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Abstract
Spatial network models are used as a simplified discrete representation in a wide range
of applications, e.g., flow in blood vessels, elasticity of fiber based materials, and pore
network models of porous materials. Nevertheless, the resulting linear systems are
typically large and poorly conditioned and their numerical solution is challenging.
This paper proposes a numerical homogenization technique for spatial networkmodels
which is based on the super-localized orthogonal decomposition (SLOD), recently
introduced for elliptic multiscale partial differential equations. It provides accurate
coarse solution spaces with approximation properties independent of the smoothness
of the material data. A unique selling point of the SLOD is that it constructs an
almost local basis of these coarse spaces, requiring less computations on the fine
scale and achieving improved sparsity on the coarse scale compared to other state-
of-the-art methods. We provide an a posteriori analysis of the proposed method and
numerically confirm themethod’s unique localization properties. In addition, we show
its applicability also for high-contrast channeled material data.
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902 M. Hauck, A. Målqvist

1 Introduction

Spatial networks are a useful tool for constructing simplified discrete representations
of complex geometric structures. Blood vessels may, for example, be modeled as con-
nected one dimensional line segments forming a network of nodes and edges, see [15].
Paper consists of a web of wooden fibers that may be modeled as one dimensional
beams forming a network, see [22]. Also porous materials, such as sandstone, may be
represented by a pore network model, see [6]. Such simplifications reduce the com-
plexity from a full three dimensional geometry to a discrete model for which computer
simulations can be performed more easily. Nevertheless, highly heterogeneous mate-
rials and complicated geometries typically cause the underlying linear systems to be
poorly conditioned.

This paper considers spatial network models that can be described by weighted
graph Laplacians, arising from applications modeled by elliptic partial differential
equations (PDEs). There already exists a variety ofwell-established iterativemultilevel
solvers for such problems. A prominent example is algebraic multigrid, see, e.g., [20,
25, 33] and the references therein. In a purely algebraic setting, the construction of
multiple discretization levels can be challenging. For spatial networks with sufficient
structure, it is possible to embed the network into a domain � ⊂ R

d and introduce
scales by interpolating the network onto a family of finite element meshes, see, e.g.,
[17]. On coarser scales, the spatial network behaves like a continuous material and
therefore inherits many advantageous properties from the continuous setting. This can
be utilized for transferring successful algorithms for solving PDEs to spatial network
models. We will focus on numerical homogenization, with the goal to compute an
accurate effective coarse scale model of the full network.

Numerical homogenization is about the construction of problem-adapted, optimally
approximating ansatz spaces possessing almost local computable bases. Near optimal
numerical homogenization is achieved by the Localized Orthogonal Decomposition
(LOD) [1, 3, 18, 23, 27, 28] and Gamblets [30, 31] which construct a fixed number of
basis functions per mesh entity that decay exponentially relative to the mesh. For the
computation of the basis, a localization of the basis functions to element patches is
performed. The number of element layers in the element patches needs to be increased
logarithmically with the desired accuracy. An alternative approach is taken by the AL-
basis [16] and G(ms)FEM methods [5, 29] which solve local spectral problems and
construct the global ansatz space using a partition of unity. Here, the support of the
basis functions is fixed by the choice of partition of unity and the number of local
eigenfunctions needs to be increased logarithmically with the desired accuracy.

Recently, the Super-localized Orthogonal Decomposition (SLOD) has been pro-
posed in [19] performing a localization of the same space as the LOD, but utilizing a
novel localization strategy allowing for super-exponentially decaying basis functions.
This improved localization results in smaller local patch problems for the basis com-
putation and a sparser coarse system matrix. The method proved its effectiveness also
beyond elliptic multiscale problems for example in [2, 4, 14]; see also [13].

There are some contributions specifically targeting numerical homogenization of
spatial network models, see [10, 12, 21, 22]. In particular, a spatial network version
of the LOD has been developed in [10]. Therein a rigorous proof of the exponential
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Super-localization of spatial network models 903

Fig. 1 Illustration of spatial network with Dirichlet nodes in � marked black

decay of the LOD basis functions in the spatial network setting is provided utilizing
the techniques developed in [24] and [17].

