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SUMMARY590

The following supplementary material document contains a discussion on alternative cross-
validation approaches in Section S1, and it covers additional material on kernel intensity estimation,
including additional results from the simulation study in the main text, in Section S2. Section
S3 deals with hyperparameters, including a discussion on test functions and the definition of a
data-driven hyperparameter selection algorithm. Section S4 presents kernel intensity estimation595

for two datasets while Section S5 presents higher-order statements and proofs of the results in the
main text. Finally, in Section S6 we study large sample properties of point process learning.

S1. ALTERNATIVE CROSS-VALIDATION APPROACHES

The application of cross-validation procedures to point process statistics is not new; k-fold
cross-validation, in particular leave-one-out cross-validation, has been applied in various statistical600

settings (Loader, 1999; Guan, 2007a,b; Hessellund et al., 2022). As indicated in Section 3.2,
though, this is not an instance of independent thinning, whereby it is not immediate how such
procedures could be appropriately incorporated into the proposed framework.

As a sort of mix between the cross-validation methods in Definition 3, one could consider
letting xVi be a p-thinning of x with retention probability pi = i/k, and letting xTi = x \ xVi ,605

i = 1, . . . , k ≥ 1, whereby the validation sets would obtain an increasing expected number of
points. On the one hand, the possible advantage over Monte-Carlo cross-validation is that we only
have to choose the parameter k. On the other hand, it is not likely that it would perform better than
an “optimally” chosen pair (k, p) for Monte-Carlo cross-validation. A further variant of Definition
3 is to consider an empirical Bayes-type cross-validation approach, where the considered retention610

probability would be estimated non-parametrically, e.g. by means of a scaled intensity estimate,
using (a part of) the data. The issue here is that we do not actually employ independent thinning
to generate the training and validation sets. It is further not clear whether there are any actual
benefits of doing this, but this may be worth exploring further.
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S2. SUPPLEMENTARY MATERIAL ON KERNEL INTENSITY ESTIMATION 615

S2.1. State of the art in bandwidth selection
We next give an account of two of the best-performing approaches for point processes in Rd in

the literature. The Poisson process likelihood leave-one-out cross-validation approach (Loader,
1999; Baddeley et al., 2015) maximizes θ 7→

∑
x∈x∩W log ρ̂θ(x, x \ {x})−

∫
W ρ̂θ(u, x)du in

order to obtain an optimal bandwidth. To express this as a loss function L(θ), we may either 620

multiply it by −1 or consider the square of its derivative with respect to θ, assuming sufficient
differentiability. Cronie & van Lieshout (2018) noted that this approach is particularly suited
when data come from a Poisson process. In particular, the derivative of the Poisson process
likelihood leave-one-out cross-validation function with respect to θ results in the univariate predic-
tion error Ihθξθ (W ; x), where ξθ = ρ̂θ and hθ(x; x \ {x}) = ρ̂θ(x, x \ {x})−1∂ρ̂θ(x, x \ {x})/∂θ. 625

Motivated by the Campbell formula, Cronie & van Lieshout (2018) instead proposed to select the
bandwidth by minimizing

L(θ) =

[ ∑
x∈x∩W

hθ(x, x)−
∫
W
f{ρ̂θ(u, x)}ρ̂θ(u, x)du

]2

, (S1)

where hθ(x, x) = f{ρ̂θ(x, x \ {x})} for some f : R→ R. We see that (S1) is the square of the
univariate prediction error Ihθξθ (W ; x), where ξθ = ρ̂θ and hθ(x; x \ {x}) = f{ρ̂θ(x, x \ {x})}.
Hereby, Cronie & van Lieshout (2018), in fact, implicitly carried out Takacs–Fiksel estimation, 630

where the non-parametric intensity estimator ρ̂θ, θ ∈ Θ, is treated as a parametrized conditional
intensity. They further found that the choice hθ(x, x) = f{ρ̂θ(x, x)} with f(x) = 1/x gives rise
to (S1) being the square of a (conjectured) monotonic function of θ ≥ 0 when using eθ(u, x) ≡ 1
and a Gaussian kernel. They showed that this outperforms e.g. the Poisson process likelihood
leave-one-out cross-validation approach and Moradi et al. (2019) further indicated that the choice 635

f(x) = 1/x promotes a low variance, in contrast to a low bias, which makes it particularly
suited for aggregated point processes. Here, f(x) = 1/x sets the integral in (S1) to |W | when
ρ̂θ(u, x) > 0, u ∈W , whereby the bandwidth is selected by estimating the (known) size of the
study region with a sum of reciprocal intensity estimates.

S2.2. Simulation study: additional results 640

Consider the simulation study on bandwidth selection in Section 5.2. In Figure S1 below we
illustrate the performance of point process learning when combining the loss function L2 and the
prediction errors in (12) with f(x) = x−γ , γ = 1/2, using MCCV with p = 0.1, 0.3, 0.5, 0.7, 0.9
and k = 400.

S3. HYPERPARAMETERS 645

Section 5.1 illustrates that point process learning involves a few choices to be made before the
estimation can take place, e.g. how to combine the prediction errors (into a loss function), which
test functions to employ and which cross-validation setup to use. These may all be viewed as
hyperparameters to be chosen. Since our point process learning framework in general cannot be
expressed through unbiased estimating equations, finding optimal hyperparameters similarly to 650

Guan et al. (2015); Coeurjolly et al. (2016) seems unfeasible. A further idea is to apply calculus of
variations to find a minimizer of the variances in Theorem 2. Aside from the potential associated
intractability with such mathematically motivated approaches, the obtained optimality may be
model specific. Hence, it seems one has to resort to either rules of thumb or some data-driven way
to choose the hyperparameters. 655
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Fig. S1: Performance of the loss function L2, using Monte-Carlo cross-validation with p =
0.1, 0.3, 0.4, 0.7, 0.9 and k = 400 together with the test function f(x) = x−0.5. Columns: log-
Gaussian Cox process (left), Poisson process (middle) and determinantal point process (right).
Top row: IAB (grey curve, right axis) and IV (black curve, left axis). Bottom row: ISB (grey curve,
right axis) and MISE (black curve, left axis).

For the kernel intensity estimation, in Section 5.2 we explore different rules of thumb, showing
that there exist specific hyperparameter choices which yield (substantially) better estimates than
both the state of the art and other potential hyperparameter choices. We see e.g. that the chosen
test function and cross-validation setup impact the quality of the obtained estimates. Although
we believe these rules of thumb to be generally applicable, there is of course a risk that they660

do not perform equally well beyond the scope of the models we consider. In Section S3.2 we
introduce an algorithm for data-driven hyperparameter selection and numerically evaluate it in the
context of kernel intensity estimation, where it successfully manages to select the cross-validation
parameters. This should be seen in light of mathematically derived, and likely model-dependent,
optimal hyperparameter choices.665

S3.1. Test functions
The literature offers a few suggestions on suitable test functions (recall Section 4.2). Most

notably, when ξθ is differentiable in θ, in the univariate setting of (9), the test function hijθ (·) =
∂ξθ(·)/∂θ = ∇ξθ(·) turns θ 7→ Iij(θ) into a Poisson process likelihood score-type function. A
further group of test function candidates encountered in the literature may be summarized as670

hijθ (·) = f(ξθ(·)), where f(x) = x−γ , γ ∈ R (Baddeley et al., 2005; Cronie & van Lieshout,
2018). In the innovations setting, γ = 0 corresponds to so-called raw innovations, γ = 1/2 to
Pearson innovations and γ = 1 to Stoyan–Grabarnik/inverse innovations. In particular, when
γ = 1, (8) becomes Iij(θ) =

∑
x∈xVi ∩W

ξθ(x; xTi )−1 − |W̄ |. The size of the support W̄ = {u ∈
W : ξθ(u; xTi ) > 0} ⊆W , which may vary depending on xTi , is (approximately) |W | if ξθ(·; xTi )675

is strictly positive on (most of) W . This is convenient from a computational point of view, since
we do not have to compute the integral in (8). Further, setting hijθ (·) = f{ξnθ (·)}, where f(x) =
−x log(x), results in entropy-type prediction errors; this is partly motivated by the connection
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between entropy and Kullback-Leibler divergence (Daley & Vere-Jones, 2008). Finally, if we use
hijθ divided by the integral of hijθ (·)ξnθ (·) as test function, we have e.g. that (8) becomes Iij(θ) = 680∑

x∈xVi ∩W
ξnθ (x; xTi )−1f̄ ijθ (x; xTi )− 1, where f̄ ijθ (·) is a density function on W . Viewing the first

part of the summand as a quadrature weight for the quadrature point x, this sum may be viewed as
an approximation of the integral of f̄ ijθ , and minimization of θ 7→ Iij(θ) as a density estimation
problem.

S3.2. Data-driven hyperparameter selection 685

Our proposed approach to hyperparameter selection, which is found in Algorithm 1 below, is
motivated by a commonly encountered cross-validation-based algorithm in the statistical learning
literature (James et al., 2013). We emphasize that Algorithm 1 only deals with the setting where
the estimation is carried out by minimizing a loss function; recall Section 5.1.

Algorithm 1. Hyperparameter selection

1 Let kE ≥ 1 and choose a cross-validation method, with associated parameters
(e.g. pE = 1/kE for multinomial cross-validation), to generate kE cross-validation splits.
Refer to the corresponding validation sets xEj = xVj as test sets and denote the
corresponding training sets xTj = x \ xEj by xj , j = 1, . . . , kE .

