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A B S T R A C T   

The effects of cross-processing lingonberry press cake (LPC) (2.5–30 %, dw/dw) with herring co-products on 
protein yield, oxidative stability and color of pH-shift-produced protein isolates were investigated. Even at 2.5 % 
LPC, the formation of volatile oxidation-derived aldehydes, including hexanal, (E)-2-hexenal, heptanal, octanal, 
and 2,4-heptadienal, were prevented during the actual protein isolate production. Adding 10 % LPC successfully 
prevented formation of all these aldehydes also during eight days ice storage which was explained by the par-
titioning of phenolics, especially ideain (1.09 mg/g dw) and procyanidin A1 (65.5 mg/g dw), into isolates. 
Although higher amounts of LPC (20–30 %) further prolonged the oxidation lag phase, it reduced total protein 
yield, increased the consumption of acid and base, and darkened protein isolates. Therefore, it is recommended 
to use 10 % LPC when pH-shift-processing sensitive fish raw materials as a route to mitigate lipid oxidation and 
at the same time promote industrial symbiosis and more circular food production.   

1. Introduction 

Herring (Clupea harengus) is a nutritious fish species rich in e.g., high- 
quality proteins, long chain (LC) n-3 fatty acids, minerals such as iron, 
selenium and iodine, as well as vitamins D and B12 (Šližyte et al., 2014; 
Tuomisto et al., 2020). The consumption of herring has been associated 
with various advantages for human health, including the enhancement 
of cardiovascular well-being and improved cognitive function (Tuomisto 
et al., 2020; de Groot et al., 2012). The global annual herring catch is as 
high as 1820 thousand tonnes (FAO, 2020), but despite the nutritional 
advantages, a significant proportion of the landings is dedicated to 
fodder production; either directly as whole fish or as filleting rest raw 
materials (Zhang et al., 2024; Luo et al., 2024). The latter make up ~ 60 
% of the fish weight, and results in a major loss of valuable nutrients 
from the food chain that could have been used directly for human 
consumption (Wu et al., 2021). 

Lingonberry (Vaccinium vitis-idaea) is a small, red and tart berry that 
grows in the boreal forests of the Northern Hemisphere, particularly in 
Scandinavia (Dróżdż et al., 2017; Viljakainen et al., 2010). In Sweden an 
estimated 8000 tonnes of wild lingonberry are harvested annually 
(Casimir et al., 2018). The berries can be consumed raw or cooked, and 

are commonly used to make lingonberry jam, compote, juice, or syrup 
(Dróżdż et al., 2017). During lingonberry juice processing, about 20–30 
% (w/w) of the fruit is left behind as a press cake (Struck et al., 2016). 
Although lingonberry press cake (LPC) contains significant amounts of 
dietary fiber, organic acids, and antioxidants, its integration into food 
products remains poorly explored. Rather, it is frequently used for 
purposes like livestock nutrition, biogas generation, or even waste 
disposal (Bujor et al., 2018; Struck et al., 2016). 

The pH-shift method is an effective tool for maximizing the use of 
fish filleting rest raw materials by extracting valuable proteins (Gehring 
et al., 2009). This process begins by adjusting the pH of fish-plus-water 
homogenates to either high or low levels to solubilize the proteins, 
followed by protein precipitation and separation that occurs at the iso-
electric point (pI) of fish proteins (Gehring et al., 2009). However, with 
heme-rich raw materials, lipid oxidation can occur during the pH-shift- 
based protein extraction due e.g., to tissue disintegration, exposure to 
oxygen as well as acidic conditions (Wu et al., 2021). The oxidation of 
fish lipids leads to the generation of off-flavors, shifts in color appear-
ance, and nutrient degradation, all of which contribute to a decline in 
product quality and decreased consumer acceptance (Mohammadi et al., 
2021). 
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In earlier research, a new cross-processing concept was developed to 
tackle the lipid oxidation issue typically seen when pH-shift processing 
heme-rich fish filleting co-products. This was achieved by blending the 
fish filleting co-products and 30 % LPC (on a dry weight, dw, basis) 
before extracting the protein (Zhang et al., 2022). Using this approach, 
formation of lipid oxidation products such as 4-hydroxy-(E)-2-hexenal 
(HHE), malondialdehyde (MDA), and 4-hydroxy-(E)-2-nonenal (HNE) 
was completely prevented throughout the pH-shift protein extraction 
and the 16-day iced storage of the obtained protein isolates (Zhang et al., 
2022). Moreover, it was observed that adding 30 % LPC significantly 
enhanced the water solubility and gelation capabilities of the resulting 
protein isolates (Zhang, Ström, et al., 2023). 

However, there were also some drawbacks with the new cross- 
processing concept. First, the total protein yield was reduced even 
though process modifications were implemented; something which was 
primarily ascribed reduced protein solubility (Zhang, Ström, et al., 
2023). Second, the usage of base solution to reach the targeted protein 
solubilization pH of 12 increased due to the low pH of the LPC which 
stems from its abundance of organic acids, e.g., benzoic acid (Klavins 
et al., 2021). Third, adding 30 % (dw/dw) of LPC to fish co-products 
dramatically darkened the protein isolates (Zhang et al., 2022). 
Fourth, based on the life cycle assessment (LCA) results, 30 % LPC-level 
is suggested to be reduced from the perspective of sustainable produc-
tion (Coelho et al., 2022, 2023). Provided the powerful antioxidative 
ability of LPC compared to other plant-based side streams tested for 
cross-processing (Zhang et al., 2022), a hypothesis was set up that LPC 
could be significantly reduced to mitigate the observed challenges, 
while still preserving the potent antioxidative effects seen both during 
and after pH-shift processing of herring co-products. 