In this paper, we develop a SLOD for spatial network models. As model problem,
we consider a weighted graph Laplacian K on the spatial network G = (N , E), i.e.,
we seek the solution to the possibly poorly conditioned linear system

Ku = f , (1.1)

where u fulfills certain homogeneous Dirichlet boundary conditions and f is a given
source term. For a depiction of a possible spatial network, see Fig. 1. Let the spatial
network G be embedded into a domain�; for the ease of presentation, let� = [0, 1]d .
We consider coarse finite element meshes TH of� and define problem-adapted ansatz
spaces by applying the solution operator of (1.1) to TH -piecewise constants. Such
ansatz spaces have uniform approximation rates, independently of the smoothness of
the material data. The SLOD then identifies local TH -piecewise constant right-hand
sides that yield rapidly decaying responses under the solution operator of the problem.
These responses are then localized to element patches and used as basis functions of
the SLOD.

We derive an a posteriori error bound for the SLOD error in terms of the size of the
element patches and the coarse mesh size which holds under mild assumptions on the
underlying network. In a series of numerical experiments, we illustrate the network
assumptions, the super-locality of the SLOD basis and the method’s performance in
presence of high-contrast data, in particular channeled data.

The outline of the paper is as follows. In Sect. 2, we introduce the spatial network
model. A coarse scale discretization together with assumptions on the underlying net-
work is presented in Sect. 3. Section4 then constructs a prototypical problem-adapted
ansatz space. We identify rapidly decaying basis functions and perform a localization
of the basis in Sect. 5. Section6 states the SLOD method along with an a posteriori
error estimate and, finally, Sect. 7 presents numerical experiments.

2 A spatial networkmodel

We consider a connected graph G = (N , E) of nodes N and edges
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904 M. Hauck, A. Målqvist

E = {{x, y} : an edge connects nodes x, y ∈ N }

that is embedded into the unit hyper-cube � = [0, 1]d , d ∈ N. The presented method-
ology can also be generalized to polygonal and polyhedral domains, however, for the
ease of presentation, we only consider hyper-cubes. We write x ∼ y if two nodes
x, y ∈ N are connected by an edge in E and denote by |x − y| the Euclidean distance
between the nodes. By N (ω), we denote all nodes that are contained in the subset
ω ⊂ �. We impose homogeneous Dirichlet boundary conditions for nodes on the
boundary segment � ⊂ ∂�. For a depiction of an example of a spatial network, see
Fig. 1.

For the subsequent presentation, we introduce function spaces on the network. Let
V̂ denote the space of all real valued functions defined on the set of nodes N and
denote by

V = {v ∈ V̂ : v(x) = 0, x ∈ �}

the subset of V̂ satisfyinghomogeneousDirichlet boundary conditions on the boundary
segment �. Furthermore, let Vω and V̂ω denote the spaces of functions in V and V̂ ,
respectively, that are supported in the subdomain ω.

2.1 Linear operators

Wedefine a diagonal edge lengthweightedmass operatorM : V̂ → V̂ by the following
sum of nodal contributions

M :=
∑

x∈N
Mx with Mx : V̂ → V̂ , (Mxv, v) := 1

2

∑

y∼x

|x − y|v(x)2, (2.1)

where we denote by (·, ·) the Euclidean inner product of the vectors of nodal values
of two elements in V̂ . Note that the nodal contributions Mx are uniquely defined by
their associated quadratic forms. For subdomains ω ⊂ �, we define a local version
of M as

Mω :=
∑

x∈N (ω)

Mx .

The bilinear form (M · , ·) is an inner product on the space V̂ with induced norm
| · |2M := (M · , ·). By restriction to ω, we obtain the semi-norm | · |2M,ω

:= (Mω· , ·)
which can be interpreted as the mass of the network in subdomain ω.

Furthermore,we define a reciprocal edge lengthweighted graphLaplacian L : V̂ →
V̂ by

L :=
∑

x∈N
Lx with Lx : V̂ → V̂ , (Lxv, v) := 1

2

∑

y∼x

(v(x) − v(y))2

|x − y| , (2.2)
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Super-localization of spatial network models 905

where the nodal contributions Lx are symmetric and are again uniquely defined by
their associated quadratic forms. A local version of L is given by

Lω :=
∑

x∈N (ω)

Lx . (2.3)

We remark that (Lωv)(x) is nonzero for nodes x outside of ω that are adjacent to
nodes in ω. Since the graph G is assumed to be connected, the kernel of L consists
only of the globally constant functions. Hence, | · |2L = (L·, ·) defines a semi-norm on
V̂ . By restriction to ω, we obtain | · |2L,ω

:= (Lω·, ·).
Remark 2.1 (Weighting of M and L) The non-standard weightings in (2.1) and (2.2)
are chosen such that, in one dimension, the operators L and M resemble the first order
finite element stiffness matrix of the Poisson equation and the corresponding lumped
mass matrix, respectively. This weighting enables an analysis which is similar in style
to well-established PDE analysis, see, e.g., [22].

