponding to 20
qubits). TC-VarQITE results are shown for increasing basis set
sizes using 4, 8, and 20 qubits, respectively. TC-VarQITE
allows near chemically accurate results (with respect to the
CBS limit, cf., gray area in Figure 3a) across the entire binding
curve using only 8 qubits. It is noteworthy that whereas we
reach near chemical accuracy with 20 qubits, conventional
methods require at least 120 spin−orbitals for the same
performance (see the Supporting Information89).
The additional benefit of increased compactness of the right

eigenvector of the TC Hamiltonian42,48 can be appreciated in
Figure 3c. The TC right eigenvector retains a more significant
Hartree−Fock weight (cHF) and, thus, single-reference
character across the whole H2 binding curve. Note how the
increase of the cHF component is particularly pronounced

relative to the original ground state (no-TC) wave function in
the strongly correlated dissociation regime, which is challeng-
ing for standard post-HF methods. Like the Hubbard model
studied in ref 42 this increased compactness results in
shallower circuit Ansaẗze for the ground state wave function.
3.3. Lithium Hydride. Figure 4a-b shows the correspond-

ing error analysis and comparison for the LiH molecule. TC-
VarQITE provides drastically improved energies compared to
conventional FCI/cc-pVDZ calculations (corresponding to 38
qubits). It is striking that it manages to do that by using only
the four most occupied MP2-NOs (see the Methods Section
and the Supporting Information89), requiring only 8 qubits on
quantum hardware. TC-VarQITE yields results within or near
chemical accuracy w.r.t. CBS limit (cf. gray area in Figure 4a)
across the whole binding curve. The statistical error analysis
shown in Figure 4b demonstrates how with just 3 or 4 MP2
NOs (corresponding to 6 and 8 qubits using a Jordan−Wigner
Fermion-to-qubit encoding, respectively) TC-VarQITE readily
outperforms conventional methods, even when these are
leveraging more orbitals. Recently, Motta et al.23 and Kumar et
al.43 obtained highly accurate results for H2 and LiH using
small basis sets using the approximate CT-F12 explicitly
correlated method.
We note that in Figure 4c, the resulting “compactification”

of the wave function (and corresponding circuit) is much more
pronounced for LiH than for H2. This increased compactness
suggests an increasing benefit of the TC approach for larger
systems and exemplifies the favorable scalability of the method.
With an HF coefficient greater than 0.99 over the entire
dissociation profile, the TC right eigenvector can be efficiently
mapped to exceedingly shallow quantum circuits suited for
hardware calculations, as shown in Figure 5a.
With a TC Hamiltonian, we can calculate the dissociation

energy of LiH within chemical accuracy to experiment with
less than ten qubits (Figure 4d), a hardware cost that is
compatible with experiments on current and near-term
quantum devices. In contrast, no-TC methods would require
a basis set as large as cc-pVTZ, corresponding to 88 spin−
orbitals, to reach comparable results, as shown in Figure 4d.
To further substantiate the near-term potential of TC-

VarQITE, we study the equilibrium bond distance of LiH
using 3 MP2-NOs and a HEA.73 In this instance, we use
repeated layers of Ry rotational gates (applied to each qubit)
followed by linear entangling of CNOT gates (see Figure 5b).

Figure 2. All-electron TC-VarQITE and non-TC FCI results for the
beryllium atom using HF orbitals as a function of the number of
spin−orbitals (or qubits). TC-VarQITE reaches chemical accuracy
(gray area) of CBS limit estimates135 (black dashed line) using only
18 qubits.