2 Specify a space Θγ of permissible hyperparameter choices.
3 if the estimation is based on (8), then
4 specify a general loss function Lγ : Θ× (X × X )∞ → [0,∞), γ ∈ Θγ , and a

goodness of fit/prediction accuracy mapping, G, which is defined on
Θ×Θγ ×X × X∞, where small means better predictive performance.

5 if the estimation is based on (9), then
6 specify a general loss function L̃γ : Θ×X∞ → [0,∞), γ ∈ Θγ , and a goodness of

fit/prediction accuracy mapping, G, which is defined on Θ×Θγ ×X , where small
means better predictive performance.

7 for j = 1, . . . , kE do
8 for γ ∈ Θγ do
9 Generate k = k(γ) cross-validation splittings {(xTij , xVij)}ki=1, based on xj and the

cross-validation method corresponding to γ; if the cross-validation parameters are
not hyperparameters, this may be done only once directly after step 7.

10 if the estimation is based on (8), then
11 Find θ̂j(γ) ∈ Θ by minimising Lγ(θ; {(xTij , xVij)}ki=1), θ ∈ Θ, and let

Gj(γ) = G[θ̂j(γ), γ, xEj , {(xTij , xVij)}ki=1].
12 if the estimation is based on (9), then
13 Find θ̂j(γ) ∈ Θ by minimising L̃γ(θ; {xTij}ki=1), θ ∈ Θ, and let

Gj(γ) = G(θ̂j(γ), γ, xEj ).
14 Given some suitable mapping M , define M̄(γ) = M(G1(γ), . . . ,GkE (γ)) ≥ 0, γ ∈ Θγ ,

and find a minimizer γ̂ of M̄(γ), γ ∈ Θγ .
15 Carry out the final estimation based on the full dataset, i.e. without holding out any test

sets, employing the loss function Lγ̂(·) when using (8) and L̃γ̂ when using (9).

The subjective choices in Algorithm 1, which have to be fixed a priori (according to some 690

best-practice principle/rule of thumb), are kE (and pE), i.e. parameters related to the test set
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generation, as well as the forms of the mappings G and M . The former measures how well a
particular hyperparameter choice results in a good prediction of a particular test set, and the latter
specifies how all such test set-based measures should be combined. Natural choices for M
include M(x1, . . . , xkE ) = −(x1 + · · ·+ xkE )/kE , M(x1, . . . , xkE ) = −med{x1, . . . , xkE}695

and M(x1, . . . , xkE ) = −min{x1, . . . , xkE}. The choice of G, however, is a bit more delicate
since it is specifically G which quantifies how well a given hyperparameter choice actually
performs.

It should be noted that penalization, e.g. regularization, may be achieved by adding the penalty
in question to the general loss function, Lγ or L̃γ , and the penalization parameter, γ̃ ≥ 0, would700

be included in the hyperparameter vector. In classical statistical learning, the standard cross-
validation algorithm (James et al., 2013) is commonly used to select γ̃ as well as any parameters
included in the actual penalty, and we believe that Algorithm 1 may fulfil the same purpose in the
current context. For instance, in the case of elastic net regularization (Zou & Hastie, 2005), where
the penalty R(θ;α) itself has a parameter α ∈ [0, 1], which governs how much ridge penalization705

versus lasso penalization is imposed, we add γ̃R(θ;α) to the general loss function and include
the pair (γ̃, α) ∈ Θγ̃ ×Θα ⊆ [0,∞)× [0, 1] in the hyperparameter vector γ. In particular, in
intensity estimation also other types of penalization, e.g. smoothness, may be of interest.

To make Algorithm 1 and its associated choices a bit more concrete, we next illustrate how
it may be used in kernel estimation; recall that the estimation is based on (8) here. Some of the710

choices we can make here include:

• In the case of Monte-Carlo cross-validation, we have the sets Θp and Θk of permissible
choices for p and k, respectively. E.g., we may want to evaluate p ∈ Θp = {0.1, . . . , 0.9}
and k ∈ Θk = {100, . . . , 400}. In the case of multinomial cross-validation, we would
instead only consider Θk, e.g. Θk = {2, 5, 10, 20, 30}.715

• Choices for the parametrization of the different test functions may be consid-
ered, e.g. hθ(·) = f{ξ1

θ (·)} = f{ρ̂θ(·)p/(1− p)}, where f(x) = x−β and β ∈ Θβ =
{0, 1/4, 1/2, 3/4, 1}.
• Choices for the forms of the general loss functions in steps 3 and 5 may be considered. E.g.,

we may want to evaluate which of the loss functions Li, i = 1, 2, 3, in (10)-(11) performs720

the best, which we parameterize according to i ∈ ΘL = {1, 2, 3}. This pertains to Step 3 in
Algorithm 1.
• The choice of kernel may be treated as a hyperparameter. To exemplify, consider the family

of beta kernels κφ, φ ≥ 0, which are also known as multi-weight kernels (Hall et al., 2004).
The box kernel is obtained by setting φ = 0, the Epanechnikov kernel by setting φ = 1725

and the Gaussian kernel may be viewed as a degenerate limit case (having applied proper
scaling), which we represent by φ =∞; see e.g. Cronie & van Lieshout (2018) for details.
Comparing these three special cases may then be represented by the hyperparameter choice
φ ∈ Θφ = {0, 1,∞}.
• Choices of edge correction methods may be treated as a hyperparameter. The three730

most common edge correction methods are eθ(u, x) ≡ 1 (no edge correction), eθ(u, x) =∫
W κθ(v − x)dv (local edge correction), eθ(u, x) =

∫
W κθ(v − u)dv (global edge cor-

rection), which we could parameterize by e = 0, e = 1 and e = 2, respectively, i.e.
e ∈ Θe = {0, 1, 2}.

Depending on what we would like to include in our hyperparameter vector, we would thus735

let Θγ be the product space generated by a combination of the spaces above. We could thus
in principle let γ = (p, k, β, i) ∈ Θγ = Θp ×Θk ×Θβ ×ΘL, using a Gaussian kernel with no
edge correction in the bandwidth selection (but local edge correction in the final intensity estimate).
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We emphasize, however, that we cannot guarantee that this would work well in practice. Turning
to the choice of G and M̄ , we believe that 740

M̄(γ) =

kE∑
j=1

Gj(γ)/kE =

kE∑
j=1

G[θ̂j(γ), γ, xEj , {(xTij , xVij)}ki=1]/kE ,

Gj(γ) = I
h
θ̂j(γ)

ξ
θ̂j(γ)

(W ; xEj ) =−
∑
x∈xEj

ρ̂
θ̂j(γ)

(x; xEj ) log{ρ̂
θ̂j(γ)

(x; xEj )}

+

∫
W
ρ̂
θ̂j(γ)

(u; xEj )2 log{ρ̂
θ̂j(γ)

(u; xEj )}du, (S2)

should make sense here. This means that we let G be a prediction error based on the entropy-
motivated test function mentioned in Section S3.1, whereby we essentially would consider 745

residuals in the sense of Baddeley et al. (2005).
We next evaluate Algorithm 1 numerically in the context of kernel intensity estimation. More

precisely, we repeat the experiment in Section 5.2, for the exact same realizations for each model,
but for each realization we run Algorithm 1 to choose i) the cross-validation parameter k ∈
Θk = {2, 5, 10, 20, 30} for multinomial cross-validation, and ii) the cross-validation parameter 750

p ∈ Θp = {0.1, . . . , 0.9} for Monte-Carlo cross-validation; in the Monte-Carlo cross-validation
case, we fix k = 100 (recall the discussion in Section 5.2 about k = 100 being sufficiently large).
To create the test sets, we consider multinomial cross-validation and let kE = 2, 5, 10, 20 to see
if some general recommendation can be given for kE . We further restrict ourselves to the loss
function L2 and the test function hθ(·) = f{ξ1

θ (·)} = {ρ̂θ(·)p/(1− p)}−1, and let G and M̄ be as 755

in (S2). Based on the results, which can be found in Table S1, we conclude that when multinomial
cross-validation is used, in terms of keeping MISE low for all three models, the recommendation
is to set kE to 5, 10 or 20; arguably, kE = 20 performs slightly better. The results are essentially
equivalent to what we obtained when we fixed k = 2; recall Figure 3. In the case of Monte-Carlo
cross-validation, we recommend to set kE = 2, which results in a performance slightly worse 760

than fixing p to our rule of thumb in Section 5.2, i.e. p ∈ [0.5, 0.7]. Although, as expected, we do
not obtain as good results as when adhering to the rules of thumb, we here have the benefit that
the algorithm tends to adapt to the kind of process that has generated the data, which of course is
practically useful since we rarely/never know the true data-generating process. Moreover, these
observations indicate that common recommendations about the number of folds to use in classical 765

k-fold cross-validation, typically k = 5 or k = 10, do not necessarily apply in the current context.
Here, the computation times scale with a factor kE with respect to the computation times provided
in Section 5.2 of the main text, without parallelization.