By combining the mass matrix and the graph Laplacian, we obtain another inner
product on V̂ , namely ((L + M) · , ·). For its induced norm, we write | · |2V := | · |2M +
| · |2L and the restriction of the norm to a subdomainω is defined by | · |2V ,ω

:= | · |2M,ω+
| · |2L,ω.

2.2 Model problem

For demonstrating the extension of the SLOD to the spatial network setting, this paper
considers a weighted graph Laplacian as model problem. It is defined as follows

K :=
∑

x∈N
Kx with Kx : V̂ → V̂ , (Kxv, v) := 1

2

∑

y∼x

γxy
(v(x) − v(y))2

|x − y|
(2.4)

with edge weights

0 < α ≤ γxy ≤ β < ∞ (2.5)

determining the edge’s conductivity. For subdomains ω, local versions Kω of can be
defined analogously to (2.3).

Given a right-hand side f ∈ V̂ , we seek u ∈ V such that, for all v ∈ V ,

(Ku, v) = ( f , v). (2.6)

In the spatial network setting it is natural to weight the right-hand side with the local
edge length by introducing the function

f̃ := M−1 f �⇒ (Ku, v) = (M f̃ , v).
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906 M. Hauck, A. Målqvist

This alternative weak formulation is useful because it simplifies the presentation of
the proposed method and its analysis. Note that f̃ is well-defined since M is diagonal
with positive entries. We will use both notations, f and f̃ , throughout the paper. The
following relationship between the M-norm of f̃ and the negative M-norm of f holds

| f |M−1 := sup
|v|M=1

( f , v) = | f̃ |M .

The unique solvability of problem (2.6) can be ensured under the minimal require-
ments that the network G is connected and that there exists at least one Dirichlet node
in �, i.e., N (�) 
= ∅. Subsequently, these assumptions are always assumed to hold.
Using the bounds on the edge weights (2.5) we obtain that, for all v ∈ V̂ ,

α(Lv , v) ≤ (Kv , v) ≤ β(Lv , v) (2.7)

which, in particular implies that on V , the energy norm | · |2 := (K · , ·) is equivalent
to the norm | · |L .

2.3 Global Friedrichs’ inequality

It is possible to derive a Friedrichs’ inequality in the spatial network setting. It imme-
diately follows from the fact that the graph G is connected and that the value of one
or more nodes at the boundary is fixed to zero.

Lemma 2.2 (Friedrichs’ inequality) There exists Cfr > 0, such that, for all v ∈ V ,

|v|M ≤ Cfr|v|L . (2.8)

Note that Lemma 2.2 does not provide an explicit characterization of Cfr in terms
of the properties of the underlying network. However, one can establish a connection
to the first eigenvalue of the well-studied normalized graph Laplacian for which such
explicit characterizations exist, see, e.g., [8, 9].

2.4 Stability estimates

Let us also introduce a local variant of (2.6) which, for a subdomain ω ⊂ � and a
given f ∈ Vω, seeks uω ∈ Vω such that, for all v ∈ Vω,

(Kωuω , v) = ( f , v). (2.9)

Existence and uniqueness of the solution uω follow since Kω, by construction, is also a
weighted graph Laplacian and Vω ⊂ V . Friedrichs’ inequality then allows us to show
the stability of the model problem (2.6) and its local counterpart (2.9) with respect to
| · |L and | · |L,ω which are norms on V and Vω, respectively.
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Super-localization of spatial network models 907

Lemma 2.3 (Stable solvability) The solution to (2.6) is stable in the sense that

|u|L ≤ Cfrα
−1| f̃ |M

with Cfr from Lemma 2.2. This also holds for the local version (2.9), i.e.,

|uω|L,ω ≤ Cfrα
−1| f̃ |M,ω.