Figure 3. (a) Energy errors for TC calculations of the H2 bond dissociation w.r.t. CBS limit results (mH vs Å). TC-VarQITE calculations are based
on HF orbitals in a STO-6G (4 qubits), 6-31G (8 qubits), and cc-pVDZ (20 qubits) basis sets. Also shown are no-TC FCI/cc-pVDZ calculations.
The gray bar indicates chemical accuracy. (b) Error statistics in the form of the maximum error (MAX), the mean average error (MAE), and the
nonparallelity error (NPE) for calculations shown in (a). (c) Hartree−Fock weight in the ground state wave function of the original Hamiltonian
(no-TC), the left, ⟨Ψ0L| and right, |Ψ0R⟩, eigenvectors of the TC Hamiltonian, all computed in the cc-pVDZ basis set.
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Parity encoding and 2-qubit reduction are also applied in this
example.
Errors of this approach with respect to exact (state vector)

UCCSD results are shown as a function of the number of
Ansatz layers in Figure 5a. Already with two layers (16 single
qubit Ry gates and 6 CNOT gates), the results are within 10−3

Ha from the UCCSD reference. To bring this result into
perspective, not even a full cc-pVDZ basis (36 qubits with
parity reduction) calculation would enable this level of
accuracy with conventional methods (Figure 4c).
To test the hardware (HW) applicability of TC-VarQITE,

we have applied it to calculate the LiH dissociation energy,

which is known experimentally (Table 1). This calculation was
done using a one-layer version of the HEA shown in Figure 5b,
while initializing in the HF state, |ΦHF⟩, first in QASM
simulations, then on HW (further details are provided in the
Supporting Information). To account for the effect of noise,
which causes raw QASM/HW results to be widely off the mark
(Figure 4d), error mitigation was applied. We have separately
tested two techniques: ZNE138,139 and REM,140 both alongside
readout error mitigation, details of which can be found in the
Supporting Information.89 Even though the standard devia-
tions of our HW results are sizable due to noise, with error
mitigation, TC-VarQITE yields QASM and HW predictions of

Figure 4. (a) Energy error of TC-VarQITE calculations using the three and four most occupied MP2-NOs in a cc-pVDZ basis for LiH w.r.t. CBS
limit estimates in mH vs bond distance. We compare with no-TC FCI/cc-pVDZ (38 qubits) calculations using HF orbitals. (b) MAX, MAE, and
NPE values for results shown in (a). (c) Hartree−Fock coefficient, cHF, of the all-electron ground state wave function using 14 MP2-NOs for the
original Hamiltonian (no-TC) and the left, ⟨Ψ0L| and right, |Ψ0R⟩, eigenvectors of the TC Hamiltonian. Because the compactification of the right
eigenvector is more pronounced for larger systems, a higher number of MP2-NOs are used to demonstrate this behavior. (d) LiH dissociation
energy estimates (in mH) obtained with the TC method using HF orbitals in an STO-6G, 6-31G, and cc-pVDZ basis set (blue circles), MP2 NOs
(orange squares), and conventional no-TC calculations (green diamonds) as a function of the number of spin−orbitals/qubits compared to
experiment.136,137 QASM simulations and HW experiments on the ibm_lagos device are shown as triangles and stars, respectively. QASM and HW
calculations used 3 MP2-NOs (4 qubits with parity encoding, see circuit in Figure 5b). Two independent error mitigation techniques [reference
error mitigation (REM) and zero noise extrapolation (ZNE)] were applied to the noisy QASM/HW results. The gray bars indicates chemical
accuracy.

Figure 5. All-electron TC-VarQITE statevector simulations of LiH at equilibrium bond distance with 3 MP2-NOs. (a) Energy error (in mH) of the
Ry-Ansatz simulations w.r.t. the TC-FCI energy as a function of the number of used layers. Two layers of the Ry-Ansatz suffice to obtain results
within 1 mH of TC-FCI/cc-pVDZ using 3 MP2 NOs. (b) 1-layer Ry-Ansatz with linear entanglement and a final rotation layer.
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the LiH dissociation energy close to (HW + ZNE) or within
(HW + REM) chemical accuracy of the experimental results.
3.4. Comparison with Experimental Data and

