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Abstract

Systems biology is an integrationist approach to biological science, meaning
we treat organisms as complex systems whose behaviour is dictated by the inter-
action of their constituent parts. Because eukaryotic organisms are extremely
complex systems, research progress in systems biology can be slow. Recent
advances in robotics, and more importantly in artificial intelligence (AI), offer
great opportunity for automating scientific discovery in this field.

Using the model organism Saccharomyces cerevisiae, baker’s yeast, this
thesis explores: the philosophical and practical motivations for the use of
automation in biological research; the structure of knowledge models, experi-
mental data, and hypotheses in systems biology; and computational models of
metabolism, a core component of systems biology.

The first main contribution of this thesis is a set of ontologies and accompa-
nying database software for enabling an autonomous discovery platform. The
second main contribution is a first-order logic framework for modelling cellular
physiology, which we call LGEM+. Abduction of hypotheses for improvement of
knowledge models is enabled by LGEM+, which couples a set of predicates and
clauses expressing biochemical reaction processes with an efficient automated
theorem prover (ATP), iProver.

Results from these studies show automated improvement of knowledge
models in systems biology can be achieved using general purpose tools, in this
case ATPs, by using a first-order logic formalism faithful to domain ontologies.
More work is needed to integrate these techniques with laboratory robotics
and inductive reasoning agents, building on the work presented in this thesis,
to achieve the goal of autonomous discovery in systems biology.

Keywords

Machine learning, first-order logic, abduction, automated theorem provers,
knowledge modelling, ontologies, systems biology, metabolic modelling
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Chapter 1

Introduction

Progression toward understanding eukaryote biology is one of the most impor-
tant areas of modern scientific effort. The 20th century saw many advances in
our understanding of the fundamental components and processes of eukaryotic
life. In turn, society has benefited greatly from application of this knowledge
to medicine, agriculture, and engineering. However, we are still without an
accurate predictive model of the physiology of one organism, let alone broadly
applicable theories and laws for the behaviour of eukaryotic systems such as
we have for physics.

Part of the reason why progress in biology is limited by today’s scientific
methods is the diversity and complexity of the systems. Hundreds of research
hours can be spent in the study of one particular gene, yet the limits of human
capability and of course the economic resource available to the researcher will
hamper progression to a complete understanding of the gene and its roles.
Scientific discovery automation has therefore great potential in biology. And
this is particularly the case when adopting the systems biology paradigm.

Systems biology is an integrationist approach to biological science, meaning
we treat organisms as complex systems whose behaviour is dictated by the
interaction of their constituent parts. Research progress in systems biology can
be slow, partly because eukaryotic organisms are extremely complex systems.
Recent advances in robotics, and more importantly in artificial intelligence (AI),
offer great opportunity for automating scientific discovery in this field.

Using the model organism Saccharomyces cerevisiae, baker’s yeast, this
thesis explores: the philosophical and practical motivations for the use of
automation in biological research; the structure of knowledge models, experi-
mental data, and hypotheses in systems biology; and computational models of
metabolism, a core component of systems biology.

The first main contribution of this thesis is a set of ontologies and accompa-
nying database software for enabling an autonomous discovery platform. The
second main contribution is a first-order logic framework for modelling cellular
physiology, which we call LGEM+. Abduction of hypotheses for improvement of
knowledge models is enabled by LGEM+, which couples a set of predicates and
clauses expressing biochemical reaction processes with an efficient automated
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4 CHAPTER 1. INTRODUCTION

theorem prover (ATP), iProver.
Results from these studies show automated improvement of knowledge

models in systems biology can be achieved using general purpose tools, in this
case ATPs, by using a first-order logic formalism faithful to domain ontologies.
More work is needed to integrate these techniques with laboratory robotics
and inductive reasoning agents, building on the work presented in this thesis,
to achieve the goal of autonomous discovery in systems biology.

Structure of this thesis. Chapter 2 introduces the philosophical and prag-
matic motivations for automating scientific discovery, and some of the relevant
machine learning concepts. Chapter 3 serves as an introduction to the scientific
domain: systems biology. We begin with a statement of the overarching prob-
lem, and proceed with a discussion of the main parts and processes of biological
systems. The remainder of this chapter is dedicated to an overview of different
computational modelling frameworks for yeast physiology. Chapter 4 contains
a summary of contributions made in the published papers upon which this
thesis is based—these papers are appended in Part II. Finally, Chapter 5 is a
discussion of the themes and conclusions we can draw from the contributions
of this thesis, and of potential future research directions.



