
Thesis for The Degree of Licentiate of Engineering

Extending Vector Processing Units
for Enhanced Linear Algebra Performance

Mateo Vázquez Maceiras

Division of Computer Engineering
Department of Computer Science & Engineering

Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden, 2024

Extending Vector Processing Units
for Enhanced Linear Algebra Performance

Mateo Vázquez Maceiras

Copyright ©2024 Mateo Vázquez Maceiras
except where otherwise stated.
All rights reserved.

ISSN 1652-876X
Department of Computer Science & Engineering
Division of Computer Engineering
Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden

This thesis has been prepared using LATEX.
Printed by Chalmers Reproservice,
Gothenburg, Sweden 2024.

ii

Abstract

Vector Processing Units (VPUs) have made a comeback to the landscape of
computer architecture as a response to the diminishing returns from technology
scaling and power density limitations. VPUs are used as general-purpose
accelerators, offering a trade-off between the flexibility of general-purpose archi-
tectures and the performance of hardware accelerators. However, application
demands keep growing. Thus, we want to extract even more performance out
of VPUs, as well as achieving better area and energy efficiency. To achieve
these improvements, one approach is to enhance current VPUs with Instruction
Set Architecture (ISA) extensions tailored to specific kernels or applications.

A relevant set of kernels widely used nowadays are linear algebra kernels.
These kernels have been used in multiple domains for decades. However, they
are at the core of Machine Learning (ML) applications, which is one of the
domains with the fastest requirement increase, both in terms of performance
and energy. Consequently, there is a high interest in computing these kernels
faster and more efficiently. VPUs are a good mapping for these kernels but
they do not offer the same performance and efficiency as custom accelerators.

This Thesis presents two different extensions for enhancing linear algebra
kernels in VPUs. The first extension enhances VPUs with the functionality of
Systolic Arrays (SAs) for more efficient computation of General Matrix-Matrix
Multiplication (GEMM). This enhancement is done by remapping the func-
tional units of the VPU from a 1D to a 2D array. In addition, this Thesis
also analyzes the implications of this new SA-like functionality, proposing
corresponding new memory instructions and an analysis to dynamically select
the functionality that maximizes resource utilization. The second extension
proposes a memory extension that provides VPUs with index-matching func-
tionalities for sparse linear algebra operations. This extension transforms the
index-matching problem into one of hash lookup, and implements this problem
in hardware using cache-like techniques. These extensions achieve up to 4.22x
and 3.19x speedup respectively.

Keywords:

Vector, SIMD, Linear Algebra, Dense, Sparse, ISA extension

Acknowledgment

I would like to express my gratitude to my supervisor, Prof. Pedro Trancoso, for
his continuous guidance and support during these years. I am confident I will
continue to benefit from his help and encouragement during the following years
of my doctoral journey. Likewise, I would also like to thank my co-supervisor,
Dr. Muhammad Waqar Azhar, for the advice and insights shared during these
years.

I would like to extend my appreciation to my colleagues and fellow re-
searchers at Chalmers, Fareed, Stravoula, Mo, Alessio, Xu, Sonia, Arne, and
others for their support and company. I also include here my collaborators at
other institutions, like Alexandre Rodrigues at INESC-ID, Lisbon.

Finally, I would like to give special thanks to my family for their continuous
support and unwavering encouragement. Specially, I would like to thank my
parents for always being there despite all the difficulties, and to my cousin and
friend Timı́n for sharing with me his passion for hardware design. I would not
have been here without any of them.

This work would have not been possible without the research grants from
the eProcessor project, which has received funding from the European High-
Performance Computing Joint Undertaking Joint Undertaking (JU) under
grant agreement No 956702. The JU receives support from the European
Union’s Horizon 2020 research and innovation programme and Spain, Sweden,
Greece, Italy, France, and Germany. This work was also partially supported
by the VEDLIoT project, which received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No
957197 and the Swedish Foundation for Strategic Research (contract number
CHI19-0048) under the PRIDE project.

Mateo Vázquez Maceiras
Gothenburg, May 2024

v

List of Publications

Appended publications

This thesis is based on the following publications:

I Mateo Vázquez Maceiras, Muhammad Waqar Azhar, Pedro Trancoso
“VSA: A Hybrid Vector-Systolic Architecture”
2022 IEEE 40th International Conference on Computer Design (ICCD).

II Mateo Vázquez Maceiras, Muhammad Waqar Azhar, Pedro Trancoso
“Exploiting the Potential of Flexible Processing Units”
2023 IEEE 35th International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD).
Best Paper Award.

III Mateo Vázquez Maceiras, Mohammad Ali Maleki, Muhammad Waqar
Azhar, Pedro Trancoso “Scalable Hardware Hash for Index-Matching in
Vector Architectures”
Submitted to the 2024 International Conference on Parallel Architectures
and Compilation Techniques (PACT).

The papers will be referred to in the thesis using their Roman numerals.

vii

viii

Contents

Abstract iii

Acknowledgement v

List of Publications vii

1 Introduction 1
1.1 Background . 1

1.1.1 Vector Processing Units . 1
1.2 Linear Algebra Kernels . 2

1.2.1 Dense Linear Algebra Kernels . 2
1.2.2 Sparse Linear Algebra Kernels . 2

1.3 Problem Statement . 3
1.3.1 Problem 1 . 3
1.3.2 Problem 2 . 3

1.4 Thesis Contributions . 3

2 VSA: A Hybrid Vector-Systolic Architecture 5
2.1 Compute . 5
2.2 Vector Register File . 6

2.2.1 Memory Accesses for SA . 6
2.2.2 Utilization Analysis . 7

3 Scalable Hardware Hash for Index-Matching in Vector Architectures 9

4 Concluding Remarks and Future Work 11

A Paper I 17

B Paper II 27

C Paper III 39

ix

x CONTENTS

Chapter 1

Introduction

The landscape of computer architecture in recent years has been characterized, among others,
by diminishing returns from technology scaling and by power density limitations. In addition,
application requirements are increasing faster than before [1]. In order to bridge that gap,
processors are shifting from homogeneous multi-cores composed of general-purpose CPUs
to heterogeneous System-on-Chip (SoC) designs [2]. These SoCs integrate one or more
domain-specific accelerators coupled with the host CPU(s). Consequently, systems can offer
the required performance while still fulfilling the power budget.

However, this approach has drawbacks. Its main drawback is the area overhead required
for implementing said accelerators [3]. This overhead implies a cost increase in both devel-
opment and implementation. This approach may even be totally unfeasible to implement
on some devices due to resource limitations. Moreover, the general-purpose functionality
of SoCs stills need to efficiently compute tasks that cannot be offloaded to the accelerators.
Under such conditions, exploring the use of more general units that can support multiple
domains is interesting. One such flexible unit is the Vector Processing Unit (VPU), which
can execute vector or SIMD instruction extensions. This unit can be efficiently leveraged by
vectorizable applications. In particular, linear algebra kernels are a good match for VPUs [4].

Linear algebra is a key component in multiple applications across different domains.
Usage examples are image recognition [5, 6], natural language processing [7], graphs [8–10],
databases [11] and finite element solvers [12]. Hence, recent works are still trying to find
optimized software implementation for linear algebra kernels [13–15]. However, while VPUs
are a good match for these kernels, they are not as efficient as custom accelerators. One
example is the case of General Matrix-Matrix Multiplication (GEMM), which can be more
efficiently computed with 2D Systolic Arrays (SAs) [16]. Other example are sparse-sparse
operations, which rely on costly index-matching operations [17]. Therefore, the goal of
this Thesis is to further improve the performance of linear algebra kernels in VPUs from a
hardware perspective.

1.1 Background

1.1.1 Vector Processing Units

Vector architectures are a type of computer architecture designed to perform operations
on arrays of data. Compared to traditional scalar cores, VPUs operate over sequential
registers, known as vector registers. The maximum number of elements that can fit at once
in a given vector register is limited by an architectural parameter named Maximum Vector
Length (MVL). Each vector instruction works with a Vector Length (VL) stored in a Control
Status Register (CSR). In case the target vectors are longer than the MVL, they have
to be partitioned via software. However, most vector Instruction Set Architectures (ISAs)
support vector agnostic programming. Consequently, it is possible to program a VPU
without knowing its MVL, as the vectorized code can adapt itself at runtime [18]. To
increase computational capabilities, VPUs implement multiple functional units in parallel.
Moreover, as most operations will involve regular patterns, these functional units are grouped

1

2 CHAPTER 1. INTRODUCTION

CPU

L1D/I

L2

Memory

VPUVPU

L1V
[03] [02] [01] [00]

[19] [18] [17] [16]

FU FU FU FU

. . .

C
O

N
T
R

O
L

Lane 0

To/From Memory

ALU

...

MVL (bits)

Lane N

Figure 1.1: Block diagram of a system with a VPUs

into multiple vector lanes. Each lane contains its corresponding functional units and the
corresponding slice of the Vector Register File (VRF). This way, it is possible to implement
an inexpensive multi-ported vector register by using multiple interleaved banks, with fewer
ports per bank [19]. Moreover, inside each lane, it is possible to further interleave banks,
reducing ports per bank while still being able to read and write data from multiple registers
in parallel [20]. This way, the VRF’s banks are interleaved both across lanes and within the
lanes. Figure 1.1 shows an example of how a VPU is organized and how it can be integrated
within a CPU-based system.

Historically, vector architectures have been implemented targeting the supercomputing
domain, with one of the most well-known examples being the CRAY-1 supercomputer from
the 70s [21]. However, these architectures began to fade away with the appearance of
microprocessor-based systems, which offered more competitive cost-performance off-the-shelf.
In recent times, vector support has been added to CPUs, with SIMD extensions like Intel’s
AVX [22], ARM’s NEON [23], ARM’s SVE [18] and the RISC-V Vector Extension [24]. In
the case of the latter, there have been several projects in academia in recent years, such as
Ara [25], Arrow [26], and Vitruvius+ [20].

1.2 Linear Algebra Kernels

Linear algebra kernels form the backbone of numerous computational tasks across various
domains, ranging from scientific computing to machine learning. They work with data
structures like matrices and vectors. Specially relevant are the Basic Linear Algebra Subrou-
tines (BLAS), a standardized set of optimized routines for common low-level linear algebra
operations [27, 28]. Depending on the data they are working with, linear algebra kernels can
be classified as dense or sparse. This difference is so relevant that both Colella’s and Berke-
ley’s Dwarfs separate dense and sparse linear algebra kernels as two different dwarfs [4, 29].
While the mathematical operations are the same, the nature of the data invites different
implementations, which leads to different computing characteristics.

1.2.1 Dense Linear Algebra Kernels

Dense linear algebra kernels leverage the regularity of their data. The uniformity and
predictability of this data enable efficient utilization of computational resources by facili-
tating data access patterns that can be easily optimized for performance. These are highly
parallelizable and, when working with matrices, they offer high data reuse. By optimally
leveraging this reuse, we can achieve heavily compute-bound implementations [25].

1.2.2 Sparse Linear Algebra Kernels

Contrary to their dense counterparts, sparse linear algebra kernels cannot leverage regularity
within their data. The reason is that, in order to save space and avoid computations with
zeros, sparse data is usually stored in a compressed data format [30–36]. While using such
compressed formats for sparse data leads to more efficient kernels, the regular memory accesses
are replaced by three operations: indirection, intersection, and union [37]. Indirection is

1.3. PROBLEM STATEMENT 3

used by sparse-dense operations, while sparse-sparse operations use intersection and union.
Indirection can be implemented with scatter-gather instructions, which are supported in
VPUs with indexed memory accesses [24]. For intersection and union, as both arrays are
compressed, finding a corresponding element implies comparing the different indices until a
match is found. If no matching element is found, then the corresponding element is a zero.
Therefore, linear algebra kernels where both arrays are sparse rely on index matching.

1.3 Problem Statement

1.3.1 Problem 1
Within dense linear algebra, General Matrix-Matrix Multiplication (GEMM) is the most
widely used kernel, as well as one of the most computationally intensive kernels. GEMM
is a fundamental operation in many applications across different domains, such as ML, big
data, and general scientific computing. Moreover, it can be efficiently implemented in a
VPU due to being highly vectorizable. Despite this, multiple custom accelerators have been
proposed in order to further improve GEMM’s performance and efficiency, with SAs being
one of the common underlying architectures. Compared to VPUs, SAs provide a more
efficient data reuse by feeding the output of the functional units directly to the inputs of
the next ones [38, 39]. Consequently, multiple works have presented SoCs that combine both
VPUs and SAs [16,40, 41]. However, these works provide both functionalities by replicating
hardware structures, like the Fused Multiply-Accumulate (FMA) units used to perform the
computation. This means incurring an area increase. Hence, by avoiding this replication, we
could develop more area-efficient implementations. This would especially benefit resource-
constrained devices, enabling them to provide both VPU and SA functionalities with little
overhead.

Problem Statement 1: Given a baseline VPU, extend it with the functionality of a SA
for increasing the performance and efficiency of computing GEMM. Design this extension
with area in mind, adding minimal hardware overhead.

Key Insight 1: From a high level of abstraction, VPUs and SAs are a set of functional
units with a memory system that feeds them. VPUs arrange these units as a 1D array, while
SAs arrange them as a 2D array. We can implement the flow of a SA in a baseline VPU by
remapping its functional units to support forwarding data directly to the next set of units,
organizing them as a 2D array that an SA would support.

1.3.2 Problem 2
Index-matching is the main problem in sparse-sparse linear algebra operations. Finding the
matching element means comparing multiple indices until finding the right one. Sparse linear
algebra kernels are memory-bound [42], and this increases the memory bottleneck. One
solution to solve this is to move the index-matching operation to memory, only sending to
the compute part the actual value. Current state-of-the-art for VPUs already supports this
approach, but it uses hardware techniques that rely on data replication and provide poor
scaling [17,43,44]. Therefore, to efficiently provide the same memory size and parallelism
as regular memory architectures for vector architectures, we need to look for memory
architectures that provide the same functionality while offering better scalability.

Problem Statement 2: Given a baseline VPU, extend its memory architecture to
support index-matching operations. To fit with VPUs, which are general-purpose accelerator
architectures, this new memory architecture also needs to support regular memory accesses
and be scalable, not being limited to small memories.

Key Insight 2: Index-matching is equivalent to a hash-lookup problem, with the index
being the key. This can be implemented in hardware using cache-like techniques, where a
hash bucket maps to a cache set.

1.4 Thesis Contributions
In summary, the goal of this Thesis is to contribute to the development of vector architectures,
focusing on linear algebra. For that, it proposes two contributions, tackling both dense and
sparse linear algebra. This Thesis is a summary of three Papers (referred to with Roman
numerals: I, II, and III), included in Appendices A, B, and C, respectively.

4 CHAPTER 1. INTRODUCTION

The first contribution, presented in Papers I and II, proposes an extension of existing
VPUs that aims to increase their performance of computing the GEMM kernel. To do so, the
baseline VPU is provided with the functionality of an SA, which enables data reuse between
functional units. Paper I describes how to implement this extension with minimal hardware
overhead. To pass the data between functional units, we propose to reuse an interconnect
network, which is already available in VPUs to support operations like sliding and reduction.
Paper II analyzes the implications of this new functionality in the memory system of the
original VPU, and more in particular in its VRF. First we analyze how the existing memory
instructions cannot efficiently load the data for the new SA-like functionality, and propose a
variation of the existing instructions that can better support this functionality. The second
contribution in Paper II is a partitioning schema analysis that enables us to dynamically
choose between the vector and systolic functionalities, maximizing utilization. Evaluating this
SA-like extension of VPUs shows up to 4.22x speedup over the baseline vector architecture.

The second contribution, presented in Paper III, proposes a scratchpad-based memory
architecture that provides VPUs with hardware acceleration for index-matching. This memory
architecture transforms the index-matching problem into one of hash lookup and maps it to
hardware using cache-like structures over a base multi-banked scratchpad. Consequently, it
can efficiently leverage key parallelism, resulting in a scalable memory architecture. Moreover,
it can behave in two different modes at a given time, supporting both regular memory
accesses and index-matching. This novel memory architecture shows up to 3.19x speedup
over the state-of-the-art.

Chapter 2

VSA: A Hybrid
Vector-Systolic Architecture

As mentioned in Problem 1 (Section 1.3.1), GEMM can be computed both by a VPU and by
an SA. SAs are more efficient, while VPUs offer general-purpose capabilities. However, from
a high level of abstraction, both are a set of functional units together with a memory system
that can feed them. When it comes to the functional units, the difference is that VPUs
organize them in a 1D array, while SAs do so in a 2D array. As for the memory system,
VPUs use a VRF to feed their units, compared to the buffers used by SA. This raises the
question of what would be needed to extend an existing VPU with the dataflow of a SA, and
if doing so would be feasible.

The first contribution of this Thesis tackles this question. It does it in two parts: first,
we analyze the computational aspect, implementing the dataflow of an SA into an existing
VPU. This corresponds to Paper I, and is summarized in Section 2.1. Second, we analyze
the memory system, and in particular the VRF, with the goal of efficiently utilizing this
component. This corresponds to Paper II, and is summarized in Section 2.2.

2.1 Compute

To implement the functionality of a SA for GEMM into an existing VPU, there are two
main challenges: (1) emulating the dataflow of the SA with the VPU and (2) feeding the
functional units according to the requirements of the new dataflow. Moreover, we need to
implement it with minimal hardware overhead to make it feasible.

For the first challenge, the VPU needs to support sending data between functional units
instead of communicating explicitly through the VRF. One way to do it would be through
chaining, where the output of one vector instruction is used directly by the next one [21].
Chaining is done by allocating the computation of different instructions to different sets of
functional units and forwarding the data from one set to the next one. However, while this
approach helps reducing latency, it has its own drawbacks, such as requiring extended support
for data hazards [19] and having multiple sets of functional units. Hence, modern VPUs
tend to support this functionality on a limited way. For example, Ara [25] limits chaining to
different types of functional units (integer ALU, integer MUL and Floating Point Unit (FPU))
within the same lane, while Vitruvius+ [20] supports only memory-to-arithmetic chaining.
Therefore, we want to look for other ways to emulate the dataflow of an SA. From chaining,
we realized that using multiple instructions would likely require increased hardware overhead.
Thus, we moved on to analyze individual instructions. There are some vector instructions,
like sliding and reduction, that require communication between different functional units.
To do so, they require specialized hardware support. For example, Vitruvius+ [20] includes
a unidirectional data ring to forward data to the functional units in the following lanes.
Moreover, this type of support is common in VPUs, as these operations are widely used (for
example, reduction is used to calculate the dot product of two vectors). After analyzing
this support, the mapping of the systolic functionality onto a VPU is done by mapping the

5

6 CHAPTER 2. VSA: A HYBRID VECTOR-SYSTOLIC ARCHITECTURE

rows of the SA onto the different lanes of the VPU, emulating the vertical dataflow using
the available data ring. As for the horizontal dataflow, it happens within each lane.

For the second challenge, SA has different data patterns compared to most vector
operations. Traditionally, VPUs support three types of memory accesses: unitary (accessing
consecutive memory addresses), non-unitary strided (accessing memory addresses with a
stride, i.e., a jump between accessed addresses), and indexed (accessing memory addresses
relative to the base address, given an offset stored in an input vector register). These three
memory access types were presented in order of efficiency, which is opposite to the degree
of flexibility they provide. An SA has fixed regular patterns, but not ones that can be
represented with unitary or strided instructions. Hence, the implementation presented in
Paper I uses indexed memory accesses, which are less efficient but can generate the right
access patterns. This was a temporary solution, as it was one of the major points addressed
in Paper II.

To interact with this new functionality, the RISC-V vector extension is further extended
with two new instructions: vsa and vfsa. They are, respectively, the integer and float
versions of the SA-like instruction.

This new functionality is evaluated over different Deep Neural Networks (DNNs), achiev-
ing up to a 2.25x speedup over the baseline vector functionality. Additionally, in order to
analyze the full potential of the new functionality, the evaluation includes a set of results
based on the supposition that using unitary memory accesses instead of indexed ones would
be possible. With this supposition, the maximum performance improvement seen increases
to 3.5x. Moreover, this approach also fulfills the criteria of having minimum area overhead,
being it only 0.1% over an existing VPU.

Besides the specific speedup values, two conclusions are extracted from the evaluation:
(1) the systolic functionality can better leverage higher amounts of hardware resources, and,
most importantly, (2) the speedup differences are mostly related to how different matrix
sizes fit are partitioned by different functionalities, leading to under-utilization of the vector
registers. This second point is the second major point analyzed in Paper II.

2.2 Vector Register File

As mentioned in Section 2.1, Paper I left two major points to analyze: (1) how to efficiently
access memory and (2) how to better utilize the available resources. Both of these problems
are affected by a common component: the VRF.

2.2.1 Memory Accesses for SA

For the first point, the problem is that the more efficient types of memory accesses do not
support the patterns required by the systolic functionality. Thus, this functionality needs
to rely on the less efficient indexed memory access. The reason is that the other types of
memory accesses (unitary and strided) cannot describe those patterns. As seen in Paper I,
having more efficient memory accesses could provide considerable memory improvements,
so it is a key point to study. The systolic patterns can be described as a combination of
unitary or strided patterns. However, part of the existing strides are not due to the patterns
themselves but to how the VRF is accessed by load and store operations. For example, to
stream one matrix row horizontally with the SA functionality, it needs to be fully stored
in the vector register slice of the corresponding lane. However, when loading or storing
data, the accesses to the different VRF slices are interleaved. This constraint is defined by
hardware. A similar situation arises when loading the columns to be streamed vertically.
This is solved by accessing the VRF in a lane-by-lane fashion. Lane-by-lane accesses enable
using the existing and more efficient memory access types for the SA patterns. Therefore,
Paper II proposes a new set of instructions for the RISC-V vector extension. It duplicates
the existing load and store instructions, with the difference that one of the fields is now used
to select the target lane.

A new evaluation of the architecture shows up to a 4.22x speedup over the vector baseline,
compared to the 2.47x speedup for the same configuration without the new lane-by-lane
memory accesses. Moreover, the performance difference between using this new support and
not increases with the MVL. This shows that the new instructions can better leverage the
locality existing in the systolic patterns.

2.2. VECTOR REGISTER FILE 7

2.2.2 Utilization Analysis
For the second point, as seen in Paper I, the performance gap between vector and systolic
functionality is due to their utilization of the VRF. Different functionalities divide the
problem in different ways, and thus lead to different levels of utilization. While the VRF
is a register file, it has been scaled up to the point of providing similar storage as a cache.
However, the VRF is more constrained than a regular cache when it comes to accessing it,
making it harder to fully utilize all the available space. To tackle this, Paper II proposes a
methodological approach to understand how different parameters affect the utilization of
the VRF. For a fixed MVL, this depends on two parameters: the functionality used and
the sizes of the input matrices. With matrix sizes defined by a (M,N,K) set, the first step
is to find the smallest set that pushes both functionalities to their maximum utilization
using the Least Common Minimum. Bigger matrices can be partitioned into sub-matrices
equal to or smaller than said set. Then, parameter sweeps are performed for M , N and K,
reducing their sizes. The result of this process is a discrete 3D volume where each point
represents the relative speedup for the different functionalities for a given (M,N,K) set. In
this volume, two regions can be identified. Each of the regions represents the points where
one functionality outperforms the other. After finding the border between these two regions,
it is possible to use this information to partition the problem accordingly, increasing the
VRF’s utilization. Moreover, as this analysis can be done offline, the runtime overhead is
negligible except for really small matrices.

Paper II presents an example of the proposed analysis. After performing it and finding
the border between the two regions, this information has been added to the GEMM imple-
mentation. This enhanced implementation is capable of detecting which of the functionalities
will provide better resource utilization at a given time and switching to it accordingly. This
enables seeing no performance downgrade due to choosing the worse functionality. Moreover,
this is performed with low runtime overhead, being only perceived in really small matrices.

8 CHAPTER 2. VSA: A HYBRID VECTOR-SYSTOLIC ARCHITECTURE

Chapter 3

Scalable Hardware Hash for
Index-Matching in Vector
Architectures

As mentioned in Section 1.2.2, sparse linear algebra kernels rely on three different operations:
indirection, intersection, and union. In VPUs, indirection is directly supported in hardware
with scatter-gather operations, but existing ISAs do not provide hardware support for
the main component of intersection and union: index-matching. Existing state-of-the-art
proposes to implement a small custom memory to accelerate indirection, intersection, and
union [17]. It uses a Content Addressable Memory (CAM) to find the corresponding elements,
comparing the incoming indices against all the stored ones. Moreover, it uses an Live Value
Table (LVT)-based scratchpad as the data array to avoid collision penalties. This approach
relies on replication and multi-porting [43,44]. Due to this reliance, the LVT-based is effective
for small memories, but suffers from considerable penalties with increased memory sizes, and
especially with an increased number of ports. Nowadays, VPUs and similar architectures like
GPUs have larger memories [45,46]. Moreover, datasets for sparse matrices keep growing [47].
Therefore, we should find a way to efficiently implement larger memories with index-matching
support. Outside VPUs, we can look for alternatives among custom accelerators. Many
custom accelerators rely on stream-based approaches, which would not fit on current VPUs,
but others, like InnerSP [48], use hashing to implement index-matching. Finally, we need
to consider that VPUs are general-purpose accelerators. Applications should be able to
efficiently use the proposed memory also when not working with sparse data. Thus, we
should try to develop a multi-functional memory, not limited to sparse operations.

In summary, Paper III tackles the issue of developing a memory architecture that
accelerates index-matching for VPUs. This novel memory should provide (1) index-matching
functionality, (2) efficient scaling for large memory sizes and number of ports, and (3)
flexibility to also support existing memory accesses and multiple datatypes.