Quantum Hardware Requirements. To further evaluate
the TC-VarQITE approach, we calculated equilibrium bond
lengths, Re, and vibrational stretching frequencies, ωe, (in
addition to the above-studied dissociation energies, D0) for the
H2 and LiH molecules and benchmark them against available
experimental data (Table 1) as well as highly accurate CT-F12
results by Motta et al.23 We note excellent agreement for all
spectroscopic quantities obtained with TC-VarQITE using
only two qubits for H2 and four qubits for LiH and consistently
equal good results using 6 qubits (see the Supporting
Information89 for details).
Estimates on the necessary quantum hardware requirements

to obtain the results of Table 1 with TC-VarQITE are

summarized in Table 2. We report the number of Ansatz
parameters, the number of CNOTs, the total number of (1-
and 2-qubit) gates, and the circuit depth−the number of
quantum gates that cannot be executed simultaneously. We
also show selected estimates of calculations without trans-
correlation (no-TC) and available data by Motta et al.23 using
the CT-F12 approach. All our estimates use parity Fermion-to-
qubit encodings (with a subsequent 2-qubit reduction) and all
but one use the default UCCSD implementation of Qiskit.142

The entry indicated by TC + HEA employs a 2-layer hardware
efficient Ry Ansatz with linear entangling shown in Figure 5b
that yields sub microhartree precision for LiH at equilibrium
bond distance (Figure 5a).
The results of Table 2 demonstrate the drastic reduction in

the necessary quantum resources, not only in the total number
of qubits but also in the required circuit depth. TC-VarQITE
results for H2 using an STO-6G basis (two qubits with parity
encoding) need only 4 CNOT gates and a circuit depth of 14
to yield results closer to experiment than no-TC or CT-F12
calculations23 requiring over 400 CNOTs. The powerful
combination of TC with MP2-NOs is demonstrated for LiH.
TC-VarQITE using 3 MP2-NOs (4 qubits with parity
encoding) requires only 172 CNOTs and a circuit depth of
275 to yield highly accurate spectroscopic data. Alternative
approaches (no-TC or CT-F12) need larger basis sets, more
qubits, and much deeper circuits to achieve a similar accuracy.
Using hardware-efficient Anaẗze further drastically reduces the
TC-VarQITE hardware requirements to only 6 CNOT gates
and a quantum circuit depth of 10.
On the other hand, Table 2 also demonstrates the drawback

of the TC approach in the form of the increased number of
Pauli terms due to the 3-body in the Hamiltonian, as shown in
eq 2. That is, the H2 TC Hamiltonian using a 6-31G basis (6
qubits with parity encoding) has 607 terms compared to the
235 terms of the CT-F12 and 159 terms of the original (no-
TC) Hamiltonian. However, with TC-VarQITE, using an
STO-6G basis, and thus only 7 Pauli terms, suffices to reach
the same accuracy as other methods in larger basis sets.

4. CONCLUSIONS AND OUTLOOK
This paper describes a quantum computing implementation of
an explicitly correlated method based on the TC approach.
The TC method drastically reduces the number of required
qubits and circuit depth to obtain results within chemical

Table 1. Comparison With Experimental Data136,141a

H2

qubitsb Re (Å) D0 (eV) ωe (cm−1)

no-TCc 2 0.7330 3.67 4954
6 0.7462 3.87 4297
18 0.7609 4.19 4353

CT-F12f 6 0.7397 4462
TCd 2 0.7346 4.69 4435

6 0.7428 4.66 4361
exp. 0.7414 4.52 4401

LiH

qubits Re (Å) D0 (eV) ωe (cm−1)

no-TCc 10 1.5422 2.66 1690
20 1.6717 1.80 1283
36 1.6154 2.17 1360

CT-F12g 18 1.615 1385
TCe 4 1.6032 2.42 1377

6 1.5998 2.47 1390
exp. 1.5949 2.47 1405

aEquilibrium distances (Re), dissociation energies (D0), and vibra-
tional frequencies (ωe) are shown for H2 and LiH with and without
TC. Results closest to Re experimental data by Motta et al.