Chapter 2

The Automation of
Scientific Discovery

Scientific discovery is the generation of new knowledge through organised
enquiry. The methods used to generate this knowledge, and the ways that
knowledge is stored and communicated, vary widely across domains. How-
ever there are common values and tools that have enabled philosophers to
characterise scientific enquiry to a certain degree (Schindler 2022).

In Paper I, we explore the philosophical background to, and tools for,
scientific discovery, which provides important context for the contents of this
thesis. Paper I also provides an introduction to the automation of scientific
discovery and the concept of a robot scientist, defined by King et al. (2009) as

a physically implemented laboratory automation system that ex-
ploits techniques from the field of artificial intelligence to execute
cycles of scientific experimentation.

The cycles of experimentation that are executed by robot scientists will vary
depending on the domain, but have a core similarity. The general structure
of these cycles is to form hypotheses, perform deductive simulations using a
computation model to obtain predicted behaviour, and test these predictions by
performing experiments and collecting data. With each cycle the robot scientist
seeks to improve the quality of its predictions by forming better hypotheses.
This is a supervised learning problem, specifically a type of active learning.

This active learning process has many constituent tasks, and thus requires
a combination of domain-specific and general-purpose tools. In this thesis
we present tools that address several of these tasks, for example: hypothesis
generation (Paper IV); hypothesis storage (Paper II, Paper III); simulation
(Paper IV); experimental data curation (Paper II); and model evaluation
(Paper IV).

In addition to the introduction given in Paper I, we now treat a couple of
concepts regarding logic and reasoning that are relevant for the contributions
of this thesis, in particular Paper IV.

5



6 CHAPTER 2. THE AUTOMATION OF SCIENTIFIC DISCOVERY

2.1 Logic in Science

Logics are mathematical languages that relate premises and conclusions and
enable formal reasoning (Ben-Ari 2012). There are various logics that can
be used for reasoning in science, and here we present a brief overview of
propositional logic, the concept of satisfiability, normal forms, and first-order
logic.

Propositional logic

The elementary form of logic is propositional logic, which deals in assigning
truth value to statements about a world (propositions). An example of a
proposition would be:

“Uppsala is the capital city of Sweden.”

In the world we live in, we would assign this proposition the truth value ‘false’.
But it is possible to consider a world where this statement would be assigned the
truth value ‘true’. Indeed if we consider the world as it was in the 14th Century
then this proposition would be assigned ‘true’, and in common relaxation of
the language we would say that the proposition is true.

Propositions are atoms; they can be used to build complex formulas us-
ing Boolean operators such as negation (NOT,¬), conjunction (AND, ∧), and
disjunction (OR, ∨).

Satisfiability

An interpretation for a formula is a function that assigns truth values to each
atom that appears in the formula. A formula is considered unsatisfiable if it is
false in all interpretations. If there is at least one interpretation for which the
formula is true, then it is satisfiable. We can extend the notion of satisfiability
to a set of formulas naturally, by requiring that there exists an interpretation
under which each formula in the set is true.

Normal forms

For any given logical formula there are many possible ways to express an
equivalent formula. An example is the following tautology, one of De Morgan’s
laws:

¬(A ∨B) ⇐⇒ (¬A) ∧ (¬B) (2.1)

A way to express logical formulae which, and has advantages for automated
theorem proving, is in conjunctive normal form (CNF). To be in CNF, a formula
is written as a conjunction of disjunctions of literals (atoms or negated atoms);
the right hand side of (2.1) is in CNF. It is possible to express every formula
in propositional logic in CNF.

A different notation for CNF is clausal normal form. Instead of using the
symbols for disjunction and conjunction to construct the formula, we appeal
to the structure of the normal form and express a formula as a set of sets of
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literals. For example we could express the right hand side of (2.1) in clausal
normal form as {{¬A}, {¬B}}. A theory is a set of closed formulae (formulae
with no free variables). Clausal normal form is an efficient representation of
logical theories that is often used in automated theorem proving.

First-order logic

First-order logic (FOL) extends propositional logic to allow for relations between
variables. Relations are represented using predicate symbols, and quantifiers
such as for all (∀) and there exists (∃) are introduced to allow for formulae that
express general statements about relations. Instead of atoms being propositional
statements, atoms in FOL are a predicate symbol with a list of arguments.
These arguments are either constants or variables in the domain of the relation
the predicate symbol denotes. For example, FOL allows for a statement such
as:

“A dog is happy if it has a bone.”

This could be expressed with the following logical formula, containing new
predicates dog\1, bone\1, has\2, and happy\1:

∀x∀y(dog(x) ∧ bone(y) ∧ has(x, y) → happy(x))

The atoms in this formula are dog(x), bone(y), has(x, y), and happy(x).
FOL has many desirable properties for automated reasoning. It is an

expressive language and can therefore be used to represent a wide variety
of concepts and theories. However, the fact that it is not as expressive as
higher-order logics means it is semi-decidable, meaning that there is an efficient
procedure for checking if a formula is in a theory (but no such method for
checking that a formula is not in a theory).