Proof Using the uniform lower bound (2.5), definition (2.6) andLemma2.2,we obtain

α|u|2L ≤ (Ku , u) = (M f̃ , u) ≤ | f̃ |M |u|M ≤ Cfr| f̃ |M |u|L .

Dividing by |u|L , the global stability estimate follows.
The local stability estimate can be obtained similarly noting that uω, in particular, is

also an element of V for which we can apply Lemma 2.2. Using that M = Mω on Vω,
|uω|M = |uω|M,ω and |uω|L = |uω|L,ω, the local stability estimate can be concluded.

�

For later use, we define the solution operator K−1 : V̂ → V , f̃ �→ u mapping a

right-hand side f̃ to its corresponding solution u solving (2.6). On subsets ω ⊂ �,
we also define the local solution operator K−1

ω : V̂ω → Vω, f̃ �→ uω mapping a local
right-hand side to the local solution uω satisfying (2.9).

3 Coarse scale discretization and network assumptions

3.1 Coarsemesh

The proposed method constructs its problem-adapted basis functions with respect to
some coarse mesh TH . For simplicity, we restrict ourselves to Cartesian meshes which
we define, unlike classical textbooks on finite element theory, as

TH := {SH (x) : x = (x1, . . . , xd) ∈ � and H−1xi + 1/2 ∈ Z for i = 1, . . . , d}

with elements that are neither closed nor open but are rather defined as

SH (x) = [x1 − H/2, x1 + H/2) × · · · × [xd − H/2, xd + H/2).

If xi + H/2 = 1, we replace [xi − H/2, xi + H/2) by [xi − H/2, xi + H/2]. This
definition ensures that the elements form a true partition of � meaning that any point
in � is contained in exactly one element (Fig. 2).

We also introduce the concept of patches which is based on neighborhood relations
of elements. The first order patch of a subset ω ⊂ � is defined as

N(ω) := {x ∈ � : ∃T ∈ TH : x ∈ T , T ∩ ω 
= ∅}.
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908 M. Hauck, A. Målqvist

Fig. 2 Coarse mesh T2−3 with
underlying spatial network

By recursion, we can then define the 	-th order patch as N	(ω) := N	−1(N(ω)) with
N1 = N.

3.2 Network assumption

The proposed method relies on the assumption that the mesh TH is coarse compared
to the underlying network. On the length scale of the coarse mesh, the network then
inherits many properties known from the continuous setting, e.g., an element-wise
Poincaré inequality.

Hence, we restrict ourselves to meshes with mesh sizes larger than some parameter
H0 > 0. More precisely, we consider a hierarchy of meshes

{TH : H ∈ H} (3.1)

withH denoting a finite set of positive mesh size parameters with the smallest element
being H0. The parameter H0 can be interpreted as the smallest mesh size for which
desired properties from the continuous case still carry over. The following assumption
provides an insight into the choice of H0.

Assumption 3.1 (Network connectivity) Assume that the smallest mesh size H0 of the
hierarchy of meshes (3.1) is chosen such that, for any element T ∈ TH , H ∈ H, there
is a connected subgraph Ḡ = (N̄ , Ē) of G that contains

• all edges with one or both endpoint in T ,
• only edges with endpoints contained within N(T ).

3.3 Element-wise Poincaré inequality

Under the previous assumption, it is possible to prove the following element-wise
Poincaré inequality.
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Lemma 3.2 (Element-wise Poincaré inequality) Let Assumption 3.1 be satisfied. Then,
for all T ∈ TH , H ∈ H, there exists a constant Cpo > 0 such that, for all v ∈ V̂ , there
exists a constant c such that

|v − c|M,T ≤ Cpo|v|L,N(T ). (3.2)

The constant c resembles the element-average in the continuous case.

Proof The proof can be found in [17, Lemma 3.5]. For the sake of completeness,
it is also presented here. Let M̄ , L̄ be the operators defined on the subgraph Ḡ from
Assumption 3.1.We consider the generalized eigenvalue problem L̄v = λM̄v posed in
the space V̂ (N̄ )with λ1 ≤ λ2 ≤ . . . denoting its eigenvalues. Due to Assumption 3.1,
the subgraph Ḡ is connected and we have that λ1 = 0 (corresponding to constant
eigenfunctions) and λ2 > 0. By the min–max theorem, the second eigenvalue admits
the characterization

λ2 = inf
0 
=v∈V

(M̄v , 1)=0

(L̄v , v)

(M̄v , v)
.