To solve this problem we present SH2. SH2 builds upon a scratchpad implemented as
a multi-banked memory, where each bank contains a portion of the total memory. Each
bank has its own index array, which contains the corresponding indices for the values stored
in the bank. Each pair of bank and index array behaves like a set associative cache. The
index array can contain fewer indices than values fit in the corresponding bank. The banks
determine the total memory size, while the index array determines the maximum memory
space supported for index-matching. Moreover, at runtime, we can allocate the memory
space required for the index-matching functionality. The non-allocated space is used as a
regular scratchpad. Consequently, SH2 can efficiently support regular and index-matching
operations at the same time. Hence, SH2 offers two main modes: Direct Data (DD) and
index-matching (IM). The former supports direct accesses to the scratchpad, while the
latter offers hardware index-matching support. At any given time, SH2 can support either
of the modes, or both. With this baseline architecture, the index-matching problem is
implemented as a hash problem and supported in hardware with cache-like mechanisms. The

9

10
CHAPTER 3. SCALABLE HARDWARE HASH FOR INDEX-MATCHING IN VECTOR

ARCHITECTURES

main difference compared to a cache is that in index-matching operations a miss means that
the corresponding value is a zero.

In addition to the base architecture, SH2 can reduce collision penalties by leveraging
that it is designed to efficiently support multiple datatypes. SH2 is designed to work with
32-bit wide data. To work with 64-bit data, two adjacent banks are accessed with the same
memory address. In the case of the index-matching functionality, the address is provided
by the index array after an index hit. This means that only one index array is actually
needed, and we have the adjacent index array unused. To reduce collision penalties, when
working with wider data, we send two colliding indices to the two adjacent index arrays.
Both adjacent index arrays have the same indices stored. If only one of the indices causes a
hit, there is only one access to the bank, and thus we do not need to pay the collision penalty.
This way, for wider data, we use replication of indices to compare multiple colliding indices
in parallel, and exploit index misses to reduce collision penalties.

In addition to the memory architecture, we have proposed an extension of vector ISAs
to support the new functionality. With the architecture and the extended ISA, SH2 shows
speedups of up to 3.19x compared to the state-of-the-art, when running more than 1600
real-world matrices. Moreover, even if we try to scale up the state-of-the-art in a more
efficient way, SH2 offers similar performance in less than 7.4% of the area. In addition, the
mechanism for reducing collision penalties removes 38.58% of the extra cycles, reducing the
CPI for the corresponding index-matching instructions from 1.80 to 1.56.

Chapter 4

Concluding Remarks and
Future Work

Vector Processing Units (VPUs) are a good target architecture for linear algebra kernels [4],
but application requirements keep increasing [1], so we should strive for higher performance
and efficiency. This Thesis aims to show that it is possible to increase the performance of
VPUs for these kernels by integrating ideas for custom accelerators. This way, we can get
performance closer to custom accelerators while retaining the general-purpose characteristics
of VPUs. In this Thesis we have focused on linear algebra kernels, which are widely used
in different applications across multiple domains. Papers I and II show an example of this
approach for GEMM, achieving up to 4.22x speedup. Paper III presents another example
for sparse kernels, in this case achieving up to 3.19x speedup. However, this extension cannot
be done sacrificing generality. VPUs are still general-purpose accelerators, and thus area
needs to be considered, not based on just the target kernel. There are two approaches for
this: minimal overhead, as followed in Papers I and II, and resource reusability, as proposed
in Paper III.

For future work, the intuitive approach would be to continue extending VPUs, now for
Graph Neural Networks (GNNs). There are already multiple custom accelerator proposals
for these applications, both for ASIC and FPGA platforms [49–52], but not yet an extension
for VPUs. Hence, this approach is an in-depth specialization for GNNs in VPUs.

An alternative to this bottom-up depth-first approach would be a top-down breadth-first
approach where we analyze all applications (or a set of representative ones) and analyze
their characteristics. With this analysis, we can classify the different characteristics into a
set of groups according to their hardware requirements. Then, for each of these groups, we
can design different VPU extensions. Hence, this approach would also lead to a set of vector
extensions, but now with a limited number of extensions and covering all applications. By
combining all the different extensions in one system, we would have a fully general-purpose
system that can also provide specialized hardware acceleration for different applications
according to their characteristics.

11

12 CHAPTER 4. CONCLUDING REMARKS AND FUTURE WORK

Bibliography

[1] OpenAI, “Ai and compute,” May 2018. [Online]. Available: https://openai.com/blog/
ai-and-compute/

[2] J. L. Hennessy and D. A. Patterson, “A new golden age for computer architecture,”
Communications of the ACM, vol. 62, no. 2, pp. 48–60, 2019.

[3] T. Nowatzki, V. Gangadhar, K. Sankaralingam, and G. Wright, “Domain specialization
is generally unnecessary for accelerators,” IEEE Micro, vol. 37, no. 3, pp. 40–50, 2017.

[4] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A.
Patterson, W. L. Plishker, J. Shalf, S. W. Williams et al., “The landscape of parallel
computing research: A view from berkeley,” 2006.

[5] K. Chellapilla, S. Puri, and P. Simard, “High performance convolutional neural networks
for document processing,” in Tenth international workshop on frontiers in handwriting
recognition. Suvisoft, 2006.

[6] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter performance analysis of a
tensor processing unit,” in Proceedings of the 44th annual international symposium on
computer architecture, 2017, pp. 1–12.

[7] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin, “Attention is all you need,” Advances in neural information processing
systems, vol. 30, 2017.

[8] J. R. Gilbert, S. Reinhardt, and V. B. Shah, “A unified framework for numerical and
combinatorial computing,” Computing in Science & Engineering, vol. 10, no. 2, pp.
20–25, 2008.

[9] R. Yuster and U. Zwick, “Detecting short directed cycles using rectangular matrix
multiplication and dynamic programming,” in Proceedings of the fifteenth annual ACM-
SIAM symposium on Discrete algorithms, 2004, pp. 254–260.

[10] M. M. Wolf, M. Deveci, J. W. Berry, S. D. Hammond, and S. Rajamanickam, “Fast linear
algebra-based triangle counting with kokkoskernels,” in 2017 IEEE High Performance
Extreme Computing Conference (HPEC). IEEE, 2017, pp. 1–7.

[11] G. V. Demirci and C. Aykanat, “Scaling sparse matrix-matrix multiplication in the
accumulo database,” Distributed and Parallel Databases, vol. 38, pp. 31–62, 2020.

[12] M. W. Scroggs, I. A. Baratta, C. N. Richardson, and G. N. Wells, “Basix: a runtime
finite element basis evaluation library,” Journal of Open Source Software, vol. 7, no. 73,
p. 3982, 2022.

[13] J. Li, F. Wang, T. Araki, and J. Qiu, “Generalized sparse matrix-matrix multiplication
for vector engines and graph applications,” in 2019 IEEE/ACM Workshop on Memory
Centric High Performance Computing (MCHPC). IEEE, 2019, pp. 33–42.

[14] S. R. Gupta, N. Papadopoulou, and M. Pericas, “Accelerating cnn inference on long
vector architectures via co-design,” in 2023 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 2023, pp. 145–155.

[15] V. Le Fèvre and M. Casas, “Efficient execution of spgemm on long vector architectures,”
in Proceedings of the 32nd International Symposium on High-Performance Parallel and
Distributed Computing, 2023, pp. 101–113.

13

14 BIBLIOGRAPHY

[16] N. P. Jouppi, D. H. Yoon, G. Kurian, S. Li, N. Patil, J. Laudon, C. Young, and
D. Patterson, “A domain-specific supercomputer for training deep neural networks,”
Communications of the ACM, vol. 63, no. 7, pp. 67–78, Jun. 2020.

[17] J. Pavón, I. V. Valdivieso, A. Barredo, J. Marimon, M. Moreto, F. Moll, O. Unsal,
M. Valero, and A. Cristal, “Via: A smart scratchpad for vector units with application
to sparse matrix computations,” in 2021 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). IEEE, 2021, pp. 921–934.

[18] N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole, G. Gabrielli, M. Horsnell,
G. Magklis, A. Martinez, N. Premillieu et al., “The ARM scalable vector extension,”
IEEE micro, vol. 37, no. 2, pp. 26–39, 2017.

[19] K. Asanovic, Vector microprocessors. University of California, Berkeley, 1998.

[20] F. Minervini, O. Palomar, O. Unsal, E. Reggiani, J. Quiroga, J. Marimon, C. Rojas,
R. Figueras, A. Ruiz, A. Gonzalez, J. Mendoza, I. Vargas, C. Hernandez, J. Cabre,
L. Khoirunisya, M. Bouhali, J. Pavon, F. Moll, M. Olivieri, M. Kovac, M. Kovac,
L. Dragic, M. Valero, and A. Cristal, “Vitruvius+: An area-efficient RISC-V decoupled
vector coprocessor for high performance computing applications,” ACM Trans. Archit.
Code Optim., dec 2022, just Accepted.

[21] R. M. Russell, “The cray-1 computer system,” Communications of the ACM, vol. 21,
no. 1, pp. 63–72, 1978.

[22] Intel, Intel® Architecture Instruction Set Extensions and Future Features Programming
Reference, Mar. 2020, 319433-038.

[23] ARM, NEON Programmer’s Guide, 2013, iD071613.

[24] RISC-V, “RISC-V V vector extension,” 2023. [Online]. Available: https:
//github.com/riscv/riscv-v-spec

[25] M. Cavalcante, F. Schuiki, F. Zaruba, M. Schaffner, and L. Benini, “Ara: A 1-GHz+
scalable and energy-efficient RISC-V vector processor with multiprecision floating-point
support in 22-nm FD-SOI,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 28, no. 2, pp. 530–543, 2019.

[26] I. A. Assir, M. E. Iskandarani, H. R. A. Sandid, and M. A. Saghir, “Arrow: A risc-v
vector accelerator for machine learning inference,” arXiv preprint arXiv:2107.07169,
2021.

[27] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, “Basic linear algebra
subprograms for fortran usage,” ACM Transactions on Mathematical Software (TOMS),
vol. 5, no. 3, pp. 308–323, 1979.

[28] “BLAS (basic linear algebra subprograms).” [Online]. Available: https://www.netlib.
org/blas/

[29] P. Colella, “Defining software requirements for scientific computing,” 2004.

[30] F. G. Gustavson, “Two fast algorithms for sparse matrices: Multiplication and permuted
transposition,” ACM Transactions on Mathematical Software (TOMS), vol. 4, no. 3,
pp. 250–269, 1978.

[31] L. Buatois, G. Caumon, and B. Lévy, “Concurrent number cruncher: a gpu implemen-
tation of a general sparse linear solver,” International Journal of Parallel, Emergent
and Distributed Systems, vol. 24, no. 3, pp. 205–223, 2009.

[32] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E. Leiserson, “Parallel
sparse matrix-vector and matrix-transpose-vector multiplication using compressed sparse
blocks,” in Proceedings of the twenty-first annual symposium on Parallelism in algo-
rithms and architectures, 2009, pp. 233–244.

[33] W. Liu and B. Vinter, “Csr5: An efficient storage format for cross-platform sparse matrix-
vector multiplication,” in Proceedings of the 29th ACM on International Conference on
Supercomputing, 2015, pp. 339–350.

[34] D. R. Kincaid, T. C. Oppe, and D. M. Young, “Itpackv 2d user’s guide,” Tech. Rep.,
1989.

[35] X. Liu, M. Smelyanskiy, E. Chow, and P. Dubey, “Efficient sparse matrix-vector multi-
plication on x86-based many-core processors,” in Proceedings of the 27th international
ACM conference on International conference on supercomputing, 2013, pp. 273–282.

BIBLIOGRAPHY 15

[36] M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R. Bishop, “A unified sparse
matrix data format for efficient general sparse matrix-vector multiplication on modern
processors with wide simd units,” SIAM Journal on Scientific Computing, vol. 36, no. 5,
pp. C401–C423, 2014.

[37] P. Scheffler, F. Zaruba, F. Schuiki, T. Hoefler, and L. Benini, “Sparse stream semantic
registers: A lightweight isa extension accelerating general sparse linear algebra,” arXiv
preprint arXiv:2305.05559, 2023.

[38] H.-T. Kung and S. W. Song, “A systolic 2-d convolution chip,” Tech. Rep., 1981.

[39] H.-T. Kung, “Why systolic architectures?” Computer, vol. 15, no. 01, pp. 37–46, 1982.

[40] A. Fell, D. J. Mazure, T. C. Garcia, B. Perez, X. Teruel, P. Wilson, and J. D. Davis,
“The marenostrum experimental exascale platform (MEEP),” Supercomputing Frontiers
and Innovations, vol. 8, no. 1, pp. 62–81, 2021.

[41] W. J. Starke, B. W. Thompto, J. A. Stuecheli, and J. E. Moreira, “IBM’s POWER10
processor,” IEEE Micro, vol. 41, no. 2, pp. 7–14, 2021.

[42] Z. Gu, J. Moreira, D. Edelsohn, and A. Azad, “Bandwidth optimized parallel algorithms
for sparse matrix-matrix multiplication using propagation blocking,” in Proceedings of
the 32nd ACM Symposium on Parallelism in Algorithms and Architectures, 2020, pp.
293–303.

[43] S. Dropsho, A. Buyuktosunoglu, R. Balasubramonian, D. H. Albonesi, S. Dwarkadas,
G. Semeraro, G. Magklis, and M. L. Scottt, “Integrating adaptive on-chip storage
structures for reduced dynamic power,” in Proceedings. International Conference on
Parallel Architectures and Compilation Techniques. IEEE, 2002, pp. 141–152.

[44] A. M. Abdelhadi and G. G. Lemieux, “Modular multi-ported sram-based memories,” in
Proceedings of the 2014 ACM/SIGDA international symposium on Field-programmable
gate arrays, 2014, pp. 35–44.

[45] Meta, “MTIA v1: Meta’s first-generation ai inference accelera-
tor,” accessed: 2024-02-26. [Online]. Available: https://ai.meta.com/blog/
meta-training-inference-accelerator-AI-MTIA/

[46] CUDA C++ Programming Guide, Release 12.1, NVIDIA, 2023.

[47] T. A. Davis and Y. Hu, “The university of florida sparse matrix collection,” ACM
Transactions on Mathematical Software (TOMS), vol. 38, no. 1, pp. 1–25, 2011.

[48] D. Baek, S. Hwang, T. Heo, D. Kim, and J. Huh, “InnerSP: A memory efficient sparse
matrix multiplication accelerator with locality-aware inner product processing,” in 2021
30th International Conference on Parallel Architectures and Compilation Techniques
(PACT). IEEE, 2021, pp. 116–128.

[49] M. Yan, L. Deng, X. Hu, L. Liang, Y. Feng, X. Ye, Z. Zhang, D. Fan, and Y. Xie,
“HyGCN: A GCN accelerator with hybrid architecture,” in 2020 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE, 2020, pp.
15–29.

[50] M. Yoo, J. Song, J. Lee, N. Kim, Y. Kim, and J. Lee, “SGCN: Exploiting compressed-
sparse features in deep graph convolutional network accelerators,” in 2023 IEEE
International Symposium on High-Performance Computer Architecture (HPCA). IEEE,
2023, pp. 1–14.

[51] R. Sarkar, S. Abi-Karam, Y. He, L. Sathidevi, and C. Hao, “Flowgnn: A dataflow
architecture for real-time workload-agnostic graph neural network inference,” in 2023
IEEE International Symposium on High-Performance Computer Architecture (HPCA).
IEEE, 2023, pp. 1099–1112.

[52] P. Chen, P. Manjunath, S. Wijeratne, B. Zhang, and V. Prasanna, “Exploiting on-
chip heterogeneity of versal architecture for gnn inference acceleration,” in 2023 33rd
International Conference on Field-Programmable Logic and Applications (FPL), 2023,
pp. 219–227.

16 BIBLIOGRAPHY

Appendix A

Paper I

VSA: A Hybrid Vector-Systolic Architecture

Mateo Vázquez Maceiras, Muhammad Waqar Azhar, Pedro Trancoso

2022 IEEE 40th International Conference on Computer Design
(ICCD)

© [2022] IEEE. Reprinted, with permission, from [Mateo Vázquez Maceiras, Muhammad
Waqar Azhar, Pedro Trancoso. VSA: A Hybrid Vector-Systolic Architecture. 2022 IEEE
40th International Conference on Computer Design (ICCD). October, 2022]

VSA: A Hybrid Vector-Systolic Architecture
Mateo Vázquez Maceiras, Muhammad Waqar Azhar, Pedro Trancoso

Department of Computer Science and Engineering
Chalmers University of Technology, Gothenburg, Sweden

{maceiras, waqarm, ppedro}@chalmers.se

Abstract—In order to deliver high performance efficiently,
modern processors include dedicated hardware to accelerate
different application domains. For example, several recent pro-
cessors include dedicated Machine Learning (ML) accelerators.
However, while adding dedicated hardware improves efficiency
compared to general-purpose CPUs, it also requires a larger area,
making it unfeasible for smaller devices. Therefore, exploring
ways to use the existing hardware for different functionalities
becomes desirable in those setups. In this work, we explore the
reuse of the components in a Vector Processing Unit (VPU) to
offer the functionality of a Systolic Array (SA) for General
Matrix Multiplication (GEMM), a kernel extensively used in
machine learning, big data, and scientific computing. This hy-
brid Vector-Systolic Architecture (VSA) can thus support Single
Instruction Multiple Data (SIMD) instruction extensions with
the VPU functionality and efficiently compute GEMM with the
SA functionality. We present an implementation of VSA as a
RISC-V co-processor that adds minimal hardware overhead of
less than 0.1% compared to a baseline RISC-V implementation
with a VPU. In our evaluation using different Deep Neural
Network (DNN) models, VSA shows a speedup of up to 3.5x
and a reduction in energy consumption of up to 70%.

Index Terms—Machine Learning, DNN, GEMM, SIMD, Vector
Unit, Systolic Array.

I. INTRODUCTION

Given the diminishing returns from technology scaling and
the power density limitations, processor development is going
through a shift from homogeneous multi-cores consisting
of general-purpose CPUs to heterogeneous System-on-Chip
(SoC) designs, often composed of several domain-specific
accelerators coupled with CPU [1]. This approach allows for
delivering the required performance within the power budget
in an efficient way.

Nevertheless, implementing one accelerator per application
domain may be unfeasible for resource-limited devices. In
such setups, exploring the use of units that can support
different domains is interesting. One such flexible unit is
the Vector Processing Unit (VPU), responsible for executing
Vector or SIMD instruction extensions.

This work was partially supported by the eProcessor project which has
received funding from the European High-Performance Computing Joint
Undertaking Joint Undertaking (JU) under grant agreement No 956702. The
JU receives support from the European Union’s Horizon 2020 research
and innovation programme and Spain, Sweden, Greece, Italy, France, and
Germany. This work was also partially supported by the VEDLIoT project,
which received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 957197 and the Swedish
Foundation for Strategic Research (contract number CHI19-0048) under the
PRIDE project

One highly vectorizable set of instructions (kernel) is the
General Matrix Multiply (GEMM), a fundamental operation in
many applications across different domains, such as Machine
Learning (ML), big data, and general scientific computing.

While the VPU can execute matrix operations, several ded-
icated hardware accelerators have been proposed for GEMM
processing [2]–[7]. Some of these GEMM accelerators are
based on Systolic Arrays (SA) [8], [9]. SAs are architectures
composed of multiple interconnected processing elements
(PEs), exploiting the dataflow between the operations. As this
reduces the bandwidth requirements, it is beneficial for appli-
cations that are memory bound and with a regular memory
access pattern such as GEMM, for the PEs are arranged in
a 2D layout. SA-based accelerators for GEMM are currently
used in several commercial products [10], [11], both in the
cloud and at the edge.

The main disadvantage of SAs is that they perform only
a limited set of instructions when compared to VPUs. As
a consequence, SAs can not be the sole accelerator for
applications with diverse demands. For example, while an
SA is a very good match for the convolutional layers in a
Deep Neural Network (DNN), it can not be used for batch
normalization [12]. More flexible processing units such as the
VPU are usually used in such situations [13].

To get the advantages of both architectures, there are
systems that include both of them, such as IBM’s Power10 pro-
cessors [14] and the Vector and Systolic Accelerator Tiles of
the MEEP platform [15]. Nevertheless, the resources required
to implement both architectures can be a problem in systems
where the area is limited. Thus, one of the architectures may
be sacrificed to satisfy the resource constraints.

To avoid leaving any of the architectures out, this paper
explores a scheme to reuse the available resources in a VPU
to achieve the functionality of a SA. This proposed scheme
was motivated by the fact that even though the architectures
are different, their main building blocks, from the compute
units to the memory system, are equivalent.

To achieve the dual architecture goal, we propose a low
overhead novel hybrid Vector-Systolic Architecture, which we
denote as VSA. One key characteristic of VSA is that the
functionality of the hardware (VPU or SA) can be chosen
dynamically at runtime through the use of dedicated instruc-
tions. In this work, we show how this can be implemented as
a RISC-V ISA extension.

Overall, this work presents the following contributions:

• VSA, a hybrid Vector-Systolic Architecture that can use
VPU resources as a SA with minimal hardware overhead.

• An instruction added to the RISC-V Vector extension to
provide VSA with software support.

• A quantitative performance analysis of VSA for DNN
inference models.

Our evaluation, using well-known DNN models, shows
that VSA can be implemented with less than 0.1% hardware
overhead and achieves speedups of up to 3.5x with energy
savings of up to 70% in the L2 cache due to more efficient
memory accesses by the SA when compared to a VPU with
the same number of functional units.

II. BACKGROUND

A. GEMM in DNNs

The GEMM operation is not only the core kernel in DNNs
but is also extensively employed in application domains such
as scientific computing and data analytics. This work specif-
ically considers inference execution for DNNs, but insights
apply to other application domains that employ GEMM.

DNN models are composed of a sequence of multiple
layers, and different layer types will be computed differently.
Without loss of generality, in this work, we will focus on
the popular Convolutional Neural Networks (CNNs) used for
image recognition.

The core layers in these networks are convolutional layers,
which perform the 2D convolutions of an input feature map
with a set of filters. Such operations are commonly imple-
mented as matrix-matrix multiplications [16].

Other layers in these networks are fully connected (FC)
layers. In those layers, each input is connected to each node
in the FC layer. Matrix-vector multiplications are an efficient
way of implementing the FC layer.

Finally, these networks also include pooling layers, which
are used to reduce the spatial size of the representation. All
elements inside a window are reduced to a single element by
either computing the average or maximum value.

B. Vector Processing Unit

Vector architectures are 1D SIMD architectures that oper-
ate over sets of data elements loaded into vector registers,
i.e., sequential register files, instead of over single-element
registers, and thus single instructions operate over whole
arrays. To further exploit data-level parallelism, it is possible
to implement multiple functional units to compute several
elements in parallel [17]. These elements are organized in sets
of units known as lanes, as shown in Figure 1. An example
of such architecture is VPUs.

Typically, the data used in the vector operations is loaded
from the system’s cache hierarchy into the VPU’s local Vector
Register File (VRF) [18]. The maximum number of scalar
elements that fit in a vector register is defined by the data
width and the Maximum Vector Length (MVL) supported by
the VPU architecture. If the vector values are longer than
the MVL, the vector has to be partitioned by software, thus
increasing the number of instructions.

FU FU

Lane 0

C[0]C[1]

C[4]C[5]

. . .

A[0]A[1]

A[4]A[5]

. . .

B[0]B[1]

B[4]B[5]

. . .

FU FU

Lane 1

C[2]C[3]

C[6]C[7]

. . .

A[2]A[3]

A[6]A[7]

. . .
B[2]B[3]

B[6]B[7]

. . .

Fig. 1. VPU dataflow for an instruction with two source operands (2 lanes
with two units per lane for input datatype)

To support certain instructions (e.g., scatter and gather),
VPUs need to include an efficient communication infrastruc-
ture between the lanes, such as a data ring [19].

C. Vectorized Acceleration of GEMM

GEMM is a highly vectorizable kernel suitable to be ef-
ficiently implemented in a vector accelerator. A vectorized
algorithm for computing GEMM with matrices A[M,K] ×
B[K,N] = C[M,N] is shown in Algorithm 1 (.vs indicates
a vector-scalar instruction).

When implementing this algorithm, the programmer needs
to be aware that the MVL limits the maximum number
of elements a single vector instruction can compute, and
implement it in a vector-length agnostic fashion, i.e., that the
vectorized code can adapt and scale itself to the MVL of the
VPU at runtime.

Algorithm 1 Vectorized GEMM
1: for all i ∈ {1, . . . ,M} do
2: v c = INIT ROW(i)
3: for all j ∈ {1, . . . ,K} do
4: a = A[i×K + j]
5: v b = LOAD ROW(B,K)
6: v c = FMA.VS(a, v b, v c)
7: end for
8: STORE(v c)
9: end for

D. Systolic Array

Systolic arrays are architectures composed of a set of inter-
connected processing elements (PEs) [9]. Inputs and outputs
happen at the perimeter of the architecture while, inside it,
communication is limited to neighbors, with data flowing in
a pipelined fashion, leading to a waveform progression. SAs
are regular structures with regular communication patterns and
are thus a good match for applications that exhibit this same
regularity.

One example of an application with such characteristics is
the GEMM kernel. To implement a SA for this kernel, the PEs
are organized in a 2D fashion. Its dimension determines the
size of the matrices for the multiplication operation. Figure 2

0

c01c00

c11c10

a01 a00

a11 a10 0

b10

b00

b11

b01a dataflow

b dataflow

SC

SR

(a) Output stationary dataflow

b00b01

b10b11

a10 a00

a11 a01 0

c10

c00c11

c01

a dataflow

c dataflow

SR

SC

(b) Input stationary dataflow

Fig. 2. SAs for GEMM (A×B = C)

shows two commonly used dataflow configurations (output and
input stationary) of SAs for GEMM with SR rows and SC
columns. In terms of the memory system, in most cases, the
SA is closely coupled to scratchpads, which act as buffers [20]
for the input data.

In the output stationary dataflow, each PE will contain the
partial sum, while the first matrix (A) flows horizontally and
the second (B) one does so vertically (Figure 2a). This way,
a SR × K stream of matrix A and a K × SC stream of matrix
B will generate a SR × SC completed output tile.