S4. DATA ANALYSIS

Point pattern data arise in various applications and fields. A few common examples of point 770

patterns include collections of astronomical objects (Babu & Feigelson, 1996; Kerscher, 2000),
climatic events (Toreti et al., 2019), crimes (Ang et al., 2012; Moradi et al., 2018; Chaudhuri
et al., 2021), disease cases (Meyer et al., 2012; Diggle, 2014), earthquakes (Ogata, 1998; Marsan
& Lengline, 2008; Iftimi et al., 2019), farms (Chaiban et al., 2019), queuing events (Brémaud,
1981; Baccelli & Brémaud, 2013), traffic accidents (Rakshit et al., 2019; Moradi & Mateu, 2020; 775

Moradi et al., 2020), trees (forestry) (Stoyan & Penttinen, 2000; Cronie et al., 2013) and geology
(Dehghani & Vahidi-Asl, 2019).
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Table S1: Algorithm 1 for selecting the cross-validation parameters in the simulation study
in Section 5.2. For multinomial cross-validation we consider k ∈ Θk = {2, 5, 10, 20, 30} and
for Monte-Carlo cross-validation we consider p ∈ Θp = {0.1, . . . , 0.9} with k = 100 fixed.
Throughout, we consider the loss function L2 in (10) and the test function hθ(·) = f{ξ1

θ (·)} =
{ρ̂θ(·)p/(1− p)}−1, and let G and M̄ be as in (S2). To generate the test sets, we consider multi-
nomial cross-validation with kE folds. The table also includes the Cronie & van Lieshout (2018)
approach (CvL) results from Section 5.2.

kE 2 5 10 20 CvL
Log-Gaussian Cox IAB 24.76 25.85 25.86 26.08 19.48
Multinomial ISB 1357.32 1429.57 1428.04 1455.58 963.47

IV 12294.92 11228.12 11288.70 11214.43 17597.99
MISE 13652.25 12657.69 12716.74 12670.01 18561.47

Log-Gaussian Cox IAB 42.42 48.97 48.97 48.97
Monte-Carlo ISB 3121.58 4008.46 4008.46 4008.46

IV 5110.25 3603.55 3603.55 3603.55
MISE 8231.83 7612.01 7612.01 7612.01

Poisson IAB 26.46 27.67 28.23 28.43 15.80
Multinomial ISB 1762.95 1860.62 1906.46 1927.86 921.82

IV 1985.08 1958.83 1801.30 1779.76 4408.21
MISE 3748.03 3819.45 3707.77 3707.62 5330.04

Poisson IAB 38.45 51.00 51.00 51.00
Monte-Carlo ISB 2936.40 4588.65 4588.65 4588.65

IV 1374.09 677.67 677.67 677.67
MISE 4310.48 5266.32 5266.32 5266.32

Determinantal IAB 14.87 15.27 15.57 15.81 9.14
Multinomial ISB 534.52 550.51 567.12 575.92 276.75

IV 807.81 765.58 757.18 741.90 2002.55
MISE 1342.34 1316.10 1324.30 1317.81 2279.31

Determinantal IAB 24.70 32.35 32.35 32.35
Monte-Carlo ISB 1109.54 1709.93 1709.93 1709.93

IV 584.93 253.21 253.21 253.21
MISE 1694.47 1963.14 1963.14 1963.14

To illustrate the applicability of our methodology on data in different general spaces, we next
carry out kernel intensity estimation for the two datasets in Figure 1, where the first one lives in a
Euclidean domain W ⊆ R2 and the second one lives on a linear network S = W = L =

⋃k
i=1 li.780

Both datasets can be downloaded through the R package spatstat (Baddeley et al., 2015). In
both cases, we employ Monte-Carlo cross-validation with (k, p) = (400, 0.7) and L2. Moreover,
in analogy with Section 5.2, we let the test function be given by hθ(u, xTi ) = {pρ̂θ(u; xTi )/(1−
p)}−1, which yields the prediction errors

Ii(θ) =
1− p
p

∑
x∈xVi

1

ρ̂θ(x, xTi )
− |W |.785

In analogy with Section 5.2, we use no edge correction in ρ̂θ when we select the bandwidth, but
use it for the generation of the final intensity estimate ρ̂

θ̂
(u, x), u ∈W .
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The first dataset (see the left panel of Figure 1) is a point pattern of 3605 Beilschmiedia pendula
tree locations on Barro Colorado Island, Panama. Figure S2 shows the dataset x ⊆W ⊆ R2

together with a kernel intensity estimate (3), obtained through our bandwidth selection approach. 790

Visibly, the obtained bandwidth, 56.65 (metres), leads to an estimate which adapts well to the
inhomogeneity of the events.

Fig. S2: Locations of tropical rain forest trees on Barro Colorado Island, Panama, with an obtained
kernel intensity estimate overlaid.

Our second dataset x ⊆ S = W = L (see the right panel of Figure 1) consists of the locations
of 566 spines on one branch of the dendritic tree of a rat neuron, i.e. nerve cell (Jammalamadaka
et al., 2013; Baddeley et al., 2014); courtesy of the Kosik Lab, UC Santa Barbara. Here, spines 795

refer to small protrusions on the dendrites, which are branching filaments which extend from the
main body of a neuron. The linear network L =

⋃n
i=1 li, which consists of 640 vertices (maximum

vertex degree 4) and 639 line segments li = [ui, vi] = {tui + (1− t)vi : 0 ≤ t ≤ 1} ⊆ R2, has a
total length of 1933.653 microns. To obtain an intensity estimate, we consider the kernel intensity
estimator proposed by Rakshit et al. (2019). More specifically, we employ the following variant 800

of (3) in the linear network setting:

ρ̂θ(u, x) =
∑
x∈x

κθ(u− x)

eθ(u, x)
, u ∈ L, (S3)

where the edge correction term is given by e.g.

eθ(u, x) = eθ(x) =

∫
L
κθ(x− v)dv

and we recall that the reference measure |A| =
∫
A du, A ⊆ L, corresponds to integration with

respect to arc length, i.e. the 1-dimensional Hausdorff measure on L. Given that Moradi et al. 805

(2018); Moradi (2018) obtained good results with the bandwidth selection approach of Cronie &
van Lieshout (2018) in the linear network setting, and given the results in Section 5.2, we have
indications that our new approach should also do a good job here. We obtain the bandwidth 24.83
(microns) and in Figure S3 we see that the lower sub-branch has an intensity which is almost
double of what on average is seen on the remaining network. Visually, this corresponds well with 810

the data.
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Fig. S3: A point pattern of locations of spines on one branch of the dendritic tree of a rat neuron,
with an obtained kernel intensity estimate overlaid.

S5. HIGHER-ORDER STATEMENTS AND PROOFS OF THE RESULTS IN THE MAIN TEXT

S5.1. Preliminaries
The main text focused on first-order characteristics. However, in the sections below, we state

and prove the results in the main text in the nth-order setting. Consequently, we first provide an815

overview of the nth-order setting.
Given a suitable probability space (Ω,F ,pr), we recall from Section 2.1 that a point process

X = {xi}Ni=1, 0 ≤ N ≤ ∞, in a general space S may be defined as a random element in the mea-
surable space (X ,N ) = (XS ,N ), of point patterns/configurations x = {x1, . . . , xn} ⊆ S, 0 ≤
n ≤ ∞, such that #(x ∩A) =

∑n
i=1 1(xi ∈ A) <∞ for any bounded (Borel set) A ⊆ S. The820

σ-algebra N , which is generated by the cardinality mappings x 7→ #(x ∩A) ∈ {0, 1, . . . ,∞},
A ⊆ S, x ∈ X , coincides with the Borel σ-algebra generated by a certain metric for measures
on S, and X can be identified with the (discrete) random measure X(A) = #(X ∩A), A ⊆ S
(Daley & Vere-Jones, 2003, 2008). The distribution P (E) = PX(E) = pr(X ∈ E), E ∈ N , is
governed by the finite dimensional distributions of X (van Lieshout, 2000), which for a finite825

point process (N <∞ a.s.) are determined by its so-called Janossy densities; see the discussion
around (S11) for details.

Most of the relevant distributional characteristics considered in the literature can be obtained
through (combinations of) expectations of the form

E

 ∑ 6=

x1,...,xn∈X
h(x1, . . . , xn, X \ {x1, . . . , xn})

 = E

 ∑
x∈Xn

6=

h(x,X \ {x})

 , (S4)830

for h : Sn ×X → R which are permutation invariant over Sn, n ≥ 1; unless h is non-negative
(and possibly infinite), it is assumed to be integrable. Here, Xn

6= = {(x1, . . . , xn) ∈ Xn : xi 6=
xj if i 6= j} ⊆ Sn is the point process consisting of all distinct n-tuples of elements of X (Daley
& Vere-Jones, 2008); e.g., (x1, x2), (x2, x1) ∈ X2

6= if x1, x2 ∈ X . Below we consider different
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subclasses of functions h, which yield different integral identities for (S4) and, in turn, define 835

different point process characteristics of interest.
The subclass of functions h in (S4) which are constant over X , i.e. of the form h(x1, . . . , xn),

defines the nth-order product density ρ(n) of X through the Campbell formula/theorem (Daley &
Vere-Jones, 2008, Section 9.5), which states that (S4) equals∫

Sn
h(u1, . . . , un)ρ(n)(u1, . . . , un)du1 · · · dun. (S5) 840

We have that ρ(n)(·), which is the Radon-Nikodym derivative of the nth-order facto-
rial moment measure (A1 × · · · ×An) 7→ E{

∑6=
x1,...,xn∈X

∏n
i=1 1(ui ∈ Ai)}, Ai ⊆ S, with

respect to the product measure | · |n, coincides with the first-order product density of
the point process Xn

6= (Daley & Vere-Jones, 2008). Heuristically, since X is simple,
for disjoint infinitesimal neighbourhoods Ai = dui, dui = |dui|, of the points ui ∈ S, 845

i = 1, . . . , n, we obtain that pr{X(du1) = 1, . . . , X(dun) = 1} = E{X(du1) · · ·X(dun)} =
ρ(n)(u1, . . . , un)du1 · · · dun. Here, the particular case n = 1 gives us the intensity function
ρ = ρ(1) of X; see Section 2.1 for details. It is worth noting that the correlation func-
tions, g(n)(u1, . . . , un) = ρ(n)(u1, . . . , un)/(ρ(u1) · · · ρ(un)), n ≥ 1, quantify interaction (van
Lieshout, 2011): when g(n)(u1, . . . , un) is larger than 1 we speak of clustering/aggregation 850

between points of X in the (infinitesimal) vicinity of u1, . . . , un ∈ S, while we speak of inhibi-
tion/regularity/repulsion when it is less than 1; for a Poisson process, which represents complete
spatial randomness (Diggle, 2014), we have g(n)(·) ≡ 1 for any n ≥ 1.