Here, the above hypothesis was tested by progressively reducing the 
LPC addition level from an initial 30 % (dw/dw) down to a final 2.5 % 
(dw/dw) during pH-shift processing of herring filleting rest raw mate-
rials. To better reflect rancid odour development of the protein isolates, 
volatile aldehydes were followed as oxidation markers (O’Dwyer et al., 
2013) instead of the previously used MDA, HHE and HNE, measured 
through the 2,4-dinitrophenylhydrazine (DNPH) derivatization com-
bined with liquid chromatography-tandem mass spectrometry (LC-MS/ 
MS) analysis (Abdollahi et al., 2020; Zhang et al., 2022). Five specific 
volatile aldehydes were selected as markers − hexanal, heptanal, (E)-2- 
hexenal, 2,4-heptadienal and octanal- which are routinely identified in 
oxidized fish and other foods rich in either n-3 or n-6 PUFAs (Aitta et al., 
2021; Kakko, Damerau, et al., 2022). Effectively applying the innovative 
cross-processing strategy will pave the way to optimize the extraction of 
proteins, micronutrients, and phenolic compounds from underutilized 
herring and lingonberry side streams. 

2. Materials and methods 

2.1. Preparation of herring co-products 

Fresh co-products (heads and backbones) obtained from industrial 
herring (Clupea harengus) filleting, were provided by Sweden Pelagic AB, 
located in Ellös, Sweden. Upon their arrival at Chalmers University of 
Technology in February 2021, the heads and backbones were mixed in 
equal proportions. A desktop meat grinder with a 4.5 mm perforated 
plate (C/E22 N; Minerva Omega, Bologna, Italy) was used to grind the 
mixture. The minced herring co-products were then sealed in plastic 
bags and preserved at a temperature of − 80 ◦C. 

2.2. Preparation of lingonberry press cake (LPC) 

The press cakes obtained from lingonberry (Vaccinium vitis-idaea) 
juice production were sourced from Grangärde Musteri AB, based in 
Grangärde, Sweden. They were transported to Chalmers University of 
Technology in November 2019 after five months of storage at − 20 ◦C. At 
Chalmers they were stored at − 80 ◦C. The LPC included skins, seeds, 

leaves, stems, and residual pulp with the leaves quantified to 9 % (ww/ 
ww) and the seeds to 24 %. LPC was ground in a frozen state using a 
desktop grinder equipped with a 4.5 mm perforated plate (C/E22 N; 
Minerva Omega, Bologna, Italy) at room temperature. The ground LPC 
was then stored at − 80 ◦C. 

2.3. pH-shift processing 

The pH-shift processing of herring co-products with the addition of 
LPC was conducted following the steps shown in Fig. 1. Initially, both 
herring co-products and LPC were defrosted in plastic bags under cold 
tap water until the central temperature reached 0℃. Subsequently, 
various LPC ratios corresponding to 0, 2.5 %, 5 %, 10 %, 20 % and 30 % 
of the dry weight of the herring co-products, as presented in the Sup-
plementary Table 1, were mixed with the herring co-products. This 
combination was further diluted with chilled distilled water at a 1:6 
ratio and then uniformly blended using an L5M-A type homogenizer 
(Silverson, Chesham, UK) operating at 8,000 rpm for 90 s. To achieve 
protein solubilization, the homogenate (H) was adjusted to a pH of 12.0 
using a 2 M NaOH solution, followed by a 15-minute period for protein 
solubilization. Centrifugation (8,500 × g, 20 min, 4 ◦C) of the homog-
enate resulted in three distinct layers: a top lipid layer, an intermediate 
supernatant, and a bottom sediment. The middle layer, referred to as S1, 
underwent pH adjustment to 5.0 when LPC was present (Zhang, Ström, 
et al., 2023) and 5.5 in its absence (Zhang, Ström, et al., 2023), using a 2 
M HCl solution. After pH adjustment, another round of centrifugation 
followed, yielding a second supernatant, termed S2, which was sepa-
rated from the protein sediment. It is worth noting that the entire pH- 
shift processing, both with and without LPC, was replicated (ne = 2) 
and executed on ice to minimize potential lipid oxidation. 

An assessment of protein solubility and protein yield during the two 
steps of the process, i.e., protein solubilization and protein precipitation, 
employed repeated sample analyses (triplets, n = 3). The protein con-
centration in the homogenate and the two supernatants were measured 
and data were used in equations (1) to (5). A derivative of the Lowry 
protein assay (Markwell et al., 1978) served as the measuring method, 
capitalizing on the interaction between copper ions and the Folin- 
Ciocalteu agent. The resulting chromatic response was gauged at a 
wavelength of 660 nm, with bovine serum albumin (99 %, Sigma- 
Aldrich Co., Germany) serving as the standard. 