In the input stationary dataflow (also known as weight
stationary in the field of DNNs), one of the input matrices is
stored in the SA, one element per PE (Figure 2b). The other
input is streamed horizontally, and each element is multiplied
by the one stored in the PE. The partial sums (psum) flow
vertically and are accumulated with the multiplication result.
This way, having a SR × SC weight matrix tile stored, we
can use a SR × K input stream to generate an output stream
of dimension K × SC. This stream is made of partial sums,
which will be later added to other equivalent streams (unless
SR ≥ K).

When the matrices are larger than the SA, they are divided
into smaller matrices called tiles. However, if matrices (or
tiles) are smaller than the SA, the operation will still perform,
leading to under-utilization.

III. VSA ARCHITECTURE

As presented in the previous section, VPUs have the ad-
vantage of exploiting data parallelism for a range of different
instructions, while SAs are very efficient for computing a spe-
cific kernel. While conceptually VPUs are quite different from
SAs, fundamentally they are both at their core a collection of
computational units. Therefore, we propose to merge them into
a common unit. Since VPUs are more general architecture,
we propose to use one as the starting point, in order to
maintain their generality. Consequently, this work proposes
VSA, a hybrid Vector-Systolic Architecture that extends a
VPU implementation to offer the functionality of a SA with
minimal hardware overhead while keeping all the functionality
of the VPU.

To offer the functionality of a SA accelerator for GEMM,
we will use the existing functional units available in the VPU
for executing the Multiply and Accumulate (MAC) operation.
The rows of an SA are mapped to lanes, and the horizontal
flow seen in Figure 2 can be achieved inside each lane. The

vertical flow will then be achieved between lanes, and thus
inter-lane communication network is also needed. For the
SA, this communication is unidirectional and only between
adjacent lanes. Also, this needs to be done in parallel for all
the lanes in order not to add a performance bottleneck. Thus,
a network architecture such as a data ring would be preferable
to a bus.

Given a VPU with L lanes and with a W -bit width datapath,
we can remap it onto a SA of SR × SC units. The number
of lanes L determines the number of rows SR in the SA,
while the data type width D and datapath width W determines
the number of columns SC. For floating point formats, the
maximum number of columns is defined in Eq. 1, while for
integer it is defined in Eq. 2. The reason for this is that the
result of multiplying two integers requires double the input
width. Also, depending on the implementation and accumula-
tor size, a smaller SC may be required, as wider accumulators
may further limit the maximum amount of columns we can
implement. When describing the architecture, we will consider
floating point formats, and modifications needed for working
with integers will be explicitly stated.

On the memory side, and in order to keep the design simple,
we use the VRF to replace the buffers that typically feed
the SA. While improvements could be done to the memory
system, this matter is not trivial, and we plan to address it in
future work.

SCfloat =
W

D
(1) SCint =

W

2D
(2)

While the SA executes any GEMM operation, as we focus
on applying it to DNNs, we use the DNN terminology and
refer to the SA inputs as activations (matrix A) and weights
(matrix B).

For VSA, we present two versions, which support different
dataflows: VSA-OS and VSA-WS. The implementation of
VSA used in the evaluation for this work is VSA-OS, as
described later in Section V.

A. Output Stationary VSA

In the output stationary version of VSA (VSA-OS), the data
that flows between the lanes are the weights, as shown in
Figure 3a. Each lane will contain the accumulators that hold
the partial results, which will be fed back into the functional
units. These values only need to be sent to the VRF after the
tile computation is finished. As for the activations, an option
to emulate the horizontal flow would be shifting. We add a
register of 2W bits (S in Figure 3 and connect half of it to
the input of the functional units. The new values are loaded
into the other half. To emulate the dataflow, we shift the data
D bytes into the half connected to the input of the units.
Regarding the weights, we store them in the first lane and
make them move through the inter-lane network (Figure 3a).
In case an interconnect network is unavailable, or if it would
add a non-acceptable delay, it is possible to avoid using it by
replicating the weights across all lanes instead of storing them
only in the first one. Because vector architectures pay most of
the latency per vector load/store, not so much per element

Lane 0 Lane 1 Lane 2 Lane 3

Inter-lane network
Back to VRF

ACC ACC ACC ACC

Inter-lane network

a13 a12 a11 a10

Shift D

VRF

S

MAC MAC MAC MAC

Lane 1

Matrix B from previous lane Matrix B to next lane

(a) Output stationary dataflow

Output
sorter

To VRF

Lane 0 Lane 1 Lane 2 Lane 3

b01 b11 b21 b31

a13 a12 a11 a10

Shift D

Lane 1

Inter-lane network

VRF

S

Inter-lane network

MACMACMACMAC

(b) Input stationary dataflow

Fig. 3. VSA implementation (in grey is the overhead comparing to VPU baseline)

[18], and there is no need to fetch new data from memory, the
penalty will not be increased L times.

The extra hardware support needed, as marked in Figure
3a, consists of a 2W -bit width shift register and W -bit width
accumulator per lane.

The output accumulation creates a data dependency that
needs to be dealt with when using pipelined fused multiply-
accumulate (FMA) units in order to use the full pipeline. To
solve this, having a pipeline depth P , the input streams shall
be considered as P independent interleaved streams and added
together before sending them back to VRF.

Working with integer numbers with VSA-OS would require
an accumulator wider than the datapath to avoid values over-
flowing too easily. Due to this, the accumulation should be
done next to the accumulators, with an extra adder, to be able
to handle the wider data.

B. Weight Stationary VSA

In the weight stationary version of VSA (VSA-WS), the data
that flows between the lanes are the partial accumulations, as
shown in Figure 3b. The weights are the values stored next
to each functional unit. Each lane is responsible for setting
up the weights for the corresponding row. There is no need
to add extra registers, as it is possible to use the already
existing first register of the weight vector register to store
them. The horizontal dataflow is equivalent to the one of the
output stationary. If these outputs are partial results, they can
be later added with the next set of partial results with a vector
add instruction. The extra hardware support needed, as marked
in Figure 3b, consists of a 2W -bit width shift register per lane
and an output sorter that sets up the data to be sent back to
VRF.

In this case, working with integer numbers would require a
way to send partial accumulations wider than the datapath to
avoid losing information due to overflow.

IV. PROGRAMMING VSA

In order to exploit the benefits of VSA at the application
level, some software support is required. In this section, we
present the software support for the RISC-V implementation
being evaluated in this work. While VSA is independent of the
processor’s ISA, RISC-V has the benefit of offering an open
and extensible ISA.

A. RISC-V Extension

In this work, we consider as a baseline a VPU supporting
the RISC-V Vector Instruction [21]. For the VSA support, we
have decided to extend the ISA by adding a SA instruction.
The goal was to add support for VSA to have minimal effects
over the original system, thus making it easier to integrate and
use.

The instruction format, established in [21], is shown in Fig-
ure 4. Here, OPCODE is the vector opcode, so the instruction
is decoded as a vector instruction. funct6 and funct3 select
the SA instruction and the data-type (integer or float). The
data-type width is not included in the instruction. Instead,
and following what is done for other operations, it is set up
using a different instruction in a control status register. vs1 and
vs2 contain the values for the horizontal and vertical dataflow
respectively, as described in Section III. vd is not only the
destination register, but it also contains the initial values for
the accumulators. This allows us to compute a tile when the
MVL is not enough to fit all the required data at once, and it
could also be useful to add a matrix to the final result, as is
the case of the bias matrix in DNNs.

With this instruction, it is possible to compute the GEMM
kernel as described in Algorithm 2. In this algorithm, the
loop in Line 1 selects the rows for the corresponding tile,
while the one in Line 3 does so for the columns, thus tiling
the matrix. Then, each tile is initialized and computed using
the new SA instruction. In cases where the output matrix

vm vs2 vs1funct6 funct3 OPCODEvd

Fig. 4. Instruction format for proposed RISC-V extension

Algorithm 2 GEMM using custom instruction
1: for all i ∈ {1, . . . ,M/SA R} do
2: v r = LOAD ROW SET(i)
3: for all j ∈ {1, . . . ,N/SA C} do
4: v c = LOAD COL SET(i)
5: v t = INIT TILE(i,j)
6: v t = SA(v r, v c, v t)
7: end for
8: STORE(v t)
9: end for

cannot be perfectly tiled, this algorithm assumes zero padding.
With VSA, it is possible to compute the remaining elements
using vector instructions, but such further optimization shall
be analyzed in future work.

B. Memory operations for VSA

For this instruction to compute the right results, the values
need to be in their corresponding position in the vector register,
as described in Section III. To load them, three modes are
available in the current ISA: unitary strided load, non-unitary
strided load, and indexed load. Unitary loads load values in
consecutive memory positions starting from a given address,
thus having an access increment (or stride) of one. Non-unitary
strided loads are equivalent, but with a stride different from
one. Indexed loads have an input register that contains, for
each element to be read, the corresponding offset with respect
to the base address. While the data requirements for the new
instruction have specific patterns, none of those patterns are
supported by the first two load modes when assuming the
matrices are stored in a row-major fashion. As such, without
any other changes in the software and hardware, the indexed
load is the only available option to load the data for the SA
operation.

However, in order to show the full potential of the VSA
architecture, in this paper, we also consider the case in which
a unitary load can be used. The assumption is that we have
a scratchpad into which the runtime packs the data from
memory ahead of time into the right pattern required by the SA
instruction. This data packing can be done by the runtime as
a data pre-fetching phase without incurring any direct latency
overhead by overlapping this with other computations.

V. EXPERIMENTAL SETUP

In order to analyze our architecture, we have modified
the gem5-based VPU simulator [22] presented in [19] to
model VSA-O. In the simulated system, the VPU is connected
directly to a 1MB L2 cache, shared with a scalar RISC-V core.
With this simulator, we have measured the execution time of
each GEMM kernel call. We have also used this simulator as

the VPU baseline, as our goal was to analyze how much VSA
can improve an already existing VPU. Moreover, we have used
the generated gem5 stats to estimate power consumption with
McPAT [23]. As data type for the GEMM operations, we have
used IEEE FP32. To represent the different configurations,
we modified the architecture variables (number of lanes and
datapath width) accordingly. We have chosen array sizes of
2×2 and 4×4, as bigger sizes are not reasonable in the
resource-constrained systems VSA is targeting. As for the
MVL, we have evaluated different configurations ranging from
2048 bits (ARM’s SVE biggest supported MVL [24]) up to
16384 bits [19]. While we are focusing on small devices and
large MVLs could seem unrealistic, they are not unheard of.
Moreover, techniques such as vector grouping could be used to
solve this problem [21]. Besides, the MVL should be related
to the data width. Our experiments with 32b data and MVL
of 16384b would be equivalent to experiments with narrower
data and shorter MVL (e.g., 8b data and MVL of 4096b).

Over the initial VSA-OS architecture, described in Section
III-A, we have implemented two modifications to make it fit
better within the original VPU’s datapath. First, we removed
the accumulators and reused the last pipeline barrier of our
pipelined floating point unit to keep the values for one cycle
while they are being fed back. Then, instead of shifting the
values one by one to simulate the horizontal flow, we decided
to broadcast each value to all the units on the lane, which also
helped to increase the utilization rate of the SA.

In addition to the gem5 simulation, we have also im-
plemented VSA in RTL and synthesized it in 65nm (STM
General Purpose nominal voltage library) for the highest pos-
sible frequency (i.e. 333MHz), to measure the area overhead
compared to the baseline VPU. This VPU coprocessor contains
IEEE-754 compliant FPUs, supporting FP64, FP32, BF16,
and CFP8. It also has a data ring as an inter-lane network.
We achieved the same maximum frequency for both designs,
with the critical path not being affected by the extra VSA
hardware support. The synthesis results showed a negligible
area overhead of less than 0.1%.

A. Workload

We define each GEMM computation as [M,K] × [K,N].
To compute it, we have implemented Algorithm 1 and 2 by
hand coding them using the instructions and data loading as
described in Section IV, in a vector-length agnostic fashion.

To evaluate our architecture, we have selected different
DNNs models: three well-known image recognition models:
AlexNet [25], ResNet18 and ResNet50 [26]; and one model
for skin cancer melanoma classification, obtained through the
DeepHealth Toolkit [27].

The methodology used for the VSA evaluation is to estimate
the performance for the whole model execution based on the

TABLE I
ALEXNET GEMM

L1 L2 L3 L4 L5 L6 L7 L8
M 96 256 384 384 256 1 1 1
K 363 2400 2304 3456 3456 9216 4096 4096
N 3025 729 169 169 169 4096 4096 1000

performance of the GEMM operations used for each layer of
the model. This is a valid approach, as we have measured up
to 80% of the time for the complete vectorized application
execution being spent on GEMM operations. As such, one
intermediary step in this evaluation is determining the input
sizes for each GEMM. We obtain these sizes from Darknet
[28], after the transformation with the im2col() function, taken
from the Caffe framework [29], and before calling the GEMM
function. To illustrate this, for AlexNet, the array dimensions
are shown in Table I.

VI. EXPERIMENTAL RESULTS

We start this evaluation by analyzing the performance for all
layers of AlexNet, as shown in Figure 5. This Figure represents
the execution time speedup for SA mode when compared to
the VPU baseline. Note that we depict two SA mode results,
one for the unitary load (SA UNIT) and the other for the
index load (SA INDEX), as described in Section IV. For this
experiment, we have used a MVL of 16384 bits, which is
considered large [19], and a systolic array of 4×4, comparable
to other similar implementations [14].

As expected, the last three layers (L6-8), which are FC
layers, suffer from a considerable slowdown due to the under-
utilization as they are actually a matrix-vector multiplication,
as mentioned in Section II. As for the convolutional layers (L1-
5), we can see the benefits of using VSA, although that benefit
is not the same across all layers. The benefit depends on the
different matrix shapes and on how the different configurations
can leverage them. In general, the SA configuration shows
better performance than the VPU, reaching up to 3.5x speedup
over baseline. In order to justify this speedup, we looked more
in depth and found out this is because for larger MVLs the
vectorized implementation cannot make as good use of it as the
SA. For example, in layers L3-5, N , the vectorized dimension
is 169, while a MVL of 16384 bits supports up to 512 FP32
values. Thus, for such cases, the VPU mode cannot take full
advantage of it, while the SA mode can leverage it better.
Another observation is that the largest benefit, as expected, is
for the unitary load version, with slightly lesser benefits for the
index load version. It is relevant to notice that the index load
penalty for Layer-1 is considerable enough that it results in a
slowdown of the operation when compared to its execution on
the VPU.

The next results depicted in Figure 6 show the design
space analysis for the SA when changing the MVL and the
number of functional units. In order to highlight the benefit
of combining SA and VPU modes in VSA, we present here
two sets of bars. The first one depicts the speedup of VSA
using only the SA mode, with unitary load (SA UNIT) and

with index load (SA INDEX) for all layers of AlexNet. The
second one shows the benefit of VSA, where the execution is
performed using both VPU and SA modes depending on which
one performs better for each layer of the model independently.

We first analyze the results running GEMM SA mode alone.
From the results, it is possible to observe that, as the MVL or
the number of units increases, the speedup also increases. This
means that the SA configuration scales better than the VPU
for an increasing amount of resources. However, this is not
true for all cases. For a MVL of 2048 bits, we can see how,
for the architecture with 16 functional units, the SA does not
perform as well as in the smaller case compared to the VPU.
This is because a bigger SA has bigger data requirements, and
when the MVL does not allow it to fit enough elements, it has
more difficulties leveraging the larger number of units.

Next we analyse the complete VSA results (second group
of bars in Figure 6). For them, as stated before, we execute
the operations of a layer using the VPU or the SA mode,
depending on which one achieves the best performance. While
we show only the results for the complete execution, the
detailed results show that, as expected, VSA can leverage the
data reuse offered by the SA for the convolutional layers and
use the VPU as such for the FC layers, avoiding the problem
of under-utilization. This is known offline, according to each
layer, but it can be implemented dynamically based on the
matrices’ sizes (if 1 ∈ {M,N,K}), obliviously to the user.

From the results, it is possible to observe that, overall,
the hybrid VSA architecture improves the performance of the
standalone VPU or SA units. The improvement does not seem
to depend on the MVL size and is only more relevant for
the configurations with a larger number of functional units.
Configurations of 2×2 show improvements of 5-10%, while
those with 4×4 units improve 15-25%.

In addition to achieving better performance, energy con-
sumption is also improved at the system level, with the main
benefit coming from the memory subsystem, as shown in
Figure 7. In this analysis, we focused on the energy savings
that VSA can achieve in the L2 cache, as the main benefit
of this architecture derives from better memory utilization,
and memory is the most expensive part when it comes to the
energy budget [30]. The results show potential energy savings
for VSA of up to 60% for VSA with unitary loads, while with
the use of indexed loads, we observe up to 40% savings.

It is interesting to observe that the index loads have a
considerable negative impact on the energy consumption of
SA. This correlates with the slowdowns seen in Figure 6. At
the same time, these results highlight the benefit of using VSA
as with its capability to execute always in the most efficient
way, the heavy penalty of the index loads is avoided with the
VPU execution, and thus the VSA results shown in the charts
always result in energy savings.

In addition to AlexNet, we have evaluated VSA for other
DNNs as described in Section V. The results obtained are
similar to the ones presented before for AlexNet, as shown in
Figure 8. In the case of ResNet18, the potential speedup goes
up to 3.5x, with memory energy savings of up to 70%.

L1 L2 L3 L4 L5 L6 L7 L8

0
1
2
3
4

Sp
ee

du
p

MVL = 16384, 16 units

VPU BASELINE
SA UNIT
SA INDEX

Fig. 5. AlexNet’s GEMM calls for all layers

SA

SA
 +

VP
U

0

1

2

3

4

Sp
ee

du
p

MVL = 2048, 4 units
VPU BASELINE
SA UNIT
SA INDEX

SA

SA
 +

VP
U

0

1

2

3

4

Sp
ee

du
p

MVL = 16384, 4 units
VPU BASELINE
SA UNIT
SA INDEX

SA

SA
 +

VP
U

0

1

2

3

4

Sp
ee

du
p

MVL = 2048, 16 units
VPU BASELINE
SA UNIT
SA INDEX

SA

SA
 +

VP
U

0

1

2

3

4

Sp
ee

du
p

MVL = 16384, 16 units
VPU BASELINE
SA UNIT
SA INDEX

Fig. 6. AlexNet total speedup for different VSA configurations

VII. RELATED WORK

Vector architectures have been traditionally implemented
in the supercomputing domain, such as CRAY-1 in the 70s
[31]. In recent times, vector support has been added to CPUs,
with extensions like Intel’s AVX [32] and ARM’s NEON [33].
Further support for vector architectures includes ARM’s SVE
[24] and the RISC-V V extension [21].

Systolic architectures were introduced in the late 1970s.
They are used for applications in the fields of signal and
image processing (e.g. filtering, convolution and correlation,
discrete Fourier transform) and matrix arithmetic (e.g. matrix-
vector and matrix-matrix multiplication) [8], [9], [34]. SAs
provide modular regular architectures and reduce bandwidth
requirements by passing data between neighboring processing
units.

Currently, SAs are used in commercial products such as
Google’s TPU. TPUv1 provides a 256×256 MAC array tar-
geted to inference [10], [35], while later versions provide

SA

SA
 +

VP
U

25

0

25

50

75

100

En
er

gy
 sa

vi
ng

s i
n

L2
 c

ac
he

 (%
)

MVL = 2048, 4 units
VPU BASELINE
SA UNIT
SA INDEX

SA

SA
 +

VP
U

25

0

25

50

75

100

En
er

gy
 sa

vi
ng

s i
n

L2
 c

ac
he

 (%
)

MVL = 16384, 4 units
VPU BASELINE
SA UNIT
SA INDEX

SA

SA
 +

VP
U

25

0

25

50

75

100

En
er

gy
 sa

vi
ng

s i
n

L2
 c

ac
he

 (%
)

MVL = 2048, 16 units
VPU BASELINE
SA UNIT
SA INDEX

SA

SA
 +

VP
U

25

0

25

50

75

100

En
er

gy
 sa

vi
ng

s i
n

L2
 c

ac
he

 (%
)

MVL = 16384, 16 units
VPU BASELINE
SA UNIT
SA INDEX

Fig. 7. AlexNet total L2 cache energy consumption for different VSA
configurations

arrays of 128×128 MACs accompanied by VPUs [13], [36].
Other commercial implementations of SAs are NVIDIA’s
tensor cores, which consist of 4×4 SAs. [11].

Thanks to their modular architecture, SAs can be designed
with the help of generator tools. PolySA [37] provides an end-
to-end compilation framework that maps algorithms to SAs
using polyhedral models and then generates the design using
HLS. Gemmini [20] is a RISC-V-based generator of custom
parameterizable SAs for the GEMM kernel.

Acknowledging the benefit of accelerating matrix operations
in general, IBM’s POWER10 processor includes multiple
Matrix Math Accelerators (MMA), arrays of 4x2 array of
processing units [14], with software support through Power
ISATM version 3.1 [38]. Instructions are issued to matrix
units through a path shared with their corresponding vector
unit. Both units in the same slice also share the same vector
register file (VRF). Similar to this are the Vector and Systolic
Accelerator Tiles of the MEEP platform [15], each of them

SA

SA
 +

VP
U

0

1

2

3

4

Sp
ee

du
p

MVL = 16384, 16 units
VPU BASELINE
SA UNIT
SA INDEX

(a) ResNet18 Speedup
SA

SA
 +

VP
U

25

0

25

50

75

100

En
er

gy
 sa

vi
ng

s i
n

L2
 c

ac
he

 (%
)

MVL = 16384, 16 units
VPU BASELINE
SA UNIT
SA INDEX

(b) ResNet18 Energy

SA

SA
 +

VP
U

0

1

2

3

4

Sp
ee

du
p

MVL = 16384, 16 units
VPU BASELINE
SA UNIT
SA INDEX

(c) ResNet50 Speedup

SA

SA
 +

VP
U

25

0

25

50

75

100

En
er

gy
 sa

vi
ng

s i
n

L2
 c

ac
he

 (%
)

MVL = 16384, 16 units
VPU BASELINE
SA UNIT
SA INDEX

(d) ResNet50 Energy

SA

SA
 +

VP
U

0

1

2

3

4

Sp
ee

du
p

MVL = 16384, 16 units
VPU BASELINE
SA UNIT
SA INDEX

(e) Skin Speedup

SA

SA
 +

VP
U

25

0

25

50

75

100

En
er

gy
 sa

vi
ng

s i
n

L2
 c

ac
he

 (%
)

MVL = 16384, 16 units
VPU BASELINE
SA UNIT
SA INDEX

(f) Skin Energy

Fig. 8. Speedup and energy for other DNNs

including one VPU and two different SAs.
In summary, both vector architectures and systolic arrays

exploit application parallelism. Moreover, to compensate for
the lack of flexibility of SAs, several proposals include both
architectures together, to the point of sharing their whole
memory hierarchy. With VSA, we propose going one step
further by adding minimal hardware overhead to existing VPU
resources in order to also offer the functionality of a SA.

VIII. CONCLUSIONS

In this work, we have presented VSA, a novel hybrid Vector-
Systolic Architecture that extends a VPU implementation
to offer the functionality of a SA with minimal hardware
overhead while keeping all the functionality of the VPU. Using

a RISC-V VPU as our starting point, we added a custom
instruction to the RISC-V vector extension in order to offer
software support. Our evaluation for the execution of different
DNN models has shown that VSA can achieve speedups of up
to 3.5x in the case of ResNet18, with corresponding energy
savings of up to 70% over the VPU baseline. Moreover,
we have synthesized the proposed VSA implementation and
obtained an area overhead of less than 0.1% without affecting
the maximum frequency.

While these results are already promising on their own, we
still see the potential for further improvements with VSA. In
future work, we will focus on the memory architecture support
for VSA, implementing one that fits not only the VPU but also
the SA.

ACKNOWLEDGMENT

The authors would like to thank Sonia Rani Gupta and Lars
Svensson from the Chalmers University of Technology, as well
as the partners from the eProcessor project, for the valuable
discussions and contributions to this work.

REFERENCES

[1] J. L. Hennessy and D. A. Patterson, “A new golden
age for computer architecture,” Communications of the
ACM, vol. 62, no. 2, pp. 48–60, 2019.

[2] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P.
Narayanan, “Deep learning with limited numerical pre-
cision,” in International conference on machine learn-
ing, PMLR, 2015, pp. 1737–1746.

[3] Z. Du, R. Fasthuber, T. Chen, et al., “Shidiannao:
Shifting vision processing closer to the sensor,” in Pro-
ceedings of the 42nd Annual International Symposium
on Computer Architecture, 2015, pp. 92–104.

[4] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial
architecture for energy-efficient dataflow for convo-
lutional neural networks,” ACM SIGARCH Computer
Architecture News, vol. 44, no. 3, pp. 367–379, 2016.

[5] K. Guo, L. Sui, J. Qiu, et al., “Angel-eye: A complete
design flow for mapping cnn onto embedded fpga,”
IEEE transactions on computer-aided design of inte-
grated circuits and systems, vol. 37, no. 1, pp. 35–47,
2017.

[6] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Ver-
helst, “Envision: A 0.26-to-10tops/w subword-parallel
dynamic-voltage-accuracy-frequency-scalable convolu-
tional neural network processor in 28nm FDSOI,” in
2017 IEEE International Solid-State Circuits Confer-
ence (ISSCC), IEEE, 2017, pp. 246–247.

[7] J. Fowers, K. Ovtcharov, M. Papamichael, et al., “A
configurable cloud-scale dnn processor for real-time ai,”
in 2018 ACM/IEEE 45th Annual International Sympo-
sium on Computer Architecture (ISCA), IEEE, 2018,
pp. 1–14.

[8] H. T. Kung and C. E. Leiserson, “Systolic arrays (for
vlsi),” Carnegie-Mellon Univ Pittsburgh PA Dept of
Computer Science, Tech. Rep., 1978.

[9] H.-T. Kung, “Why systolic architectures?” Computer,
vol. 15, no. 01, pp. 37–46, 1982.

[10] N. P. Jouppi, C. Young, N. Patil, et al., “In-datacenter
performance analysis of a tensor processing unit,” in
Proceedings of the 44th annual international sympo-
sium on computer architecture, 2017, pp. 1–12.