When h is not necessarily constant over X , (S4) equals (Daley & Vere-Jones, 2008)∫
Sn×X

h(u1, . . . , un, x)C!
n[d{(u1, . . . , un), x}], (S6) 855

where C!
n(A× E), A ⊆ Sn, E ∈ N , is the nth-order reduced Campbell measure. If C!

n in (S6)
is absolutely continuous with respect to the nth-order factorial moment measure, (S6) may be
expressed as ∫

Sn
E!
u1,...,un {h(u1, . . . , un, X)} ρ(n)(u1, . . . , un)du1 · · · dun. (S7)

The equality between (S4) and (S7), via (S6), is referred to as the reduced Campbell–Mecke 860

formula/theorem (Daley & Vere-Jones, 2008, Section 13). Moreover, the family of expectations
in (S7) are governed by the nth-order reduced Palm distributions P !

u1,...,un(E), u1, . . . , un ∈ S,
E ∈ N . They satisfy that P !

u1,...,un(·) is the distribution of a point process X !
u1,...,un , which may

be interpreted as X conditioned on having points at the locations u1, . . . , un which are removed
upon realization. The associated product densities are given by (Coeurjolly et al., 2017, Equation 865

(9))

ρ!(k)(v1, . . . , vk|u1, . . . , un) =
ρ(k+n)(v1, . . . , vk, u1, . . . , un)

ρ(n)(u1, . . . , un)
, k ≥ 1, (S8)

when the nth-order product density of X satisfies ρ(n)(u1, . . . , un) > 0 and otherwise by 0.
Further, by imposing absolute continuity of C!

n with respect to the distribution of X , we obtain
that (S6), and thereby (S4), equals (Daley & Vere-Jones, 2008) 870∫

Sn
E
{
h(u1, . . . , un, X)λ(n)(u1, . . . , un;X)

}
du1 · · · dun, (S9)
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where λ(n) in (S9) is the nth-order (Papangelou) conditional intensity, which further satisfies
E{λ(n)(u1, . . . , un;X)} = ρ(n)(u1, . . . , un). The equality between (S4) and (S9) is called the
Georgii–Nguyen–Zessin (GNZ) formula/theorem, and point processes for which it is well-defined
are sometimes called Gibbs processes (Coeurjolly et al., 2017). Moreover,875

λ(n)(u1, . . . , un; x) = λ(u1; x)λ(u2; x ∪ {u1}) · · ·λ(un; x ∪ {u1, . . . , un−1}), (S10)

with λ = λ(1) referred to as ‘the’ conditional intensity, has the interpretation that
the conditional probability of finding points of X in disjoint infinitesimal neighbour-
hoods dui of ui ∈ S, i = 1, . . . , n, given that X agrees with x outside du1 ∪ . . . ∪
dun, satisfies pr{X(du1) = 1, . . . , X(dun) = 1 | X ∩ S \ (du1 ∪ · · · ∪ dun) = x ∩ S \ (du1 ∪880

· · · ∪ dun)} = λ(n)(u1, . . . , un; x)du1 · · · dun (Coeurjolly et al., 2017). This interpretation is mo-
tivated by the fact that, for a finite point process, the finite dimensional distributions are governed
by Janossy measures, which may admit densities, {jn}n≥0, satisfying (Daley & Vere-Jones, 2008,
Section 15.5)

λ(u, x) =

{
jn+1(x ∪ {u})/jn(x), u /∈ x = {x1, . . . , xn} ∈ X ,
jn(x)/jn−1(x \ {u}), u ∈ x = {x1, . . . , xn} ∈ X ,

u ∈ S. (S11)885

Heuristically, jn(u1, . . . , un)du1 · · · dun gives the probability of X being contained in infinitesi-
mal neighbourhoods of u1, . . . , un ∈ Sn (Daley & Vere-Jones, 2003). Hence, λ(·) can be readily
derived when the Janossy densities, which yield the (intractable) likelihood function, are known
in closed form. Finally, in addition to attractiveness and repulsiveness (recall Section 2.1), there is
also local stability: if λ(·; x) ≤ φ∗(·) for any x ∈ X and some | · |-integrable function φ∗ on S,890

then X is called φ∗-locally stable (Møller & Waagepetersen, 2004, Section 6.1.1). It is noteworthy
that both attractiveness/repulsiveness and local stability of λ transfer to λ(n).

Given two general spaces S andM, with reference measures |A|, A ⊆ S, and νM(B), B ⊆
M, equip the (general) product space S̆ = S ×M with the product reference measure ν̆(A×
B) = |A|νM(B). A point process X̆ = {(xi,mi)}Ni=1 ⊆ S̆ is called a marked point process895

with marks mi ∈M, i = 1, . . . , N , if X = {xi}Ni=1 is a well-defined point process in S. The
corresponding point configuration space is here denoted by (X̆ , N̆ ). It should be emphasized
that the nth-order conditional intensity λ̆(n) of X̆ lives on S̆n × X̆ , and the intensity satisfies
ρ̆(n){(u1,m1), . . . , (un,mn)} = E[λ̆(n){(u1,m1), . . . , (un,mn); X̆}].

S5.2. A higher-order version of Theorem 1900

The result below is an nth-order version of Theorem 1 in the main text.

THEOREM S1. Let Z be a p-thinning of a point process X on S, with retention probability
p(u) ∈ (0, 1), u ∈ S, and Y = X \ Z. For any non-negative or integrable h : Sn ×X → R,
n ≥ 1,

E

∑
x∈Zn6=

h(x, Y )

 = E

 ∑
x=(x1,...,xn)∈Y n6=

h(x, Y \ {x})
n∏
i=1

p(xi)

1− p(xi)

 . (S12)905
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Moreover, provided that they exist, the nth-order conditional intensities, product densities and
reduced Palm product densities of Z and X a.e. satisfy

λ
(n)
Z (u1, . . . , un, Z)

a.s.
= p(u1) · · · p(un)E{λ(n)

X (u1, . . . , un;X) | Z},

ρ
(n)
Z (u1, . . . , un) = p(u1) · · · p(un)ρ

(n)
X (u1, . . . , un),

ρ
!(n)
Z (u1, . . . , un|v1, . . . , vk) = p(u1) · · · p(un)ρ

!(n)
X (u1, . . . , un|v1, . . . , vk). (S13)

Given the associated marked point process representation X̆ in Definition 1, when the nth-order
conditional intensities of X̆ and Y exist, they satisfy E[λ̆(n){(u1, 1), . . . , (un, 1); X̆} | Y ] =

λ
(n)
Y (u1, . . . , un;Y )

∏n
i=1 p(ui)/[

∏n
i=1{1− p(ui)}] for almost all u1, . . . , un ∈ S. In particular, 910

for a p-thinning with retention probability p ∈ (0, 1), we set p(·) ≡ p in all expressions above.

Proof of Theorem S1. Starting with expression (S13), the form of the conditional intensity is a
direct consequence of Decreusefond & Vasseur (2018, Theorem 4.7) and (S10). The result on the
product densities follows from e.g. Baccelli et al. (2020, Proposition 2.3.24), and combining this
with (S8), we obtain the result on reduced Palm product densities. 915

The structure of the proof of the prediction formula in (S12) follows the lines of the proof
of Last & Penrose (2017, Exercise 5.9). Consider the random measure representation of X ,
where there are random variables N = X(S) ∈ {0, . . . ,∞} and X1, . . . XN ∈ S such that
X(A) =

∑N
i=1 δXi(A) =

∑N
i=1 1(Xi ∈ A), A ⊆ S. An independent thinning of X has the same

distribution as Z(·) =
∑N

i=1BiδXi(·), where i) conditional on N and X1, . . . , XN , the random 920

variables B1, . . . , BN are mutually independent and, ii) for any i = 1, . . . , N , conditional on Xi,
the random variable Bi is Bernoulli distributed with parameter p(Xi). Similarly, Y = X \ Z has
the random measure representation Y (·) = X(·)− Z(·) =

∑N
i=1(1−Bi)δXi(·). For anym ≥ n,

let Am be the set of all n-tuples of distinct integers i1, . . . , in ∈ {1, . . . ,m}; if m is infinite, we
let i1, . . . , in be finite. It now follows that 925

