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Abstract

Vector Processing Units (VPUs) have made a comeback to the landscape of
computer architecture as a response to the diminishing returns from technology
scaling and power density limitations. VPUs are used as general-purpose
accelerators, offering a trade-off between the flexibility of general-purpose archi-
tectures and the performance of hardware accelerators. However, application
demands keep growing. Thus, we want to extract even more performance out
of VPUs, as well as achieving better area and energy efficiency. To achieve
these improvements, one approach is to enhance current VPUs with Instruction
Set Architecture (ISA) extensions tailored to specific kernels or applications.

A relevant set of kernels widely used nowadays are linear algebra kernels.
These kernels have been used in multiple domains for decades. However, they
are at the core of Machine Learning (ML) applications, which is one of the
domains with the fastest requirement increase, both in terms of performance
and energy. Consequently, there is a high interest in computing these kernels
faster and more efficiently. VPUs are a good mapping for these kernels but
they do not offer the same performance and efficiency as custom accelerators.

This Thesis presents two different extensions for enhancing linear algebra
kernels in VPUs. The first extension enhances VPUs with the functionality of
Systolic Arrays (SAs) for more efficient computation of General Matrix-Matrix
Multiplication (GEMM). This enhancement is done by remapping the func-
tional units of the VPU from a 1D to a 2D array. In addition, this Thesis
also analyzes the implications of this new SA-like functionality, proposing
corresponding new memory instructions and an analysis to dynamically select
the functionality that maximizes resource utilization. The second extension
proposes a memory extension that provides VPUs with index-matching func-
tionalities for sparse linear algebra operations. This extension transforms the
index-matching problem into one of hash lookup, and implements this problem
in hardware using cache-like techniques. These extensions achieve up to 4.22x
and 3.19x speedup respectively.
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Chapter 1

Introduction

The landscape of computer architecture in recent years has been characterized, among others,
by diminishing returns from technology scaling and by power density limitations. In addition,
application requirements are increasing faster than before [1]. In order to bridge that gap,
processors are shifting from homogeneous multi-cores composed of general-purpose CPUs
to heterogeneous System-on-Chip (SoC) designs [2]. These SoCs integrate one or more
domain-specific accelerators coupled with the host CPU(s). Consequently, systems can offer
the required performance while still fulfilling the power budget.

However, this approach has drawbacks. Its main drawback is the area overhead required
for implementing said accelerators [3]. This overhead implies a cost increase in both devel-
opment and implementation. This approach may even be totally unfeasible to implement
on some devices due to resource limitations. Moreover, the general-purpose functionality
of SoCs stills need to efficiently compute tasks that cannot be offloaded to the accelerators.
Under such conditions, exploring the use of more general units that can support multiple
domains is interesting. One such flexible unit is the Vector Processing Unit (VPU), which
can execute vector or SIMD instruction extensions. This unit can be efficiently leveraged by
vectorizable applications. In particular, linear algebra kernels are a good match for VPUs [4].

Linear algebra is a key component in multiple applications across different domains.
Usage examples are image recognition [5, 6], natural language processing [7], graphs [8–10],
databases [11] and finite element solvers [12]. Hence, recent works are still trying to find
optimized software implementation for linear algebra kernels [13–15]. However, while VPUs
are a good match for these kernels, they are not as efficient as custom accelerators. One
example is the case of General Matrix-Matrix Multiplication (GEMM), which can be more
efficiently computed with 2D Systolic Arrays (SAs) [16]. Other example are sparse-sparse
operations, which rely on costly index-matching operations [17]. Therefore, the goal of
this Thesis is to further improve the performance of linear algebra kernels in VPUs from a
hardware perspective.

1.1 Background

1.1.1 Vector Processing Units

Vector architectures are a type of computer architecture designed to perform operations
on arrays of data. Compared to traditional scalar cores, VPUs operate over sequential
registers, known as vector registers. The maximum number of elements that can fit at once
in a given vector register is limited by an architectural parameter named Maximum Vector
Length (MVL). Each vector instruction works with a Vector Length (VL) stored in a Control
Status Register (CSR). In case the target vectors are longer than the MVL, they have
to be partitioned via software. However, most vector Instruction Set Architectures (ISAs)
support vector agnostic programming. Consequently, it is possible to program a VPU
without knowing its MVL, as the vectorized code can adapt itself at runtime [18]. To
increase computational capabilities, VPUs implement multiple functional units in parallel.
Moreover, as most operations will involve regular patterns, these functional units are grouped
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Figure 1.1: Block diagram of a system with a VPUs