23 using the
CT-F12 method are also reported. bWith parity encoding and 2-qubit
reduction. cSTO-6G, 6-31G, and cc-pVDZ basis sets. dSTO-6G and
631-G basis. e3 and 4 MP2-NOs. For more details, see the Supporting
Information.89 fq-UCCSD/6-31G results of ref 23. gq-UCCSD/comp
results of ref 23.

Table 2. Estimate of Quantum Circuit Requirements for the Calculation of Spectroscopic Constants in Table 1 Using Parity
Encoding With 2-Qubit Reduction and a Default UCCSD Ansatz (Except the Last Row)a

system basis orbitals qubits method Paulisb parameters gates CNOTs depth

H2 STO-6G 2 2 no-TC 5 3 21 4 14
H2 STO-6G 2 2 TC 7 3 21 4 14
H2 6-31G 4 6 no-TC 159 15 1271 560 779
H2 6-31G 4 6 TC 607 15 1271 560 779
H2 6-31G 4 6 CT-F12c 235 15 741 476 604
LiH cc-pVDZ 18 36 no-TCc − 323 110,230 89,080 95,507
LiH 6-31G 10 18 CT-F12c 8527 99 12,087 9644 10,780
LiH MP2-NOs 3 4 TC 108 8 430 172 275
LiH MP2-NOs 3 4 TC + HEAd 108 12 20 6 10

aNumber of parameters of the quantum circuit Ansatz, number of two-qubit CNOTs and the total number of gates (obtained with Qiskit’s
count_ops() function), as well as circuit depth (sets of quantum gates that cannot be executed simultaneously). Data for CT-F12 calculations are
taken from ref 23. bTerms smaller than 10−8 Ha in absolute value are omitted. cFrom ref 23. dUsing a 2-layer hardware efficient Ry Ansatz with
linear entangling shown in Figure 5b that yields sub microhartree precision for LiH at equilibrium bond distance (Figure 5a).
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accuracy to experiment. Here, we consider the exact TC
formalism and propose efficient theoretical and computational
solutions to overcome the challenges preventing its imple-
mentation on near-term quantum computers.
By incorporation of the electron cusp condition, the TC

method approaches CBS limit results and enables chemically
accurate calculations with relatively small basis set sizes.
Because the TC Hamiltonian is non-Hermitian, it cannot be
directly combined with the conventional VQE. To overcome
this issue, we made use of the variational (Ansatz-based) QITE
algorithm (VarQITE),68 for which recent advances42 enable an
efficient extension to non-Hermitian problems. In addition, we
employ a preoptimized set of NOs obtained from second-order
Møller−Plesset perturbation theory calculations111 (MP2-
NOs) to efficiently truncate the virtual orbital space. MP2-
NOs work exceptionally well in conjunction with the TC
method and help to further reduce the number of required
qubits.
We demonstrate the TC-VarQITE approach, combined with

orbital optimization, on small atomic and molecular test
systems including the beryllium atom, the hydrogen dimer, and
lithium hydride. In all these cases, we could closely reproduce
experimental values, including bond lengths, dissociation
energies, and the vibrational frequencies of H2 and LiH,
using just two and four qubits, respectively. Finally, to illustrate
the applicability of the TC-VarQITE approach in quantum
hardware experiments, we also evaluated the bond dissociation
energy of LiH. When combined with error-mitigation
techniques, our hardware results show a great level of accuracy
close to the CBS limit and spectroscopic data. The mitigation
techniques include ZNE,138,139 reference-state error mitiga-
tion,140 together with the commonly used readout error
mitigation.143