E

[ ∑ 6=

x1,...,xn∈Z

h(x1, . . . , xn, Y )

n∏
i=1

{1− p(xi)}

]

=E

[ ∑
i1,...,in∈AN

h(Xi1 , . . . , Xin , Y )

n∏
j=1

Bij {1− p(Xij )}

]

=E

{ ∑
i1,...,in∈AN

h(Xi1 , . . . , Xin , Y )

n∏
j=1

E(1−Bij | X)

n∏
j=1

Bij

}

=E

{ ∑
i1,...,in∈AN

h(Xi1 , . . . , Xin , Y \ {Xi1 , . . . , Xin})
n∏
j=1

E(1−Bij | X)

n∏
j=1

Bij

}
,

where we have used that p(Xij ) = E(Bij | X) and that Y ∩ {Xi1 , . . . , Xin} = ∅, i.e. Y = Y \ 930

{Xi1 , . . . , Xin}, whenBij = 1 for all j = 1, . . . , n. By the conditional independence of theBij ’s,
we have that

∏n
j=1E(1−Bij | X) = E{

∏n
j=1(1−Bij ) | X}, and writing h̃i1,...,in(X,Y ) =



A cross-validation-based statistical theory for point processes 13

h(Xi1 , . . . , Xin , Y \ {Xi1 , . . . , Xin}), we obtain

E

{ ∑
i1,...,in∈AN

h(Xi1 , . . . , Xin , Y \ {Xi1 , . . . , Xin})
n∏
j=1

E(1−Bij | X)

n∏
j=1

Bij

}

=E

[ ∑
i1,...,in∈AN

h̃i1,...,in (X,Y )E

{
n∏
j=1

(1−Bij ) | X

}
n∏
j=1

Bij

]
935

=
∑

i1,...,in∈A∞

E

[
1(N ≥ max{i1, . . . , in})h̃i1,...,in (X,Y )E

{
n∏
j=1

(1−Bij ) | X

}
n∏
j=1

Bij

]

=
∑

i1,...,in∈A∞

E

[
E

{
1(N ≥ max{i1, . . . , in})h̃i1,...,in (X,Y )

n∏
j=1

(1−Bij ) | X

}
n∏
j=1

Bij

]
,

where the last equality follows from the ”pulling out known factors” property of conditional
expectations; N and h̃i1,...,in(X,Y ) are measurable with respect to the σ-algebra generated by X .
By the law of total expectation, it follows that940

∑
i1,...,in∈A∞

E

[
E

{
1(N ≥ max{i1, . . . , in})h̃i1,...,in (X,Y )

n∏
j=1

(1−Bij )

∣∣∣∣∣X
}

n∏
j=1

Bij

]

=
∑

i1,...,in∈A∞

E

(
E

[
E

{
1(N ≥ max{i1, . . . , in})h̃i1,...,in (X,Y )

n∏
j=1

(1−Bij )

∣∣∣∣∣X
}

n∏
j=1

Bij

∣∣∣∣∣X
])

=
∑

i1,...,in∈A∞

E

[
E

{
1(N ≥ max{i1, . . . , in})h̃i1,...,in (X,Y )

n∏
j=1

(1−Bij )

∣∣∣∣∣X
}
E

(
n∏
j=1

Bij

∣∣∣∣∣X
)]

=
∑

i1,...,in∈A∞

E

[
E

{
1(N ≥ max{i1, . . . , in})h̃i1,...,in (X,Y )

n∏
j=1

(1−Bij )

∣∣∣∣∣X
}

n∏
j=1

p(Xij )

]

=
∑

i1,...,in∈A∞

E

[
E

{
1(N ≥ max{i1, . . . , in})h̃i1,...,in (X,Y )

n∏
j=1

(1−Bij )

n∏
j=1

p(Xij )

∣∣∣∣∣X
}]

945

=
∑

i1,...,in∈A∞

E

{
1(N ≥ max{i1, . . . , in})h̃i1,...,in (X,Y )

n∏
j=1

(1−Bij )

n∏
j=1

p(Xij )

}

=E

{ ∑
i1,...,in∈AN

h(Xi1 , . . . , Xin , Y \ {Xi1 , . . . , Xin})
n∏
j=1

(1−Bij )

n∏
j=1

p(Xij )

}
,

where we have used the fact that E(
∏n
j=1Bij | X) =

∏n
j=1E(Bij |X) =

∏n
j=1 p(Xij ) by the

conditional independence of the Bij ’s, as well as the above-mentioned property of conditional
expectations for

∏n
j=1 p(Xij ) and the σ-algebra generated by X . Exploiting the representation950

Y (·) = X(·)− Z(·) =
∑N

i=1(1−Bi)δXi(·), we finally obtain that

E

{ ∑
i1,...,in∈AN

h(Xi1 , . . . , Xin , Y \ {Xi1 , . . . , Xin})
n∏
j=1

(1−Bij )

n∏
j=1

p(Xij )

}

=E

{ ∑ 6=

x1,...,xn∈Y

h(x1, . . . , xn, Y \ {x1, . . . , xn})
n∏
i=1

p(xi)

}
,

which proves (S12).
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Next, let ψ0(x̆) = {x : (x,m) ∈ x̆ ∩ S × {0}}, x̆ ∈ X̆ , and consider any non-negative or inte- 955

grable h : Sn ×X → R. Applying the GNZ formula to the left-hand side of (S12) yields

E

[ ∑ 6=

x1,...,xn∈Z

h(x1, . . . , xn, Y )

n∏
i=1

{1− p(xi)}

]

=E

 ∑ 6=

(x1,m1),...,(xn,mn)∈X̆

h{x1, . . . , xn, ψ0(X̆)}
n∏
i=1

mi{1− p(xi)}


=

∫
Sn

E

[
n∏
i=1

{1− p(ui)}h{u1, . . . , un;ψ0(X̆)}λ̆(n){(u1, 1), . . . , (un, 1); X̆}

]
du1 · · · dun

=

∫
Sn

E

[
n∏
i=1

{1− p(ui)}h(u1, . . . , un;Y )λ̆(n){(u1, 1), . . . , (un, 1); X̆}

]
du1 · · · dun, 960

since the reference measure on the mark space is the counting measure onM = {0, 1}. On the
other hand, applying the GNZ formula to the right-hand side of (S12) yields

E

{ ∑ 6=

x1,...,xn∈Y

h(x1, . . . , xn, Y \ {x1, . . . , xn})
n∏
i=1

p(xi)

}

=

∫
Sn

E

{
n∏
i=1

p(ui)h(u1, . . . , un;Y )λ
(n)
Y (u1, . . . , un;Y )

}
du1 · · · dun.

The equality of these two expressions for arbitrary h : Sn ×X → R yields that, for almost every 965

u1, . . . , un ∈ Sn and every non-negative or integrable h∗ : X → R,

E

(
h∗(Y )

[
λ̆(n){(u1, 1), . . . , (un, 1); X̆} −

∏n

i=1
p(ui)∏n

i=1
{1− p(ui)}

λ
(n)
Y (u1, . . . , un;Y )

])
= 0,

which concludes the proof. �

S5.3. A higher-order version of Theorem 2
Theorem S2 is an nth-order version of Theorem 2 and Corollary 1 in the main text. We state and

prove the result in terms of nth-order general parametrized estimator families ΞnΘ = {ξnθ : θ ∈ Θ}, 970

n ≥ 1, where

ξnθ (u1, . . . , un; x), u1, . . . , un ∈ S, x ∈ X , θ ∈ Θ, (S14)

are real-valued and ξnθ (·; x) is either non-negative or integrable for any x. When each ξnθ is constant
over x ∈ X ,

ξnθ (u1, . . . , un; x) ≡ ξnθ (u1, . . . , un), u1, . . . , un ∈ S, x ∈ X , θ ∈ Θ. (S15) 975

In Theorem S2 we show that the weight function appearing in the independent thinning setting
has an additional bound when the point process is locally stable. In particular, for an attractive
and locally stable point process, e.g. an area-interaction process (Møller & Waagepetersen, 2004),
we have both upper and lower bounds for the weight function w(·) in (S20).

THEOREM S2. Given a point processX in S, let Z be an arbitrary thinning ofX , Y = X \ Z, 980

and X̆ the associated bivariate point process representation in Definition 1. Consider further
some fixed n ≥ 1, and let ΞnΘ = {ξn} andHΘ = {h} consist of one element each.

When ξn, h : Sn → R are of the form (S15), we have that Ihξn(·;Z, Y ) = Ihξn(·;Z) satisfies

E{Ihξn(A;Z)} =

∫
A
h(u1, . . . , un)

{
ρ

(n)
Z (u1, . . . , un)− ξn(u1, . . . , un)

}
du1 · · · dun (S16)
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for any A ⊆ Sn, where ρ(n)
Z (·) denotes the nth-order product density of Z; the variance of985

Ihξn(A;Z) can be found in expression (S21). Moreover, the expectation in (S16) is 0 for any
A ⊆ Sn and any test function h of the form (S15) if and only if

ξn(u1, . . . , un)
a.e.
= ρ

(n)
Z (u1, . . . , un). (S17)

If, instead, ξn, h : Sn ×X → R are of the form (S14), when X̆ admits an nth-order conditional
intensity λ̆(n)(·; X̆), for any A ⊆ Sn we have990

E{Ihξn(A;Z, Y )} =

∫
A
E
[
h(u;Y )

{
λ̆

(n)
1 (u; X̆)− ξn(u;Y )

}]
du, (S18)

where λ̆(n)
1 (u; X̆) = λ̆(n){(u1, 1), . . . , (un, 1); X̆}, u = (u1, . . . , un) ∈ Sn, n ≥ 1; the variance

of Ihξn(A;Z, Y ) can be found in expression (S26). Assume further E{λ̆(n)
1 (u1, . . . , un; X̆)2} <

∞ for | · |n-almost any (u1, . . . , un) ∈ Sn. Then, for any A ⊆ Sn and any test function h such
that E{h(u1, . . . , un;Y )2} <∞, we have that E{Ihξn(A;Z, Y )} = 0 if and only if995

ξn(u1, . . . , un;Y )
a.e.
= E

{
λ̆

(n)
1 (u1, . . . , un; X̆) | Y

}
. (S19)

In particular, when Z is an independent thinning of X , based on a retention probability func-
tion p(u) ∈ (0, 1), u ∈ S, then (S17) reads ξ(u1, . . . , un)

a.e.
= p(u1) · · · p(un)ρ

(n)
X (u1, . . . , un).