into multiple vector lanes. Each lane contains its corresponding functional units and the
corresponding slice of the Vector Register File (VRF). This way, it is possible to implement
an inexpensive multi-ported vector register by using multiple interleaved banks, with fewer
ports per bank [19]. Moreover, inside each lane, it is possible to further interleave banks,
reducing ports per bank while still being able to read and write data from multiple registers
in parallel [20]. This way, the VRF’s banks are interleaved both across lanes and within the
lanes. Figure 1.1 shows an example of how a VPU is organized and how it can be integrated
within a CPU-based system.

Historically, vector architectures have been implemented targeting the supercomputing
domain, with one of the most well-known examples being the CRAY-1 supercomputer from
the 70s [21]. However, these architectures began to fade away with the appearance of
microprocessor-based systems, which offered more competitive cost-performance off-the-shelf.
In recent times, vector support has been added to CPUs, with SIMD extensions like Intel’s
AVX [22], ARM’s NEON [23], ARM’s SVE [18] and the RISC-V Vector Extension [24]. In
the case of the latter, there have been several projects in academia in recent years, such as
Ara [25], Arrow [26], and Vitruvius+ [20].

1.2 Linear Algebra Kernels

Linear algebra kernels form the backbone of numerous computational tasks across various
domains, ranging from scientific computing to machine learning. They work with data
structures like matrices and vectors. Specially relevant are the Basic Linear Algebra Subrou-
tines (BLAS), a standardized set of optimized routines for common low-level linear algebra
operations [27, 28]. Depending on the data they are working with, linear algebra kernels can
be classified as dense or sparse. This difference is so relevant that both Colella’s and Berke-
ley’s Dwarfs separate dense and sparse linear algebra kernels as two different dwarfs [4, 29].
While the mathematical operations are the same, the nature of the data invites different
implementations, which leads to different computing characteristics.

1.2.1 Dense Linear Algebra Kernels

Dense linear algebra kernels leverage the regularity of their data. The uniformity and
predictability of this data enable efficient utilization of computational resources by facili-
tating data access patterns that can be easily optimized for performance. These are highly
parallelizable and, when working with matrices, they offer high data reuse. By optimally
leveraging this reuse, we can achieve heavily compute-bound implementations [25].

1.2.2 Sparse Linear Algebra Kernels

Contrary to their dense counterparts, sparse linear algebra kernels cannot leverage regularity
within their data. The reason is that, in order to save space and avoid computations with
zeros, sparse data is usually stored in a compressed data format [30–36]. While using such
compressed formats for sparse data leads to more efficient kernels, the regular memory accesses
are replaced by three operations: indirection, intersection, and union [37]. Indirection is
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used by sparse-dense operations, while sparse-sparse operations use intersection and union.
Indirection can be implemented with scatter-gather instructions, which are supported in
VPUs with indexed memory accesses [24]. For intersection and union, as both arrays are
compressed, finding a corresponding element implies comparing the different indices until a
match is found. If no matching element is found, then the corresponding element is a zero.
Therefore, linear algebra kernels where both arrays are sparse rely on index matching.

1.3 Problem Statement

1.3.1 Problem 1
Within dense linear algebra, General Matrix-Matrix Multiplication (GEMM) is the most
widely used kernel, as well as one of the most computationally intensive kernels. GEMM
is a fundamental operation in many applications across different domains, such as ML, big
data, and general scientific computing. Moreover, it can be efficiently implemented in a
VPU due to being highly vectorizable. Despite this, multiple custom accelerators have been
proposed in order to further improve GEMM’s performance and efficiency, with SAs being
one of the common underlying architectures. Compared to VPUs, SAs provide a more
efficient data reuse by feeding the output of the functional units directly to the inputs of
the next ones [38, 39]. Consequently, multiple works have presented SoCs that combine both
VPUs and SAs [16,40, 41]. However, these works provide both functionalities by replicating
hardware structures, like the Fused Multiply-Accumulate (FMA) units used to perform the
computation. This means incurring an area increase. Hence, by avoiding this replication, we
could develop more area-efficient implementations. This would especially benefit resource-
constrained devices, enabling them to provide both VPU and SA functionalities with little
overhead.