We stated earlier that it is possible to express every formula in propositional
logic in CNF. The same is not true in FOL, however Skolem’s theorem states
that for any closed formula ϕ there exists a formula ϕ′ such that ϕ is satisfiable
if and only if ϕ′ is satisfiable (Ben-Ari 2012). A useful consequence of this is
that we can always map our theory to one in CNF or clausal normal form to
assess satisfiability.

2.1.1 Reasoning

Reasoning on logical theories can be broken down into a few main categories.
Deductive reasoning derives conclusions from premises and laws. Inductive
reasoning and abductive reasoning seek to provide explanations for facts by
generating either laws (induction) or facts (abduction); for this we need statis-
tical inference. For a more detailed explanation of the types of reasoning, see
Paper I, Section 2.1.

2.1.2 Automated theorem provers

Automated theorem provers (ATPs) are software that can perform reasoning
tasks on logical theories. A common task for ATPs is deciding whether a
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conjecture, C, is entailed by a given theory T and optional hypotheses H. In
particular in science, the conjecture usually takes the form of some statement
rooted in empirical data, and we are interested if our theory, perhaps together
with a hypothesis, entails the data. ATPs most often take inputs in the form
of FOL theories, and these are commonly written in clausal normal form.
Formally, the problem posed to the ATP is:

T ∧H
?

|= C.

Conjectures are often posed in negated form and then submitted to a SAT
solver, an algorithm to decide satisfiability. In which case the proof takes the
form of a refutation of the negated form that shows the unsatisfiability of
T ∧ H ∧ ¬C. Or a demonstration of the satisfiability of T ∧ H ∧ ¬C which
shows that C is not entailed by T ∧H under any interpretation. Constructing
such arguments for FOL theories requires heuristic search, and the design and
implementation of algorithms for this task is the core activity in developing
ATPs for FOL (Korovin 2008).

ATPs are primarily applied to mathematical reasoning tasks (Urban and
Vyskočil 2013). But they have also been used in engineering applications
including software verification (Georgiou et al. 2022) and hardware verification
(Goel and Ray 2022; Khasidashvili et al. 2015).



Chapter 3

Mathematical Models of
Yeast Physiology

3.1 Systems Biology

Systems biology is an approach to studying biological systems that aims to
understand how the behaviour of the system arises from the interaction of its
constituent parts (Kohl et al. 2010). We describe systems biology in detail, and
its link to complex systems, in Section 4 of Paper I. In this book chapter we also
outline why systems biology is a good domain in which to apply the automation
of scientific discovery. Partly this is because of the inherent complexity of
the systems involved, which limits the progress that can be made with non-
automated scientific methods. Robot scientists can manage complexity more
precisely and at larger scales than humans, both in experimentation and in
analysis.

A core concept in systems biology is the connection of genotype—the
DNA sequence information of an organism—to its phenotype—the observed
characteristics of the organism. The traditional reasoning behind treating
DNA sequence information as the source for phenotypical observations comes
from two hypotheses, proposed by Crick (1958) as the “Sequence Hypothesis”,
and the so-called “Central Dogma” of molecular biology, that the primary
form of information transfer within cells is as follows: DNA is transcribed
to RNA which is in turn translated to proteins. Specifically, the “Central
Dogma” stated that information passes from nucleic acids to proteins, but is
not transferred from proteins to nucleic acids. Later, Crick (1970) clarified this
hypothesis stating that this hypothesis was intended to apply to the general
case for living organisms, and that though cases of information transfer from
proteins to nucleic acids was theoretically possible there was no evidence for
these interactions at the time.

Developments in molecular biology since the 1970s have demonstrated nu-
merous potential violations of this mechanistic view of information transfer
between molecules in biological systems. Some examples are: reverse transcrip-
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10 CHAPTER 3. MATHEMATICAL MODELS OF YEAST PHYSIOLOGY

tion, from RNA to DNA (Baltimore 1970; Temin and Mizutani 1970); and
post-translational protein modification, for example through phosphorylation
(Krebs and Graves 2000). Opinion is divided on whether these truly represents
violations of the original hypothesis, with its detractors raising examples such as
those above, and its defenders arguing that the original source of the sequence
information remains the DNA.

Regardless, either interpretation justifies structuring enquiry around the
genotype-phenotype relationship. Systems biology enables a nuanced approach
allowing for feedback loops and incorporating additional classes of molecules,
such as sugars and lipids, into a complex system of signalling, gene regulation,
and metabolism. We now proceed to discuss each of these concepts in more
detail.