Moreover, the right-hand side of (S19) is given by

p(u1) · · · p(un)E{λ(n)
X (u1, . . . , un;X) | Y } = w(u1, . . . , un, Z, Y )λ

(n)
X (u1, . . . , un;Y ),

(S20)

withw(u1, . . . , un, Z, Y ) = p(u1) · · · p(un)λ
(n)
X (u1, . . . , un;Y )−1E{λ(n)

X (u1, . . . , un;X) | Y }.1000

In particular, w(u1, . . . , un, Z, Y ) ≤ p(u1) · · · p(un) if X is repulsive, w(u1, . . . , un, Z, Y ) ≥
p(u1) · · · p(un) if X is attractive and w(u1, . . . , un, Z, Y ) = p(u1) · · · p(un) if X is a Poisson
process. In addition, (S19) is smaller than or equal to

∏n
i=1 p(ui)φ

∗(ui) if X is φ∗-locally stable.

Proof of Theorem S2. Recall that ΞnΘ = {ξn} = {ξ} and HΘ = {h} here consist of one ele-
ment each. Moreover, for ease of notation, we sometimes write du for du1 · · · dun.1005

When h and ξ are of the form (S15), by the Campbell formula we have that for any A ⊆ Sn,

E{Ihξ (A;Z, Y )} =E

 ∑
(x1,...,xn)∈Zn

6=∩A

h(x1, . . . , xn)

−
∫
A

h(u1, . . . , un)ξ(u1, . . . , un)du

=

∫
A

h(u1, . . . , un)

{
ρ

(n)
Z (u1, . . . , un)du− ξ(u1, . . . , un)

}
du.

Hence, E{Ihξ (A;Z, Y )} = 0 for any (bounded) A ⊆ Sn and function h if and only if

ξ(u1, . . . , un) = ρ
(n)
Z (u1, . . . , un) for | · |n-almost every (u1, . . . , un) ∈ Sn; see e.g. Møller &1010

Waagepetersen (2004, Section 2.3.3). We further have that

var{Ihξ (A;Z, Y )} = var

 ∑
(x1,...,xn)∈Zn

6=∩A

h(x1, . . . , xn)


=E

 ∑
(x1,...,xn)∈Zn

6=∩A

h(x1, . . . , xn)


2−{∫

A

h(u1, . . . , un)ρ
(n)
Z (u1, . . . , un)du

}2

,
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where, by Poinas et al. (2019, Equation (B.3)),

E

 ∑
(x1,...,xn)∈Zn

6=∩A

h(x1, . . . , xn)


2 1015

=E

([ ∑ 6=

x1,...,xn∈Z

1{(x1, . . . , xn) ∈ A}h(x1, . . . , xn)

]2)

=E

[{∑
y⊆Z

n!1(#y = n)1(y ∈ A)h(y)

}2]

=

n∑
j=0

(n!)2

(2n− j)!
(n
j

)(2n− j
n

)∫
S2n−j

h(u1, . . . , un)h(u1, . . . , uj , un+1, . . . , u2n−j)

× 1{(u1, . . . , un) ∈ A}1{(u1, . . . , uj , un+1, . . . , u2n−j) ∈ A}

× ρ(2n−j)
Z (u1, . . . , u2n−j)du1 · · · du2n−j . 1020

Hence,

var{Ihξ (A;Z)} =

n∑
j=0

j!
(n
j

)2 ∫
S2n−j

h(u1, . . . , un)h(u1, . . . , uj , un+1, . . . , u2n−j)

× 1{(u1, . . . , un) ∈ A}1{(u1, . . . , uj , un+1, . . . , u2n−j) ∈ A}S

× ρ(2n−j)
Z (u1, . . . , u2n−j)du1 · · · du2n−j

−
{∫

A

h(u1, . . . , un)ρ
(n)
Z (u1, . . . , un)du1 · · · dun

}2

, (S21) 1025

where j = 0 yields that {u1, . . . , uj , un+1, . . . , u2n−j} = {un+1, . . . , u2n} and j = n yields that
{u1, . . . , uj , un+1, . . . , u2n−j} = {u1, . . . , un}.

When h and ξ are of the form (S14), we start by defining

H1(A) =
∑

(x1,...,xn)∈Zn
6=∩A

h(x1, . . . , xn;Y \ {x1, . . . , xn}),

H2(A) =

∫
A

h(u1, . . . , un;Y )ξ(u1, . . . , un;Y )du, 1030

µ1(A) =E {H1(A)} ,
µ2(A) =E {H2(A)} , A ⊆ Sn,

where

E{Ihξ (A;Z, Y )} =µ1(A)− µ2(A), (S22)

E{Ihξ (A;Z, Y )2} =E{H1(A)2}+ E{H2(A)2} − 2E{H1(A)H2(A)}, 1035

var{Ihξ (A;Z, Y )} =E{H1(A)2}+ E{H2(A)2} − 2E{H1(A)H2(A)} − {µ1(A)− µ2(A)}2.
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Next, recall the associated marked point process X̆ in Definition 1, with conditional intensity
λ̆(n)(·). Given ψ0(x̆) = {x : (x,m) ∈ x̆ ∩ S × {0}}, x̆ ∈ X̆ , by the GNZ formula,

µ1(A) =E

 ∑
(x1,...,xn)∈Zn

6=∩A

h(x1, . . . , xn;Y \ {x1, . . . , xn})


=E


∑

((x1,m1),...,(xn,mn))∈X̆n
6=∩(A×Mn)

n∏
i=1

mih(x1, . . . , xn;ψ0[X̆ \ {(x1,m1), . . . , (xn,mn)}])

1040

=

∫
A

∑
m1,...,mn∈{0,1}

E

[
n∏
i=1

mih{u1, . . . , un;ψ0(X̆)}λ̆(n){(u1,m1), . . . , (un,mn); X̆}

]
du

=

∫
A

E
[
h{u1, . . . , un;ψ0(X̆)}λ̆(n){(u1, 1), . . . , (un, 1); X̆}

]
du

=

∫
A

E
[
h(u1, . . . , un;Y )λ̆(n){(u1, 1), . . . , (un, 1); X̆}

]
du,

since the reference measure on the mark space is the counting measure on the mark space
M = {0, 1}. On the other hand, by the Fubini-Tonelli theorem,1045

µ2(A) =E

{∫
A

h(u1, . . . , un;Y )ξ(u1, . . . , un;Y )du

}
=

∫
A

E

{
h(u1, . . . , un;Y )ξ(u1, . . . , un;Y )

}
du.

Hence, E{Ihξ (A;Z, Y )} = 0 for any (bounded) A ⊆ Sn if and only if

E
(
h(u1, . . . , un;Y )

[
λ̆(n){(u1, 1), . . . , (un, 1); X̆} − ξ(u1, . . . , un;Y )

])
= 0,

for | · |n-almost every (u1, . . . , un) ∈ Sn; see e.g. Møller & Waagepetersen (2004, Sec-
tion 2.3.3). Moreover, under the assumption that E[λ̆(n){(u1, 1), . . . , (un, 1); X̆}2] <∞ and1050

E{h(u1, . . . , un;Y )2} <∞, L2-projection yields that

ξ(u1, . . . , un;Y ) = E[λ̆(n){(u1, 1), . . . , (un, 1); X̆}|Y ].