Problem Statement 1: Given a baseline VPU, extend it with the functionality of a SA
for increasing the performance and efficiency of computing GEMM. Design this extension
with area in mind, adding minimal hardware overhead.

Key Insight 1: From a high level of abstraction, VPUs and SAs are a set of functional
units with a memory system that feeds them. VPUs arrange these units as a 1D array, while
SAs arrange them as a 2D array. We can implement the flow of a SA in a baseline VPU by
remapping its functional units to support forwarding data directly to the next set of units,
organizing them as a 2D array that an SA would support.

1.3.2 Problem 2
Index-matching is the main problem in sparse-sparse linear algebra operations. Finding the
matching element means comparing multiple indices until finding the right one. Sparse linear
algebra kernels are memory-bound [42], and this increases the memory bottleneck. One
solution to solve this is to move the index-matching operation to memory, only sending to
the compute part the actual value. Current state-of-the-art for VPUs already supports this
approach, but it uses hardware techniques that rely on data replication and provide poor
scaling [17,43,44]. Therefore, to efficiently provide the same memory size and parallelism
as regular memory architectures for vector architectures, we need to look for memory
architectures that provide the same functionality while offering better scalability.

Problem Statement 2: Given a baseline VPU, extend its memory architecture to
support index-matching operations. To fit with VPUs, which are general-purpose accelerator
architectures, this new memory architecture also needs to support regular memory accesses
and be scalable, not being limited to small memories.

Key Insight 2: Index-matching is equivalent to a hash-lookup problem, with the index
being the key. This can be implemented in hardware using cache-like techniques, where a
hash bucket maps to a cache set.

1.4 Thesis Contributions
In summary, the goal of this Thesis is to contribute to the development of vector architectures,
focusing on linear algebra. For that, it proposes two contributions, tackling both dense and
sparse linear algebra. This Thesis is a summary of three Papers (referred to with Roman
numerals: I, II, and III), included in Appendices A, B, and C, respectively.
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The first contribution, presented in Papers I and II, proposes an extension of existing
VPUs that aims to increase their performance of computing the GEMM kernel. To do so, the
baseline VPU is provided with the functionality of an SA, which enables data reuse between
functional units. Paper I describes how to implement this extension with minimal hardware
overhead. To pass the data between functional units, we propose to reuse an interconnect
network, which is already available in VPUs to support operations like sliding and reduction.
Paper II analyzes the implications of this new functionality in the memory system of the
original VPU, and more in particular in its VRF. First we analyze how the existing memory
instructions cannot efficiently load the data for the new SA-like functionality, and propose a
variation of the existing instructions that can better support this functionality. The second
contribution in Paper II is a partitioning schema analysis that enables us to dynamically
choose between the vector and systolic functionalities, maximizing utilization. Evaluating this
SA-like extension of VPUs shows up to 4.22x speedup over the baseline vector architecture.

The second contribution, presented in Paper III, proposes a scratchpad-based memory
architecture that provides VPUs with hardware acceleration for index-matching. This memory
architecture transforms the index-matching problem into one of hash lookup and maps it to
hardware using cache-like structures over a base multi-banked scratchpad. Consequently, it
can efficiently leverage key parallelism, resulting in a scalable memory architecture. Moreover,
it can behave in two different modes at a given time, supporting both regular memory
accesses and index-matching. This novel memory architecture shows up to 3.19x speedup
over the state-of-the-art.



Chapter 2

VSA: A Hybrid
Vector-Systolic Architecture

As mentioned in Problem 1 (Section 1.3.1), GEMM can be computed both by a VPU and by
an SA. SAs are more efficient, while VPUs offer general-purpose capabilities. However, from
a high level of abstraction, both are a set of functional units together with a memory system
that can feed them. When it comes to the functional units, the difference is that VPUs
organize them in a 1D array, while SAs do so in a 2D array. As for the memory system,
VPUs use a VRF to feed their units, compared to the buffers used by SA. This raises the
question of what would be needed to extend an existing VPU with the dataflow of a SA, and
if doing so would be feasible.

The first contribution of this Thesis tackles this question. It does it in two parts: first,
we analyze the computational aspect, implementing the dataflow of an SA into an existing
VPU. This corresponds to Paper I, and is summarized in Section 2.1. Second, we analyze
the memory system, and in particular the VRF, with the goal of efficiently utilizing this
component. This corresponds to Paper II, and is summarized in Section 2.2.