Solubility1(%) =
c S1

c H
× 100 (1)  

Yield1(%) =
c S1 × VS1

c H×VH
× 100 (2)  

Solubility2(%) =
c S2

c S1
× 100 (3)  

Yield2(%) = (1 −
cS2 × VS2

cS1 × VS1
) × 100 (4)  

Totalyield(%) =
cS1 × VS1 − cS2 × VS2

c H×VH
× 100 (5) 

To prepare protein isolates for ice storage trials, the recovered pro-
tein pellet was blended on ice using a stainless-steel spatula. The 
moisture content was then equalized to 80 % through extra centrifu-
gations (8500 × g, 4 ◦C). To determine the moisture content between 
these extra centrifugations, a moisture analyzer (HE73, Mettler Toledo) 
which heats the samples to 105 ◦C was used. The protein isolates’ pH 
was eventually set to 7.00 ± 0.05 through the addition of 2 M NaOH. 
Before subjecting them to ice storage tests, these isolates were stored at 
− 80 ◦C, with the longest storage time being about two months. While 
most protein isolate productions were carried out once, those with a 20 
% LPC incorporation were done twice. 
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2.4. Storage of protein isolates on ice 

The procedure for ice storage of protein isolates was adapted from 
Wu et al. (2021), with minor alterations. Essentially, to mitigate mi-
crobial activity, 200 ppm of streptomycin was integrated into the pro-
tein isolates based on their moisture levels. Subsequently, an 
approximate 27.5 g portion of each protein isolate was spread thinly 
(around 5–6 mm in depth) into two separate 250 mL Erlenmeyer flasks. 
Each flask was tightly sealed, encased in aluminum foil to shield from 
light, and then placed within thermally insulated boxes situated in a 4 ◦C 
refrigerated chamber. This storage lasted for a maximum of 16 days. To 
chemically assess lipid oxidation, periodic samples of roughly 0.7 g were 
regularly taken. Additionally, a daily qualitative sensorial assessment 
was performed to detect any onset of rancid odor, measured on a scale 
ranging from 0 to 100 (see Supplementary Fig. 1 for rancid odor results). 

2.5. Measurement of volatile aldehydes in protein isolates during ice 
storage 

The analysis of volatile aldehydes, indicative of lipid oxidation 
levels, was conducted using HS-SPME (Supelco, Bellefonte, PA, USA) in 
combination with GC–MS (Focus GC ISQ LT; Thermo Fisher Scientific, 
Austin, TX, USA). The methodology was primarily based on the protocol 
provided by Sajib et al. (2020), with certain modifications as noted by 
Zhang et al. (2023). In brief, ~0.7 g of protein isolate sample taken 
during the ice storage trials were taken from − 80 ℃ and immediately 
thawed under cold running water. After thawing, the samples were 
weighed to four decimal places and dissolved in 4 ml of Milli-Q water. 
Using a Potter-Elvehjem piston, the samples were homogenized by 
pressing against the walls of a glass test tube. The resulting homogenate 
was then transferred to a 20 ml SPME vial. Afterward, the glass tube and 
pestle were rinsed with another 4 ml of Milli-Q water, which was added 
to the initial 4 ml in the vial. As an internal standard, 2.5 mM 3-Meth-
yl-3-buten-1-ol in Milli-Q water was utilized. Two hundred µl of the 
internal standard was added to the vial, followed by vortexing for 10 s. 
The volatile compounds were then extracted by stirring at 500 rpm for 
20 min at 60℃, after a 5-minute equilibration at the same temperature. 
Volatiles were adsorbed onto a 75 μm Carboxen/polydimethylsiloxane 
(CAR/PDMS) coated SPME fiber (Supelco, US). GC–MS analysis 
involved the desorption of volatiles at 300℃ for 10 min, followed by 
separation on a fused silica ZB-1701 capillary column (Phenomenex, 30 
m x 0.32 mm, 1 μm). The MS operated in electron ionization mode, 
scanning ions from 10 to 250 amu. Markers for lipid oxidation, hexanal, 
(E)-2-hexanal, heptanal, octanal, and 2,4-heptadienal, were selected due 
to their abundance in the volatiles detected (Zhang, 2023) and their 
prevalence in oxidized fish and other samples containing high amounts 
of n-3 or n-6 PUFA (Aitta et al., 2021; Kakko, Damerau, et al., 2022). 
Specific details on the retention time and SIM mass linked to these 
volatile aldehydes can be found in Supplementary Table 2. 

2.6. Proximate composition analysis of raw materials and protein isolates 

Moisture and ash contents were measured by subjecting the samples 
to temperatures of 105℃ and 550℃, respectively (AOAC, 2005). Crude 
protein content was quantified using the Dumas method with a LECO 
nitrogen analyzer (TruMac-N; LECO, St. Joseph, MI, USA) as detailed by 
Marcó et al. (2002). Nitrogen-to-protein conversion ratios of 5.58 were 
applied for herring co-products and isolates, and 5.4 for LPC (Mariotti 
et al., 2008; Zhang et al., 2022). Crude lipid content was determined by 
using a modified version of Lee’s method involving chloroform and 
methanol extraction processes (Zhang et al., 2022). 

2.7. Hemoglobin (Hb) measurements of herring co-products 

Frozen co-products of herring were combined with liquid nitrogen 
and subsequently milled into a powder using a chopper. The quantifi-
cation of Hb was executed using the Hornsey acid hematin method 
(Hornsey, 1956). 

2.8. Total phenolic content (TPC) measurements of LPC and protein 
isolates 

The phenolic compounds were extracted following the procedure 
detailed in Zhang et al. (2022), employing a 70 % methanol solution 
containing 1 % trifluoroacetic acid as the extraction solvent. TPC was 
quantified utilizing a modified version of the Folin-Ciocalteu colori-
metric assay (Oliveira et al., 2019), and the TPC values were expressed 
as gallic acid equivalents (GAE) per 100 g of the sample on a dry weight 
(dw) basis. 