3.1.1 Eukaryote cellular metabolism

Metabolism refers to the consumption, transformation and production of
chemical compounds by an organism, through various biochemical reactions.
Metabolism has three main purposes: to make energy available, to make
building blocks for structures, and to eliminate waste.

Biochemical reactions come in various types. Many require active catalysis
via enzymes, formed of proteins. Which reactions are feasible in a particular
organism is therefore largely determined by its genome. Reactions will be
feasible in different organisms, though the specific gene for the reaction may
differ as there are often several different enzymes that can catalyse the same
class of reaction (isoenzymes).

A metabolic pathway is a set of metabolic reactions, usually a sequence or
a cycle. When studying metabolism, one approach is to study pathways, as
they facilitate particular functions subordinate to the purposes listed above,
yet are often small enough to be tractable for detailed methods and analysis.
However pathways do not exist in isolation, so it is also necessary to consider
so-called superpathways (collections of pathways) and the metabolism of the
whole cell or organism.

In systems biology, the knowledge about metabolism is drawn from various
sources and compiled in metabolic network models (MNMs). Metabolic network
models are covered in more detail in Section 3.3, and in Paper IV.

3.1.2 Gene regulation in eukaryotes

Genes are segments of DNA and the process of synthesising functional products
(e.g. proteins) from the DNA is referred to as gene expression. The state of
gene expression in a cell dictates which processes occur within the cell. A
significant part of this control is through the expression of metabolic genes,
those which encode proteins that form enzymes. Eukaryotes regulate genes
and their activity in response to environmental stimuli and also within the
organism. This is achieved by eukaryotic cells at several levels.

1. Transcription is controlled by limiting the amount of messenger RNA
(mRNA) that is produced from a given gene.
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2. Post-transcription there are events that regulate the translation of RNA
into proteins.

3. Post-translation there are mechanisms which modify proteins, which can
affect their activity.

Transcription factors are proteins that recognise and bind to a segment of
DNA adjacent to the genes they regulate. There are a variety of processes
through which transcription factors regulate genes, but essentially they control
the rates of transcription. Messenger RNA (mRNA) transcription most often
cannot occur without the help of transcription factors. As the ground state
for transcription is restrictive, positive regulation is the predominant form of
control. Transcription factors are themselves regulated, resulting in a complex
interaction network.

An example of a mechanism of gene regulation specific to eukaryotes is
physically restricting access to DNA promoters through the structure of chro-
matin. DNA is wound tightly on nucleosomes that form the chromatin fibre,
and modifications to the chromatin structure can regulate gene expression.

3.1.3 Cell signalling

A cell, whether a single-celled organism such as Saccharomyces cerevisiae or one
part of a multicellular organism, needs to send and receive signals to interact
with its environment, other cells, and indeed itself. This process of cell signalling
is enabled by the binding of small molecules known as ligands to an effector
molecule, frequently a protein. The binding of the ligand to a particular site on
the effector causes a change which allows the effector to perform some function.
This could be up- or down-regulating (increasing or decreasing expression of)
a particular gene product, or modifying an enzyme complex to increase or
decrease its activity. Similarly to gene regulation, signalling is a complex mode
of control in eukaryotes, with many individual signalling molecules interacting
with each other, and other systems such as metabolism and gene expression.

As a result, though many individual signalling interactions such as the bind-
ing of adrenaline to adrenoreceptors are well-studied, cell signalling networks
are in general poorly understood in most eukaryotes. Yet they can provide
promising explanations for phenomena such as ageing (Greer and Brunet 2008),
and effective therapeutic options for diseases, for example leukaemia (Weisberg
et al. 2005).

3.2 The Yeast Saccharomyces cerevisiae as a
Model Organism for Eukaryote Biology

It should by now be clear that eukaryote cellular physiologies are extremely
complex systems. Gene regulation and enzymatic catalysis are but two of many
processes that enable information propagation and feedback, both within cells
and across cell boundaries; and the entities and processes involved occur across
a huge range of timescales and length scales.
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As discussed in Paper I, when studying systems directly is impractical
or infeasible, we should use a model. This is often the case with eukaryotes;
for example, there are many experiments that would be undesirable or im-
moral to conduct using human subjects, and in vitro experiments often do
not recreate the inherent complexity of the object systems. And the yeast
Saccharomyces cerevisiae is the model organism for the eukaryotic cell, for a
number of reasons.