2.1 Compute

To implement the functionality of a SA for GEMM into an existing VPU, there are two
main challenges: (1) emulating the dataflow of the SA with the VPU and (2) feeding the
functional units according to the requirements of the new dataflow. Moreover, we need to
implement it with minimal hardware overhead to make it feasible.

For the first challenge, the VPU needs to support sending data between functional units
instead of communicating explicitly through the VRF. One way to do it would be through
chaining, where the output of one vector instruction is used directly by the next one [21].
Chaining is done by allocating the computation of different instructions to different sets of
functional units and forwarding the data from one set to the next one. However, while this
approach helps reducing latency, it has its own drawbacks, such as requiring extended support
for data hazards [19] and having multiple sets of functional units. Hence, modern VPUs
tend to support this functionality on a limited way. For example, Ara [25] limits chaining to
different types of functional units (integer ALU, integer MUL and Floating Point Unit (FPU))
within the same lane, while Vitruvius+ [20] supports only memory-to-arithmetic chaining.
Therefore, we want to look for other ways to emulate the dataflow of an SA. From chaining,
we realized that using multiple instructions would likely require increased hardware overhead.
Thus, we moved on to analyze individual instructions. There are some vector instructions,
like sliding and reduction, that require communication between different functional units.
To do so, they require specialized hardware support. For example, Vitruvius+ [20] includes
a unidirectional data ring to forward data to the functional units in the following lanes.
Moreover, this type of support is common in VPUs, as these operations are widely used (for
example, reduction is used to calculate the dot product of two vectors). After analyzing
this support, the mapping of the systolic functionality onto a VPU is done by mapping the
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rows of the SA onto the different lanes of the VPU, emulating the vertical dataflow using
the available data ring. As for the horizontal dataflow, it happens within each lane.

For the second challenge, SA has different data patterns compared to most vector
operations. Traditionally, VPUs support three types of memory accesses: unitary (accessing
consecutive memory addresses), non-unitary strided (accessing memory addresses with a
stride, i.e., a jump between accessed addresses), and indexed (accessing memory addresses
relative to the base address, given an offset stored in an input vector register). These three
memory access types were presented in order of efficiency, which is opposite to the degree
of flexibility they provide. An SA has fixed regular patterns, but not ones that can be
represented with unitary or strided instructions. Hence, the implementation presented in
Paper I uses indexed memory accesses, which are less efficient but can generate the right
access patterns. This was a temporary solution, as it was one of the major points addressed
in Paper II.

To interact with this new functionality, the RISC-V vector extension is further extended
with two new instructions: vsa and vfsa. They are, respectively, the integer and float
versions of the SA-like instruction.

This new functionality is evaluated over different Deep Neural Networks (DNNs), achiev-
ing up to a 2.25x speedup over the baseline vector functionality. Additionally, in order to
analyze the full potential of the new functionality, the evaluation includes a set of results
based on the supposition that using unitary memory accesses instead of indexed ones would
be possible. With this supposition, the maximum performance improvement seen increases
to 3.5x. Moreover, this approach also fulfills the criteria of having minimum area overhead,
being it only 0.1% over an existing VPU.

Besides the specific speedup values, two conclusions are extracted from the evaluation:
(1) the systolic functionality can better leverage higher amounts of hardware resources, and,
most importantly, (2) the speedup differences are mostly related to how different matrix
sizes fit are partitioned by different functionalities, leading to under-utilization of the vector
registers. This second point is the second major point analyzed in Paper II.

2.2 Vector Register File

As mentioned in Section 2.1, Paper I left two major points to analyze: (1) how to efficiently
access memory and (2) how to better utilize the available resources. Both of these problems
are affected by a common component: the VRF.