2.9. Analysis of key phenolic compounds in LPC and protein isolates 

The extraction of phenolics was conducted according to Oliveira 
et al. (2019) with modifications. In brief, 0.2 g of freeze-dried sample 
was mixed with 3 mL of 70 % acidified methanol (0.3 % HCl) in a 50 mL 
centrifugation tube, followed by 30 s of vortexing. Subsequently, the 
tubes were placed in an ultrasonication bath for 15 min at room tem-
perature, with intermittent shaking every 5 min. Afterwards, centrifu-
gation at 5,000 × g for 10 min separated the supernatant. The extraction 
procedures were repeated twice, and the supernatants containing the 
extracted phenolics were collected. The supernatants were then centri-
fuged at 3,000 × g for 10 min to remove the insoluble fractions. The 
supernatants were stored at − 80 ◦C until analysis. Phenolics quantifi-
cation was performed using a liquid chromatography-tandem mass 
spectrometry (LC-MS/MS) system comprising a 6500 + QTRAP triple- 
quadrupole mass spectrometer (AB Sciex, Stockholm, Sweden) with an 
ESI Turbo Spray Ion Drive source, operated in positive-ion mode. 
Chromatographic separations utilized a Premier BEH C18 1.7 μm 
2.1x50mm column (Waters, Solna, Sweden). The mobile phases were 
LC-MS grade water (solvent A) and MeOH (solvent B), both with 0.1 % 

Fig. 1. The pH-shift processing of herring co-products with the addition of lingonberry press cake (LPC).  
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formic acid, used in a gradient elution as follows: 0–2 min, 2 % B; 2–2.5 
min, 10 % B; 2.5–4 min, 25 % B; 4–4.5 min, 45 % B; 4.5 min, 100 % B 
(held for 30 sec), and 4.5–6 min, 2 % B. The flow rate was set to 0.8 mL/ 
min, column temperature was maintained at 50 ◦C, and the autosampler 
temperature was 12 ◦C. Multiple reaction monitoring (MRM) transitions 
for each analyte were optimized via direct infusion at a concentration of 
25 mM for each phenolic molecule. Two Q1/Q3 pairs were determined 
for each analyte; the more sensitive of the two was used for quantifi-
cation, while the other served as a qualifier for compound identity 
verification. The retention time window for the scheduled MRM was 1 
min for each analyte. Based on previous studies of LPC subjected to pH- 
shift processing (Zhang et al., 2022; Lei et al., submitted for publication), 
in the present study, cyanidin 3-O-galactoside (Cy3Gal, also known as 
’ideain’) and procyanidin A1 were used as standards, and the data are 
expressed as μg/g dw, or mg/g dw. 

2.10. Color measurements of protein isolates 

A colorimeter (CR-400; Konica Minolta, Osaka, Japan) was used to 
assess the color characteristics of protein isolates in the CIE L*a*b* color 
space, following the guidelines set by Zhang et al. (2022). The influence 
of varying LPC addition on the color characteristics of the herring pro-
tein isolates was determined via the △E2000, derived from the 
CIEDE2000 color deviation equation based on primary color values 
(Sharma et al., 2005). 

2.11. Statistical analysis 

To identify significant differences among samples and comprehend 
the time-based changes in volatile aldehyde formation for a specific 
sample at stipulated intervals, a statistical analysis was conducted using 
the SPSS Statistics software (version 27, IBM, NY, USA). The process 
included a one-way analysis of variance (ANOVA) followed by Duncan’s 
post-hoc analysis. A significance level (p) was set at 0.05, below which 
the differences were considered significant. 

3. Results and discussion 

3.1. Lipid oxidation in protein isolates produced with different ratios of 
LPC 

The oxidation of unsaturated fatty acids produces peroxyl radicals, 
which subsequently react with other unsaturated fatty acids to form 
hydroperoxide intermediates. Further chemical reactions such as frag-
mentation and rearrangement lead to the formation of aldehydes, some 
of which are stable over time and can be reliably quantified using e.g., 
GC (Schneider, 2009; Kakko et al., 2022). In this study, hexanal, (E)-2- 
hexenal, heptanal, octanal, and 2,4-heptadienal were quantified. The 
selection of these volatile aldehydes as markers of lipid oxidation was 
based on a preliminary study that explored the volatile profiles of fresh 
and oxidized herring protein isolates produced by the pH-shift method 
(Zhang, 2023). These volatile aldehydes are also reported to be abun-
dant or used as lipid oxidation markers in herring oils (Aitta et al., 
2021), herring protein isolates (Kakko, Aitta, et al., 2022), silver carp 
skin, belly, and mince (Kunyaboon et al., 2021), and large yellow 
croaker meat (Zhao et al., 2021). Hexanal is a six-carbon saturated 
aldehyde which is primarily linked to n-6 PUFAs oxidation (Jiarpinijnun 
et al., 2022). It can also be produced from the breakdown of other 
preformed volatiles, such as 2-octenal and 2,4-decadienal (Sajib & 
Undeland, 2020). Another six-carbon aldehyde, (E)-2-hexenal, is formed 
during linolenic acid oxidation (Aitta et al., 2021; Kakko, Damerau, 
et al., 2022). Heptanal, a seven- carbon aldehyde, and octanal, an 
eight-carbon aldehyde, can be generated from several unsaturated fatty 
acids, including, but not limited to, palmitoleic acid, linoleic acid and 
eicosadienoic acid (Sutaria et al., 2022). The compound 2,4-heptadienal 
is a seven-carbon aldehyde that can be formed when eicosapentaenoic 