Firstly, there are tools available for easy genetic manipulation of yeast
(and fewer ethical and legal issues in doing so than with higher eukaryotes).
Cultivation cost is relatively low, in terms of the key resources: money, time,
space and human resource. And S. cerevisiae’s was the first eukaryotic genome
to be fully sequenced (Goffeau et al. 1996). There is also a wealth of experience
and knowledge on S. cerevisiae that can be used as a rich prior for discovery.

Using S. cerevisiae as a model organism means that we aim to understand
processes relevant to other eukaryotes through yeast. These could be evolution-
arily conserved functions, or it could be that we transplant genes that we wish
to study. Yeast is also heavily used for bioengineering purposes, where genotype
and conditions are manipulated to efficiently produce a desired product, for
example a pharmaceutical.

3.3 Modelling Frameworks

Models of yeast vary from deterministic and high-resolution to descriptive or
pedagogical. As discussed in Paper I, there are various desirable qualities
of scientific models, including: predictive power; parsimony; explanatory use-
fulness; consistency across contexts; and consistency with different scientific
models. For most models of S. cerevisiae it is desirable to be able to exploit
the models to make predictions about real-world behaviour of the system, and
we will discuss briefly some of the mathematical frameworks commonly used.

3.3.1 Differential equations models

One common technique is to model the abundances of genes, proteins and chemi-
cal species using systems of coupled ordinary differential equations (ODEs) with
time as the dynamic variable. These models have been successfully employed to
model various biological processes including: central carbon metabolism; batch
fermentative growth; and toxicity responses. The differential equations are
often based around reaction kinetics paradigms, commonly Michaelis-Mentin
kinetics. A great challenge with these models is parametrisation; the models
can have tens of thousands of parameters, only a fraction of which have experi-
mentally obtained values, which are often condition specific. Machine learning
techniques have recently been employed to predict these parameter values.

Another challenge is that timescales and length scales across the differ-
ent systems involved vary across at least five orders of magnitude, from the
molecular scale (1× 10−10 m) to the cellular scale (1× 10−5 m) (Castiglione
et al. 2014; Southern et al. 2008). ODE models based on Michaelis-Mentin
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kinetics do not explicitly model the length dimension, but the timescale of
reaction kinetics can vary over orders of magnitude depending on the reaction
(Resat et al. 2009), and is vastly quicker than the timescale of gene expression
(Carthew 2021).

A third challenge is that biological processes are stochastic in nature, so
deterministic differential equations models will likely be unable to capture a
great deal of behaviour. For certain classes of molecules the assumption of
continuous concentrations may not be valid due to the low count of molecules
and their compartmentalisation (Resat et al. 2009).

3.3.2 Constraint-based modelling

Another popular modelling framework is a constrained optimisation method,
where the objective function is defined as some real-valued function representing
a biologically realistic quantity. Examples of commonly used objectives are
growth maximisation or minimisation of uptake of a particular carbon source
(Orth et al. 2010; Garćıa Sánchez and Torres Sáez 2014). Other knowledge
about the cell is encoded via constraints on this optimisation. The fundamental
constraints are the rates of flux through chemical reactions in the cell. A
common approach is to assume the system is in a steady state and the sum
of the fluxes for any given chemical species is zero, hence the technique is
known as flux balance analysis (FBA). A more detailed explanation of the
mathematics of FBA is provided in Paper IV.

Various extensions and modifications to FBA have been proposed that relax
or work around this assumption, for example: dynamic flux balance analy-
sis (dFBA) which couples FBA solutions with ordinary differential equations
(Mahadevan et al. 2002); flux variability analysis (FVA) which characterises the
space of fluxes that give rise to an optimal solution (Mahadevan and Schilling
2003); and two techniques, regulatory on/off minimisation (ROOM, Shlomi
et al. 2005) and minimisation of metabolic adjustment (MOMA, Segrè et al.
2002) which seek to find a likely flux distribution—in comparison to a reference
distribution—after a genotypic change. Some techniques extend FBA to more
nuanced constraints, for example through the inclusion of setting reaction flux
constraints through abundance of relevant enzymes (ecFBA, Sánchez et al.
2017).

3.3.3 Logical models

Formal mathematical logic has also been used to model different parts of cellular
biology. A common form of logic modelling is propositional logic (Boolean)
models of gene regulation and signalling. First-order logic models of metabolism
have also been developed previously. For more detail see the introduction to
Paper IV.
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3.3.4 Hybrid models

Some approaches seek to extend FBA models yet further by integrating them
with separate models for other cellular processes, for example genetic regulation
and signalling processes. These hybrid models employ different mathematical
formalisms for different cellular processes and rely on bespoke techniques at
the boundary between models to integrate them together. One example of a
hybrid model is presented in Österberg et al. (2020), which combined enzyme
constrained FBA with a Boolean signalling model to predict non-trivial yeast
phenotypes. A review of hybrid modelling approaches in systems biology was
conducted by Cruz and Kemp (2021), showing a diverse approach to modelling,
including combinations of modelling techniques listed here and others. And
these models were to applied a variety of biological applications.