2.2.1 Memory Accesses for SA

For the first point, the problem is that the more efficient types of memory accesses do not
support the patterns required by the systolic functionality. Thus, this functionality needs
to rely on the less efficient indexed memory access. The reason is that the other types of
memory accesses (unitary and strided) cannot describe those patterns. As seen in Paper I,
having more efficient memory accesses could provide considerable memory improvements,
so it is a key point to study. The systolic patterns can be described as a combination of
unitary or strided patterns. However, part of the existing strides are not due to the patterns
themselves but to how the VRF is accessed by load and store operations. For example, to
stream one matrix row horizontally with the SA functionality, it needs to be fully stored
in the vector register slice of the corresponding lane. However, when loading or storing
data, the accesses to the different VRF slices are interleaved. This constraint is defined by
hardware. A similar situation arises when loading the columns to be streamed vertically.
This is solved by accessing the VRF in a lane-by-lane fashion. Lane-by-lane accesses enable
using the existing and more efficient memory access types for the SA patterns. Therefore,
Paper II proposes a new set of instructions for the RISC-V vector extension. It duplicates
the existing load and store instructions, with the difference that one of the fields is now used
to select the target lane.

A new evaluation of the architecture shows up to a 4.22x speedup over the vector baseline,
compared to the 2.47x speedup for the same configuration without the new lane-by-lane
memory accesses. Moreover, the performance difference between using this new support and
not increases with the MVL. This shows that the new instructions can better leverage the
locality existing in the systolic patterns.
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2.2.2 Utilization Analysis
For the second point, as seen in Paper I, the performance gap between vector and systolic
functionality is due to their utilization of the VRF. Different functionalities divide the
problem in different ways, and thus lead to different levels of utilization. While the VRF
is a register file, it has been scaled up to the point of providing similar storage as a cache.
However, the VRF is more constrained than a regular cache when it comes to accessing it,
making it harder to fully utilize all the available space. To tackle this, Paper II proposes a
methodological approach to understand how different parameters affect the utilization of
the VRF. For a fixed MVL, this depends on two parameters: the functionality used and
the sizes of the input matrices. With matrix sizes defined by a (M,N,K) set, the first step
is to find the smallest set that pushes both functionalities to their maximum utilization
using the Least Common Minimum. Bigger matrices can be partitioned into sub-matrices
equal to or smaller than said set. Then, parameter sweeps are performed for M , N and K,
reducing their sizes. The result of this process is a discrete 3D volume where each point
represents the relative speedup for the different functionalities for a given (M,N,K) set. In
this volume, two regions can be identified. Each of the regions represents the points where
one functionality outperforms the other. After finding the border between these two regions,
it is possible to use this information to partition the problem accordingly, increasing the
VRF’s utilization. Moreover, as this analysis can be done offline, the runtime overhead is
negligible except for really small matrices.

Paper II presents an example of the proposed analysis. After performing it and finding
the border between the two regions, this information has been added to the GEMM imple-
mentation. This enhanced implementation is capable of detecting which of the functionalities
will provide better resource utilization at a given time and switching to it accordingly. This
enables seeing no performance downgrade due to choosing the worse functionality. Moreover,
this is performed with low runtime overhead, being only perceived in really small matrices.



8 CHAPTER 2. VSA: A HYBRID VECTOR-SYSTOLIC ARCHITECTURE



Chapter 3

Scalable Hardware Hash for
Index-Matching in Vector
Architectures

As mentioned in Section 1.2.2, sparse linear algebra kernels rely on three different operations:
indirection, intersection, and union. In VPUs, indirection is directly supported in hardware
with scatter-gather operations, but existing ISAs do not provide hardware support for
the main component of intersection and union: index-matching. Existing state-of-the-art
proposes to implement a small custom memory to accelerate indirection, intersection, and
union [17]. It uses a Content Addressable Memory (CAM) to find the corresponding elements,
comparing the incoming indices against all the stored ones. Moreover, it uses an Live Value
Table (LVT)-based scratchpad as the data array to avoid collision penalties. This approach
relies on replication and multi-porting [43,44]. Due to this reliance, the LVT-based is effective
for small memories, but suffers from considerable penalties with increased memory sizes, and
especially with an increased number of ports. Nowadays, VPUs and similar architectures like
GPUs have larger memories [45,46]. Moreover, datasets for sparse matrices keep growing [47].
Therefore, we should find a way to efficiently implement larger memories with index-matching
support. Outside VPUs, we can look for alternatives among custom accelerators. Many
custom accelerators rely on stream-based approaches, which would not fit on current VPUs,
but others, like InnerSP [48], use hashing to implement index-matching. Finally, we need
to consider that VPUs are general-purpose accelerators. Applications should be able to
efficiently use the proposed memory also when not working with sparse data. Thus, we
should try to develop a multi-functional memory, not limited to sparse operations.