We next turn to the variance. Similarly to Poinas et al. (2019, Equation (B.3)), we find that

E{H1(A)2} =E

[ ∑
(x1,...,xn)∈Zn

6=

∑
(y1,...,yn)∈Zn

6=

1{(x1, . . . , xn), (y1, . . . , yn) ∈ A}

× h(x1, . . . , xn;Y \ {x1, . . . , xn})h(y1, . . . , yn;Y \ {y1, . . . , yn})

]

=n!2E

 ∑
x={x1,...,xn}⊆Z

∑
y={y1,...,yn}⊆Z

1(x, y ∈ A)h(x;Y \ x)h(y;Y \ y)

1055

=n!2
n∑
j=0

E

 ∑
x={x1,...,xn}⊆Z

∑
y={y1,...,yn}⊆Z

1{#(x ∩ y) = j}1(x, y ∈ A)h(x;Y \ x)h(y;Y \ y)

 ,
where the factor n!2 comes from the fact that when we go from n-subsets to n-tuples we count
the same thing n! times; we can rearrange (x1, . . . , xn) in n! different ways. In the last sum,
assuming that #(x ∩ y) = j, i.e. that x and y have j elements xi = yi′ ∈ Z in common, there
are
(
n
j

)
ways in which the elements in x ∩ y can be chosen from x and y. The remaining 2n− j1060

elements now need to be assigned to x \ (x ∩ y) and y \ (x ∩ y). There are
(

2n−j
n−j

)
=
(

2n−j
n

)
ways to assign elements of (x ∩ y)c to x \ (x ∩ y) so that #x = n; the remaining elements will
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automatically be assigned to y \ (x ∩ y). In the following, we let z1, . . . , zj denote the elements in
x ∩ y, zj+1, . . . , zn the elements only in x, and zn+1, . . . , z2n−j the ones only in y. Consequently,

E{H1(A)2} =n!2
n∑
j=0

(n
j

)(2n− j
n

)
E

[ ∑
{z1,...,z2n−j}⊆Z

1{(z1, . . . , zn) ∈ A} 1065

× 1{(z1, . . . , zj , zn+1, . . . , z2n−j} ∈ A)h(z1, . . . , zn;Y \ {z1, . . . , zn})

× h(z1, . . . , zj , zn+1, . . . , z2n−j ;Y \ {z1, . . . , zj , zn+1, . . . , z2n−j})

]

=

n∑
j=0

(n
j

)(2n− j
n

) n!2

(2n− j)!
E

[ ∑
(z1,...,z2n−j)⊆Z2n−j

6=

1{(z1, . . . , zn) ∈ A}

× 1{(z1, . . . , zj , zn+1, . . . , z2n−j) ∈ A}h(z1, . . . , zn;Y \ {z1, . . . , zn})

× h(z1, . . . , zj , zn+1, . . . , z2n−j ;Y \ {z1, . . . , zj , zn+1, . . . , z2n−j})

]
, 1070

where
(n!)2

(2n− j)!
(n
j

)(2n− j
n

)
=
(n
j

) (n!)2

(2n− j)!
(2n− j)!
n!(n− j)!

= j!
(n
j

)2
.

By applying the GNZ formula to each term in the sum in the last equation, it follows that

E{H1(A)2} =

n∑
j=0

j!
(n
j

)2 ∫
S2n−j

1{(u1, . . . , un), (u1, . . . , uj , un+1, . . . , u2n−j) ∈ A} (S23)

× E
[
h(u1, . . . , un;Y )h(u1, . . . , uj , un+1, . . . , u2n−j ;Y )

× λ̆(2n−j){(u1, 1), . . . , (u2n−j , 1); X̆}
]

du1 · · · du2n−j . 1075

We further have that

E{H2(A)2} =

∫
A

∫
A

E{h(u1, . . . , un;Y )h(v1, . . . , vn;Y )ξ(u1, . . . , un;Y )ξ(v1, . . . , vn;Y )}dudv (S24)

and

E{H1(A)H2(A)} =E

 ∑
(x1,...,xn)∈Zn

6=∩A

h(x1, . . . , xn;Y \ {x1, . . . , xn})
∫
A

h(v1, . . . , vn;Y )ξ(v1, . . . , vn;Y )dv


=E

{ ∑
(x1,...,xn)∈Zn

6=∩A

h(x1, . . . , xn;Y \ {x1, . . . , xn}) 1080

×

[∫
A

h{v1, . . . , vn; (Y \ {x1, . . . , xn}) ∪ {x1, . . . , xn}}

× ξ(v1, . . . , vn; (Y \ {x1, . . . , xn}) ∪ {x1, . . . , xn})dv

]}

=E

 ∑
(x1,...,xn)∈Zn

6=∩A

h̃(x1, . . . , xn;Y \ {x1, . . . , xn})

 ,

where

h̃(x1, . . . , xn;Y \ {x1, . . . , xn}) =h(x1, . . . , xn;Y \ {x1, . . . , xn})
∫
A

h{v; (Y \ {x1, . . . , xn}) ∪ {x1, . . . , xn}} 1085

× ξ{v; (Y \ {x1, . . . , xn}) ∪ {x1, . . . , xn}}dv.
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Hence,

E{H1(A)H2(A)} =

∫
A

E

[
h̃(u1, . . . , un;Y )λ̆(n){(u1, 1), . . . , (un, 1); X̆}

]
du

=

∫
A

∫
A

E

[
h(u1, . . . , un;Y )h(v1, . . . , vn;Y ∪ {u1, . . . , un})

× ξ(v1, . . . , vn;Y ∪ {u1, . . . , un})λ̆(n){(u1, 1), . . . , (un, 1); X̆}

]
dudv (S25)1090

and, consequently, by combining (S22) with (S23)-(S25), the variance is
var{Ihξ (A;Z, Y )} =E{Ihξ (A;Z, Y )2} − E{Ihξ (A;Z, Y )}2 (S26)

=

n∑
j=0

j!
(n
j

)2 ∫
S2n−j

1{(u1, . . . , un), (u1, . . . , uj , un+1, . . . , u2n−j) ∈ A}E
[
h(u1, . . . , un;Y )

× h(u1, . . . , uj , un+1, . . . , u2n−j ;Y )λ̆(2n−j){(u1, 1), . . . , (u2n−j , 1); X̆}
]

du1 · · · du2n−j

+

∫
A

∫
A

E{h(u1, . . . , un;Y )h(v1, . . . , vn;Y )1095

× ξn(u1, . . . , un;Y )ξn(v1, . . . , vn;Y )}du1 · · · dundv1 · · · dvn

− 2

(∫
A

∫
A

E

[
h(u1, . . . , un;Y )h(v1, . . . , vn;Y ∪ {u1, . . . , un})

× ξ(v1, . . . , vn;Y ∪ {u1, . . . , un})λ̆(n){(u1, 1), . . . , (un, 1); X̆}
]

du1 · · · dundv1 · · · dvn

)

−

[∫
A

E
{
h(u1, . . . , un;Y )

[
λ̆(n){(u1, 1), . . . , (un, 1); X̆} − ξ(u1, . . . , un;Y )

]}
du1 · · · dun

]2

when h and ξ are of the form (S14).1100

Turning to the independent thinning setting, the fact that (S17) reads ξ(u1, . . . , un)
a.e.
=

p(u1) · · · p(un)ρ
(n)
X (u1, . . . , un) is an immediate consequence of (S13). Moreover, by Theorem

S1, expression (S19) simplifies to

λ
(n)
Y (u1, . . . , un;Y )∏n

i=1
{1− p(ui)}

n∏
i=1

p(ui) =

n∏
i=1

p(ui)E{λ
(n)
X (u1, . . . , un;X) | Y },

where for a locally stable point process the right-hand side is bounded from above by1105 ∏n
i=1 p(ui)φ

∗(ui). When X is attractive, since Y ⊆ X , the monotonicity of conditional ex-
pectations (Daley & Vere-Jones, 2003, Section A3.1) implies that the right-hand side is larger than
or equal to

∏n
i=1 p(ui)E{λ

(n)
X (u1, . . . , un;Y ) | Y } =

∏n
i=1 p(ui)λ

(n)
X (u1, . . . , un;Y ). Analo-

gously, the inequality is reversed when X is repulsive and the equality for a Poisson process
follows from the fact that its conditional intensity is deterministic and given by its intensity1110

functions. �

S6. ASYMPTOTIC RESULTS

A fundamental step in statistical theory is to ensure that, with a sufficiently large sample, an
estimator approximates the target parameter sufficiently well. This often translates into establishing
consistency and asymptotic normality of the obtained estimators. Here we observe one realization1115

x of a point process X , observed on W ⊆ Rd, and whose distribution depends on a parameter
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θ0 ∈ Θ. In contrast to the classical iid setting, there is not a consensus on the definition of sample
size here; see e.g. Choiruddin et al. (2021). In the point process learning setting, we identify three
different asymptotic settings: i) a resampling regime, where #Tk →∞ (recall Section 5.1), which
may also be studied conditionally on X ∩W , ii) an increasing-domain regime, using a sequence 1120

W1 ⊆W2 ⊆ · · · of observation windows for W , and iii) an in-fill regime, where we consider a
growing expected number of points over a fixed window W . Setting ii) is related to the idea that
we need to observe a point process on a large enough scale in order to infer on its interaction
structure. Here, we prove consistency and asymptotic normality for estimators obtained under
regimes i) and ii). To achieve this, we apply general results from the theory for minimum contrast 1125

estimation, which we recall below.

S6.1. General minimum contrast theory
We here recall the theory on minimum contrast estimation found in e.g. Dacunha-Castelle &

Duflo (1986) and Guyon (1995). Let us consider a parametric model of point process distributions
Pθ, θ ∈ Θ ⊆ Rl, where Θ is a compact set. We assume that the observed point pattern x is a 1130

realization of X ∼ Pθ0 for some θ0 ∈ Θ.
Any non-negative function M on Θ such that θ0 = arg minθ∈ΘM(θ) is called a contrast

function. Intuitively, M measures how well a parameter θ fits the observation. For a given
filtration {Ft}t>0, we let Ut be an Ft-measurable function from Θ to R for all t > 0. Here, we
will consider e.g. the case t = |W | and Ft = σ(X ∩Wt), and let Ut be a specific loss function. 1135

Let us consider the following assumptions:

(M1) For all θ ∈ Θ, Ut(θ) converges in probability to M(θ).
(M2) Θ ⊆ Rl is a compact set and θ0 is the unique point such that M(θ0) = minθ∈ΘM(θ).
(M3) The functions M and Ut are continuous on Θ for t > 0.
(M4) There exists a real valued function φ on R such that limη→0 φ(η) = 0 and for all η > 0, 1140

lim sup
t→∞

sup
θ,θ′:‖θ−θ′‖<η

|Ut(θ)− Ut(θ′)| ≤ φ(η).