acid (EPA) undergoes oxidation (Lee et al., 2003). 
As depicted in Fig. 2, elevated levels of all marker aldehydes were 

detected in the freshly prepared control samples at Day 0, and the levels 
continued to increase until Day 3, on which day the sampling stopped 
due to an intense rancid odor. These findings were consistent with 
previous research indicating elevated concentrations of lipid hydroper-
oxides, MDA, HHE, HNE, and total carbonyls in the herring protein 
isolates produced by the pH-shift method (Abdollahi et al., 2020; Zhang, 
Ström, et al., 2023). The observed lipid oxidation can be attributed to e. 
g., the high Hb content of herring co-products − in the present study 
972.76 ± 5.09 μmol/kg wet weight (ww). Hb can decompose lipid hy-
droperoxides into free radicals and/or oxidize to ferryl heme iron and 
protein based free radicals, both pathways stimulating lipid oxidation 
(Wu et al., 2021; Zhang et al., 2024). Earlier research has revealed how 
the protein precipitation step at pH 5.5 can stimulate Hb-deoxygenation 
and metHb formation, which ultimately stimulate hemin loss and 
thereby hydroperoxide breakdown into radicals (Kristinsson & Hultin, 
2004; Undeland et al., 2004). Additionally, co-precipitation of Hb with 
myofibrils and/or membranes at pH 5.5 can bring Hb and hemin close to 
the phospholipid oxidation substrate (Wu et al., 2021). Specific pH-shift 
process steps, particularly water addition and the first centrifugation, 
can dilute ascorbic acid and sediment α-tocopherol, respectively, hereby 
disturbing the endogenous anti- to pro-oxidant balance (Wu et al., 
2021). Further to this, the high-speed homogenization step and the 
unfolding/refolding of proteins can disrupt the fish muscle microstruc-
ture and expose membranal phospholipids to pro-oxidants like Hb 
(Kristinsson & Hultin, 2004; Wu et al., 2021). 

As shown in Fig. 2, even at the lowest LPC addition (2.5 %, dw/dw), 
no significant change (p > 0.05) in the volatile aldehyde contents was 
detected in the freshly made protein isolates., i.e., on Day 0. This finding 
indicated a powerful antioxidant capacity of LPC. Berries are recognized 
for their high concentration of antioxidants, e.g., polyphenols such as 
flavonoids, anthocyanins, and phenolic acids (Bujor et al., 2018; Dróżdż 
et al., 2017; Mikulic-Petkovsek et al., 2012; Tulio et al., 2008; Yang 
et al., 2019). Among different berries, lingonberry has been noted for its 
high levels of proanthocyanidins, anthocyanins, and quercetin, as well 
as phenolic acids including benzoic acid, ellagic acid, and gallic acid 
(Bujor et al., 2018; Dróżdż et al., 2017). Lingonberry fruit extracts, 
prepared with 60:40 ethanol to water, displayed notable 1,1-diphenyl-2- 
picryl-hydrazyl (DPPH) radical scavenging activity, while extracts using 
ethyl acetate exhibited effective cupric reducing antioxidant capacity 
(CUPRAC) (Dróżdż et al., 2017). In addition to the fruits, the leaves and 
stems of lingonberry have been reported to be significant sources of 
natural antioxidants illustrated as an impressive DPPH radical scav-
enging activity (Bujor et al., 2018). The LPC used in the present study 
mainly consists of skins, seeds, and residual pulp. Its TPC content was 
determined as 3.60 ± 0.09 g gallic acid equivalents (GAE)/100 g, dry 
weight (dw). It is important to stress that during the pH-shift processing, 
the LPC is first extracted with water at alkaline pH and the extract is then 
subjected to a pH representing the pI of muscle proteins, ~pH 5.5. This 
indicates that the alkali-soluble molecules, which remain soluble at pH 
5.5 or may co-precipitate with the protein isolate, are expected to be key 
antioxidants. To investigate the solubility pattern of LPC antioxidants 
during pH-shift processing, LPC alone was subjected to pH-shift pro-
cessing in a recent study (Lei et al., submitted for publication). The 
different LPC fractions obtained during the processing, i.e., pellets and 
supernatants from the first and second centrifugations, were blended 
with Hb-fortified washed cod mince (WCM) to study their antioxidant 
capacity during ice storage. The fractions that exhibited the best anti-
oxidant abilities were further separated according to polarity and sub-
jected to analysis of phenolics. Cyanidin 3-O-galactoside (Cy3Gal), also 
known as ’ideain,’ and procyanidin A1 were identified as the two key 
compounds (Lei et al., submitted for publication). In the current study, 
the Cy3Gal and procyanidin A1 content of the LPC were determined as 
58.50 ± 0.73 mg/g, dw and 4.22 ± 0.03 mg/g, dw, respectively. 