The aim of this work was the implementation and
demonstration of the prowess of the unapproximated TC
approach to ab initio molecular on quantum hardware. To do
this, we chose what might be considered “minimal” test
systems. However, as has been done on “conventional”
hardware,49,55,57,59,78,86 in future work, we will extend the
application of TC approach to larger molecular systems than
studied here. Additionally, we will develop new methodologies
to obtain not only energy estimates, but also properties in the
form of unbiased density matrices, and consequently, combine
the TC approach with self-consistent orbital optimiza-
t i on . 1 4 4− 1 4 8 /embedd ing , 1 4 9− 1 5 2 sp in - conse r v ing
schemes,153−157 as well as adaptive quantum circuit Ansa-̈
tze.158−161

In conclusion, the full potential of the TC method manifests
as a dramatic cost savings (in terms of the number of qubits
and circuit depth) for current quantum hardware calculations.
Our study demonstrates that TC-VarQITE has the potential to
become the method of choice for calculating accurate quantum
chemistry observables of relevant molecular systems on current
and near-term quantum computers.

5. METHODS
5.1. Transcorrelation. Transcorrelation is the application

of a similarity transformation to the SE of a system, ĤΨ = EΨ,
to absorb the Jastrow factor e J from the Ansatz e J= into
an effective Hamiltonian. The resulting TC SE, H ETC = ,
can be solved in second quantization using any quantum
chemistry eigensolver, including quantum computers, with the

advantage that the FCI solution for Φ is much more compact
than that for Ψ and thus easier to represent approximately.
Eigensolvers only require the values of the matrix elements of
HTC between different determinants. If the Jastrow factor can
be written as J = ∑i<ju(ri, rj) then

H H K Lr r r r r( , ) ( , , )
i j

i j
i j k

i j kTC =
< < < (7)

where K is an operator that modifies the values of two-electron
matrix elements and introduces non-Hermiticity and L is an
operator that connects determinants separated by triple
excitations. Eigensolvers thus need the ability to accommodate
non-Hermiticity and three-electron matrix elements, so non-
TC implementations usually require some degree of
modification.
We use a Drummond−Towler−Needs Jastrow factor,82,83

which we optimize with VMC84−86 (with a scaling of n( )e
3 on

conventional hardware) using the CASINO package.87,88 We
optimize the Jastrow factor by minimizing the variance of the
TC reference energy, as proposed recently in ref 86. We then
use the TCHint library to calculate the 2- and 3-body integrals
required to construct the TC molecular Hamiltonian in second
quantization. See ref 86 and the Supporting Information for
more details and sample input files of the VMC optimization
and integral calculation can be found in the Github repository
accompanying the paper.90

5.2. Variational Ansatz-Based QITE. The VarQITE
algorithm68 is based on McLachlan’s variational principle,
which is used to derive the evolution of gate parameters,
represented by θ(τ), for a wave function Ansatz. The
derivation is encapsulated in eq 4 of the main text, which
leads to a linear system of equations defined in eq 5 of the
main text. This system necessitates the computation of matrix
elements associated with the matrix A and the gradient vector
C defined as

i
k
jjjjj

y
{
zzzzzA

( ( )) ( ( ))
ij

i i
= | |

(8)

and

i
k
jjjjj

y
{
zzzzzC H

( ( ))
( ( ))i

i
= | |

(9)

where the wave function Ansatz is differentiated with respect
to the gate parameters. In our implementation, their
calculation is performed using the methodology outlined in
ref 42, specifically designed for non-Hermitian (TC) problems.
Next, we give more details about the steps necessary to
reproduce the results of this work.
In numerical simulations, the values of Aij and Ci are

estimated using the forward finite-differences method162 given
by

e( ) ( ) ( )

j

j| | + |

(10)

where ej is j-th element of the nθ-dimensional unit vector. We
chose a step size of Δ = 10−3 in this work. To generate the
state-vector representation of the Ansatz, |Φ(θ)⟩, we create the
corresponding quantum circuit in Qiskit142 and then convert it
to a state vector. This approach allows for the incorporation of
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gate errors through realistic noise models of IBM Quantum
processors. The matrix elements Aij and Ci can be computed
independently, and we parallelize their computation on
multiple CPUs by using the ipyparallel library to speed up
our simulations. Although the forward finite-differences
method provides satisfactory results for the computation of
the derivatives, the parameter-shift rule163 can also be
employed within our framework to obtain analytic derivatives.
In hardware calculations, the matrix elements Aij and Ci are