[11] NVIDIA, Nvidia tesla v100 gpu architecture, WP-
08608-001 v1.1, 2017.

[12] S. Ioffe and C. Szegedy, “Batch normalization: Ac-
celerating deep network training by reducing internal
covariate shift,” in International conference on machine
learning, PMLR, 2015, pp. 448–456.

[13] N. P. Jouppi, D. H. Yoon, G. Kurian, et al., “A domain-
specific supercomputer for training deep neural net-
works,” Communications of the ACM, vol. 63, no. 7,
pp. 67–78, Jun. 2020.

[14] W. J. Starke, B. W. Thompto, J. A. Stuecheli, and
J. E. Moreira, “Ibm’s power10 processor,” IEEE Micro,
vol. 41, no. 2, pp. 7–14, 2021.

[15] A. Fell, D. J. Mazure, T. C. Garcia, et al., “The
marenostrum experimental exascale platform (meep),”
Supercomputing Frontiers and Innovations, vol. 8, no. 1,
pp. 62–81, 2021.

[16] K. Chellapilla, S. Puri, and P. Simard, “High perfor-
mance convolutional neural networks for document pro-
cessing,” in Tenth international workshop on frontiers
in handwriting recognition, Suvisoft, 2006.

[17] S. Rivoire, R. Schultz, T. Okuda, and C. Kozyrakis,
“Vector lane threading,” in 2006 International Confer-
ence on Parallel Processing (ICPP’06), IEEE, 2006,
pp. 55–64.

[18] J. L. Hennessy and D. A. Patterson, Computer archi-
tecture: a quantitative approach. Elsevier, 2011.

[19] C. Ramı́rez, C. A. Hernández, O. Palomar, O. Unsal,
M. A. Ramı́rez, and A. Cristal, “A risc-v simulator and
benchmark suite for designing and evaluating vector
architectures,” ACM Transactions on Architecture and
Code Optimization (TACO), vol. 17, no. 4, pp. 1–30,
2020.

[20] H. Genc, S. Kim, A. Amid, et al., “Gemmini: En-
abling systematic deep-learning architecture evaluation
via full-stack integration,” in Proceedings of the 58th
Annual Design Automation Conference (DAC), 2021.

[21] Risc-v v vector extension. [Online]. Available: https :
//github.com/riscv/riscv-v-spec.

[22] C. Ramı́rez, Gem5, 2020. [Online]. Available: https :
//github.com/RALC88/gem5/tree/develop.

[23] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi, “Mcpat: An integrated power,
area, and timing modeling framework for multicore and
manycore architectures,” in Proceedings of the 42nd
annual ieee/acm international symposium on microar-
chitecture, 2009, pp. 469–480.

[24] N. Stephens, S. Biles, M. Boettcher, et al., “The arm
scalable vector extension,” IEEE micro, vol. 37, no. 2,
pp. 26–39, 2017.

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Im-
agenet classification with deep convolutional neural
networks,” Advances in neural information processing
systems, vol. 25, 2012.

[26] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in Proceedings of the
IEEE conference on computer vision and pattern recog-
nition, 2016, pp. 770–778.

[27] M. Cancilla, L. Canalini, F. Bolelli, et al., “The deep-
health toolkit: A unified framework to boost biomedical
applications,” in 2020 25th International Conference
on Pattern Recognition (ICPR), IEEE, 2021, pp. 9881–
9888.

[28] J. Redmon, Darknet: Open source neural networks in
c, http://pjreddie.com/darknet/, 2013–2016.

[29] Y. Jia, E. Shelhamer, J. Donahue, et al., “Caffe: Con-
volutional architecture for fast feature embedding,” in
Proceedings of the 22nd ACM international conference
on Multimedia, 2014, pp. 675–678.

[30] M. Horowitz, “Computing’s energy problem (and what
we can do about it),” in 2014 IEEE International Solid-
State Circuits Conference Digest of Technical Papers
(ISSCC), IEEE, 2014, pp. 10–14.

[31] R. M. Russell, “The cray-1 computer system,” Commu-
nications of the ACM, vol. 21, no. 1, pp. 63–72, 1978.

[32] Intel, Intel® architecture instruction set extensions and
future features programming reference, 319433-038,
Mar. 2020.

[33] ARM, Neon programmer’s guide, ID071613, 2013.
[34] H. Kung and S. W. Song, “A systolic 2-d convolution

chip,” Carnegie-Mellon Univ Pittsburgh PA Dept of
Computer Science, Tech. Rep., 1981.

[35] N. P. Jouppi, C. Young, N. Patil, and D. Patterson, “A
domain-specific architecture for deep neural networks,”
Communications of the ACM, vol. 61, no. 9, pp. 50–59,
2018.

[36] N. P. Jouppi, D. H. Yoon, M. Ashcraft, et al., “Ten
lessons from three generations shaped google’s tpuv4i:
Industrial product,” in 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture
(ISCA), IEEE, 2021, pp. 1–14.

[37] J. Cong and J. Wang, “Polysa: Polyhedral-based systolic
array auto-compilation,” in 2018 IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD),
IEEE, 2018, pp. 1–8.

[38] J. E. Moreira, K. Barton, S. Battle, et al., “A matrix
math facility for power isa (tm) processors,” arXiv
preprint arXiv:2104.03142, 2021.

26 APPENDIX A. PAPER I

Appendix B

Paper II

Exploiting the Potential of Flexible Processing Units

Mateo Vázquez Maceiras, Muhammad Waqar Azhar, Pedro Trancoso

2023 IEEE 35th International Symposium on Computer Architecture
and High Performance Computing (SBAC-PAD)

Best Paper Award

© [2023] IEEE. Reprinted, with permission, from [Mateo Vázquez Maceiras, Muhammad
Waqar Azhar, Pedro Trancoso. Exploiting the Potential of Flexible Processing Units. 2023
IEEE 35th International Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD). October, 2023]

Exploiting the Potential of Flexible Processing Units
Mateo Vázquez, Muhammad Waqar Azhar, Pedro Trancoso

Department of Computer Science and Engineering
Chalmers University of Technology, Gothenburg, Sweden
{mateo.vazquezmaceiras, waqarm, ppedro}@chalmers.se

Abstract—In order to meet the increased computational de-
mands and stricter power constraints of modern applications, ar-
chitectures have evolved to include domain-specific accelerators.
In order to design efficient accelerators, three main challenges
need to be addressed: compute, memory, and control. Moreover,
since SoCs usually contain multiple accelerators, selecting the
right one for each task also become crucial. This becomes
specially relevant in Flexible Processing Units (xPUs), processing
units that provide multiple functionalities with the same hard-
ware. While it is possible to use shared support components
for all functionalities, this will lead to sub-optimal performance.
In this work, we take one example of such xPU, and analyze
the aspects which have not yet been fully addressed, showing
that there is more potential to be exploited. By understanding
the required memory patterns, we can achieve up to 72%
speedup gains compared to using the memory support optimized
for a different functionality. Furthermore, we propose an in-
depth analysis of the different functionalities provided by the
xPU. We then leverage the insights obtained from this analysis
by providing a mechanism that selects the right functionality,
maximizing hardware utilization.

Index Terms—Flexible Processing Unit, Vector Unit, Systolic
Array, GEMM, DNN, Scientific Computing

I. INTRODUCTION

In recent years, the landscape of computer architecture
has been characterized, among others, by diminishing returns
from technology scaling and power density limitations. Ad-
ditionally, application requirements are increasing faster than
before [1]. To bridge that gap, processors are shifting from
homogeneous multi-cores composed of general-purpose CPUs
to heterogeneous System-on-Chip (SoC) designs. These SoCs
integrate one or more Domain-Specific Accelerators (DSAs)
coupled with the host CPU(s) [2]. This way, systems can
offer the required performance while fulfilling the power bud-
get. Consequently, multiple DSAs have been proposed, both
in academia and in industry, targeting different application
domains, such as Deep Neural Networks (DNNs) [3]–[9],
graphs [10]–[12] and bioinformatics [13], [14].

When it comes to designing accelerators, one needs to
address three main challenges: (1) compute, (2) memory, and
(3) control. First, the compute units need to be efficiently

This work was partially supported by the eProcessor project funded by
the European High-Performance Computing Joint Undertaking (JU), grant
agreement No 956702. The JU receives support from the EU H2020 research
and innovation program and Spain, Sweden, Greece, Italy, France, and
Germany. This work was also partially supported by the VEDLIoT project,
which received funding from the European Union’s Horizon 2020 research
and innovation program under grant agreement No 957197 and the Swedish
Foundation for Strategic Research (contract number CHI19-0048) under the
PRIDE project.

implemented. Moreover, they need to be accompanied by
an efficient data flow, that maximizes data reuse within the
computational parts of the system. Second, the memory system
needs to feed data at the required rate to the compute units, en-
abling maximum performance and utilization. To achieve this,
the memory system must be designed around the data patterns
required by the compute units and their dataflow. Third, there
is a need for an efficient control of compute and memory to
achieve maximum performance and efficiency. Furthermore,
the system needs to provide a way to select the best matching
accelerator to use. Otherwise, performance may be penalized
due to inefficiencies, such as considerable resource under-
utilization. Selecting the best matching accelerator can be
trivial in cases where the differences between accelerators are
clear. However, this becomes increasingly difficult if different
accelerators can efficiently compute the same application or
core kernel within the application. In this case, the point when
one accelerator starts to outperform the other may not be clear.
Thus, a more in-depth analysis is required. One example of
this situation is the General Matrix Multiplication (GEMM).
This kernel, key in multiple compute-intensive applications,
such as Deep Neural Networks (DNN), can be efficiently
computed by either Systolic Arrays (SAs) [7], [15] or Vector
Processing Units (VPUs) [16]–[19]. While SAs are typically
a better option, as they are explicitly designed to compute
GEMM, performance can be worse than expected due to
under-utilization of their compute units [20].

Nowadays, there are multiple systems, both in industry and
academia, that combine SAs and VPUs in different ways:
separate SA and VPU units such as in Google’s TPU (v2 on-
wards) [21], or combined SA and VPU such as in the Vector-
Systolic Architecture (VSA) [22]. VSA does not present
two different architectures but rather a single heterogeneous
architecture that can behave as both a VPU and an SA. To do
so, the available resources in a given baseline VPU are reused
to implement a SA with minimal hardware overhead. This
way, it is not just a VPU or a Matrix Multiply Unit (MMU)
(a name typically given to architectural components based on
an SA for GEMM computation). Instead, it can be defined
as a Flexible Processing Unit (xPU), which uses the same
hardware to offer different functionalities. However, while [22]
has addressed the computational part and extended the baseline
VPU’s control logic, less emphasis has been placed on both
the memory system and the decision-making.

In this work, we will analyze these two missing points to
further exploit the potential of such a xPU. In particular, this

CO
N

TR
O

L
(IN

C.
 D

EC
O

D
IN

G
)

LANE 0

MEMORY UNIT

INTER-LANE NETWORK

VRF

ALU

ACC

MUX MUX

Fig. 1. Block diagram for the VSA xPU. The elements added to the VPU
baseline are highlighted in golden color.

work presents the following contributions:
• A set of custom memory access instructions to support

SA-like patterns in VPU memory systems.
• A partitioning schema analysis for improved utilization

of vector and systolic functionalities in the VSA xPU.
• A quantitative performance analysis of the enhanced VSA

for DNN inference models and scientific applications.
We have prototyped and deployed both the VPU baseline

and the VSA xPU into an FPGA using HLS. We have
observed speedup increases of up to 72% thanks to the
new memory instructions. In addition, we have proposed an
analysis methodology to evaluate utilization and used the
gained insights to maximize this parameter.

II. BACKGROUND AND MOTIVATION

In this section we discuss the VSA xPU, how it merges a
SA and a VPU into one hybrid architecture, how to compute
GEMM using either SA or VPU, and what could be improved.

A. A Hybrid Vector-Systolic Architecture

In recent years, SAs and VPUs have been implemented to-
gether in different systems, to leverage the advantages of both
architectures. Moreover, as more of these systems were being
designed, the overlapping degree between both architectures
got closer and closer. This has been taken to the extreme
in [22], where it was shown that starting from a baseline VPU,
it is possible to create a unit that can behave as a SA for
GEMM with minimum hardware overhead, as shown in Figure
1. This is a Flexible Processing Unit, or xPU, a processing unit
that provides different functionalities using the same hardware.
This way, this novel xPU architecture can behave both as a
SA (xPUSA), or as a VPU (xPUVPU). Following [22], here we
also focus on an output stationary implementation of the SA.

Nowadays, VPUs provide parallelism in three different
ways [17]–[19]: (1) by working with a Vector Register File
(VRF) instead of with scalar registers, (2) by leveraging the
full datapath width using packed SIMD, and (3) by instanti-
ating multiple lanes inside a VPU. xPUSA, leverages all these
parallelism levels: (1) the vector register is used to emulate
the input streams, (2) packed SIMD determines the column

LANE 0FU
ACC

FU
ACC

...

INTER-LANE NETWORK

LANE NFU
ACC

FU
ACC

...

INTER-LANE NETWORK

... ... SR

SC

VRF (LANE 0)

Fig. 2. Behaviour of the SA

parallelism, and (3) multiple lanes are used to emulate the
multiple rows of the SA. The values are initially stored in the
VRF. Rows of the first matrix are stored in the VRF slice
of the corresponding lane. Columns of the second matrix are
stored in the VRF slice of the first lane. This way, this xPU
can remap the functional units available on the baseline VPU
as shown in Figure 2. This results in a SA with sizes SR×SC,
being SR the number of rows and SC the number of columns.

In order to choose between xPUSA and xPUVPU, [22]
proposed to extend the existing RISC-V vector extension [23],
with an instruction that forces the VPU to run as a SA. This
instruction can be represented by the mnemonics vsa for
integer and vfsa for floating point data types.

B. GEMM

GEMM, which stands for General Matrix Multiply, is a
fundamental linear algebra operation used in a wide range
of scientific and data analytic applications, as well as in the
field of Deep Learning (DL). In this last field, GEMM is the
core kernel of DNN models. Example applications that use
it are Finite Element Solvers (FES), such as [24]. GEMM
can also be used to compute 2D convolution [25], one of the
core kernels in image processing. Moreover, this has been
integrated with DL, and nowadays the 2D convolution is
the core kernel of Convolutional Neural Networks (CNNs).
However, CNNs are not the only type of DNNs that use
GEMM, as it is also used in transformers [26], and it can
compute the dense or fully connected layers.

While GEMM is defined in BLAS as C[M,N] = α ×
A[M,K] × B[K,N] + β × C[M,N] [27], we focus on the
matrix operations. Thus, in this work GEMM is computed as
C[M,N] = A[M,K]×B[K,N] + C[M,N].

1) GEMM with xPUSA: In this xPU, the initial idea is to
use xPUSA for this kernel, as this is the purpose of adding the
SA. Therefore, GEMM can be computed with xPUSA using
the custom vsa/vfsa instruction as shown in Algorithm 1.

2) GEMM with xPUVPU: GEMM is a highly vectorizable
kernel, and thus, it is suited to be efficiently offloaded to a
vector processor. Thus, it can also be computed by xPUVPU,
as it retains all the functionality of the baseline VPU. A

Algorithm 1 Computing GEMM with xPUSA

1: SET DATA WIDTH(D)
2: v idx a = GEN IDX A()
3: v idx b = GEN IDX B()
4: v idx c = GEN IDX C()
5: for all i ∈ {1, . . . ,M/SR} do
6: v a = LOAD IDX(v a, v idx a)
7: for all j ∈ {1, . . . ,N/SC} do
8: v b = LOAD IDX(v b, v idx b)
9: v c = LOAD IDX(v c, v idx c)

10: v c = vsa/vfsa(v a, v b, v c)
11: STORE(v c)
12: end for
13: end for

basic vectorized algorithm for computing GEMM is shown
in Algorithm 2 (.vs indicates a vector-scalar instruction).

C. Motivation

While the original VSA paper efficiently merges both ar-
chitectures with minimal hardware overhead and extends the
control to decode and handle the new instruction, this is not
enough to exploit the maximum performance from an xPU, as
described before.

1) Memory: An efficient use of new architecture requires a
way to efficiently feed it with input data. To this end, xPUSA
requires different data patterns compared to xPUVPU, and thus
it is needed to adapt to them. The original paper proposes two
options: (1) assuming there is a scratchpad that can provide
the correct patterns, or (2) using indexed memory accesses.
While the former would need extra hardware support, the
latter is inefficient. Out of the three memory access modes
supported in vector ISAs such as RISC-V (unitary, strided, and
indexed) [23], indexed memory accesses are the least efficient
ones. Instead of using a defined regular pattern, they take
as extra input a vector register containing the offsets to the
corresponding base address. Thus, a way to support the new
patterns required by xPUSA should be researched.

2) Mode selection: In the VSA xPU, the problem is no
longer choosing between two different accelerators. Rather, it
implies choosing between two different modes in the same
accelerator. However, the decision-making problem is still
present. This is especially relevant in the case of GEMM, as
both xPUSA and xPUVPU can compute this kernel. While the
first intuition would be to compute it with xPUSA, the original
paper showed that this intuition is wrong in some cases.
Therefore, we should understand under which conditions each
mode is better.

III. MEMORY ANALYSIS

In the VSA xPU, both xPUSA and xPUVPU use the same
memory system: a VRF connected to L1 or directly to L2. So
xPUSA still uses the memory support designed for xPUVPU.
Thus, there is potential for improvement in this area.

Algorithm 2 Computing GEMM with xPUVPU

1: for all i ∈ {1, . . . ,M} do
2: v c = LOAD ROW(C,M)
3: for all j ∈ {1, . . . ,K} do
4: a = A[i×K + j]
5: v b = LOAD ROW(B,K)
6: v c = vfmacc.vs(a, v b, v c)
7: end for
8: STORE(v c)
9: end for

A. Maximizing VRF utilization

The first point to notice is that, with the values of matrix
B being stored only in the VRF slice of the first lane, the
slices of the other lanes are not being utilized. Moreover, to
balance the dataflow, the slices keeping the rows cannot be
fully utilized either. In this approach, the first lane acts as the
data source, while the last lane acts as the sink.

One way to solve this would be to continue storing the
columns in the following lanes. When all the elements of
matrix B in the first lane have been used, the second lane
starts behaving as a data source. After getting to the last lane,
the elements will continue to the first one, acting now as a sink
instead of the last one. This process will continue until lane
N−1 behaves as the weight source and lane N−2 does so as
a sink. This way, vector register utilization can be maximized.

B. Data pattern description

With a new functionality, new memory access patterns
appear. In particular, the element placement inside the VRF
has to exhibit specific patterns, required by xPUSA so that the
right element arrives at the right functional unit at the right
time. These patterns, which differ from the ones that VPUs
are designed for, are shown in Figure 3, and are described as:

1) For matrix A, in each lane, the corresponding vector
register slice shall contain the corresponding row of A,
up to P , which is the maximum amount of elements that
can be pipelined for the execution of one instruction.

2) For matrix B, all the elements shall be placed first in
the first lane, and then continue filling the lanes in order
until the last lane is full. The amount of elements of the
same column that fit in the vector register slice of one
lane determines the maximum P .

3) For the output matrix, each lane will contain the corre-
sponding row of the tile.

C. Data pattern implementation

To achieve these patterns without memory support, the only
option is to use vector-indexed memory accesses. We exclude
rearranging the data in memory, which would incur in time
and memory overheads, and having extra hardware support to
do this rearrangement. To use indexed memory accesses, the
corresponding index vectors need to be generated. Pseudocode
for generating the said indices for matrices A, B and C is
shown in Algorithms 3, 4 and 5 respectively. From these

0 1 2 3

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

16 17 18 19

4 5 6 7

20 21 22 23

8 9 10 11

24 25 26 27

12 13 14 15

28 29 30 31

...

(a) Reference indices in VRF

[0,0] [0,1]

...

...

...

...

...

[0,31]

[1,0] [1,1] [1,31]

[2,1][2,0] [2,31]

[3,0] [3,1] [3,31]

(b) Matrix A in memory

[0,0] [0,1] [0,2] [0,3]

[0,4] [0,5] [0,6] [0,7]

[0,28] [0,29] [0,30] [0,31]

...
[1,0] [1,1] [1,2] [1,3]

[1,4] [1,5] [1,6] [1,7]

[1,28] [1,29] [1,30] [1,31]

...
[2,7][2,6][2,5][2,4]

[2,3][2,2][2,1][2,0]

[2,28] [2,29] [2,30] [2,31]

...
[3,0] [3,1] [3,2] [3,3]

[3,28] [3,29] [3,30] [3,31]

[3,4] [3,5] [3,6] [3,7]

...

(c) Matrix A in VRF

[0,0] [0,1] [0,2] [0,3]

[1,0] [1,1] [1,2] [1,3]

...
[31,0] [31,1] [31,2] [31,3]

(d) Matrix B in memory

[0,0] [0,1] [0,2] [0,3]

[1,0] [1,1] [1,2] [1,3]

[7,0] [7,1] [7,2] [7,3]

...
[8,0] [8,1] [8,2] [8,3]

[9,0] [9,1] [9,2] [9,3]

[15,0] [15,1] [15,2] [15,3]

...
[17,3][17,2][17,1][17,0]

[16,3][16,2][16,1][16,0]

[23,0] [23,1] [23,2] [23,3]

...
[24,0] [24,1] [24,2] [24,3]

[31,0] [31,1] [31,2] [31,3]

[25,0] [25,1] [25,2] [25,3]

...

(e) Matrix B in VRF

[0,0] [0,1] [0,2] [0,3]

[1,0] [1,1] [1,2] [1,3]

[2,3][2,2][2,1][2,0]

[3,0] [3,1] [3,2] [3,3]

(f) Matrix C in memory

[0,0] [0,1] [0,2] [0,3]

...
[1,0] [1,1] [1,2] [1,3]

...
[2,3][2,2][2,1][2,0]

...
[3,0] [3,1] [3,2] [3,3]

...

(g) Matrix C in VRF

Fig. 3. Memory and VRF patterns for a VPU with 4 lanes, 4 elements per lane and MVL that fits 128 elements

algorithms, we can observe that said patterns are not trivial to
vectorize for a traditional VPU architecture. Finally, only one
different index pattern per matrix is needed. This is because,
once a pattern is described as an index vector, given different
base addresses, the generated indexes can extract the same
pattern from different starting positions, thus not being needed
to regenerate it every time.

While it is possible to use the xPUSA with indexed memory
accesses, this type of access is the least efficient among the
available ones. Moreover, in this case, they fail to adequately
capture locality due to the write order. However, understanding
the previously mentioned requirements, it is possible to realize
that there is indeed spatial locality to be leveraged. Regarding
matrix A, it is clear that we are loading SR rows, each of
them to a different lane, with a unitary stride. To leverage
this locality, the approach would be to load first all the
elements from the first row in the first lane, then the ones
from the second row in the second lane, etc., via independent
instructions. Moving on to matrix B, here all the values are
loaded first into the first lane and, once it is full, it moves
to the following one. Comparing with A, it is possible to see
a trend where the VSA xPU would benefit if values could
be accessed on a lane-by-lane basis. Focusing on the specific
lane, the different columns of matrix B are loaded on a row-
by-row basis, i.e., it takes packs of SC elements of each row,
corresponding to the columns to be streamed. This pattern
could be done by reading SC elements, and then jumping with
a stride of N , to fetch the column elements of the next row.

However, this would imply the need for another instruction
for expressing that specific increase pattern. It would require a
combination of a unitary stride with a non-unitary stride every
SC elements. But if we go back to the original remapping, we
can see that SC is determined by packed SIMD. This means
we are loading as many elements as the datapath width allows.
Having a datapath with W -bit width and working with D-bit
wide data, we would be loading W ×SC = D bits of column
elements per row. Therefore, instead of loading independent
elements, we could load them packed and then stride to the
next row. This approach would thus require only a custom
instruction that accesses the VRF on a lane-by-lane basis. This
same idea could be applied to loading and storing the output
tile matrix, accessing each row of it as packed data, and then
moving to the next one. No custom instruction for accessing
only specific lanes is needed in this case.

Therefore, to efficiently use the SA functionality available
in the xPU, we propose to add a variation of the existing
memory instructions that support memory accesses as the
already available ones, but that interacts with only one lane at
a time. These new instructions can replace the costly indexed
memory accesses, and better leverage the spatial locality. Data
comes into the VPU from the memory hierarchy the same way
as in regular instructions, but then it is directed to a single lane
instead of being distributed across all lanes. Therefore, the
main issue that could arise from this new approach is that the
performance would suffer due to a lower level of parallelism,
specifically due to a bottleneck in the VRF. However, this is

Algorithm 3 Vector index generation for loading rows of
matrix A

1: for all k ∈ {1, . . . , P} do
2: for all i ∈ {1, . . . ,SR} do
3: for all j ∈ {1, . . . ,SC} do
4: vd[k · SR · SC+ i · SC+ j] = k · SR+ i ·K + j
5: end for
6: end for
7: end for

Algorithm 4 Vector index generation for loading columns of
matrix B

1: for all k ∈ {1, . . . , P} do
2: for all i ∈ {1, . . . ,SR} do
3: for all j ∈ {1, . . . ,SC} do
4: vd[k · SR · SC + i · SC + j] = (k + i ·

(#elements/#units)) ·N + j
5: end for
6: end for
7: end for

Algorithm 5 Vector index generation for loading/storing an
output matrix tile

1: for all i ∈ {1, . . . ,SR} do
2: for all j ∈ {1, . . . ,SC} do
3: vd[i · SC + j] = i ·N + j
4: end for
5: end for

not so troublesome as it may seem, as VRF can be sliced
not only across lanes, but also within them [19], thus making
memory ports that can be accessed in parallel not be a
problem. Thus, the remaining concern would be the width of
the path to the VRF, which may need to be widened in order
to support the degree of parallelism within each lane.