During the 16 days of ice storage of protein isolates, it was shown 
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that the increased LPC addition ratio delayed the formation of volatile 
aldehydes (Fig. 2), which aligned with the hypothesis. As an example, 
the content of hexanal did not significantly increase until Day 4 with 2.5 
% LPC, until Day 5 with 5 % LPC, until Day 9 with 10 % LPC, and until 
Day 12 with 20 % LPC. With 30 % LPC, aldehyde formation was 
completely prevented throughout the 16 days of ice storage. The results 
of (E)-2-hexenal, heptanal, octanal, and 2,4-heptadienal corroborated 
the conclusions made based on the hexanal data, as shown in Fig. 2. The 
same was true for rancid odor data collected by internal sensory analysis 
during the storage (Supplementary Fig. 1). The reason for this clear 
dose–response behavior was strongly related to the TPC of the protein 
isolates. As the addition of LPC increased from 2.5 % to 30 % (dw/dw), 
the TPC of isolates went from 0.27 ± 0.02, 0.34 ± 0.02, 0.43 ± 0.01, 
0.67 ± 0.03, to 0.91 ± 0.03 g GAE/100 g dw. The finding that 30 % LPC 
entirely inhibited the formation of all five volatile aldehyde markers 
during 16 days of ice storage aligns with previous study revealing that 
30 % LPC completely prevented the production of MDA, HHE, and HNE 
in protein isolates derived from herring and salmon co-products over 16- 
days on ice (Zhang et al., 2022). This finding does not only indicate 
robustness of LPC antioxidant activity across studies, but also reveals 
good agreement between the two approaches for evaluating lipid 
oxidation. Similarly, Damerau et al. (2020) reported that adding adding 
3 % (w/w) dried industrial lingonberry press cake to minced, deskinned 
herring fillets significantly reduced the formation of volatile oxidation 
products over 10 months of frozen storage (Damerau et al., 2020). 

The two key compounds defined in LPC, Cy3Gal and procyanidin A1 
(Lei et al., submitted for publication), were also measured in the cross- 

processed protein isolates. As shown in Table 1, when increasing the 
LPC addition ratio from 2.5 % to 30 % (dw/dw), the concentration of 
Cy3Gal gradually increased from 0.08 ± 0.00 mg/g dw to 2.22 ± 0.01 
mg/g dw, and procyanidin A1 from 4.62 ± 0.50 μg/g dw to 174.66 ±
1.52 μg/g dw. Based on the levels of Cy3Gal and procyanidin A1 in LPC 
and final protein isolates, it was concluded that 5 %, 14 %, 21 %, 16 %, 
and 16 % of the Cy3Gal as well as 4 %, 9 %, 17 %, 15 % and 18 % of the 
procyanidin A1 were transferred from LPC to isolates at the different 
tested LPC-levels 2.5 to 30 %. Given the fact that the LPC constituted 0.3 
%, 0.7 %, 1.3 %, 2.4 % and 3.3 % wet weight % of the total fish + water 
+ LPC system at start of the pH-shift process, it can be seen that the two 
flavonoids were concentrated throughout the process. Further in-
vestigations shall investigate whether pre-treating the LPC can enhance 
the retention rates of key phenolic compounds in the protein isolates. 

3.2. Protein solubility and protein yield during processing 

When extracting proteins from herring co-products using the pH- 
shift method, both protein solubility and protein yield were observed 
over the two separation steps, with or without the inclusion of 2.5–30 % 
LPC (dw/dw). The addition ratio of LPC showed no influence on protein 
solubility and protein yield during the protein precipitation step, 
consistently registering at about 7 % and 94 %, respectively (see Sup-
plementary Table 3). However, the protein solubilization step experi-
enced notable changes, which aligned with the hypothesis. As the 
proportion of LPC increased, there was a discernible decline in both 
protein solubilization and its resultant solubilization yield, leading to a 

Fig. 2. Formation of lipid oxidation-derived volatile aldehydes, including hexanal (A), (E)-2-hexenal (B), heptanal (C), octanal (D), and 2,4-heptadienal (E), during 
ice storage of protein isolates produced without and with lingonberry press cake (LPC) addition (2.5–30 %, on a dry weight basis). Data are presented as mean values 
± standard deviation (n ≥ 2). 
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reduction in the overall yield (Fig. 3). At 30 % LPC addition, solubility 
dropped from 88 % to 80 %, protein solubilization yield from 78 % to 67 
% and total yield from 73 % to 63 % compared to the herring control 
without LPC (Fig. 3). 

These results align with Zhang et al., (2022, 2023) where the 
reduction was explained by polyphenol-induced precipitation of herring 
proteins preventing their solubilization at alkaline pH. When exposed to 
an alkaline pH, phenols may be oxidized to quinone derivatives, which 
can then react with muscle proteins, particularly myofibrillar proteins, 
to form covalent bonds, ultimately inducing cross-linked protein poly-
mers (Guo & Xiong, 2021). Myosin, being the most abundant and 
functional component in myofibrillar proteins, was earlier reported to 
become cross-linked when interacting with phytophenols (Choi & Kim, 
2009). In the present study, the co-precipitates formed during the pro-
tein solubilization step were lost in the first centrifugation step as they 
partition into the sediment (Gehring et al., 2009). As expected, reducing 
LPC addition from 30 % (dw/dw) counteracted the loss of protein sol-
ubility at pH 12, and therefore enhanced the protein yields. Compared to 
the 30 % LPC addition, decreasing the LPC addition to 20 % resulted in 
an increase in total protein yield by 5 %, and decreasing the LPC addi-
tion to 10 % led to an increase in total protein yield by 13 %. Meanwhile, 
incorporating LPC-levels as low as 5 % and 2.5 % did not significantly 
influence protein solubility or protein yield when compared with the 

control sample without LPC (Fig. 3). 