Chapter 4

Summary of Included
Papers

4.1 Paper I: The Use Of AI-Robotic Systems
For Scientific Discovery

In this book chapter, we aim to provide machine learning researchers with an
introduction to the research problem of the automation of scientific discovery.
We address considerations for the design of robot scientists to achieve this
aim, systems that combine artificial intelligence with robotics. We begin by
examining the scientific method using concepts and models from the philosophy
of science. We define the concept of a scientific model and their use by
robot scientists. We present three components of the scientific method—logical
inference, statistical inference, and parsimony—and how they are applied to the
development of scientific models. We finish the opening section by presenting a
set of scientific values for examining the quality of a given model which enables
comparison between competing models, the central aspect of scientific method
that allows for progress.

Section 3 of this book chapter analyses scientific discovery using machine
learning paradigms. We discuss how aspects of machine learning algorithms
could be mapped to aspects of the scientific method. We conclude that
scientific discovery should be viewed as a supervised learning problem, with
input-output pairs for training data coming either from controlled experiments
or from observational studies. The material in this section is highly relevant to
Chapter 2 of this thesis. Section 4 is primarily an introduction to the domain
of systems biology, covered in Chapter 3 of this thesis. We also cover two
examples of robot scientists being applied in systems biology: ADAM (King
et al. 2009) and Eve (Williams et al. 2015). Section 5 is a case study using the
example of the robot scientist Genesis and LGEM+, covered in Chapter 3 of
this thesis and in appended Paper IV respectively.

This manuscript has been submitted for consideration for publication in a
volume aimed at introducing the automation of scientific discovery, primarily

15
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for machine learning researchers. This chapter is also a partial introduction to
the contents of this thesis, and is recommended to be read first as it provides
context to other matters discussed in the introductory chapters and in the
appended papers.

Author contributions

The conceptualisation of the project was done by Ross D. King, and Alexander
H. Gower. Content included in this chapter was informed by discussions
between A.H.G. and each of the co-authors (Konstantin Korovin, Daniel
Brunns̊aker, Filip Kronström, Gabriel K. Reder, Ronald S. Reiserer and John
P. Wikswo). The manuscript was written by A.H.G. and edited by D.B. and
R.D.K. The project was supervised by R.D.K., and Ievgeniia A. Tiukova. The
funding for the project was acquired by R.D.K.
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4.2 Paper II: Genesis-DB: a database for au-
tonomous laboratory systems

Problem

As discussed in Chapter 2, a robot scientist is a combination of laboratory
robotics and AI that is capable of autonomous discovery. Currently in devel-
opment is the robot scientist Genesis, capable of parallel experimentation in
small-volume chemostats1. The goal for the project is to take the number of
parallel experiments into the thousands. Automating biological research on
this scale requires a robot scientist to have capability across different domains,
including robotics, multiomic data analyses (see Chapter 3), laboratory ex-
perimentation and hypothesis formation. In order for machines to execute
these tasks accurately, and to participate in collaborative science with human
scientists, a controlled vocabulary is needed. Alongside the definition of ontol-
ogy terms we need a database system that can handle both the volume and
complexity of the data, both for storage and also for querying by an AI system
for the design of experiments.

Approach and Contributions

For this project, we analysed the domains relevant for Genesis and identified
three requirements for our database system: machine-interpretable data and
metadata storage compatible with automated reasoning; easily deployable stor-
age; and consistency into the future to ensure reproducibility of experiments
and results. Using these requirements, we designed an ontology and a scalable
database system (Genesis-DB) based on the open source semantic web frame-
work Apache Jena. We tested Genesis-DB using our domain ontology on an
example experiment design search for S. cerevisiae. In addition to these main
contributions, we documented the project and published the code so it can be
used by different domains, and other robot scientist projects, by supplying a
relevant ontology.