Regarding the memory access extension, we add the new
set of instructions with the same format as other already
defined memory instructions, as shown in Figure 4 for load
instructions. Here, we change the OPCODE field, adding one
opcode for lane loads and another for lane stores. The main
difference between these new instructions and the old ones is
that they only interact with one lane, instead of with all. To do
so, it is necessary to encode this lane selection functionality
in the instruction. For that, we propose to use the nf field,
which in the original instructions is used to enable segmented
memory operations. This way, we can select up to 8 different
lanes. Besides this, all the other functionality is the same. With
this instruction, we modify the original xPUSA implementation
of GEMM shown in Algorithm 1 to the one presented in
Algorithm 6. While the number of times the data width is
set increases, this has little effect on the overall performance,
as it just sets a control status registers. In addition, the von
Neumann bottleneck is lessened in VPUs, as one instruction
operates over multiple data [17].

Algorithm 6 GEMM using custom vsa/vfsa instruction
with per lane memory access

1: for all i ∈ {1, . . . ,M/SR} do
2: SET DATA WIDTH(D)
3: for all r ∈ {1, . . . ,SR} do
4: v a = LOAD LANE(v a, r)
5: end for
6: SET DATA WIDTH(W)
7: for all j ∈ {1, . . . ,N/SC} do
8: for all r ∈ {1, . . . ,SR} do
9: v b = LOAD LANE STRIDE(v b, r)

10: end for
11: v c = LOAD STRIDE(v c)
12: SET DATA WIDTH(D)
13: v c = vsa/vfsa(v a, v b, v c)
14: SET DATA WIDTH(W)
15: STORE(v c)
16: end for
17: end for

While the new memory instructions can be generated by a
compiler, we developed a library with an implementation of
GEMM using these instructions.

IV. MODE SELECTION

In order to make the right decision selecting between xPUSA
and xPUVPU, we need to understand how they handle GEMM
differently. While the main difference between them is the
utilization [22], we need to better understand the causes of
under-utilization, and how it affects performance.

Comparing the algorithms for computing GEMM with VPU
and SA functionalities (Algorithms 2 and 6 respectively), it
can be seen that they partition the problem in different ways.
The VPU algorithm computes GEMM on a row-by-row order,
each iteration of the outer loop computing a matrix-vector
multiplication. Contrary, the algorithm using xPUSA does so
by tiling the output matrix in tiles with shape SR × SC.
Therefore, it is necessary to have a way to understand the
performance differences, and see how changes in matrix sizes
affect the utilization of the available resources. This can be
used to enable optimized partitioning at runtime knowing the
matrix sizes M , N , and K, as defined in Section II-B. Here,
the best partitioning schema is selected, thus leveraging the
heterogeneity offered by the xPU. To do such an analysis, the
first step is to find the smallest matrices that can be computed
by both architectures at full utilization. Here, utilization is
measured at the instruction level. To find such matrices, we
look for the Least Common Minimum (LCM) of each pair
of matrices, as shown in Equations 1, 2 and 3 for sizes M ,
N , and K respectively. Starting from those sizes, then we do
sweeps across the three dimensions, decreasing the sizes by
their corresponding Greater Common Divisor (GCD) at each
step. The result of this is a 3D array of values, one for each
(M,N,K) set of matrix sizes. This is done for both VPU and
SA functionalities. Then these volumes are divided, resulting

vm lumop/rs2/vs2 rs1mopmewnf width OPCODEvd

Fig. 4. Format of the proposed set of memory instructions. Highlighted are the elements that changed compared to the original RISC-V vector memory
instructions.

in a single 3D volume containing the relative speedup for each
(M,N,K) set.

LCM(MV PU ,MSA) = LCM(1,SR) = SR (1)

LCM(NV PU , NSA) = LCM
(

MVL
D

,SC
)
=

MV L

D
(2)

LCM(KV PU ,KSA) = LCM
(
1,

MVL
W · L

)
=

MVL
W · L (3)

Having this 3D array of relative speedups, the next step is
to find the border, i.e., the points where the better approach
changes. If the tests are done running an operating system, the
lack of determinism will make it so that this border is not clear,
as the tested matrix sizes are quite small. Thus, in order to
analyze the border, we propose to apply an error function that
indicates the performance loss for each (M,N,K) set. Then,
we look for the points that minimize this performance loss. For
that, we apply it over the dimension N and sweep through the
other two. This way, we can recreate such a border. The reason
for choosing this dimension is that the VPU instruction is not
affected by variations in K, while the number of points across
M is quite small compared to N , and thus would offer worse
results. Along N , VPU performance will be comparatively
better for higher values, where it is closer to full utilization.
Considering values < 1 to show better VPU performance,
we propose the error function shown in Equation 4, where ri
represents the ith element in the selected row across dimension
N , j represents the potential border element that is being
evaluated, and n represents the number of elements in a row.

f(r) =

i<j∑

i=0

(1− ri) +
i<n∑

i=j

(ri − 1) (4)

Knowing for which matrix sizes each of the functionalities
provides better performance, we can partition the problem
according to this information. With this, we can develop a
GEMM implementation with increased utilization, and include
it in a library, so that the user does not need to perform
this utilization analysis. Note that the results of this analysis
depend on the specific hardware implementation, and thus such
a library needs to be optimized for the specific system. An
example of this evaluation is shown in Section VI-B.

V. EXPERIMENTAL SETUP

In order to analyze the different architectures discussed
in this paper, we have implemented them using HLS and
evaluated the design on a ZCU102 development board, which
contains a Zynq UltraScale+ MPSoC. Table I contains the
main specifications of the board. The main application runs

TABLE I
ULTRA96V1 SPECIFICATIONS

Processing System
CPU Quad-Core Cortex-A53
Frequency 1.2GHz
L1d Cache 32 kB
L1i Cache 32 kB
L2 Cache 1 MB

Programmable Logic
LUTs 274 080
Flip-flops 548160
Distributed RAM 8.8 Mb
Block RAM (total) 32.1 Mb
DSP 2 520

Memory
RAM 4GB LPDDR4, 2666 MHz

on the ARM hardcores, while the computation of GEMM
is offloaded to the FPGA fabric, acting as a coprocessor
accelerator. Due to the overhead of offloading to the FPGA,
we have moved the instruction generation to the fabric. On
the software side, the board was running a Linux kernel,
generated with Petalinux. For measuring power, we have
leveraged the /sys/class/hwmon interface that provides access
to the measurements from the different power rails taken by
different INA 226 integrated circuits (ICs) from TI. We get the
actual power consumption of the device by running a power
measuring program in parallel that reads the ICs and computes
the current power with a fixed sampling rate. Based on the
instant power and on the sampling rate, we compute the energy
consumption. Although this application runs in parallel, it does
not affect the performance of running benchmarks. As for the
specific implementations, we have done them programming in
C/C++ and then generating the RTL using HLS.

With this setup, we implemented both the baseline VPU and
the original VSA xPU presented in [22]. First, we validated
our FPGA results against the ones presented in [22]. Then,
we analyzed the original VPU baseline. We observed that the
original simulator [28] performs the vector-scalar operation
by means of broadcasting the scalar to a vector register.
In this paper, our VPU baseline is an actual vector-scalar
implementation, where the input corresponding to the scalar
register is fixed for the execution of the whole instruction.

To represent the different configurations in the design space
analysis, we modified the number of lanes and the total number
of units. We chose array sizes of 2×2, 4×4, and 8×8, as bigger
sizes would lead to configurations uncommon in current VPUs,
even for narrow datatypes. As for the VRF, we evaluated dif-
ferent Maximum Vector Length (MVL) configurations. MVL
defines the maximum number of bits that fit in a vector register
at a given time. As the original xPU was designed targeting
long-vector architectures, our configurations range from 2048
bits (ARM’s SVE biggest supported MVL [29]) up to 16384
bits ([17], [19], [28]). This needs to be seen in light of the

TABLE II
SUMMARY OF APPLICATIONS USED

Application/Benchmark Domain M N K
ResNet18 [30] DL 64-512 1-16384 147-4608
AlexNet [31] DL 1-384 169-4096 363-9216
DeepBench Device [32] DL 64-5124 1-1500 128-2048
Linpack [33] SC 2-8190 2-128 2-129
Low Order FES [34] SC 8 32 16

datatype width. For example, experiments with 32b data and
MVL of 16384b are equivalent to experiments with narrower
data and shorter MVL (e.g., 8b data and MVL of 4096b). In
our case, we will be showing the results of 32b data.

A. Workload

We define each GEMM computation as C[M,N] =
A[M,K] × B[K,N] + C[M,N]. To compute it, we have
implemented Algorithms 1, 2 and 6 at the instruction level, and
programming in a vector-length agnostic fashion. We have se-
lected applications from the fields of Deep Learning (DL) and
Scientific Computing (SC). For the former, we have selected
two well-known image recognition models: ResNet18 [30] and
AlexNet [31]. We have also used the DeepBench benchmark,
which is part of the Coral-2 benchmark suite [32]. As for
applications in the scientific domain, we have tested the Lin-
pack benchmark [33] and finite element solvers as presented
in [34]. Table II summarizes the applications used, and shows
the ranges of their matrix sizes.

The methodology used for the evaluation of the xPU is to
focus on the different GEMM calls of each application. This
is a valid approach as GEMM is the most compute-intensive
kernel across all the evaluated applications. Therefore, one
intermediate step in this evaluation is to determine the input
sizes for each GEMM, either from the corresponding papers or
from executing the applications. For AlexNet and ResNet18,
we got them from the Darknet framework [35], after the
transformation with the im2col() function, taken from the
Caffe framework [36].

VI. EXPERIMENTAL RESULTS

A. Custom Memory Accesses

We start by analyzing ResNet18, but the conclusions ex-
tracted for the individual GEMM calls also apply to the other
applications. The first step is to analyze the performance for
all layers of ResNet18, as shown in Figure 5. This figure
represents the execution time speedup for running xPUSA,
compared to the VPU baseline. It shows two sets of bars:
the first one uses indexed memory accesses, as in the orig-
inal paper (Algorithm 1), while the second one uses our
proposed memory access (Algorithm 6). Both sets include
the improved vector-scalar baseline and the increased VRF
utilization proposed in Section III. These two improvements
cancel each other in terms of performance. The specific
configuration for this experiment consisted of an MVL of
16384 bits and 16 functional units organized as a 4×4 SA. As
can be observed, the initial xPU implementation using indexed
memory accesses struggles to provide speedup, which is only

significant in layers 14-17. This is due to the indexed accesses
not leveraging the locality. However, by adding our custom
lane-by-lane memory accesses, xPUSA achieves a speedup of
up to 3.38x compared to the VPU baseline. This is an increase
of up to 72% compared to xPUSA with the VPU memory
support.

Next, we show in Figure 5b the design space analysis for
xPUSA for different configurations, changing both the MVL
and the number of functional units. Here the data shown is
the result of calculating the speedup across all GEMM calls
together, adding all the execution times and then computing
the speedup. The first point to notice is that, for greater
SA sizes, xPUSA offers more speedup. However, when using
indexed memory addresses, the speedup decreases as the MVL
increases. This is contrary to what is shown in [22], and it is
due to using actual vector-scalar operations instead of perform-
ing them by means of broadcasting. While broadcasting time
depends on the MVL, pure scalars take the same time to load
independently of it. It is not that increasing the MVL makes
xPUSA perform slower, but the VPU baseline leverages it
better. However, when using our custom memory instructions,
xPUSA can leverage the increase in MVL. This is due to the
lane-by-lane instructions being able to appropriately leverage
the spatial locality present in the SA-like patterns. One point
to note is that a similar conclusion to this can be extracted
from the energy consumption data. The corresponding energy
measurements are shown in Figure 5c.

B. Leveraging Heterogeneity

As discussed in Section IV, algorithms for xPUSA and
xPUVPU partition the problem in different ways. By under-
standing the implications of these different approaches, we
can leverage the heterogeneity of the different matrix sizes
with the heterogeneity of our hybrid architecture. Therefore,
now we will analyze how this affects the xPU by applying the
analysis methodology presented in Section IV. Important to
remember is that the results presented here apply only to the
specific configuration tested. This analysis would have to be
repeated for different configurations. Like in the layer analysis,
the configuration for this experiment consisted on a MVL of
16384 bits and 16 functional units organized as a 4×4 SA.

The results of the analysis can be seen in Figure 6. In this
figure, each subfigure represents the sweep across dimensions
M (Y axis) and N (X axis) for a given K. Therefore, they are
slices of the 3D array obtained after performing all the sweeps.
Here we only show five values of K: the one with minimum
utilization for xPUSA, and milestones corresponding to loading
the columns up to filling different lanes. Each point thus
represents the relative difference between computing GEMM
for a given (M,N,K) with xPUSA or xPUVPU. As we can
see, for K = 128, i.e., when the deepest pipeline available
for this configuration, xPUSA can outperform xPUVPU as long
as the vertical tiling does not leave less than 3 rows per
tile (Figure 6e). If not, the penalty for padding with new
rows will not be recovered. Note that, for matrices where
M > SR, this only applies to the edges, as the rest of the

L1 L2 L3 L4 L5 L6 L7 L8 L9 L1
0

L1
1

L1
2

L1
3

L1
4

L1
5

L1
6

L1
7

L1
80

1
2
3
4

Sp
ee

du
p

0.
82 0.
97

0.
97

0.
97

0.
97

0.
96

1.
03

1.
03

1.
03 1.
16

1.
17

1.
17

1.
17 1.

96

1.
96

1.
96

1.
96

0.
261.

15 1.
64

1.
64

1.
64

1.
64

1.
64 1.
75

1.
75

1.
75 1.
97

2.
00

2.
00

2.
00

3.
35

3.
38

3.
38

3.
38

0.
43

(a) Layer-by-layer speedup. Configuration of 4×4 units and MVL = 16384 bits.

0

1

2

3

4

Sp
ee

du
p

0.72 0.79

MVL = 2048, 4 units

0

1

2

3

4

Sp
ee

du
p

0.62
0.97

MVL = 16384, 4 units

100

50

0

50

100

En
er

gy
 S

av
in

gs
 (%

)

-50.47
-33.12

MVL = 2048, 4 units

100

50

0

50

100

En
er

gy
 S

av
in

gs
 (%

)

-81.39

-9.93

MVL = 16384, 4 units

0

1

2

3

4

Sp
ee

du
p

1.41 1.56

MVL = 2048, 16 units

0

1

2

3

4

Sp
ee

du
p

1.22

2.05

MVL = 16384, 16 units

100

50

0

50

100
En

er
gy

 S
av

in
gs

 (%
)

21.38 33.00

MVL = 2048, 16 units

100

50

0

50

100

En
er

gy
 S

av
in

gs
 (%

)

7.12

48.95

MVL = 16384, 16 units

0

1

2

3

4

Sp
ee

du
p 2.83 3.08

MVL = 2048, 64 units

0

1

2

3

4

Sp
ee

du
p 2.47

4.22
MVL = 16384, 64 units

100

50

0

50

100

En
er

gy
 S

av
in

gs
 (%

) 61.02 66.05

MVL = 2048, 64 units

100

50

0

50

100

En
er

gy
 S

av
in

gs
 (%

)

54.21
75.20

MVL = 16384, 64 units

(b) Total speedup for different xPU configurations. (c) Total energy savings for different xPU configurations.

VPU baseline

xPUSA + indexed memory accesses

xPUSA + lane-by-lane memory accesses

Fig. 5. ResNet18 results including the support of the new memory instructions.

rows can be tiled in groups of SR rows. Across the other
tiling dimension, the closer the matrix can be partitioned in
groups of MVL/D elements, the better it will be for xPUVPU,
as it will get closer to full utilization. Here, xPUSA also pads
new columns, but the penalty is smaller than the one paid by
the VPU. If K is reduced, the benefits of running xPUSA are
incrementally reduced, until reaching the state seen in Figure
6a, where it cannot outperform xPUVPU. This is due to the fact
that initialization and synchronization penalties are not being
balanced out.

In a more general way, this means that the VRF needs
to be able to feed sufficient data to xPUSA. The functional
units will not be sufficiently fed if K or the VRF is small.
Therefore, when implementing this xPU, it is important to
keep a good compute memory balance. When designing xPU,

units that offer different functionalities in the same hardware,
it is important to consider that all the parameters affect all the
functionalities. This makes the design process more sensitive,
as changes that are beneficial to one architecture can be
detrimental to the other.

With this data, we get the border with Equation 4, and divide
the problem based on it, running xPUSA or xPUVPU according
to which one is better for each situation.

Figure 7a is the updated version of Figure 5, in which a
third set of bars has been added. This new set of bars repre-
sents the combination of xPUSA and xPUVPU with optimized
functionality selection. This approach aims to minimize under-
utilization. As it can be seen, most of the layers remain the
same, as the initial configuration turned out to be the best
one for the corresponding matrix sizes, and thus the improved

64 128 192 256 320 384 448 512

1
4

(a) K = 1 (minimum K utilization for xPUSA)

64 128 192 256 320 384 448 512

1
4

(b) K = 32 (1 lane full for xPUSA)

64 128 192 256 320 384 448 512

1
4

(c) K = 64 (2 lanes full for xPUSA)

64 128 192 256 320 384 448 512

1
4

(d) K = 96 (3 lanes full for xPUSA)

64 128 192 256 320 384 448 512

1
4

(e) K = 128 (all lanes full for xPUSA)

xPUSA better Neutral xPUVPU better
Fig. 6. Tradeoffs between xPUVPU and xPUSA for different pipeline depths. The X-axis represents the different values of N and the Y -axis the different
values of M . Configuration of 4×4 units and MVL = 16384 bits.

implementation still computed these layers exclusively using
xPUSA. However, for the last layer, where xPUSA was being
heavily underutilized, the new program can detect it and
compute it more efficiently with xPUVPU. For each GEMM
call, this improved implementation provides the best parti-
tioning, maximizing the utilization of the available resources
using xPUSA or xPUVPU accordingly. Moreover, as can be
seen in Figure 7a, this hybrid approach does not incur any
relevant penalty. The only overhead present is partitioning
the problem at runtime, but it is negligible relative to the
matrix multiplication itself. Figure 7a shows the updated
results for the whole network. As only one layer, the least
time-consuming one showed benefits, no relevant changes can
be seen compared to the xPUSA implementation. The same
conclusions apply to energy consumption.

Besides ResNet18, we have also tested other applications,
as described in Section V-A. For AlexNet we can see that
performance increase is achievable using the custom load
memory accesses (Figure 7c). Moreover, here we can see
how the utilization analysis can provide observable benefits.
DeepBench offers results similar to ResNet18 (Figure 7d).
Regarding scientific applications, for the Low Order Finite El-
ement Solver, we observe only minimal improvement (Figure
7e), as its matrix sizes are small, i.e., (M,N,K) = (8, 32, 16),
problem size for which GEMM is compute bound. The small
performance increase is due to using fewer instructions, and

a slightly better VRF utilization. As for Linpack, most of
the GEMM calls have small values of K. Therefore xPUSA’s
pipeline suffers, and cannot achieve good performance com-
pared to xPUVPU in most operations. However, as seen in
Figure 7f, our optimized implementation can detect this and
avoid any performance degradation.

VII. RELATED WORK

VPUs and SAs have their corresponding advantages and
drawbacks and, to be able to leverage the advantages of both,
several works have combined them in different degrees. One
of the first architectures to do this is Google’s TPUv2. In this
case, they had to extend the SA-based architecture with a
VPU to efficiently support batch normalization [21]. While
this combination happened by necessity, to support a specific
kernel, other architectures are intentionally combining both.
One such example is the MEEP platform, which includes the
Vector and Systolic Accelerator Tiles [37]. Each of these tiles
provides one VPU and two different SAs. In this case, VPU
and SAs share the issue unit with a scalar core and also share
the memory interface. IBM went one step further in its latest
Power10 processor [38]. In it, the VPUs share their VRF with
the SAs. Finally, VSA difussed the barriers between VPUs and
SAs to the point of reusing the arithmetic units of a VPU to
implement a SA [22]. This can be called a Flexible Processing
Unit, or xPU, a processing unit that uses the same hardware to
offer different functionalities. However, that work presented a

L1 L2 L3 L4 L5 L6 L7 L8 L9 L1
0

L1
1

L1
2

L1
3

L1
4

L1
5

L1
6

L1
7

L1
80

1
2
3
4

Sp
ee

du
p

0.
82 0.
97

0.
97

0.
97

0.
97

0.
96

1.
03

1.
03

1.
03 1.
16

1.
17

1.
17

1.
17 1.

96

1.
96

1.
96

1.
96

0.
261.

15 1.
64

1.
64

1.
64

1.
64

1.
64 1.
75

1.
75

1.
75 1.
97

2.
00

2.
00

2.
00

3.
35

3.
38

3.
38

3.
38

0.
431.

15 1.
64

1.
64

1.
64

1.
64

1.
64 1.
75

1.
75

1.
75 1.
97

2.
00

2.
00

2.
00

3.
35

3.
38

3.
38

3.
38

1.
00

(a) ResNet18 layer-by-layer speedup

0

1

2

3

4

Sp
ee

du
p

1.22

2.05 2.05

(b) ResNet18 Speedup

0

1

2

3

4

Sp
ee

du
p

1.01
1.72 1.90

(c) AlexNet Speedup

0

1

2

3

4

Sp
ee

du
p

1.04
1.75 1.75

(d) DeepBench Speedup

0

1

2

3

4

Sp
ee

du
p

0.95 1.20 1.19

(e) Low Order Finite Element
Solver Speedup

0

1

2

3

4

Sp
ee

du
p

0.43 0.56
1.02

(f) Linpack Speedup

100

50

0

50

100

En
er

gy
 S

av
in

gs
 (%

)

7.12

48.95 48.57

(g) Resnet18 Energy

100

50

0

50

100

En
er

gy
 S

av
in

gs
 (%

)

-11.57

39.50 45.41

(h) AlexNet Energy

100

50

0

50

100

En
er

gy
 S

av
in

gs
 (%

)

-7.64

41.03 40.56

(i) DeepBench Energy

100

50

0

50

100

En
er

gy
 S

av
in

gs
 (%

)
-11.46

12.98 12.11

(j) Low Order Finite Element
Solver Energy

100

50

0

50

100

En
er

gy
 S

av
in

gs
 (%

)

-80.95

-1.00

(k) Linpack Energy

VPU baseline

xPUSA + indexed memory accesses

xPUSA + lane-by-lane memory accesses

xPU

Fig. 7. Speedup and energy savings for tested applications. Configuration of 4×4 units and MVL = 16384 bits.

heterogeneous architecture, the available memory functionality
to fetch the data was reused. This functionality was designed
for a VPU and does not fit the SA without major penalties. In
addition, while VSA was evaluated running as either a VPU
or an SA for different GEMM calls, an in-depth analysis to
understand under which conditions each of the functionalities
is better was missing.

Another example of an xPU is SIMD2 [39]. In this work,
the authors observe that there are algorithms that share key
characteristics with GEMM. In particular, they find several
matrix applications with semiring-like structures equivalent to
GEMM. Thus, they leverage this fact to present an extended
SA that handles all those different matrix operations.

A different approach would be the case of TCUDB [40].
In this paper, the authors present an approach to effi-
ciently compute databases using NVIDIA’s Tensor Core Units
(TCUs) [41]. Therefore, while not conceived as such, it could
be said that TCUs have become a xPU a posteriori.

In summary, processing units that provide different func-
tionalities are being proposed. For them, designers need to be

aware that each aspect of the unit needs to be able to efficiently
support both functionalities to exploit all its potential.

VIII. CONCLUSIONS

In this work, we have shown that, when designing process-
ing units with different functionalities, all the aspects need to
be considered for all the functionalities in order to achieve the
best performance. To illustrate this we have selected VSA,
a xPU that provides both SA and VPU functionalities. By
analyzing in detail the memory patterns, we have been able
to achieve speedups of up to 4.22x compared to a VPU
baseline. This means an increase of up to 72% compared to
only focusing on the computational aspect of the architecture.
Moreover, we have presented a detailed analysis procedure
that allows us to understand under which conditions each of
the functionalities offers better performance. By integrating
the insights from this analysis, we have obtained a software
implementation that minimizes hardware under-utilization by
using both functionalities combined.

REFERENCES

[1] OpenAI, Ai and compute, May 2018. [Online]. Avail-
able: https://openai.com/blog/ai-and-compute/ (visited
on 02/16/2023).

[2] J. L. Hennessy and D. A. Patterson, “A new golden
age for computer architecture,” Communications of the
ACM, vol. 62, no. 2, pp. 48–60, 2019.

[3] S. Han, X. Liu, H. Mao, et al., “EIE: Efficient inference
engine on compressed deep neural network,” ACM
SIGARCH Computer Architecture News, vol. 44, no. 3,
pp. 243–254, 2016.

[4] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial
architecture for energy-efficient dataflow for convo-
lutional neural networks,” ACM SIGARCH Computer
Architecture News, vol. 44, no. 3, pp. 367–379, 2016.

[5] B. Moons, R. Uytterhoeven, W. Dehaene, and
M. Verhelst, “Envision: A 0.26-to-10TOPS/W
subword-parallel dynamic-voltage-accuracy-frequency-
scalable convolutional neural network processor in
28nm FDSOI,” in 2017 IEEE International Solid-State
Circuits Conference (ISSCC), IEEE, 2017, pp. 246–247.

[6] A. Parashar, M. Rhu, A. Mukkara, et al., “SCNN: An
accelerator for compressed-sparse convolutional neural
networks,” ACM SIGARCH computer architecture news,
vol. 45, no. 2, pp. 27–40, 2017.

[7] N. P. Jouppi, C. Young, N. Patil, et al., “In-datacenter
performance analysis of a tensor processing unit,” in
Proceedings of the 44th annual international sympo-
sium on computer architecture, 2017, pp. 1–12.

[8] J.-W. Jang, S. Lee, D. Kim, et al., “Sparsity-aware and
re-configurable NPU architecture for samsung flagship
mobile soc,” in 2021 ACM/IEEE 48th Annual Inter-
national Symposium on Computer Architecture (ISCA),
IEEE, 2021, pp. 15–28.

[9] Y. Tortorella, L. Bertaccini, D. Rossi, L. Benini,
and F. Conti, “RedMulE: A compact FP16 matrix-
multiplication accelerator for adaptive deep learning
on risc-v-based ultra-low-power socs,” in 2022 Design,
Automation & Test in Europe Conference & Exhibition
(DATE), IEEE, 2022, pp. 1099–1102.