(M5) There exists an ε > 0 such that, for t > 0, Ut is twice continuously differentiable in the
interior of the closed ball b(θ0, ε) ⊆ Θ.

(M6) There exists a sequence {at}t>0 and an invertible matrix J such that
√
at∇Ut(θ0)→ N (0, J).

(M7) There exists an invertible matrix V such that U (2)
t (θ0) converges in probability to V .

THEOREM S3 (DACUNHA-CASTELLE & DUFLO (1986); GUYON (1995)). For all t > 0, 1145

let

θ̂t = arg min
θ∈Θ

Ut(θ).

If (M1)-(M4) hold, then θ̂t converges in probability to θ0 as t grows to infinity. If (M1)-(M7)
hold, then, in the sense of the convergence in distribution,

lim
t→∞

√
at(θ̂t − θ0) = N (0, V −1JV −1).

The proof of Theorem S3 follows the same lines as the proofs of the results in (Dacunha-Castelle
& Duflo, 1986; Guyon, 1995), but with slightly modified conditions. 1150



A cross-validation-based statistical theory for point processes 21

S6.2. Asymptotics in point process learning
We next exploit the minimum contrast setting in Section S6.1 to study asymptotics for the point

process learning approach in Section 5.1, for the regimes i) and ii) presented in the beginning
of Section S6. We focus on minimization of the loss functions L1 and L2 in (10) to obtain an
estimator for θ0, and to emphasize the dependence on k and W in the notation, we write1155

θ̂k,W = arg min
θ∈Θ

Li(θ) (i = 1, 2). (S27)

In contrast, since the loss function (11) cannot be expressed as a suitable sum for minimum contrast
estimation, it needs a different treatment, and therefore it will be excluded from consideration
here. Let further P = {PW ,W ⊆ Rd, |W | <∞} be a family of thinning processes/operators,
indexed by the bounded domains of Rd, which generates a training-validation pair from any point
pattern x ⊆W , i.e. PW (x) = (xT , xV ). For k independent and identical repetitions of P , we write1160

J (θ,W,Pi), i = 1, . . . , k, for either |Ĩhθξn
θ

(Wn;XV
i , X

T
i )| or Ĩhθξn

θ
(Wn;XV

i , X
T
i )2, depending on

if we use L1 or L2 in (10).
Regime i): W fixed
Recall that we in regime i) consider the setting where #Tk →∞, which is implied by k →∞.

Let us now consider the following list of assumptions:1165

(HW 1) Θ is compact.
(HW 2) There exists a constant B such that a.s., for all W ⊆ Rd,

sup
θ∈Θ

E[var{J (θ,W,P) | X ∩W}] < B|W |2.

(HW 3) J (·,W,P) is continuous on Θ and E{supθ∈Θ J (θ,W,P) | X ∩W} <∞.
(HW 4) There exists a unique θ∗W ∈ Θ such that θ∗W = arg minθ∈Θ |W |−1E{J (θ,W,P) | X ∩1170

W}.
(HW 5) There exists a real valued function φ on R such that limη→0 φ(η) = 0 and for all η > 0,

lim sup
k→∞

1

k|W |

k∑
i=1

sup
θ,θ′:‖θ−θ′‖<η

|J (θ,W,Pi)− J (θ′,W,Pi)| ≤ φ(η).

(HW 6) There exists an ε > 0 such that the closed ball b(θ∗W , ε) ⊆ Θ and J (·,W,P) is twice
continuously differentiable in the interior of the closed ball b(θ∗W , ε).1175

(HW 7) There exists an invertible matrix J such that

1√
k|W |

k∑
i=1

∇J (θ∗W ,W,Pi)→ N (0, J).

(HW 8) There exists an invertible matrix V such that (k|W |)−1
∑k

i=1 J (2)(θ∗W ,W,Pi) converges
in probability to V , as k tends to infinity.

We here have the following result.

THEOREM S4. Let the framework be as described in Section 5.1 and assume that, for a given1180

W ⊆ Rd, (HW 1)-(HW 5) hold. Then, for all ε > 0,

lim
k→∞

pr(|θ̂k,W − θ∗W | > ε | X ∩W ) = 0.
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If, in addition, (HW 6)-(HW 8) hold, then

lim
k→∞

√
|W |(θ̂k,W − θ∗W ) = N (0, V −1JV −1)

in the sense of the convergence in distribution.

Proof of Theorem S4. The proof is a direct application of Theorem S3 with t = k and

Ut(·) = L(·, k,W ) =
1

k|W |

k∑
i=1

J (·,W,Pi). (S28)

Hence, below we check the assumptions (M1)-(M4) of Theorem S3. 1185

Checking (M1): Let Z = L(θ, k,W ). Since

var(Z | X ∩W ) = E
[
{Z − E(Z | X ∩W )}2 | X ∩W

]
and E(·) = E{E(· | X ∩W )}, it follows that

E[{Z − E(Z | X ∩W )}2] = E{var(Z | X ∩W )}.

Hence, by Markov’s inequality, we have for all ε > 0,

pr
{
|Z − E

(
Z | X ∩W

)
| > ε

}
≤
E[{Z − E(Z|X ∩W )}2]

ε2
=
E{var(Z | X ∩W )}

ε2
. (S29)

Since the thinning processes Pi are identically distributed, and conditionally independent with
respect to X ∩W , we have by (S28) and for all θ ∈ Θ that 1190

E (Z | X ∩W ) = E

{
1

|W |
J (θ,W,P)|X ∩W

}
var(Z | X ∩W ) =

1

k|W |2
var{J (θ,W,P1) | X ∩W}.

Hence, by the two last equations, (S29) and (HW 2),

pr

(∣∣∣L(θ, k,W )− E
{

1

|W |
J (θ,W,P) | X ∩W

}∣∣∣ > ε

)
≤

B

kε2

which implies (M1) with M(θ) = E{|W |−1J (θ,W,P) | X ∩W}.
Checking (M2): It follows directly from (HW 1) and (HW 4) with, as established above, 1195

M(θ) = E{|W |−1J (θ,W,P) | X ∩W}.
Checking (M3): By (HW 3), we have that J is continuous with respect to θ. The continuity of

M(θ) = E{|W |−1J (θ,W,P) | X ∩W} follows from (HW 3) and the dominated convergence
theorem.

Checking (M4)-(M7): They follow directly from (HW 5)-(HW 8) with at = k. � 1200

Regime ii): k fixed
We next turn to the increasing-domain regime and consider the following assumptions:

(Hk1) There exists a sequence of convex sets {Wj}j≥1 such that for all j ≥ 1, Wj ⊆Wj+1 and
each Wj contains a ball of radius growing to infinity with j.

(Hk2) There exists a functionM on Θ such that for all θ ∈ Θ,L(θ, k,Wj) converges in probability 1205

to M(θ), as j tends to infinity.
(Hk3) Θ ⊆ Rl is a compact set and θ0 is the unique point such that M(θ0) = minθ∈ΘM(θ).
(Hk4) The functions M(·) and L(·, k,Wj), j ≥ 1, are continuous on Θ.
(Hk5) There exists a real valued function φ on R such that limη→0 φ(η) = 0 and for all η > 0,

lim sup
j→∞

1

k|Wj |

k∑
i=1

sup
θ,θ′:‖θ−θ′‖<η

|J (θ,Wj ,Pi)− J (θ′,Wj ,Pi)| ≤ φ(η).
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(Hk6) There exists an ε > 0 such that the closed ball b(θ0, ε) ⊆ Θ and L(·, k,Wj), j ≥ 1, is twice1210

continuously differentiable in the interior of the closed ball b(θ0, ε).
(Hk7) There exists an invertible matrix J such that, in the sense of convergence in distribution,

lim
j→∞

√
|Wj |

∂

∂θ
L(θ0, k,Wj) = N (0, J).

(Hk8) There exists an invertible matrix V such that ∂2L(θ0, k,Wj)/∂θ
2 converges in probability

to V , as j tends to infinity.

Remark S1. In the case where X is ergodic, we have under weak conditions (Daley & Vere-1215

Jones, 2008) that M(θ) = E[L{θ, k, (0, 1)d}] in (Hk2). Then (Hk4) may easily follow by impos-
ing additional regularity assumptions on J (·, k,Wj).

Theorem S5 below provides asymptotic results for the increasing-domain regime supplied by
the assumptions above.

THEOREM S5. Let the framework be as described in Section 5.1 and assume that (Hk1)-(Hk5)1220

hold for a given k. Then, for all ε > 0,

lim
j→∞

pr(|θ̂k,Wj
− θ0| > ε) = 0

If, in addition, (Hk6)-(Hk8) hold, then, as j →∞,√
|Wj |(θ̂k,Wj

− θ0)→ N (0, V −1JV −1)

in the sense of convergence in distribution.

Proof of Theorem S5. The proof is a direct application of Theorem S3 whose assumptions are
immediately implied by (Hk1)-(Hk8) with t = l and Ut(·) = L(·, k,Wl). �1225
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