3.3. Required amounts of alkali and acid during processing with different 
ratios of LPC 

As shown by the black line in Fig. 4, when adding 2.5–30 % (dw/dw) 
of LPC, the pH of the raw material mixture subjected to the pH-shift 
process continuously decreased from 6.77 ± 0.03 for the control sam-
ple, to 5.16 ± 0.05 at 30 % LPC addition (p < 0.05). This drop can be 
linked to the intrinsic acidic nature of LPC, which has a pH of 3.05. This 
acidity is due to its constituent organic acids, including benzoic, citric, 
malic, cinnamic, tartaric, fumaric, and shikimic acids as reported in 
previous studies (Klavins et al., 2021; Mikulic-Petkovsek et al., 2012; 
Viljakainen et al., 2010). This agrees with a past investigation where a 
30 % addition of LPC, which in itself has a pH of 2.9, to herring or 
salmon filleting co-products pH decreased their pH from 6.9 to 5.0 for 
herring and from 6.2 to 4.7 for salmon (Abdollahi et al., 2020). Due to 
this decline in initial raw material pH, as hypothesized, the usage of 
alkali (2 M NaOH) was significantly increased. As depicted by the blue 
bars in Fig. 4, a 30 % LPC addition amplified the requirement of 2 M 
NaOH from 48.8 ± 0.6 ml to 94.4 ± 1.3 ml for every 500 g of herring co- 
products, in comparison to the LPC-free sample. Gradually reducing the 
LPC addition from 30 % to 20 %, 10 %, 5 % and 2.5 % saved the 

Table 1 
Composition of herring co-products, lingonberry press cake (LPC), and protein isolates: cyanidin 3-o-galactoside (Cy3Gal) content, procyanidin A1 content, and 
proximate composition including crude protein, crude lipid, and ash content. Data are presented as mean values ± standard deviation (n ≥ 2) on a dry weight (dw) 
basis.   

LPC addition 
(%, dw/dw) 

Cy3Gal 
(mg/g dw) 

Procyanidin A1 
(μg/g dw) 

Protein 
(% dw) 

Lipids 
(% dw) 

Ash 
(% dw) 

Herring co-products  / / 54.2 ± 2.9c 30.3 ± 0.7a 13.5 ± 1.4a 

LPC  58.50 ± 0.73 4221.43 ± 28.71 6.9 ± 0.3d 17.7 ± 1.2b 2.5 ± 0.1b 

Protein isolates 0 / / 82.0 ± 0.3a 13.7 ± 0.3c 3.6 ± 0.2b  

2.5 0.08 ± 0.00e 4.62 ± 0.50e 81.5 ± 3.6a 13.7 ± 0.2c 3.3 ± 0.0b  

5 0.39 ± 0.02d 18.03 ± 0.42d 79.8 ± 1.3a 13.7 ± 0.3c 3.2 ± 0.1b  

10 1.09 ± 0.03c 65.50 ± 0.87c 78.1 ± 1.5a 13.4 ± 0.5 cd 3.2 ± 0.1b  

20 1.58 ± 0.06b 108.84 ± 1.15b 73.7 ± 0.6b 12.8 ± 0.3d 3.5 ± 0.3b  

30 2.22 ± 0.01a 174.66 ± 1.52a 70.2 ± 0.8b 12.4 ± 0.1e 3.5 ± 0.1b 

Data within the same column carrying a different superscript letter are significantly different (p < 0.05). 

Fig. 3. Protein solubility (Solubility1) and protein solubility yield in the first 
step of the pH-shift process, and total protein yield during the entire pH-shift 
processing of herring co-products without and with lingonberry press cake 
(LPC) addition (2.5–30 %, on a dry weight basis). Data are presented as mean 
values ± standard deviation from two experiments (ne = 2) and three samplings 
(n = 3) from each process. Significant differences (p < 0.05) are denoted by 
different lowercase letters within each data group. 

Fig. 4. Effect of lingonberry press cake (LPC) addition on the pH of raw ma-
terials and the required volumes of alkali (2 M NaOH) and acid (2 M HCl) 
during pH-shift processing of 500 g of herring co-products with different LPC 
addition ratios (lines). Data are presented as mean values ± standard deviation 
(ne = 3). Significant differences (p < 0.05) are denoted by different lowercase 
letters within each data group. 
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consumption of 2 M NaOH by 11 %, 24 %, 34 % and 40 %, respectively. 
Accordingly, when using 30 % LPC, the amount of 2 M HCl needed for 
protein precipitation was dramatically increased by 53 % compared to 
the control. However, by reducing the LPC addition to 20 %, 10 %, 5 % 
and 2.5 %, the need for acid was then decreased by 7 %, 14 %, 20 % and 
23 %, respectively (Fig. 4 (red bars)). Thus, from a process economic and 
environmental perspective, lower levels of LPC are advantageous. 

3.4. Protein, lipid and ash content 

This research reaffirmed the effectiveness of the pH-shift method in 
concentrating proteins, as reported for bigeye snapper head by-products 
(Panpipat & Chaijan, 2017), common carp muscle (Singh et al., 2019) 
and tilapia frame by-products (Chomnawang & Yongsawatdigul, 2013), 
irrespective of LPC inclusion. This is a result of the methods ́ efficacy in 
removing lipids and ash, which accumulate in the lipid layer at the top 
and in the sediment, respectively, after the first centrifugation step 
(Gehring et al., 2009). The separation of lipids, solubilized proteins, and 
bones is enabled by their differing densities, in line with previous 
research on the pH-shift method (Gehring et al., 2009). In alignment 
with the hypothesis, the protein isolate composition was impacted when 
LPC exceeded 20 % (dw/dw) (Table 1). First, at 20 % and 30 % LPC, the 
protein content was significantly reduced from 82 to 74 and 70 g/100 g 
dw, respectively, compared to the control sample. This was predictable 
as LPC contains only 7 g of protein per 100 g dw while it has a high 
carbohydrate level. Second, relative to the control sample, a 20 % 