Denoting with c the M̄-orthogonal projection of v onto the constant functions, we
obtain

|v − c|2M,T ≤ (M̄(v − c), v − c) ≤ λ−1
2 (L̄v, v) ≤= λ−1

2 |v|2L,N(T )

which is the desired inequality. �

This lemma states, similarly as Lemma 2.2, only the existence of a constantCpo and

not its qualitative behavior in dependence of H . In Sect. 7.1, a numerical experiment
confirms that Cpo is proportional to H provided that the considered meshes are suffi-
ciently coarse, see Assumption 3.1. Theoretically, such a scaling can be proved under
the assumption of a d dimensional isoperimetric inequality, which we will elaborate
in the following. Let us denote by d̄x the degree (number of connected edges) of the
node x in the subgraph Ḡ. Further for any node subset X ⊂ N̄ , we define

vol(X) :=
∑

x∈X
d̄x .

The set of subgraph edges with one endpoint in X and the other one in X ′ is denoted
by Ē(X , X ′) ⊂ Ē .

Assumption 3.3 (Isoperimetric inequality) Assume that max(x,y)∈E |x − y| ≤ H0,
which can be ensured by adding additional nodes to the network. Further, we assume
that there exist constants ν1, ν2 > 0 such that for any T ∈ TH , H ∈ H, there is a
subgraph Ḡ (see Assumption 3.1) such that it holds

vol(N̄ ) ≤ ν1

(
H

H0

)d
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910 M. Hauck, A. Målqvist

and the following isoperimetric inequality is satisfied

vol(X)(d−1)/d ≤ ν2 |Ē(X , N̄ \X)|

for all X ⊂ N̄ assuming that vol(X) ≤ vol(N̄ \X).

Lemma 3.4 (Poincaré constant) Let Assumptions 3.1 and 3.3 be satisfied. Then there
exists μ > 0 independent of H such that the constant Cpo from Lemma 3.2 satisfies

Cpo ≤ μH .

Proof The proof can be found in [17, Lemma 3.6]. For the sake of completeness, it
is also presented here. Using the min–max characterization of the second eigenvalue
and the definition of the weighted graph Laplacian with respect to Ḡ, we obtain that

λ2 = inf
0 
=v∈V

(M̄v , 1)=0

(L̄v , v)

(M̄v , v)
≥ H−2

0 inf
0 
=v∈V

(M̄v , 1)=0

∑
x∈N̄

∑
y∼x (v(x) − v(y))2

∑
x∈N̄ d̄xv(x)2

= H−2
0 λ̂2.

Here y ∼ x means that x, y ∈ N̄ are adjacent with respect to Ḡ and λ̂2 denotes
the second eigenvalue of the normalized graph Laplacian of Ḡ. Using the estimate
λ̂2 ≥ Cν2 vol(Ḡ)−2/d from [9, Theorem 4], we obtain that

Cpo = λ
−1/2
2 ≤ H0λ̂

−1/2
2 ≤ C−1/2

ν2
H0 vol(Ḡ)1/d ≤ C−1/2

ν2
ν
1/d
1 H .

Thus, the result follows with the constant μ := C−1/2
ν2 ν

1/d
1 . �


If a graph has isoperimetric dimension d it essentially means that the graph mimics
a d dimensional manifold. The graphs we consider in the numerical examples mimic
two dimensional materials, i.e. d = 2.

4 Prototypical approximation

In this section, we construct prototypical problem-adapted ansatz spaces with uniform
approximation properties, independent of the material data. The word prototypical
emphasizes that, without modification, the constructed ansatz spaces are not feasible
in a practical implementation.

A common technique for the construction of such problem-adapted ansatz spaces
is the application of the inverse operator K−1 to some classical finite element spaces.
Here, we adapt this technique to the spatial network setting. Let us consider the space
of TH -piecewise constants given by

P
0(TH ) = span{1T : T ∈ TH } ⊂ V̂ ,

with the indicator function equaling one for x ∈ N that are contained in T and zero
otherwise.
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Super-localization of spatial network models 911

4.1 L2-type projection

Let us denote by �H : V̂ → P
0(TH ) the (·, ·)M -orthogonal projection onto P

0(TH ).
It can be characterized by

�Hv =
∑

T∈TH

(MT v , 1)

|1|2M,T

1T . (4.1)

The following lemma states global stability and approximation estimates for �H .