Author contributions

The conceptualisation of the project was done by Ross D. King, Larisa N.
Soldatova, Gabriel K. Reder, Alexander H. Gower, and Filip Kronström.
The implementation of the database system was done by Vinay Mahamuni,
Rushikesh Halle, Amit Patel, and Harshal Hayatnagarkar. The ontology was
written by: R.H., V.M., F.K., and A.H.G. F.K., A.H.G., G.K.R., V.M.,
and R.H. conducted the investigation into the database and ontology. The
manuscript was written by A.H.G., F.K., R.H., V.M., G.K.R., H.H., and

1chemostat—a liquid cultivation technique where the organisms (yeast) are held in
suspension in a growth medium, with an input tube pumping fresh growth media in at a
controlled rate, and another tube removing the culture mixture at the same rate. Thus the
total volume remains the same, and by supplying a medium with a growth-limiting substrate,
e.g. glucose, the culture can be held in a physiological steady state with a constant biomass
specific growth rate equal to the rate of dilution (rate of input and output flow).
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L.N.S. The figures and visualisations were realised by F.K., A.H.G., R.H.,
V.M., and G.K.R. The project was supervised by R.D.K., L.N.S., G.K.R., A.P.,
and H.H. The data were prepared and curated by A.H.G., F.K., G.K.R., V.M.,
and R.H. The project was administered by L.N.S., R.D.K., G.K.R., A.P. The
funding for the project was acquired by R.D.K.
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4.3 Paper III: RIMBO - An Ontology for Model
Revision Databases

Problem

Knowledge in science, and particular in systems biology, is often stored in a
machine-readable file that allows for computational modelling of the system.
Improving these computational models through scientific enquiry means chang-
ing the content of these files. Commonly, a copy is made of the model and
changes are incorporated into this copy. However as these models grow this
presents challenges.

Changes to models are often bundled together to resolve the problem of
multiple large files. However this breaks the relationship between a single
hypothesis and a change to the model. This makes reasoning about changes to
models quite difficult, especially for large-scale computational reasoners.

Approach and Contributions

We present here an ontology, RIMBO, for describing changes to a genome-scale
metabolic model (GEM) written in RDF/XML. The ontology enables individual
changes to be linked semantically to the reasons for the change and the details
of the change to the model. RIMBO combines classes and relations from
existing ontologies with new classes and relations. We demonstrate modelling
example revisions to the GEM Yeast8.

Author contributions

The conceptualisation of the project was done by Ross D. King, Filip Kronström,
and Alexander H. Gower. The ontology was designed and curated by
F.K. Code to implement RIMBO was also developed and tested by F.K. The
experiments to demonstrate revisions on the Yeast8 GEM were designed and
executed by A.H.G. and F.K. The scalability experiments were designed and
executed by F.K. The data were prepared and curated by F.K. and A.H.G.
Figures were designed and prepared by F.K. The manuscript was written by
F.K. The project was supervised by R.D.K., and Ievgeniia A. Tiukova. The
funding for the project was acquired by R.D.K.
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4.4 Paper IV: LGEM+: Automated Improve-
ment of Metabolic Network Models and
Model-Driven Experimental Design through
Abduction

This manuscript is an extension of a paper published in the proceedings of the
26th International Conference on Discovery Science (Gower et al. 2023, listed
as paper [b] under “Other Publications”).

Problem

Knowledge about yeast is highly structured due to community efforts to stan-
dardise, retain and distribute it. This is covered in more detail in Chapter 3.
The models that are stored in these databases are therefore improved upon
incrementally. Incremental improvements to these models are generally made
through careful study of a particular entity, pathway or process in the organism.
Making improvements to these models is a time-consuming process. This is
primarily because of the human resource required to hypothesise and design ex-
periments, as well as analyse results. The interface between different activities
in this scientific method are sources of friction and delay.

With this paper we aimed to provide a framework for improvement of
models of yeast metabolism that would reduce the time required of human
scientists in the discovery process, and increase the quality of the hypotheses
generated.

Approach and Contributions

The main contributions of LGEM+ as presented in this paper are: (1) a
compartmentalised first-order logic model of yeast metabolism; (2) a set of algo-
rithms for the extraction and analysis of metabolic pathways from simulations;
(3) a two-stage method for the abduction of novel hypotheses on improved
models; (4) scalable methods for evaluating these models and hypotheses; (5)
an algorithm to integrate FBA with abductive reasoning.

We use an ATP and express knowledge encoded in GEMs in first-order
logic syntax, retaining the semantics of the original model (which is written
using an ontology) and layering additional knowledge about general processes
such as biochemical reactions, enzyme formation and catalysis.

We tested this framework using several community models on two separate
tasks. Firstly, a genome-scale single-gene deletant viability screen. To evaluate
this we used experimental data from previously published research to obtain a
confusion matrix for the predictive task. Secondly we used the ATP to generate
reaction pathway configurations for a defined growth medium. We compared
these extracted pathways with the literature data, and also with simulations
from a different deductive approach, FBA, but using the same community
model (GEM) as a background knowledge source. The overall flow of this
abductive process for improvement, including the initial construction of the
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Figure 4.1: Processes in LGEM+. (A) defining the logical theory, including
abduction of missing compounds to enable viability of base strain; (B) single-
gene essentiality prediction; (C) abduction of hypotheses from ngG errors; (D)
using FBA to assess viability of each hypothesis; and (E) repeating single-gene
deletion to assess viability of each hypothesis.

files, is shown in Fig. 4.1. We repeated the above experiments for different
defined media. We present a model-driven experimental design strategy, and
demonstrate this with a differential expression study, and using the ∆pfk2
mutant strain as a case study.