[10] X. Chen, T. Huang, S. Xu, T. Bourgeat, C. Chung,
and A. Arvind, “Flexminer: A pattern-aware accelerator
for graph pattern mining,” in 2021 ACM/IEEE 48th
Annual International Symposium on Computer Archi-
tecture (ISCA), IEEE, 2021, pp. 581–594.

[11] G. Dai, Z. Zhu, T. Fu, et al., “Dimmining: Pruning-
efficient and parallel graph mining on near-memory-
computing,” in Proceedings of the 49th Annual Inter-
national Symposium on Computer Architecture, 2022,
pp. 130–145.

[12] N. Talati, H. Ye, Y. Yang, et al., “Ndminer: Accelerating
graph pattern mining using near data processing,” in
Proceedings of the 49th Annual International Sympo-
sium on Computer Architecture, 2022, pp. 146–159.

[13] D. Fujiki, S. Wu, N. Ozog, et al., “Seedex: A genome
sequencing accelerator for optimal alignments in sub-
minimal space,” in 2020 53rd Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO),
IEEE, 2020, pp. 937–950.

[14] D. S. Cali, K. Kanellopoulos, J. Lindegger, et al.,
“Segram: A universal hardware accelerator for genomic
sequence-to-graph and sequence-to-sequence mapping,”
in Proceedings of the 49th Annual International Sym-
posium on Computer Architecture, 2022, pp. 638–655.

[15] H.-T. Kung, “Why systolic architectures?” Computer,
vol. 15, no. 01, pp. 37–46, 1982.

[16] R. M. Russell, “The cray-1 computer system,” Commu-
nications of the ACM, vol. 21, no. 1, pp. 63–72, 1978.

[17] M. Cavalcante, F. Schuiki, F. Zaruba, M. Schaffner,
and L. Benini, “Ara: A 1-GHz+ scalable and energy-
efficient RISC-V vector processor with multiprecision
floating-point support in 22-nm FD-SOI,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems,
vol. 28, no. 2, pp. 530–543, 2019.

[18] M. Perotti, M. Cavalcante, N. Wistoff, R. Andri, L.
Cavigelli, and L. Benini, “A “new ara” for vector
computing: An open source highly efficient RISC-
V V 1.0 vector processor design,” in 2022 IEEE
33rd International Conference on Application-specific
Systems, Architectures and Processors (ASAP), IEEE,
2022, pp. 43–51.

[19] F. Minervini, O. Palomar, O. Unsal, et al., “Vitruvius+:
An area-efficient RISC-V decoupled vector coprocessor
for high performance computing applications,” ACM
Trans. Archit. Code Optim., Dec. 2022, Just Accepted,
ISSN: 1544-3566. DOI: 10.1145/3575861.

[20] A. Boroumand, S. Ghose, B. Akin, et al., “Google
neural network models for edge devices: Analyzing
and mitigating machine learning inference bottlenecks,”
in 2021 30th International Conference on Parallel Ar-
chitectures and Compilation Techniques (PACT), IEEE,
2021, pp. 159–172.

[21] N. P. Jouppi, D. H. Yoon, G. Kurian, et al., “A domain-
specific supercomputer for training deep neural net-
works,” Communications of the ACM, vol. 63, no. 7,
pp. 67–78, Jun. 2020.

[22] M. Vázquez Maceiras, M. W. Azhar, and P. Trancoso,
“VSA: A hybrid vector-systolic architecture,” in 2022
IEEE 40th International Conference on Computer De-
sign (ICCD), IEEE, 2022, pp. 368–376.

[23] RISC-V, RISC-V V vector extension, 2023. [Online].
Available: https://github.com/riscv/riscv-v-spec.

[24] M. W. Scroggs, I. A. Baratta, C. N. Richardson, and
G. N. Wells, “Basix: A runtime finite element basis
evaluation library,” Journal of Open Source Software,
vol. 7, no. 73, p. 3982, 2022.

[25] K. Chellapilla, S. Puri, and P. Simard, “High perfor-
mance convolutional neural networks for document pro-
cessing,” in Tenth international workshop on frontiers
in handwriting recognition, Suvisoft, 2006.

[26] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is
all you need,” Advances in neural information process-
ing systems, vol. 30, 2017.

[27] BLAS (basic linear algebra subprograms). [Online].
Available: https : / / www. netlib . org / blas/ (visited on
11/14/2022).

[28] C. Ramı́rez, C. A. Hernández, O. Palomar, O. Unsal,
M. A. Ramı́rez, and A. Cristal, “A RISC-V simulator
and benchmark suite for designing and evaluating vector
architectures,” ACM Transactions on Architecture and
Code Optimization (TACO), vol. 17, no. 4, pp. 1–30,
2020.

[29] N. Stephens, S. Biles, M. Boettcher, et al., “The ARM
scalable vector extension,” IEEE micro, vol. 37, no. 2,
pp. 26–39, 2017.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in Proceedings of the
IEEE conference on computer vision and pattern recog-
nition, 2016, pp. 770–778.

[31] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Im-
agenet classification with deep convolutional neural
networks,” Advances in neural information processing
systems, vol. 25, 2012.

[32] Coral-2 benchmarks, 2023. [Online]. Available: https:
//asc.llnl.gov/coral-2-benchmarks.

[33] J. J. Dongarra, P. Luszczek, and A. Petitet, “The linpack
benchmark: Past, present and future,” Concurrency and
Computation: practice and experience, vol. 15, no. 9,
pp. 803–820, 2003.

[34] T. Yamaguchi, K. Fujita, T. Ichimura, et al., “Low-
order finite element solver with small matrix-matrix
multiplication accelerated by ai-specific hardware for
crustal deformation computation,” in Proceedings of the
Platform for Advanced Scientific Computing Confer-
ence, 2020, pp. 1–11.

[35] J. Redmon, Darknet: Open source neural networks in
c, http://pjreddie.com/darknet/, 2013–2016.

[36] Y. Jia, E. Shelhamer, J. Donahue, et al., “Caffe: Con-
volutional architecture for fast feature embedding,” in
Proceedings of the 22nd ACM international conference
on Multimedia, 2014, pp. 675–678.

[37] A. Fell, D. J. Mazure, T. C. Garcia, et al., “The
marenostrum experimental exascale platform (MEEP),”
Supercomputing Frontiers and Innovations, vol. 8, no. 1,
pp. 62–81, 2021.

[38] W. J. Starke, B. W. Thompto, J. A. Stuecheli, and J. E.
Moreira, “IBM’s POWER10 processor,” IEEE Micro,
vol. 41, no. 2, pp. 7–14, 2021.

[39] Y. Zhang, P.-A. Tsai, and H.-W. Tseng, “SIMD2: A
generalized matrix instruction set for accelerating tensor
computation beyond gemm,” in Proceedings of the 49th
Annual International Symposium on Computer Archi-
tecture, ser. ISCA ’22, New York, New York: Asso-
ciation for Computing Machinery, 2022, pp. 552–566,
ISBN: 9781450386104.

[40] Y.-C. Hu, Y. Li, and H.-W. Tseng, “TCUDB: Acceler-
ating database with tensor processors,” in Proceedings
of the 2022 International Conference on Management
of Data, 2022, pp. 1360–1374.

[41] NVIDIA, NVIDIA tesla V100 GPU architecture, WP-
08608-001 v1.1, 2017.

Appendix C

Paper III

Scalable Hardware Hash for Index-Matching in Vector
Architectures

Mateo Vázquez Maceiras, Mohammad Ali Maleki, Muhammad
Waqar Azhar, Pedro Trancoso

Submitted to the 2024 International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT)

Scalable Hardware Hash for Index-Matching in Vector
Architectures

ABSTRACT
Sparse linear algebra kernels are widely used in multiple domains
like graph applications, Machine Learning and other High Perfor-
mance Computing applications. While dense kernels operate with
regular patterns, sparse kernels rely on irregular indirection, in-
tersection and union operations. Modern architectures, that rely
heavily on large scale vector units to deliver the required com-
putational power, suffer the most with these irregular patterns
and operations. As such, our goal is to improve their capabilities
for computing such kernels. While hardware acceleration for the
critical operations (indirection, intersection, and union) has been
proposed, these solutions do not scale efficiently.

In this work we propose SH2, a Scalable Hardware Hash memory
architecture for general-purpose vector architectures. SH2 is based
on a multi-banked scratchpad memory, which can be partially used
for regular data storage, as well as to perform the index-matching
operation with the help of dedicated hardware support. In addition,
SH2 includesmechanisms tomitigate index collisions. The proposed
architecture provides better latency while requiring less than 7.4%
area compared to existing state-of-the-art. An evaluation using
real world matrices and multiple sparse kernels, showed that SH2

achieves up to 3.19x speedup when compared to the state-of-the-art.

CCS CONCEPTS
• Computer systems organization → Single instruction, mul-
tiple data.

KEYWORDS
Vector, Scratchpad, Hash, Index-Matching, Sparse Linear Algebra
ACM Reference Format:
. 2024. Scalable Hardware Hash for Index-Matching in Vector Architec-
tures. In Proceedings of International Conference on Parallel Architectures
and Compilation Techniques (PACT’24). ACM, New York, NY, USA, 12 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Sparse linear algebra kernels are key components of many high-
performance applications, as evident from its inclusion in the Seven
Dwarfs [15] and Berkeley’s Dwarfs [7]. Sparse linear algebra is
widely used in graph applications, such as graph contraction [26],
breadth-first search [26], cycle detection [71],Markov clustering [10,
63], and triangle counting [9, 69]. Sparse linear algebra is also used

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PACT’24, October 13–16, 2024, Long Beach, California, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/XXXXXXX.XXXXXXX

in databases [19], genome assembly [29], colored intersection [40],
sparse deep neural networks [31] and molecular dynamics [38].

Compared to their dense counterpart, sparse kernels work with
compressed sparse data, which introduces irregular patterns. More-
over, as the data is compressed to avoid storing and processing
zeroes, accesses are more costly as we need to load the metadata to
locate the data in addition to the data itself. This results in an in-
creased pressure on the memory system. Depending on the nature
of the data and the algebraic operation to be performed, there are
three different underlying operations related to accessing the cor-
rect data: indirection for sparse-dense, intersection and union for
sparse-sparse [62]. While indirection can be directly implemented
with gather-scatter instructions, intersection and union are more
complex, as they require index matching.

The applications using these sparse kernels are easily paralleliz-
able. Therefore, they target systems that provide support for SIMD
instructions, such as CPUs with wide vector units, and also SIMT,
like GPUs. Most modern CPUs include SIMD or vector units which
are exposed as ISA extensions [5, 36, 61, 66].

Aiming to accelerate sparse applications in vector architectures,
VIA [59] proposes to use a small Smart ScratchPad Memory (SSPM)
memory next to the vector core, which relies on a Content Ad-
dressable Memory (CAM) for index matching. Additionaly, it uses
a Live Value Table (LVT)-based memory as its scratchpad to reduce
collision penalties [2, 23]. While this approach is effective for small
memories, it does not scale well as its area and latency costs ex-
plode for bigger configurations as it relies on redundancy and each
bank requires multiple read ports. However, proposals for custom
accelerators that support hardware-accelerated index matching
have included memory systems capable of better scaling. One such
example is InnerSP [11], which uses a multi-banked memory to
implement a hash table. This hash table performs index-matching
by handling indices as keys. It supports parallel hash key lookup
and in-place accumulation. Nevertheless, as a part of a custom ac-
celerator, the hash tables only need to handle limited functionality
and can be fine-tuned for it. They do not need to efficiently support
different memory operations, instruction streams, and datatypes at
the same time. All these characteristics are required in a general-
purpose architecture. Moreover, InnerSP does not tackle the issue
of collisions, with multiple indices trying to access the same hash
table at the same time.

Aiming to bridge this gap, and in order to provide vector ar-
chitectures with area- and latency-efficient index-matching
hardware support for intersection and union operations, we pro-
pose SH2, a Scalable Hardware Hash memory. The key insight is
to develop a memory architecture that combines the functionality
of VIA’s SSPM and the scalability of InnerSP’s Hash Table. In SH2

we transform the index matching into a hash lookup operation. We
propose augmenting a regular scratchpad memory with hardware
support for index-matching that is scalable to serve requests from
wide SIMD units. In order to reduce the collision penalty, the
index-matching hardware can exploit index misses to offer

PACT’24, October 13–16, 2024, Long Beach, California, USA Short Author, et al.

increased parallelism, without significantly increasing the com-
plexity and overhead. Finally, the SH2 scratchpad space can be
simultaneously used directly by the application as a regu-
lar scratchpad and for storing the index-matching data. The
space reserved for index-matching can be allocated dynamically
at runtime. Without loss of generality, in this work we focus on
vector architectures. The same technique could be applied as well
to SIMT architectures, i.e., GPUs.

The main contributions of this work are the following:
• A scalable scratchpad memory architecture that is extended
to support hardware hashing for intersection and union
operations over sparse data.

• An approach that leverages index misses and data widths to
handle bank collision penalties.

• A set of instruction extensions to a vector Instruction Set
Architectures (ISAs).

• An analysis of the proposed approach, including a study of
hash space utilization using real world data.

The evaluation of SH2 for different sparse kernels using both
synthetic and real sparse data shows a speedup of up to 3.19x over
existing state-of-the-art solutions. This is achieved with a reduction
of at least 7.4% in area. Moreover, leveraging index misses enables
a reduction of 38.58% in the penalties caused by collisions.

2 BACKGROUND AND RELATEDWORK
2.1 Working with Sparse Linear Algebra
In order to save space and avoid computations with zero-values,
sparse data is usually stored in a compressed data format [13, 14, 30,
41, 43, 46, 47]. While using such compressed formats for sparse data
leads to more efficient kernels, the regular memory accesses are re-
placed by three operations: indirection, intersection and union [62].

Indirection occurs when trying to fetch the elements of a sparse
array from a dense array. This can be achieved by employing in-
dexed memory accesses, using dense arrays with the indices of the
sparse one. This can be implemented using scatter-gather [59].

In both intersection and union operations, both arrays store
sparse data. As both arrays are compressed, finding a corresponding
element implies comparing the different indices until finding it. If no
matching element is found, then it is a zero. Hence, both intersection
and union are implemented with index-matching. The distinction
between the operations lies in handling zero and non-zero pairs.
In intersection, only positions with both arrays having a non-zero
remain as a non-zero. In union, as long as one of the arrays contains
a non-zero for a given position, the corresponding output will be
a non-zero. Examples of intersection and union are element-wise
sparse multiplication and sparse addition, respectively.

2.2 Memory Systems for Vector Architectures
In order to accelerate sparse linear algebra kernels, one common
approach is to offload them to general-purpose accelerators, like
CPUs with vector units or GPUs. As the architectures work with
multiple data in parallel, their memory systems need to provide
support for parallel read and write operations. While multi-ported
memories are costly, multiple interleaved memory banks can be
used as cost-effective alternative for implementing parallel memory

systems [6]. Therefore, both vector engines and GPUs leverage this
kind of memory architecture [1, 48, 49, 67]. Ideally, each access from
a SIMD/SIMT operation would be served by a different memory
bank [56]. This happens with the unitary-stride memory accesses,
widely used in dense linear algebra. When it is not the case, a
common approach is to partition the batch of accesses into a number
of smaller batches that do not contain bank collisions [1]. Serving
these accesses is also not a trivial issue since any SIMD access may
be directed to any bank. A crossbars network is usually used to
facilitate the bank accesses [49].

To support indirection, intersection and union in vector architec-
tures, VIA [59] proposes a SSPM that provides hardware support
for these operations. The SSPM is divided into three parts: (1) an
index-tracking array, (2) a valid bitmap, and (3) the data scratchpad.
The valid bitmap tracks the stored elements of the dense array
during intersection. The index-tracking array stores the indices
of all the elements of the sparse array stored in the data array. To
perform index-matching, the SSPM behaves like a Content Address-
able Memory (CAM). It compares the incoming indices against all
the stored ones and checks if there was a successful match through
OR reduction. While effective, this approach results in considerable
hardware overhead in the form of comparators and OR gates. Lastly,
the SSPM’s data array uses the Live Value Table (LVT) technique to
emulate a monolithic multi-ported memory. This is done to mitigate
the constraints associated with multiple write ports [23]. Instead
of having one bank with 𝑃 write ports and 𝑃 read ports, it uses 𝑃
banks with 1 write port and 𝑃 read ports. As it leverages replication,
each bank is of the same size of the memory it models. The LVT
keeps track of the bank where the last element for each address
was written. On a read, the LVT decides for each of the 𝑃 outputs,
which of the values coming from the 𝑃 banks is the right one. With
this approach, while the memory architecture can handle multiple
elements without collisions, it incurs considerable area and latency
cost. Thus, this approach becomes impractical for implementing
memories capable of handling higher levels of parallelism.

2.3 Hashing for Index-Matching
Among the kernels that rely on index-matching, General Sparse
Matrix-Sparse Matrix Multiplication (SpGEMM) stands out as one
of the most relevant ones.. Most implementations of SpGEMM build
upon Gustavson’s algortithm [30], which relies on union to accumu-
late sparse rows, i.e., union. Performing this accumulation efficiently
is one of its major challenges [55]. To address this challenge, vari-
ous software accumulator strategies have been proposed, including
using fully dense rows [25, 30], heaps [8], merge [16, 27, 28, 39],
sort [12, 17, 44], and hash maps [4, 20–22, 24, 45, 51–53, 58]. The lat-
ter, hash maps, is one of the most commonly used approaches in the
state-of-the-art for performing union operations in SpGEMM. Com-
pared to other alternatives, hashing has been shown to have better
memory usage [58, 63]. Nevertheless, hash maps suffer from certain
inefficiencies. The memory accesses are still irregular, consuming a
considerable portion of the execution time [45, 53, 72]. Moreover,
with intersection and union being memory-bound operations [62],
these overheads further add to the memory bottleneck.

To alleviate this bottleneck, one approach is to use hardware
acceleration for hashing [32, 42]. This has two advantages: (1) it

Scalable Hardware Hash for Index-Matching in Vector Architectures PACT’24, October 13–16, 2024, Long Beach, California, USA

Table 1: Comparison with prior scratchpad/caches for sparse linear algebra

Memory SIMD HW-Accelerated
Index Matching

Hybrid
Sparse-Dense
Functionalty

Collision
Penalty

Reduction

Efficient
Scaling

ISA
Support

Multiple
Datatypes

NVIDIA’s Shared Memory [1, 49] ✓ X X X ✓ ✓ ✓
Vortex’ High Bandwidth Cache [67] ✓ X X X ✓ ✓ ✓
ASA [72] X ✓ X X ✓ ✓ X
InnerSP’s Hash Table [11] ✓ ✓ X X ✓ X X
VIA’s SSPM [59] ✓ ✓ X ✓ X ✓ X
SH2 (this work) ✓ ✓ ✓ ✓ ✓ ✓ ✓

reduces the bandwidth requirements by doing the lookup near-
memory/cache, with the compute unit sending the key and receiv-
ing the actual value, and (2) it reduces hash lookup time by checking
multiple keys in parallel, aiming for O(1) time complexity. Nowa-
days, there is great focus on leveraging cache characteristics for
hashing [54, 70, 74]. Focusing on sparse linear algebra, one major
example of this cache-based hashing approach is ASA [72], which
accelerates sparse accumulation in SpGEMM for a scalar core. It
uses a private cache, transforming the key lookup into a tag lookup.
However, it can only handle one key at once. Looking into custom
accelerators, InnerSP’s Hash Table [11] goes one step further and
supports handling multiple incoming keys in parallel. This archi-
tecture uses a multi-banked approach, similar to the ones used by
memory architectures for vector architectures and GPUs, and thus
could be a good alternative to VIA’s LVT when it comes to efficient
area and latency scaling. However, as a part of a custom accelerator,
the hash tables only need to handle limited functionality and can
be fined tuned for it. Working with a general-purpose architec-
ture, they need to efficiently support different memory operations,
instruction streams, and datatypes at the same time. Moreover, In-
nerSP does not tackle the issue of collisions, with multiple indices
trying to access the same hash table at the same time.

2.4 Stream Architectures
Besides the hash-based approach, other works have proposed a
stream-based approach for enabling efficient index-matching. This
approach is common in custom hardware accelerators, such as Out-
erSPACE [57], ExTensor [33], MatRaptor [65], Gamma [73], and
Spaghetti [35]. Looking into ISAs-based architectures, Rao el al. [60]
propose a stream-centered ISA designed to handle sparse tensors
as streams. Going one step further away from specialization, Schef-
fler el al. [62] extend a scalar core with hardware index-matching
capabilities by providing architectural registers with streaming ca-
pabilities. While streaming is an alternative for index-matching,
existing vector architectures are not designed to work with streams
in the way index-matching requires.

3 ARCHITECTURE
3.1 Base Architecture
SH2 builds upon a scratchpad implemented as a multi-banked mem-
ory, where each bank contains a portion of the total memory. Each
bank (h○) is accompanied by a private index array (c○), which stores

Write
Buffer

Bank 0

Bank B-1

......From
LSU

To
Register

File

Index
Crossbar

Data
Crossbar

Control Unit
b

g

h

Ar
bi

te
r

a

i

l

j

k
Index
Array

=
=

FIFO

c

Index
Array

=
=

FIFO

d e

0

0

...

f

Figure 1: SH2 Architecture, with 𝐿 = 2.

2

1

DD IM

0x0 Total

3

Max. for IM

Figure 2: Memory partitioning in SH2: 1○ represents the total
memory available, 2○ represents the total memory available
for index-matching, and 3○ represents the memory allocated
for index-matching at a given time.

the indices for the corresponding values, as shown in Figure 1. This
pair of bank and index array behaves like a set associative cache
with a block size of one value (e.g., 4B when designed to work with
FP32). Each position of the index array has a corresponding valid bit,
that signal if the corresponding index is valid. The size of the index
array (2○) determines the maximum memory that can be allocated
for index-matching, while the total memory available is determined
by the bank size (1○) (see Figure 2). The allocated memory space
for index-matching (3○) may be re-sized dynamically at runtime
through the exported user-level interface. Hence, 1○ ≥ 2○ ≥ 3○.
The index-matching allocation is handled in hardware through a
control unit (Figure 1, f○), which notifies the index arrays about
the allocated space. This control unit is also in charge of control-
ling the multiplexers that bypass the index array to directly access
the banks g○. In addition, the control unit contains performance
counters that inform about the utilization of the index arrays. With
this setup, SH2 offers two main modes: Direct Data (DD) and
index-matching (IM). The former support direct accesses to the

PACT’24, October 13–16, 2024, Long Beach, California, USA Short Author, et al.

scratchpad, while the latter offers hardware index-matching sup-
port for the intersection and union operations. At any given time,
SH2 can support either of the modes, or both, as shown in
Figure 2. The different memory regions are accessed using different
instructions, as explained in Section 4.1. To prevent different modes
from accessing the same memory region, the region working in
DD-mode starts at address 0x0, while for IM-mode the index array
is in charge of providing inverted addresses, i.e., starting at the
highest memory address. This inversion is transparent to the user
(e○), as in the IM-mode all addresses to the banks are handled by the
hardware. The software only needs to provide the indices to match
against. In addition, each index array includes a FIFO queue that
contains the addresses of inserted elements. These queues facilitate
data retrieval from the IM-region using instructions that do not
provide indices, without needing to check empty positions. When
retrieving data from the IM-region without doing index-matching,
each FIFO queue provides the address of the next inserted element.
If a particular FIFO queue is empty, this will be treated as a zero,
and the corresponding mask bit will be set. This is controlled by
the control unit (f○), which simply forwards the corresponding
read bit signal to the FIFOs. This data retrieval is required as some
keys may need pre-processing before going to memory. For in-
stance, when working with matrices stored in CSB format, each
value within a block has two indices: row and column. In this case,
the software needs to combine these indices into a unique key to
properly interact with the index-matching functionality, as only
one index per value is supported. Upon data retrieval, these indices
have to be restored to properly indicate the position of the element
in the original data structure. To read the data without indices, the
addresses are read from the FIFO, providing the associated value
and resetting the valid bit. The status of all the FIFOs is sent to the
control unit (f○), which contains a performance indicating whether
there is any data left in the IM-region.

For improving energy efficiency, the index arrays can also be
bypassed when not being used to perform index-matching opera-
tions (Figure 1, g○). When are not accessed, they are clock-gated
to reduce energy consumption. Moreover this setup could also en-
able pipelining of index array and bank accesses. Consequently,
the maximum frequency would be increased, and the DD accesses
would require only a single cycle at this higher frequency, whereas
the IM access would need two cycles.

3.2 Hashing Mechanism
With the described architecture, the memory region allocated for
IM-mode accelerates index-matching with the following hashing
mechanism: first, the number of buckets (i.e., groups of elements
with the same hash value) is determined by the total memory size
allocated for index-matching (3○) and the number of hash lookups
performed in parallel, 𝐿. The former can be changed at runtime,
while the latter is an architectural parameter. Buckets are evenly
distributed across the banks, with elements of the same bucket
stored in the same bank. In this manner, indexing to a specific
bank is the same as applying the modulo of the number of banks
𝐵 as the first hash function. Likewise, within each index array,
indexing to the specific bucket acts as a second hash function. Here,
a parallel 𝐿-hash lookup is implemented in the same manner as an

𝐿-way set associative cache check. The main difference between
a regular cache and this index-matching mechanism is the way
misses are handled. In a regular cache, a miss requires fetching the
element from higher-level memory. In SH2, a miss means that the
corresponding element is zero, which is the value returned.