In summary, Paper III tackles the issue of developing a memory architecture that
accelerates index-matching for VPUs. This novel memory should provide (1) index-matching
functionality, (2) efficient scaling for large memory sizes and number of ports, and (3)
flexibility to also support existing memory accesses and multiple datatypes.

To solve this problem we present SH2. SH2 builds upon a scratchpad implemented as
a multi-banked memory, where each bank contains a portion of the total memory. Each
bank has its own index array, which contains the corresponding indices for the values stored
in the bank. Each pair of bank and index array behaves like a set associative cache. The
index array can contain fewer indices than values fit in the corresponding bank. The banks
determine the total memory size, while the index array determines the maximum memory
space supported for index-matching. Moreover, at runtime, we can allocate the memory
space required for the index-matching functionality. The non-allocated space is used as a
regular scratchpad. Consequently, SH2 can efficiently support regular and index-matching
operations at the same time. Hence, SH2 offers two main modes: Direct Data (DD) and
index-matching (IM). The former supports direct accesses to the scratchpad, while the
latter offers hardware index-matching support. At any given time, SH2 can support either
of the modes, or both. With this baseline architecture, the index-matching problem is
implemented as a hash problem and supported in hardware with cache-like mechanisms. The
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main difference compared to a cache is that in index-matching operations a miss means that
the corresponding value is a zero.

In addition to the base architecture, SH2 can reduce collision penalties by leveraging
that it is designed to efficiently support multiple datatypes. SH2 is designed to work with
32-bit wide data. To work with 64-bit data, two adjacent banks are accessed with the same
memory address. In the case of the index-matching functionality, the address is provided
by the index array after an index hit. This means that only one index array is actually
needed, and we have the adjacent index array unused. To reduce collision penalties, when
working with wider data, we send two colliding indices to the two adjacent index arrays.
Both adjacent index arrays have the same indices stored. If only one of the indices causes a
hit, there is only one access to the bank, and thus we do not need to pay the collision penalty.
This way, for wider data, we use replication of indices to compare multiple colliding indices
in parallel, and exploit index misses to reduce collision penalties.

In addition to the memory architecture, we have proposed an extension of vector ISAs
to support the new functionality. With the architecture and the extended ISA, SH2 shows
speedups of up to 3.19x compared to the state-of-the-art, when running more than 1600
real-world matrices. Moreover, even if we try to scale up the state-of-the-art in a more
efficient way, SH2 offers similar performance in less than 7.4% of the area. In addition, the
mechanism for reducing collision penalties removes 38.58% of the extra cycles, reducing the
CPI for the corresponding index-matching instructions from 1.80 to 1.56.



Chapter 4

Concluding Remarks and
Future Work

Vector Processing Units (VPUs) are a good target architecture for linear algebra kernels [4],
but application requirements keep increasing [1], so we should strive for higher performance
and efficiency. This Thesis aims to show that it is possible to increase the performance of
VPUs for these kernels by integrating ideas for custom accelerators. This way, we can get
performance closer to custom accelerators while retaining the general-purpose characteristics
of VPUs. In this Thesis we have focused on linear algebra kernels, which are widely used
in different applications across multiple domains. Papers I and II show an example of this
approach for GEMM, achieving up to 4.22x speedup. Paper III presents another example
for sparse kernels, in this case achieving up to 3.19x speedup. However, this extension cannot
be done sacrificing generality. VPUs are still general-purpose accelerators, and thus area
needs to be considered, not based on just the target kernel. There are two approaches for
this: minimal overhead, as followed in Papers I and II, and resource reusability, as proposed
in Paper III.

For future work, the intuitive approach would be to continue extending VPUs, now for
Graph Neural Networks (GNNs). There are already multiple custom accelerator proposals
for these applications, both for ASIC and FPGA platforms [49–52], but not yet an extension
for VPUs. Hence, this approach is an in-depth specialization for GNNs in VPUs.

An alternative to this bottom-up depth-first approach would be a top-down breadth-first
approach where we analyze all applications (or a set of representative ones) and analyze
their characteristics. With this analysis, we can classify the different characteristics into a
set of groups according to their hardware requirements. Then, for each of these groups, we
can design different VPU extensions. Hence, this approach would also lead to a set of vector
extensions, but now with a limited number of extensions and covering all applications. By
combining all the different extensions in one system, we would have a fully general-purpose
system that can also provide specialized hardware acceleration for different applications
according to their characteristics.
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