inclusion of LPC marginally but significantly reduced the lipid content in 
protein isolates from 13.7 to 12.8 g/100 g dw, which further declined to 
12.4 g/100 g dw at a 30 % LPC addition (Table 1). This observation 
suggests that LPC enhances the ability to remove lipids during the pro-
cessing. When the pH-shift method is applied to fish co-products, the 
neutral lipids are mostly removed from the solubilized proteins as a 
floating lipid layer while phospholipids can be sedimented; both events 
generated by polarity and density differences (Zhang, Abdollahi, et al., 
2023; Zhang, Ström, et al., 2023). Nevertheless, the lipid removal 
capability of the pH-shift method can be influenced by the emulsifica-
tion ability of proteins and saccharides in the system (Vareltzis & 
Undeland, 2008). The observed lipid reduction can potentially be 
attributed to the increased polarity of the system caused by phenolic 
compounds and by the strong emulsification ability of LPC poly-
saccharides. The ash content of the cross-processed protein isolates was 
statistically independent of LPC addition (p > 0.05), which was unex-
pected since more NaOH and HCl were used along with more LPC (see 
Fig. 3); this should theoretically form more NaCl. The present result 
could be explained by a counteracting effect from a gradual dilution of 
the herring bone-derived ash by LPC (Zhang, Abdollahi, et al., 2023). 

3.5. Color of protein isolates 

Fig. 5A illustrates the influence of the LPC addition ratio on the color 
of the protein isolates. Compared to the control sample, increasing the 
LPC addition ratio from 2.5 % to 30 % (dw/dw) led to a continuous 

Fig. 5. Visual appearance (A) and color attributes using the L*a*b* color space (B) of protein isolates made with increasing addition of lingonberry press cake (LPC). 
Data are presented as mean values ± standard deviation (n ≥ 3). Significant differences (p < 0.05) within each dataset (L*-, a*- and b*-values) are indicated by 
different letters. 
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increase in the color change, as indicated by the △E2000 values of 4.7, 
7.5, 8.8, 10.6 and 12.5, respectively. These results supported the hy-
pothesis that decreasing the LPC addition could minimize color changes. 
The protein isolates visually turned darker with increasing LPC addition 
(Fig. 5A), which was confirmed by significantly (p < 0.05) decreased L*- 
values (Fig. 5B). This color change could be related to the pH sensitivity 
of the anthocyanins in LPC. It is recognized that these compounds 
transition from a bright red shade at acidic levels to a darker purple at 
neutral to higher pH due to the reversible chalcone-flavanone conver-
sion (Fossen et al., 1998). Interestingly, there was a significant increase 
in a*-values at 2.5 % LPC compared to the control, but at further 
increased LPC levels, the a*-values decreased. These observations were 
likely attributed to the antioxidative properties of LPC, which may 
inhibit the conversion of oxy-/deoxy-Hb and − myoglobin (Mb) into the 
brown metHb or metMb during the protein precipitation step at pH 5 
(Wu et al., 2021). However, as LPC levels were raised, the purple-blue 
colour of the anthocyanins gradually overshadowed the red colour of 
oxy-/deoxy-Hb/-Mb. Similar logic most likely explains the gradual 
decrease in b*-values (yellow-blue axis). When going from 0 to 30 % 
LPC, there was a stepwise masking of the inherent yellowness of the 
protein isolate by purple-blue pigments. 

4. Conclusions 

This study rigorously evaluated the impact of varying lingonberry 
press cake (LPC) ratios (2.5–30 %, dw/dw) on protein isolation from 
herring co-products using the pH-shift method. The results clearly 
demonstrate that inclusion levels as low as 2.5 % LPC effectively prevent 
lipid oxidation in freshly made protein isolates, with no significant in-
crease of key aldehydes such as hexanal and heptanal, which were 
present in the control samples. Higher LPC-levels were needed to delay 
oxidation also during protein isolate storage on ice, and balancing sta-
bilization efficacy, color, and acid and base consumption, a concentra-
tion of 10 % LPC emerged as optimal. At this inclusion ratio, aldehyde 
formation was significantly delayed for at least eight days on ice without 
reducing protein yield, which was observed with higher LPC ratios. The 
10 % inclusion rate also afforded reductions in usage of chemicals—up 
to 40 % for NaOH and 23 % for HCl—thereby enhancing the sustain-
ability of the process. Phenolic compound analysis corroborated the 
antioxidant capacity of LPC, showing a direct correlation between LPC 
concentration and the levels of cyanidin 3-O-galactoside and procyani-
din A1 in protein isolates. At the suggested LPC-level of 10 %, these 
anthocyanins were present in protein isolates at 1.09 ± 0.03 mg/g dw, 
and 65.50 ± 0.87 μg/g dw, respectively. 

This study underscores the potential for jointly integrating marine 
and plant-based rest raw materials in food processing, which could 
facilitate more sustainable and economically advantageous practices in 
the industry. This approach not only stabilizes protein extracts but also 
aligns with clean-label standards, which are increasingly demanded by 
consumers. While promising, these results are limited to laboratory- 
scale experiments. Scale-up processes may introduce variables that 
could affect the efficiency and outcomes observed here. Alongside 
deeper mechanistic understanding on the antioxidant action, future 
research should thus focus on pilot-scale studies to validate these find-
ings under conditions closer to industrial ones. Further investigation 
into the environmental impacts of integrating different rest raw mate-
rials at larger scales would also be beneficial, paving the way for a 
broader application of industrial symbiosis in food production. 
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