The programs used for these experiments were implemented primarily in
Bash, Python and Perl, and of course using the command line interface (CLI)
for the ATP, iProver. We containerised the project to improve replicability,
and also to enable users to reuse the base functions for their own purposes.
This will also help us to scale this software and integrate it with our robot
scientist, Genesis.

Author contributions

The conceptualisation of the project was done by Ross D. King, Konstantin
Korovin, andAlexander H. Gower. The logical predicate and clause structure
were designed by K.K. and A.H.G. Code to generate logical theory structures
from GEMs was developed and tested by A.H.G. Extensions to the ATP
iProver to incorporate abduction were developed by K.K. The experiments
were designed by R.D.K, Ievgeniia A. Tiukova, K.K., andA.H.G., and executed
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by A.H.G. The microarray expression data analysis was conducted by Erik Y.
Bjurström, Praphapan Lasin, and A.H.G. The data were prepared and curated
by A.H.G. Figures were designed and prepared by A.H.G. The manuscript
was written by A.H.G. and K.K, and edited by E.Y.B, Daniel Brunns̊aker, and
R.D.K. The project was supervised by R.D.K., K.K., and I.A.T. The funding
for the project was acquired by R.D.K.
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Discussion and Future
Work

In this thesis, we introduce tools designed to automate parts of the scientific
discovery process in systems biology.

Paper I serves as an introduction to the core concepts of this thesis: the
scientific method, automation thereof and robot scientists, and systems biology.

In Paper II, we present a database system (Genesis-DB) for the curation of
experimental data from the robot scientist Genesis, the associated experiment
designs, and data about the execution of experiments. In keeping with the
requirements for automation, this system is scalable and is semantically rich so
can be exploited by automated reasoners. This is essential for implementing
active learning algorithms.

Paper III presents an ontology (RIMBO) for formalising hypotheses on
genome-scale metabolic models (GEMs). We demonstrate the use of RIMBO for
active learning using an example of selecting a valuable point in the experimental
space. Similarly to Genesis-DB, RIMBO enables automated reasoners to exploit
the content and context of hypotheses in systems biology, which in turn allows
for scalable model comparison by a robot scientist.

In Paper IV, we present a first-order logic (FOL) model of Saccha-
romyces cerevisiae, and methods for the generation and evaluation of hypotheses
for the improvement of GEMs. We show that an automated theorem prover
(ATP) can be used for domain-specific reasoning tasks by remaining faithful to
the semantics of domain ontologies when constructing the logical theories.

Overall the contributions of this thesis show that the reasoning tasks that
are necessary for the formation of hypotheses, and the evaluation of scientific
models, can be achieved with general-purpose tools when appropriate ontologies
are employed, and that these approaches scale well. What remains to be
researched is how well these tools integrate with the experimental platform and
the wider knowledge base in systems biology, aiming for closed-loop automation
in systems biology.

With this in mind, some potential future directions for this research are as
listed on the following page.

23
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� Extending the first-order logic vocabulary to improve the power
of LGEM+. We currently focus on biochemical pathways. There
are effects from gene regulation and signalling that are important to
predictions of phenotype, so omission of these limits the effectiveness of
the active learning approach. We could, for example, include additional
predicates and clause structures to provide more detail regarding enzyme
availability, or gene regulation and signalling processes.

� Align first-order logic model more closely with other domain
ontologies, for example RIMBO, or systems biology and chemistry
ontologies. These will provide a broader range of knolwedge sources for
abduction algorithms, and also decreased friction for automated reasoning
techniques and model improvement.

� Abstracting elements of LGEM+ and RIMBO away from the
domain of systems biology. As explored in Paper I, there are aspects
of the scientific method that are not domain specific. For example elements
of reasoning about hypotheses and theories, or the confidence held in
a hypothesis. Assessing how much of the algorithms and systems we
develop for systems biology can be generalised to other scientific domains
is an important research topic, both from an engineering perspective and
a philosophical one.

� Integrating LGEM+ with other quantitative modelling tech-
niques. In Paper IV, we implemented one way to integrate logical
reasoning over GEMs with flux balance analysis (FBA). As mentioned in
Chapter 3, there are numerous other quantitative modelling paradigms
used in systems biology, and these models can provide another source of
information for the abduction tasks taken on by a robot scientist.
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