With this mapping, the process of performing intersection and
union operations begins by loading the data to be matched against
into SH2. This does not have to be the full sparse array, but it can
be a subset. This is valid as long as the subset guarantees that
the incoming indices can only find a match within that subset.
Once the data is preloaded, the indices can start arriving from the
Load-Store Unit (LSU). The arbiter (Figure 1, a○) dispatches these
indices to their corresponding ports and queues them if collisions
occur (see Section 6.3 for details). The indices are then sent to their
corresponding index array through a crossbar (b○). At the index
arrays (c○), each incoming index is compared in parallel against
the indices stored in the corresponding bucket. If a matching index
is found, the corresponding address is sent to the bank (h○) to fetch
the correct element. Otherwise, a zero is returned, utilizing a zero
bit wire directly from the comparators (i○), bypassing the bank and
resulting in further energy savings. Then, a second crossbar (j○)
is used to redirect the values and the zero bit back to the Vector
Register File (VRF). This crossbar acts symmetrically compared
to the address crossbar (b○) and is also controlled by the arbiter.
Finally, a multiplexer (k○) selects whether the data stored in the
register comes from the bank or is a hard-coded zero, based on
the ’zero’ bit. Multiplexing after the data crossbar, and not before,
(1) minimizes switching in the crossbar and (2) enables to reduce
penalties due to collisions, as discussed in Section 3.4. In addition,
for the elements that where found to be zero, the corresponding
mask vector register should be set/reset (according to the ISA) to
enable masking out operations with zeros.

For storing index-value pairs, the process is the same as for
reading a value. The difference is that, in case of a miss, the index-
matching logic provides the address of an empty position. To pro-
vide the address, the index-matching logic behaves like a cache
writing a block. If the corresponding index is found, its address is
the one provided, so that it can be overwritten with the new value.
If not, the index gets assigned an empty address. The address is sent
to its corresponding bank (h○) for storing the value. These values
are queued in a write buffer (l○), which forwards one of them per
cycle and bank, syncing with the index-matching functionality. An
exception occurs when there is no matching index and no space left
in a bank. In such cases, SH2 raises a hardware exception, which
should be handled in software. For handling this exception, the
user or compiler has two options: (1) allocate more space for the
IM-region, or (2) modify the problem partitioning, so that the stored
sub-array may fit. After handling the exception, the computation
is restarted. We do not support the option of sending overflows to
memory. This is because the penalty paid during reading would be
considerable and not easily hidden, as the computing units will be
waiting for new data. This penalty occurs each time there is a miss
with the first 𝐿 elements, regardless of whether the corresponding
index is actually located in memory. Instead, the exception will be
raised just a few times per problem until the right partitioning is
found, and most times in the first blocks [20]. To avoid these excep-
tions being raised, some works using hash-based approaches use

Scalable Hardware Hash for Index-Matching in Vector Architectures PACT’24, October 13–16, 2024, Long Beach, California, USA

Port P-1
Queues

...

Port 0
Queues

Instruction

IM-Read

D-Write

IM-Write

D-Read

Priority
Handler

Ar
bi

tr
at

io
n

Lo
gi

c

... To Address
Crossbar

Data
To Write
Buffer

Indices

Figure 3: SH2 Arbiter

pre-scanning approaches that estimate the required size of the hash
a priori [4, 11]. However, we still need to be able to handle potential
overflows, as pre-scanning does not guarantee hash fitting.

3.3 Collision Handling
A major issue with this approach, where each bank has a single
port and contains a portion of the total memory, is when multiple
elements need to access the same bank at the same time. Bank col-
lisions can be addressed by either adding more ports or serializing
the accesses. However, both approaches incur penalties, with an
increase in area, energy, and latency in the case of adding ports or
an increase in energy and latency in the case of serialization.

In SH2, we propose a multi-queue schema to handle collisions,
managed by the arbiter shown in Figure 3. When a new memory
instruction arrives, the priority handler inside the arbiter decides
whether the incoming addresses/indices can immediately proceed.
If they cannot proceed, they are stored in a queue for later process-
ing. There are four available queues, one for each type of operation:
two for DD-mode and two for IM-mode, with separate read and
write queues for each of the modes. For write operations, the data
is forwarded to the write buffer (Figure 1, l○). If one of the queues
is full, the arbiter instructs the load-store unit to hold operations of
that type until space becomes available. In case of collisions, the
arbiter serializes accesses to the banks. After a collision, non-issued
addresses/indices are issued from their corresponding queue in the
next cycle. An exception to this occurs when the queued operation
is a write and there is an incoming read operation to the opposite
memory region (DD or IM) arrives. In such cases, reads take priority
to minimize latency. If the read operation is of the same type (DD
or IM) as the write operation, the incoming read is delayed until
all writes are completed to avoid a Read-After-Write (RAW) hazard.
This is managed by the priority handler in the arbiter (Figure 3).

3.4 Reducing Collision Penalties
Before presenting how we can reduce collision penalties, it is nec-
essary to discuss the data widths we are targeting. Previous works
like VIA [59] are designed for handling 64-bit wide data, common in
many scientific applications. Working with 32-bit wide data would
lead to memory under-utilization, as only at most half of it could
be used. However, we intend to design SH2 as a flexible memory ar-
chitecture, developed not exclusively for scientific applications but
also capable of efficiently handling various memory access modes

0 4 8 12 15
Collision Penalty (Cycles) per Sample

10 10
10 8
10 6
10 4
10 2
100

Pr
ob

ab
ilit

y

0.5740

Figure 4: Results of the Monte Carlo simulation for estimat-
ing collisions in a memory with 16 banks (1 billion samples)

and data types. For this purpose, similar to NVIDIA’s Shared Mem-
ory, we design each of our banks to be 32-bit wide [1, 49, 56]. This
approach allows us to efficiently support applications that work
with 32-bit, including both floating point and integer types (e.g.
deep learning applications). Narrower data-types are supported,
but they lead to inefficient memory utilization. In order to work
with 64-bit data, two adjacent banks are accessed with the same
address, in both DD- and IM-mode. With this setup, for perform-
ing index-matching with 64-bit data, only half of the index arrays
are needed. In this configuration, one index array generates the
address for two adjacent banks, leaving half of the index arrays
unused. However, we can leverage this to reduce penalties caused
by collisions. When performing write index-matching operations
with 64-bit data, we store the index in both adjacent arrays. This
way, both arrays keep track of data stored in their corresponding
adjacent banks. Later, upon a collision in a read operation, each
index array receives and handles a different index in parallel. If
both index arrays get a hit, access to the adjacent banks is serial-
ized, incurring the collision penalty. However, if at least one of the
indices misses, this missed value can bypass the bank via the zero
signal (Figure 1, i○), freeing the bank access for the other index.
This value will then go through the data crossbar (j○) towards the
corresponding multiplexer k○. Past this data crossbar, collisions are
no longer an issue. Consequently, we can utilize the multiplexer k○
to transmit a zero through the relevant datapath, without having
to handle collisions. With this approach, we can leverage sparsity
misses to reduce collision penalties. Moreover, this maps well with
the nature of the data. Applications working with 32-bit wide data,
like the ones in the field of Deep Learning (DL), have densities up
to 10% [34], while scientific applications working with 64-bit data
have densities reaching orders of magnitude lower than 1% [37].
Therefore, we are supporting collision reduction for the less dense
applications, which are the more likely to produce the index misses
that we exploit.

With this setup, the question arises: why not use narrower banks
to potentially further reduce collision penalties? There are two rea-
sons against this: (1) its penalties and (2) it may not be necessary.
Narrowing the banks incurs two penalties: (1a) the increase of the
crossbar size (Figure 1, b○ and j○) due to accessing more banks,
and (1b) the area increase due to lower area efficiency ratio (mem-
ory cell area / total area) of the banks. Regarding its necessity, we
add as many index arrays per bank (or group of banks) as there
are incoming elements, aiming to address the worst-case scenario.
However, this scenario is a quite specific case, where the incoming
indices have a stride of 𝐵. A Monte Carlo simulation with 1 billion

PACT’24, October 13–16, 2024, Long Beach, California, USA Short Author, et al.

Table 2: Instructions supported to interact with the index-matching functionality

Instruction Description
vim_ld vd, vs1 Performs an index-matching operation to read the values corresponding to the indices stored in vs1.
vim_st vs1, vs2 Performs an index-matching operation to write the values in vs2, based on the indices stored in vs1.
vim_init rs1, rs2, rs3 Loads rs3 index-value pairs into the IM-region of SH2. Indices are initially found in consecutive memory

positions starting at address rs1 and values starting at address rs2.
vim_evict_simd vs1, vs2 Reads the first inserted value of each bank, storing it in vs2. The corresponding index is stored in vs1,

and removed from the FIFO queue.
vim_evict rs1, rs2 Stores the valid elements of the IM-region back in memory, starting at address rs2, with the corresponding

indices being stored starting at address rs1. In addition, the FIFO queues are cleared.
vim_rst Clears the index data from the IM-region, as well as the FIFO queues.
vim_alloc rd, rs1 Allocates rd memory positions for IM-mode, the immediate larger configuration from the rs1 requested

positions. This instruction also resets the index array and the FIFO queues.
vim_updv Updates the valid bit according to the matched bit.
vim_val rd Reads from the performance counter in the control unit the number of valid index-value pairs stored in

SH2. The value is stored into rd. This can be used to analyze utilization.
vim_vval vd Equivalent to vim_val, but per-bank. Stores the number of elements of each bank in the corresponding

position in vd. Shall be used to analyze data balance across banks.

samples for a memory with 16 banks shows that most of the cases
derive into lesser collision penalties (Figure 4), with the highest
probability being of 0.5740 for three cycles of penalty. Cases with
penalties 2 and 4 cycles are the next most likely, with probabilities
slightly lower than 20%. Moreover, while this Monte Carlo simu-
lation uses random data with no regularity, real matrices exhibit
some regularity, leading into lower collisions, as will be observed
later in Section 6.

In summary, we consider 32-bit wide banks a proper trade-off
between flexibility and area, being data width used in many appli-
cations. In addition, it fits our needs for reducing collision penalties
in the 64-bit wide sparse scientific applications. While narrower
widths could be supported, like 16 bits for working with FP16 or
BF16, we should take into account the penalties this would incur,
and realize that there is a limit to how many collisions we can
reduce. Therefore, we decided to continue with 32-bit banks.

4 USING SH2

4.1 ISA Support
In order to use SH2, the corresponding vector Instruction Set Ar-
chitecture (ISA) needs to be extended to support its functionality.
While DD-mode operations are already supported in existing vector
ISAs with unitary, strided and indexed memory access instructions,
IM-mode operations are not. Therefore, to cover the new func-
tionality, we use the instructions described in Table 2. The added
instructions are generic, and can be applied to any vector ISA. In-
structions vim_init and vim_evict can be used with formats in
which the index can be used immediately as a key, like CSR. These
instructions do not require the data going through the VRF For
other formats that require key pre-processing (e.g., two indices
for a given element), the corresponding instructions vim_st and
vim_evict_simd are used to send the data to the VRF, so that the
indices/keys can be pre-/post-processed. In our case, compared to
VIA [59], we do not employ hybrid memory-compute instructions.

We do so to avoid instruction space explosion, being closer to the
RISC paradigm, and also to fit within vector units with parallel
memory and arithmetic issue queues, like Vitruvius+ [48].

4.2 Modes and Operations
4.2.1 Index-Matching. For both intersection and union, we use the
instructions presented in Section 4.1. For both operations, having
the data we want to match against stored in the IM-region, we start
by using the vim_ld instruction to perform an IM-read operation.
To intersect both arrays, we just need to apply the mask generated
by that instruction, effectively discarding the unmatched elements.
For performing union, we use the vim_st instruction to store the
data back into the IM-region after performing the required compu-
tations. Doing this effectively merges both arrays, completing the
union. In addition, it updates the positions shared between both
arrays, with no need for further merging. Another advantage of
this approach is that there are algorithms like SpGEMM that rely
on consecutive accumulations of sparse arrays, i.e., consecutive
unions of partial sparse arrays. Writing back to the IM-region en-
ables using it as an accumulator memory, without having to load
the data into this region for every union operation. Finally, we
use the vim_evict or vim_evict_simd instructions to retrieve the
data from the IM-region. Although this may result in unsorted ele-
ments, hash-based approaches already apply random permutations
to the data [4]. Hashing is unaffected by data order, so working
with unsorted data presents no problem.

4.2.2 Direct Data. As a scratchpad for general purpose vector ar-
chitectures, SH2 also needs to behave as a regular storage. This
functionality is covered by the DD-mode, where the DD-region
of SH2 behaves like a regular scratchpad, bypassing the index ar-
rays. This way, SH2 ensures compatibility with existing software
implementations. In this mode, it is the responsibility of the user
or compiler to ensure the accessed addresses are valid.

Scalable Hardware Hash for Index-Matching in Vector Architectures PACT’24, October 13–16, 2024, Long Beach, California, USA

Algorithm 1 Vectorized CSR SpAdd (𝐶 = 𝐴 + 𝐵)
1: Notations:
2: rows_A : set of all the rows of matrix 𝐴
3: get_next_simd(): load the next SIMD elements from regular

memory into the vector register file.
4:
5: vim_alloc rd() rs1(-1)
6: for all row ∈ 𝑟𝑜𝑤𝑠_𝐴 do
7: vim_rst
8: vinit_im rs1(𝐵.indices[𝐵_row_start]),
9: rs2(𝐵.data[𝐵_row_start]),
10: rs3(𝐵_row_end − 𝐵_row_start)
11: row_len = 𝐴_row_end − 𝐴_row_start
12: while row_len > 0 do
13: v_idx_𝐴 = get_next_simd(𝐴.𝑖𝑛𝑑𝑖𝑐𝑒𝑠)
14: v_data_𝐴 = get_next_simd(𝐴.𝑑𝑎𝑡𝑎)
15: vim_ld vd(v_data_𝐵), vs1(v_idx_𝐴)
16: v_data_𝐶 = v_data_𝐴 + v_data_𝐵
17: vim_st vs1(v_idx_𝐴), vs2(v_data_𝐶)
18: row_len = row_len − SIMD
19: end while
20: vim_evict rs1(𝐶.indices[end]), rs2(𝐶.data[end])
21: end for

4.3 Kernel Example
To exemplify the use of the proposed instructions to compute a
sparse linear algebra kernel, Algorithm 1 describes a CSR-based
implementation of sparse matrix addition (SpAdd). As the addition
operation returns a non-zero as long as one of the inputs is a non-
zero, SpAdd is a case of union. Looking at the Algorithm, it starts
with line 5 allocating the maximum memory space for the index-
matching functionality (we use the maximum space for simplicity).
Then, for each row of 𝐴, line 7 resets the IM-region and lines 8-10
initialize it with the corresponding row of 𝐵. The algorithm then
continues by processing the elements from 𝐴 in batches according
to the SIMD length of the architecture. To do so, it (1) reads the
indices and data of 𝐴 (lines 13-14), (2) finds the corresponding
indices of 𝐵 with the index-matching functionality (line 15), (3)
performs the element-wise addition in the vector units (line 16),
and (4) stores the results back into the IM-region (line 17), merging
them with stored matrix 𝐵, i.e., completing the union. Finally, upon
completing the corresponding row, it is stored back to memory by
being evicting the data from the IM-region (line 20).

5 EXPERIMENTAL METHODOLOGY
5.1 Simulation Setup
To simulate the proposed architecture, we implemented a custom
time-accurate memory simulator in C++. This simulator contains
two main components: (1) the memory models and (2) an index
generator. The memory models are time-accurate models of the dif-
ferent memory configurations evaluated, with timing values taken
from CACTI [50, 64, 68]. The index generator acts as a functional
simulator, executing the kernels and providing the different mem-
ory models with the corresponding memory traces. The objective of
this work’s evaluation was to assess the proposed technique using

a large number of real-world input datasets. As such, we needed to
develop a lightweight, but still accurate simulation, instead of the
more traditional approach using a full-system cycle-accurate setup.
This approach allows us to accurately model the execution time
for the sparse operations. We run the same algorithms for both
SH2 and VIA. Moreover, VIA’s SSPM and SH2 are interchangeable,
working with the same memory traces. Consequently we are able
to determine the impact of the proposed technique for applications
where those kernels are dominant.

For the specific architecture parameters, we take inspiration
from NVIDIA’s architecture. The modeled memories have 32 ports
(with an equal SIMD parallelism) and a total data array size (Fig-
ure 2, 1○) of 256kB, as per H100’s Unified L1 Data Cache and Shared
Memory [3]. In our architecture, the memory size that can work
in IM-mode is the same as the total memory (2○ = 1○). In addition,
for our tests, we allocate the maximum memory possible for the
relevant mode. We undertake this approach to facilitate a direct
1-on-1 comparison with the baseline. Regarding the degree of paral-
lelism for the hash-parallel lookup, we evaluate a configuration of
8 parallel lookups (i.e., 𝐿 = 8), drawing inspiration from ASA [72].

Regarding the baseline, we compare SH2 to three different con-
figurations of VIA’s SSPM: (1) the configuration evaluated in their
paper, with 4 ports; (2) a scaled-up version of the original work,
using one LVT-based memory with 16 ports to match our configu-
ration for 64-bit data; and (3) a combination of 4 SSPMs with 4 ports
each to provide a total of 16 ports, with an arbiter that dispatches
requests and a crossbar to forward data to the corresponding SSPM.
During the rest of the paper, we will address these configurations
as VIA4, VIA16, and VIA4×4, respectively. All these configurations
offer a total of 256kB of architectural memory, i.e., memory seen
by the user. In addition, these configurations are designed to work
with 64-bit wide data. Note that VIA4×4 is no longer a pure SSPMs
implementation: each port can only access the memory positions
of its corresponding SSPM, which may lead to collisions.

To measure the area and access latency, we have modeled the
memory components using CACTI [50, 64, 68]. For SH2, we have
modeled it as a 𝐿-way multi-banked associative cache, with 4B
block size. To compensate for the FIFO queues in terms of area,
we use a model with a wider tag than needed for the index array.
For VIA’s SSPM, we first model it as a regular CAM. Then, we
determine the overhead related to the index-matching logic by de-
ducting the area and latency associated with the data array. Finally,
we model the individual banks of the LVT-based scratchpad and
combine them with the corresponding index-matching overhead.
Comparing this approach with the original paper [59], our area
results are 80% of the target area for the combination with 16kB
and 4 ports. This is reasonable, as we are not modeling the LVT that
the SSPM uses. Furthermore, by adopting this approach, we are
favoring the baseline. Regarding the frequency, the original paper
claims 1-cycle access working with a 2GHz processor. With our
modeling approach, we have measured an access latency of 0.480ns,
which fits within the original configuration. Moreover, when in
doubt, we took the decision that would favor the baseline over
our proposed memory architecture. For the VIA4×4’s crossbar, we
modeled memories ranging from 1MB to 32kB, all of which require
the same network configuration. Then, we applied regression to
estimate the area and latency overhead of this component. The

PACT’24, October 13–16, 2024, Long Beach, California, USA Short Author, et al.

obtained 𝑅2 coefficients for area and latency are 0.999 and 0.967
respectively.

5.2 Workloads
To test our approach, we have used both synthetic arrays and real-
world matrices from the SuiteSparse Matrix Collection [18]. The
synthetic arrays enable us to analyze the behavior of our approach
in a more controlled environment, while the matrices from the
SuiteSparse Matrix Collection allow to evaluate real-world patterns.
The synthetic arrays have densities between 0.01% to 30% and a total
amount of 60k elements, including zeroes. The synthetic data is
generated with a random uniform distribution. Each element is 32-
bit wide. For evaluating 64-bit wide data, we use real-worldmatrices.
We have selected square matrices containing real numbers with a
row count greater than 1000, resulting in 1681 matrices evaluated.

The applications used to evaluate our system are sparse kernels
that test indirection, intersection, and union, for matrices stored in
the CSR format. They are described in Table 3. For the synthetic
arrays, to mitigate potential biases or anomalies introduced by
the random data, we run each of the synthetic tests 1000 times.
For SpMV, we store the dense vector in SH2 / VIA’s SSPM, which
means it is limited to 32768 elements (256kB working with 64-bit
data). Therefore, for this specific test, we limit our matrices to
up to 32768 columns, so that the full dense vector can fit within
SH2/VIA. Regarding our approach to reduce penalties due to index
collisions, we evaluate it over SpGEMM. To ensure appropriate
matrix sizes for our experiments, our setup operates on a matrix and
its transpose. With many of them being symmetric matrices, SpAdd
and SpMul will not generate the index misses that our approach
exploits. Therefore, we evaluate the collision penalty reduction only
over SpGEMM and not over SpAdd or SpMul.

6 EVALUATION
6.1 Implementation Evaluation
Table 4 shows the area and latency for SH2, as well as for the
different baseline configurations. The first value that stands out
is the area for VIA16. As an LVT-based scratchpad, it relies not
only on multi-banking, but also on replication. Each of the banks
requires to provide the same memory capacity as the architectural
memory (256kB in our case). Therefore, while behaving as a 256kB
scratchpad, it actually requires 4MB. Moreover, each of those 16
banks has only one write port but requires 16 read ports, which
further increases area consumption per bank [64]. All this translates
into a access latency of 3.909ns, limiting its frequency to less than
500MHz. In the case of VIA4, the area required is considerably
smaller. Even though each of the banks requires to provide the
same amount of memory, there are only 4 of them. In addition,
they only require 4 read ports, so the area is considerably smaller.
However, SH2 requires only 7.4% of its area. When it comes to
latency, it is also reduced in comparison to VIA16, although not to
the same extent as the area reduction. VIA4×4 manages to achieve
both better area and considerably better latency, while still offering
the same number of architectural ports. SH2 outperforms the
baselines as it eliminates the need for data replication and
multiple physical ports acting as a single architectural port.

0.01 0.03 0.1 0.3 1 3 10 30
Density of Vector b (%)

0.01

0.03

0.1

0.3

1

3

10

30

De
ns

ity
 o

f V
ec

to
r a

 (%
)

0.42 0.97 1.02 0.75 0.47 0.27 0.14 0.07

0.97 1.51 1.37 0.91 0.52 0.29 0.15 0.07

1.60 1.93 1.70 1.15 0.65 0.34 0.17 0.08

2.06 2.22 2.05 1.57 0.92 0.47 0.21 0.10

2.34 2.41 2.32 2.06 1.46 0.82 0.36 0.15

2.41 2.43 2.40 2.29 1.95 1.35 0.68 0.29

2.30 2.30 2.29 2.26 2.14 1.84 1.23 0.63

1.86 1.86 1.86 1.85 1.81 1.72 1.43 0.97

0.5

1.0

1.5

2.0

Figure 5: Average extra cycles per instruction due to collisions
compared to ideal memory

Consequently, SH2 achieves 13.4% faster access time compared to
VIA4×4 while requiring only 6.4% of its area.

6.2 Kernel Performance Evaluation
6.2.1 Synthetic Data. To evaluate the performance of SH2 for
index-matching, we first use synthetic arrays. We try different com-
binations of densities for 𝐴 and 𝐵, as illustrated in Figure 5. This
figure shows the average penalty caused by index collisions in SH2.
Here, 𝐵 is the vector stored in SH2, while the indices used to look
for a match belong to𝐴. On the one hand, by increasing the density
of the vector stored in SH2, the penalty incurred starts to increase,
reaching a peak at 0.1% density. However, as we keep increasing
the elements, the impact of collisions is reduced. This is because we
are writing the elements successively with the vim_init, balancing
the write queues from Figure 3. On the other hand, by increasing
the density of the vector used to match, we also see that the per-
formance of SH2 starts to degrade. However, we cannot balance
the queues because read instructions need to be computed imme-
diately to minimize the read latency. Therefore, we only start to
see improvements at a density of 30%, where some regularity starts
to appear in the arrays, and thus fewer collisions take place. To
solve this differences across the diagonal, there are two possible
(and complementary) options: (1) analyzing the incoming arrays
before computing and storing the one with a larger number of
non-zero values in SH2, and (2) utilizing hardware/software imple-
mentations that can hide the reading latency. In summary, for the
index-matching functionality, the queues should be kept balanced
to reduce collision penalties. This balance can be affected by both
the data and the implementation, so both should be considered.

6.2.2 Real-World Data.

SpMV. Figure 6a shows the average speedup that SH2 achieves
across all real-world matrices for SpMV compared to the three
different baselines. In these tests, as the vector stored is fully dense,
its access pattern is totally regular, with a stride of 1, and thus
there are no collisions while storing it. However, as it needs to be
stored only once for the whole computation, this does not greatly

Scalable Hardware Hash for Index-Matching in Vector Architectures PACT’24, October 13–16, 2024, Long Beach, California, USA

Table 3: Summary of kernels evaluated

Kernel Sparse Operation Arrays Data Operation
SpMV Indirection Sparse-Dense Real-world matrices (64-bit) 𝐴 × 𝑏

SpAdd/SpMul Union/Intersection Sparse-Sparse Synthetic arrays (32-bit) 𝑎 + 𝑏; 𝑎 ⊙ 𝑏
Real-world matrices (64-bit) 𝐴 +𝐴𝑇 ; 𝐴 ⊙ 𝐴𝑇

SpGEMM Union Sparse-Sparse Real-world matrices (64-bit) 𝐴 ×𝐴𝑇

Table 4: Area and maximum frequency for baseline and our
work, for 256kB of architectural memory. For SH2, 𝐿 = 8.

Memory kB/Bank Ports/Bank #Banks Area
(mm2)

Latency
(ns)

VIA4 256 4R/1W 4 9.320 1.637
VIA16 256 16R/1W 16 238.698 3.909
VIA4×4 64 4R/1W 16 10.745 1.087
SH2 8 1(R/W) 32 0.686 0.941

vs
VIA 4

vs
VIA 16

vs
VIA 4x

4
0

1

2

3

4

Sp
ee

du
p

2.
68

2.
65

0.
93

(a) SpMV

vs
VIA 4

vs
VIA 16

vs
VIA 4x

4
0

1

2

3

4

2.
73 2.
78

0.
94

(b) SpAdd / SpMul

vs
VIA 4

vs
VIA 16

vs
VIA 4x

4
0

1

2

3

4

3.
19

2.
71

1.
01

(c) SpGEMM

Figure 6: Speedup results with real matrices

vs
VIA 4

vs
VIA 16

vs
VIA 4x

4
101

102

103

Sp
ee

du
p

/ A
re

a

36
.3

3

92
2.

27

14
.5

3

(a) SpMV

vs
VIA 4

vs
VIA 16

vs
VIA 4x

4
101

102

103

37
.1

1

96
6.