calculated via the differentiation of general gates by means of a
linear combination of unitaries.163 To compute the Ci
elements, we use the quantum circuit shown in Figure 1. For
a Hermitian Hamiltonian, a Hadamard gate (H) is applied
before measuring the ancilla. For a non-Hermitian Hamil-
tonian, H̅, we decompose H̅ into Hermitian and anti-
Hermitian components denoted by H H H( )/2= ++

,

where H H H= ++ †
and H H H= †

. Subsequently, the
circuit from Figure 1 is applied to each term of H+

and H ,
where an ( )Rx 2

rotational gate is applied instead of a

Hadamard in the case of H . This circuit’s measurement
outcomes are combined to obtain Ci as in refs 42 and 163 To
compute the Aij matrix elements, we proceed in the standard
way, which can be found in ref 19 since they are independent
of the Hamiltonian. We typically use 104 to 3.2 × 104 shots
(measurements) to collect enough statistics to accurately
estimate the expected values.
For the representations of Ansatz circuits, we use Qiskit’s

implementation of UCCSD and hardware-efficient Ansaẗze
with the default settings.
Having all the necessary quantities, the linear system in eq 5

of the main text can be approximately inverted to obtain
A C1= using the least-squares solver (default settings)

implemented in SciPy.164 Finally, the updated parameters are
obtained from θ(τ + Δτ) = θ(τ) + Δτθ̇ for a chosen time-step
of Δτ = 0.05 in this work.
Figure 6 shows the quantum circuit used to calculate the Ci

term in the (non)Hermitian case for a (TC) Hamiltonian.

5.3. Second Order Møller−Plesset NOs (MP2-NOs).
The 1-body reduced density matrix (1-RDM) in a second-
quantized basis is defined as

D a aq
p

p p= | |†
(11)

where |Ψ⟩ is the wave function and aq p( )
† is the Fermionic

annihilation(creation) operator of an electron in orbital q(p) of
the current basis. The diagonalization of eq 11 provides

eigenvalues in terms of the occupation numbers and
eigenvectors that correspond to the transformation matrix
from the current basis to the NO basis. Löwdin165 first used
NOs to accelerate the convergence of configuration interaction
calculations by retaining only those NOs with significantly
nonzero occupation numbers. The specific NOs used in this
work are obtained on the MP2 level. First, a mean-field
Hartree−Fock (HF) solution to the system under study is
obtained in a reasonably large basis set, e.g., cc-pVDZ or cc-
pVTZ. In the HF canonical orbital basis, the MP2 wave
function is

ab ij

i j a b ij
ab ij

ab
MP2 HF

,

| = | + |
> > (12)

where we follow the convention to use a, b, ... and i, j, ... to
indicate the unoccupied (virtual) and occupied spin−orbitals,
respectively. The antisymmetrized Coulomb integrals are
defined as ⟨ab∥ij⟩ = ⟨ab|ij⟩ − ⟨ab|ji⟩ and the denominator is

ij
ab = εi + εj − εa − εb with ε denoting orbital energies
(diagonal elements of the Fock matrix).
Plugging |ΨMP2⟩ into eq 11, we find

D
ki ab ab kj

D
ij ac bc ij

1
2

,

1
2

j
i

i j
kab ki

ab
kj
ab

b
a

ijc ij
ac

ij
bc

,= +

=
(13)

where we ignore orbital rotations between the occupied and
virtual space by setting the occupied-virtual block Di

a = Da
i = 0.

In literature,111−113 the so-called frozen natural orbitals are
obtained by only diagonalizing the virtual−virtual block of the
1-RDM Db

a. In this work, we diagonalize both the occupied−
occupied and virtual−virtual blocks.
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