92

14
.7

4

(b) SpAdd / SpMul

vs
VIA 4

vs
VIA 16

vs
VIA 4x

4
101

102

103

43
.3

3

94
1.

38

15
.8

0

(c) SpGEMM

Figure 7: Speedup per area results with real matrices

impact the results, with the indirection directed by the sparse matrix
dominating the total time. Compared to VIA4, we see that SH2

achieves a 2.68x speedup. Looking at the latency (Table 4), we see
that the 1.77x difference is not enough to justify that speedup. The

104 106 108

NNZ

0

20

40

60

80

100

Ut
iliz

at
io

n
Ra

te
 (%

) Fit
Overflow

(a) SpAdd / SpMul

104 106 108

NNZ

0

20

40

60

80

100
Fit
Overflow

(b) SpGEMM

Figure 8: SH2 utilization

0 20 40 60 80 100
Utilization rate (%)

0

5

10

Ov
er

flo
ws

 (%
)

(a) SpAdd / SpMul

0 20 40 60 80 100
Utilization rate (%)

0

5

10

Ov
er

flo
ws

 (%
)

(b) SpGEMM

Figure 9: Overflow rate analysis

remaining difference is due to SH2 offering 16 ports, while VIA4
offers only 4, thus causing more port collisions. In the case of VIA16
we find the opposite: the speedup (2.65x) is lower than the latency
difference (4.15x). This is because the execution on VIA16 does not
suffer of any collisions. Nevertheless, the cost does not overcome
the benefit, and thus SH2 provides higher performance. Finally,
SH2 is not able to outperform VIA4×4, being 7% slower. This is
because the 15.5% latency improvement is not enough to overcome
the reduced collisions. However, once we take area into account,
SH2 clearly outperforms VIA4×4, demonstrating a 14.53x speedup
per unit of area, as shown in Figure 7a.

SpAdd and SpMul. Computing the same SpAdd and SpMul ker-
nels with real world matrices shows similar speedup results to those

PACT’24, October 13–16, 2024, Long Beach, California, USA Short Author, et al.

for SpMV, as can be seen from comparing Figures 6a and 7a with
Figures 6b and 7b respectively. This is because the major difference
between SH2 and VIA, besides area and latency, is how they deal
with collisions. This is for both DD-mode (SpMV) and IM-mode
(SpAdd and SpMul). Hence, if the input matrices causing collisions
are identical, we can anticipate similar speedups across the tests.
Especially, in the case of these kernels, the index comparison is
performed in the same order, and led by the same matrix (e.g., 𝐴 in
Algorithm 1), resulting in fewer differences between both kernels.

Besides actual speedups, for the SpAdd and SpMul kernels the
interesting insight is how the hash function affects the memory
utilization for different matrices. To illustrate that, Figure 8a shows
the scattered utilization data of all the matrices tested, ordered
in the X-axis by the Number of Non-Zeroes (NNZ). Each of the
points on it represents the SpAdd and SpMul tests of a given matrix.
Blue points represent matrices whose tests fit successfully in SH2,
and they show the maximum memory utilization achieved (i.e., the
ratio between elements stored and the total number of elements
that could fit). Red crosses represent tests for which, at some point,
a new element could not be inserted, causing an overflow in the
corresponding bucket. In that case, the Y coordinate represents
the utilization at the moment the overflow took place. As can be
seen, most of the matrices require less than 20% of the available
memory. This is true not only for matrices with few non-zeros
but also for matrices with millions of non-zeros. However, we can
see a few matrices with higher utilization rates, reaching close to
90% Regarding the matrices with overflows, most of them fail with
utilization rates of 40% or higher. The ones close to 100% represent
no problem for the hashing mechanism. Solutions would be to
allocate a larger space for IM-mode if possible or further partition
the problem so that it fits. This would also apply to VIA’s SSPM:
overflows will still occur if the total required number of elements
exceeds capacity, even if any element can occupy any position. The
problem for the hashing mechanism are the matrices that fail at
lower utilization rates. However, as seen in Figure 9a, only less than
0.5% of the matrices fail with less than 20% utilization, and less than
2.2% do so with less than 40% utilization. With those low ratios, we
shall simply handle them as outliers, which ought to be computed
without hardware index-matching support.

SpGEMM. For SpGEMM, the speedup results shown in Figures
6c and 7c compared to the three baselines are still similar to SpMV,
SpAdd, and SpMul. However, we can see that, specially for VIA4 and
VIA4×4 the speedup is slightly better. This is due to our mechanism
for reducing collision penalties, which we will analyze in more
detail in Section 6.3. When it comes to the utilization of SH2, we
can see in Figure 8b that the average utilization is higher than in
the case of SpAdd and SpMul. This occurs because each output
row is formed by an accumulation of multiple input rows, thereby
exhibiting a higher density than the previous kernels. This also
impacts the amount of bucket overflows, which increase for the
same set of matrices, as seen in Figure 9b. However, despite this
increase in overflows, only 0.8% of the matrices fail with less than
20% utilization. This means once again that only a few outliers
will have to be handled in software, without the index-matching
hardware support.

P=
1

P=
2

P=
4

0

10

20

30

40

Co
llis

io
ns

 re
du

ce
d

(%
)

0.
00

38
.5

8 47
.2

4

(a) Cycles reduced

P=
1

P=
2

P=
4

0.0

0.5

1.0

1.5

Av
er

ag
e

CP
I 1.
80

1.
56

1.
47

(b) Average CPI for reads

Figure 10: Effects of reducing collision penalties. 𝑃 represents
the number of indices handled in parallel for a same bank.
𝑃 = 2 is the actual configuration used for the tests with real
matrices.

6.3 Reducing Collision Penalties
We now analyze in more detail our approach to reducing index
collisions for IM-read instructions. As mentioned in Section 5.2, we
evaluate it over SpGEMM,whose results in Figures 6c and 7c already
include this support. For this kernel, our implemented configuration
that checks just two elements in parallel per bank set (𝑃 = 2) reduces
read penalty collisions by 38.58% (Figure 10a). To demonstrate that
simply increasing the number of index arrays does not necessarily
lead to proportionally higher returns, we also model a setup where
we could accommodate 4 indices arriving at the same bank (or
set of adjacent banks). By doing so, we would only remove 8.66%
more collision penalties than by handling two indices at a time.
These results show that just handling one collision per index array
gives most of the benefits, being a lower requirement than the one
we could have initially extracted from the Monte Carlo analysis in
Section 3.3. This happens for two reasons: (1) data in real matrices is
not uniformly randomly distributed, with some denser regions that
reduce collisions, and (2) our approach can be exploited when at
most one index hits, which is less likely to happenwithmore indices
being analyzed in parallel. Compared to a setup without support
for collision penalty reduction (𝑃 = 1), our approach reduces the
average CPI from 1.80 to 1.56, as shown in Figure 10b.

7 CONCLUSIONS
In this paper, we introduce SH2, a Scalable Hardware Hash mem-
ory architecture for general-purpose vector architectures. Its main
goal is to accelerate the performance of sparse operations, with
a special focus on index-matching. For that, SH2 adds to a regu-
lar multi-banked scratchpad memory, the hardware support for
hash-lookup. The proposed memory architecture is flexible allow-
ing the scratchpad space to be used for either regular data storage
or index-matching. Moreover, SH2 reduces the hardware complex-
ity compared to state-of-the-art, resulting in speedups of up to
3.19x while requiring at most 7.4% of the area. In addition, SH2 also
supports a mechanism to mitigate the impact of collisions in the
index-matching operations, resulting a in reduction of the collision
penalty by 38.58% compared to standard multi-banked memories
without such support.

Scalable Hardware Hash for Index-Matching in Vector Architectures PACT’24, October 13–16, 2024, Long Beach, California, USA

REFERENCES
[1] Tor M Aamodt, Wilson Wai Lun Fung, Timothy G Rogers, and Margaret

Martonosi. 2018. General-purpose graphics processor architectures. Springer.
[2] Ameer MS Abdelhadi and Guy GF Lemieux. 2014. Modular multi-ported SRAM-

based memories. In Proceedings of the 2014 ACM/SIGDA international symposium
on Field-programmable gate arrays. 35–44.

[3] Michael Andersch, Greg Palmer, Ronny Krashinsky, Nick Stam, Vishal Mehta,
Gonzalo Brito, and Sridhar Ramaswamy. [n. d.]. NVIDIA Hopper Architecture In-
Depth. https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

[4] Pham Nguyen Quang Anh, Rui Fan, and Yonggang Wen. 2016. Balanced hashing
and efficient gpu sparse general matrix-matrix multiplication. In Proceedings of
the 2016 International Conference on Supercomputing. 1–12.

[5] ARM. 2013. NEON Programmer’s Guide. ID071613.
[6] Krste Asanovic. 1998. Vector microprocessors. University of California, Berkeley.
[7] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis,

Parry Husbands, Kurt Keutzer, David A Patterson, William Lester Plishker, John
Shalf, Samuel Webb Williams, et al. 2006. The landscape of parallel computing
research: A view from berkeley. (2006).

[8] Ariful Azad, Grey Ballard, Aydin Buluc, James Demmel, Laura Grigori, Oded
Schwartz, Sivan Toledo, and Samuel Williams. 2016. Exploiting multiple levels
of parallelism in sparse matrix-matrix multiplication. SIAM Journal on Scientific
Computing 38, 6 (2016), C624–C651.

[9] Ariful Azad, Aydin Buluç, and John Gilbert. 2015. Parallel triangle counting
and enumeration using matrix algebra. In 2015 IEEE International Parallel and
Distributed Processing Symposium Workshop. IEEE, 804–811.

[10] Ariful Azad, Georgios A Pavlopoulos, Christos A Ouzounis, Nikos C Kyrpides,
and Aydin Buluç. 2018. HipMCL: a high-performance parallel implementation of
the Markov clustering algorithm for large-scale networks. Nucleic acids research
46, 6 (2018), e33–e33.

[11] Daehyeon Baek, Soojin Hwang, Taekyung Heo, Daehoon Kim, and Jaehyuk Huh.
2021. InnerSP: A memory efficient sparse matrix multiplication accelerator with
locality-aware inner product processing. In 2021 30th International Conference on
Parallel Architectures and Compilation Techniques (PACT). IEEE, 116–128.

[12] Nathan Bell, Steven Dalton, and Luke N Olson. 2012. Exposing fine-grained
parallelism in algebraic multigrid methods. SIAM Journal on Scientific Computing
34, 4 (2012), C123–C152.

[13] Luc Buatois, Guillaume Caumon, and Bruno Lévy. 2009. Concurrent number
cruncher: a GPU implementation of a general sparse linear solver. International
Journal of Parallel, Emergent and Distributed Systems 24, 3 (2009), 205–223.

[14] Aydin Buluç, Jeremy T Fineman, Matteo Frigo, John R Gilbert, and Charles E
Leiserson. 2009. Parallel sparse matrix-vector and matrix-transpose-vector multi-
plication using compressed sparse blocks. In Proceedings of the twenty-first annual
symposium on Parallelism in algorithms and architectures. 233–244.

[15] Phillip Colella. 2004. Defining software requirements for scientific computing.
(2004).

[16] Steven Dalton, Sean Baxter, Duane Merrill, Luke Olson, and Michael Garland.
2015. Optimizing sparse matrix operations on gpus using merge path. In 2015
IEEE International Parallel and Distributed Processing Symposium. IEEE, 407–416.

[17] Steven Dalton, Nathan Bell, Luke Olson, and Michael Garland. 2014. Cusp:
Generic Parallel Algorithms for Sparse Matrix and Graph Computations. http:
//cusplibrary.github.io/ Version 0.5.0.

[18] Timothy A Davis and Yifan Hu. 2011. The University of Florida sparse matrix
collection. ACM Transactions on Mathematical Software (TOMS) 38, 1 (2011),
1–25.

[19] Gunduz Vehbi Demirci and Cevdet Aykanat. 2020. Scaling sparse matrix-matrix
multiplication in the accumulo database. Distributed and Parallel Databases 38
(2020), 31–62.

[20] Julien Demouth. 2012. Sparse matrix-matrix multiplication on the GPU. In
Proceedings of the GPU technology conference, Vol. 3.

[21] Mehmet Deveci, Christian Trott, and Sivasankaran Rajamanickam. 2017.
Performance-portable sparse matrix-matrix multiplication for many-core archi-
tectures. In 2017 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). IEEE, 693–702.

[22] Mehmet Deveci, Christian Trott, and Sivasankaran Rajamanickam. 2018. Multi-
threaded sparse matrix-matrix multiplication for many-core and GPU architec-
tures. Parallel Comput. 78 (2018), 33–46.

[23] Steve Dropsho, Alper Buyuktosunoglu, Rajeev Balasubramonian, David H Al-
bonesi, Sandhya Dwarkadas, Greg Semeraro, Grigorios Magklis, and Michael L
Scottt. 2002. Integrating adaptive on-chip storage structures for reduced dy-
namic power. In Proceedings. International Conference on Parallel Architectures
and Compilation Techniques. IEEE, 141–152.

[24] Valentin Le Fèvre and Marc Casas. 2023. Optimization of SpGEMM with Risc-V
vector instructions. arXiv preprint arXiv:2303.02471 (2023).

[25] John R Gilbert, Cleve Moler, and Robert Schreiber. 1992. Sparse matrices in
MATLAB: Design and implementation. SIAM journal on matrix analysis and
applications 13, 1 (1992), 333–356.

[26] John R Gilbert, Steve Reinhardt, and Viral B Shah. 2008. A unified framework for
numerical and combinatorial computing. Computing in Science & Engineering 10,
2 (2008), 20–25.

[27] Felix Gremse, Andreas Hofter, Lars Ole Schwen, Fabian Kiessling, and Uwe
Naumann. 2015. GPU-accelerated sparsematrix-matrixmultiplication by iterative
row merging. SIAM Journal on Scientific Computing 37, 1 (2015), C54–C71.

[28] Felix Gremse, Kerstin Kupper, and Uwe Naumann. 2018. Memory-efficient sparse
matrix-matrix multiplication by row merging on many-core architectures. SIAM
Journal on Scientific Computing 40, 4 (2018), C429–C449.

[29] Giulia Guidi, Oguz Selvitopi, Marquita Ellis, Leonid Oliker, Katherine Yelick, and
Aydın Buluç. 2021. Parallel string graph construction and transitive reduction
for de novo genome assembly. In 2021 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 517–526.

[30] Fred G Gustavson. 1978. Two fast algorithms for sparse matrices: Multiplication
and permuted transposition. ACM Transactions on Mathematical Software (TOMS)
4, 3 (1978), 250–269.

[31] Song Han, Huizi Mao, and William J. Dally. 2016. Deep Compression: Compress-
ing Deep Neural Network with Pruning, Trained Quantization and Huffman
Coding. In Proceedings of the 4th International Conference on Learning Representa-
tions (ICLR), Yoshua Bengio and Yann LeCun (Eds.).

[32] Timothy Hayes, Oscar Palomar, Osman Unsal, Adrian Cristal, and Mateo Valero.
2012. Vector extensions for decision support dbms acceleration. In 2012 45th
annual IEEE/ACM international symposium on microarchitecture. IEEE, 166–176.

[33] Kartik Hegde, Hadi Asghari-Moghaddam, Michael Pellauer, Neal Crago, Aamer
Jaleel, Edgar Solomonik, Joel Emer, and Christopher W Fletcher. 2019. Exten-
sor: An accelerator for sparse tensor algebra. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture. 319–333.

[34] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste.
2021. Sparsity in deep learning: Pruning and growth for efficient inference and
training in neural networks. Journal of Machine Learning Research 22, 241 (2021),
1–124.

[35] Reza Hojabr, Ali Sedaghati, Amirali Sharifian, Ahmad Khonsari, and Arrvindh
Shriraman. 2021. Spaghetti: Streaming accelerators for highly sparse gemm
on fpgas. In 2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 84–96.

[36] Intel. 2020. Intel® Architecture Instruction Set Extensions and Future Features
Programming Reference. 319433-038.

[37] Valentin Isaac-Chassande, Adrian Evans, Yves Durand, and Frédéric Rousseau.
2024. Dedicated Hardware Accelerators for Processing of Sparse Matrices and
Vectors: A Survey. ACM Transactions on Architecture and Code Optimization
(2024).

[38] Satoshi Itoh, Pablo Ordejón, and Richard M Martin. 1995. Order-N tight-binding
molecular dynamics on parallel computers. Computer physics communications
88, 2-3 (1995), 173–185.

[39] Haonan Ji, Shibo Lu, Kaixi Hou, Hao Wang, Zhou Jin, Weifeng Liu, and Brian
Vinter. 2021. Segmented merge: A new primitive for parallel sparse matrix
computations. International Journal of Parallel Programming 49 (2021), 732–744.

[40] Haim Kaplan, Micha Sharir, and Elad Verbin. 2006. Colored intersection searching
via sparse rectangular matrix multiplication. In Proceedings of the twenty-second
annual symposium on Computational geometry. 52–60.

[41] David R Kincaid, Thomas C Oppe, and David M Young. 1989. ITPACKV 2D user’s
guide. Technical Report.

[42] Onur Kocberber, Boris Grot, Javier Picorel, Babak Falsafi, Kevin Lim, and
Parthasarathy Ranganathan. 2013. Meet the walkers: Accelerating index tra-
versals for in-memory databases. In Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture. 468–479.

[43] Moritz Kreutzer, Georg Hager, Gerhard Wellein, Holger Fehske, and Alan R
Bishop. 2014. A unified sparse matrix data format for efficient general sparse
matrix-vector multiplication on modern processors with wide SIMD units. SIAM
Journal on Scientific Computing 36, 5 (2014), C401–C423.

[44] Jiayu Li, Fugang Wang, Takuya Araki, and Judy Qiu. 2019. Generalized sparse
matrix-matrix multiplication for vector engines and graph applications. In 2019
IEEE/ACM Workshop on Memory Centric High Performance Computing (MCHPC).
IEEE, 33–42.

[45] Jiawen Liu, Jie Ren, Roberto Gioiosa, Dong Li, and Jiajia Li. 2021. Sparta: High-
performance, element-wise sparse tensor contraction on heterogeneous memory.
In Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. 318–333.

[46] Weifeng Liu and Brian Vinter. 2015. CSR5: An efficient storage format for cross-
platform sparse matrix-vector multiplication. In Proceedings of the 29th ACM on
International Conference on Supercomputing. 339–350.

[47] Xing Liu, Mikhail Smelyanskiy, Edmond Chow, and Pradeep Dubey. 2013. Effi-
cient sparse matrix-vector multiplication on x86-based many-core processors. In
Proceedings of the 27th international ACM conference on International conference
on supercomputing. 273–282.

[48] Francesco Minervini, Oscar Palomar, Osman Unsal, Enrico Reggiani, Josue
Quiroga, Joan Marimon, Carlos Rojas, Roger Figueras, Abraham Ruiz, Alberto
Gonzalez, Jonnatan Mendoza, Ivan Vargas, Cesar Hernandez, Joan Cabre, Lina

PACT’24, October 13–16, 2024, Long Beach, California, USA Short Author, et al.

Khoirunisya, Mustapha Bouhali, Julian Pavon, Francesc Moll, Mauro Olivieri,
Mario Kovac, Mate Kovac, Leon Dragic, Mateo Valero, and Adrian Cristal. 2022.
Vitruvius+: An Area-Efficient RISC-V Decoupled Vector Coprocessor for High
Performance Computing Applications. ACM Trans. Archit. Code Optim. (dec
2022). https://doi.org/10.1145/3575861 Just Accepted.

[49] Alexander L Minkin, Steven J Heinrich, Rajeshwaran Selvanesan, Charles Mc-
Carver, Stewart Glenn Carlton, Ming Y Siu, Yan Yan Tang, and Robert J Stoll. 2012.
Cache miss processing using a defer/replay mechanism. US Patent 8,266,383.

[50] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P Jouppi. 2009.
CACTI 6.0: A tool to model large caches. HP laboratories 27 (2009), 28.

[51] Yusuke Nagasaka, Satoshi Matsuoka, Ariful Azad, and Aydın Buluç. 2018. High-
performance sparse matrix-matrix products on Intel KNL and multicore architec-
tures. In Proceedings of the 47th International Conference on Parallel Processing
Companion. 1–10.

[52] Yusuke Nagasaka, Satoshi Matsuoka, Ariful Azad, and Aydın Buluç. 2019. Perfor-
mance optimization, modeling and analysis of sparse matrix-matrix products on
multi-core and many-core processors. Parallel Comput. 90 (2019), 102545.

[53] Yusuke Nagasaka, Akira Nukada, and Satoshi Matsuoka. 2017. High-performance
and memory-saving sparse general matrix-matrix multiplication for NVIDIA
Pascal GPU. In 2017 46th International Conference on Parallel Processing (ICPP).
IEEE, 101–110.

[54] Fan Ni, Song Jiang, Hong Jiang, Jian Huang, and Xingbo Wu. 2019. SDC: a
software defined cache for efficient data indexing. In Proceedings of the ACM
International Conference on Supercomputing. 82–93.

[55] Yuyao Niu, Zhengyang Lu, Haonan Ji, Shuhui Song, Zhou Jin, and Weifeng Liu.
2022. TileSpGEMM: a tiled algorithm for parallel sparse general matrix-matrix
multiplication on GPUs. In Proceedings of the 27th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming. 90–106.

[56] NVIDIA 2023. CUDA C++ Programming Guide, Release 12.1. NVIDIA.
[57] Subhankar Pal, Jonathan Beaumont, Dong-Hyeon Park, Aporva Amarnath, Siy-

ing Feng, Chaitali Chakrabarti, Hun-Seok Kim, David Blaauw, Trevor Mudge,
and Ronald Dreslinski. 2018. Outerspace: An outer product based sparse ma-
trix multiplication accelerator. In 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 724–736.

[58] Mathias Parger, Martin Winter, Daniel Mlakar, and Markus Steinberger. 2020.
Speck: Accelerating gpu sparse matrix-matrix multiplication through lightweight
analysis. In Proceedings of the 25th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. 362–375.

[59] Julián Pavón, Ivan Vargas Valdivieso, Adrián Barredo, Joan Marimon, Miquel
Moreto, Francesc Moll, Osman Unsal, Mateo Valero, and Adrian Cristal. 2021.
VIA: A Smart Scratchpad for Vector Units with Application to Sparse Matrix Com-
putations. In 2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 921–934.

[60] Gengyu Rao, Jingji Chen, Jason Yik, and Xuehai Qian. 2022. Sparsecore: stream
isa and processor specialization for sparse computation. In Proceedings of the
27th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems. 186–199.

[61] RISC-V. 2023. RISC-V V Vector Extension. https://github.com/riscv/riscv-v-spec
[62] Paul Scheffler, Florian Zaruba, Fabian Schuiki, Torsten Hoefler, and Luca Benini.

2023. Sparse Stream Semantic Registers: A Lightweight ISA Extension Accelerat-
ing General Sparse Linear Algebra. arXiv preprint arXiv:2305.05559 (2023).

[63] Oguz Selvitopi, Md Taufique Hussain, Ariful Azad, and Aydın Buluç. 2020. Opti-
mizing high performance markov clustering for pre-exascale architectures. In
2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 116–126.

[64] Premkishore Shivakumar and Norman P Jouppi. 2001. Cacti 3.0: An integrated
cache timing, power, and area model. (2001).

[65] Nitish Srivastava, Hanchen Jin, Jie Liu, David Albonesi, and Zhiru Zhang. 2020.
Matraptor: A sparse-sparse matrix multiplication accelerator based on row-wise
product. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). IEEE, 766–780.

[66] Nigel Stephens, Stuart Biles, Matthias Boettcher, Jacob Eapen, Mbou Eyole, Gia-
como Gabrielli, Matt Horsnell, Grigorios Magklis, Alejandro Martinez, Nathanael
Premillieu, et al. 2017. The ARM scalable vector extension. IEEE micro 37, 2
(2017), 26–39.

[67] Blaise Tine, Krishna Praveen Yalamarthy, Fares Elsabbagh, and Kim Hyesoon.
2021. Vortex: Extending the RISC-V ISA for GPGPU and 3D-graphics. In MICRO-
54: 54th Annual IEEE/ACM International Symposium on Microarchitecture. 754–
766.

[68] Steven JE Wilton and Norman P Jouppi. 1996. CACTI: An enhanced cache access
and cycle time model. IEEE Journal of solid-state circuits 31, 5 (1996), 677–688.

[69] Michael M Wolf, Mehmet Deveci, Jonathan W Berry, Simon D Hammond, and
Sivasankaran Rajamanickam. 2017. Fast linear algebra-based triangle counting
with kokkoskernels. In 2017 IEEEHigh Performance Extreme Computing Conference
(HPEC). IEEE, 1–7.

[70] Chencheng Ye, Yuanchao Xu, Xipeng Shen, Xiaofei Liao, Hai Jin, and Yan Soli-
hin. 2021. Hardware-based address-centric acceleration of key-value store. In
2021 IEEE International Symposium on High-Performance Computer Architecture

(HPCA). IEEE, 736–748.
[71] Raphael Yuster and Uri Zwick. 2004. Detecting short directed cycles using

rectangular matrix multiplication and dynamic programming. In Proceedings of
the fifteenth annual ACM-SIAM symposium on Discrete algorithms. 254–260.

[72] Chao Zhang, Maximilian Bremer, Cy Chan, John Shalf, and Xiaochen Guo. 2022.
ASA: Accelerating Sparse Accumulation in Column-wise SpGEMM. ACM Trans-
actions on Architecture and Code Optimization (TACO) 19, 4 (2022), 1–24.

[73] Guowei Zhang, Nithya Attaluri, Joel S Emer, and Daniel Sanchez. 2021. Gamma:
Leveraging Gustavson’s algorithm to accelerate sparse matrix multiplication. In
Proceedings of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems. 687–701.

[74] Guowei Zhang and Daniel Sanchez. 2019. Leveraging caches to accelerate hash
tables and memoization. In Proceedings of the 52nd annual IEEE/ACM international
symposium on microarchitecture. 440–452.