Lemma 4.1 (Properties of �H ) The projection �H is stable, i.e., for all v ∈ V̂ , it
holds that

|�Hv|M ≤ |v|M . (4.2)

Further, if Assumptions 3.1 and 3.3 are satisfied, then there is a constant C� > 0
independent of H such that the following approximation estimate holds, for all v ∈ V̂ ,

|v − �Hv|M ≤ C�H |v|L . (4.3)

Proof The stability estimate (4.2) is a standard property of orthogonal projections. For
proving (4.3), we again split the norm into a sum of element contributions and employ
(3.2) and Lemma 3.4 to obtain that

|v − �Hv|2M =
∑

T∈TH

|v − �Hv|2M,T ≤ μ2H2
∑

T∈TH

|v|2L,N(T ) ≤ 3dμ2H2|v|2L ,

where the constant 3d reflects the finite overlap of the patches N(T ). �


4.2 Prototypical method

We define the prototypical problem-adapted ansatz space as

VH := K−1
P
0(TH ). (4.4)

The corresponding Galerkin method seeks a discrete approximation uH ∈ VH such
that, for all vH ∈ VH ,

(KuH , vH ) = ( f , vH ). (4.5)

When using problem-adapted ansatz spaces as VH , the approximation problem of
the solution u in VH is transformed into an approximation problem of the right-hand
side f̃ = M−1 f in P

0(TH ). This allows to show the desired uniform approximation
properties without pre-asymptotic effects.
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912 M. Hauck, A. Målqvist

Lemma 4.2 (Uniform approximation)Let the network satisfy Assumptions 3.1 and 3.3.
Then, for any f̃ ∈ V̂ , the prototypical approximation uH defined in (4.5) converges
quadratically in H, i.e.,

|u − uH |L ≤ C�α−1H | f̃ − �H f̃ |M ≤ C2
�α−1H2| f̃ |L . (4.6)

Proof This is the spatial network counterpart of [19, Lemma 3.2]. For the error esti-
mate, we introduce ūH := K−1�H f̃ ∈ VH and employ Céa’s lemma for estimating
the energy approximation error of uH against the one for ūH , i.e.,

|u − uH |K ≤ |u − ūH |K .

Denoting e := u − ūH , we further obtain using (2.7) and (4.3) that

|e|2K = (Ke , e) = (M( f̃ − �H f̃ ) , e) ≤ (M( f̃ − �H f̃ ) , e − �He)

≤ | f̃ − �H f̃ |M |e − �He|M ≤ C�α−1/2H | f̃ − �H f̃ |M |e|K .

After a division by |e|K , inferring that

| f̃ − �H f̃ |M ≤ C�H | f̃ |L ,

the assertion follows. �

Remark 4.3 (TH -piecewise right-hand sides) For f̃ ∈ P

0(TH ), the prototypi-
cal method is exact, as for TH -piecewise constant right-hand sides, it holds
| f̃ − �H f̃ |M = 0 in (4.6).

5 Localization

This section provides a localization strategy that turns the prototypical multiscale
method introduced in the previous section into a practical method. Inspired by [19],
we introduce a localization strategy for spatial networkmodels that identifies local TH -
piecewise constant source terms with rapidly decaying responses under the solution
operatorK−1. This rapid decay enables a localization of the basis functions to element
patches, which paves the way to an efficiently computable localized ansatz space.

In order to simplify the notation in the subsequent derivation, we fix an element
T ∈ TH and its surrounding 	-th order patch ω := N	(T ). Furthermore, let TH ,ω

denote the submesh of TH consisting of elements contained in ω.

5.1 Localization ansatz

For the construction of an almost local basis of the prototypical ansatz spaceVH defined
in (4.4), we assign one basis function to each element T ∈ TH . The (in general global)
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Super-localization of spatial network models 913

basis functionψ ∈ VH associated to element T is determined by the following ansatz

ψ = K−1g with g :=
∑

T∈TH ,ω

gT 1T ∈ P
0(TH ,ω) (5.1)

with coefficients (gT )T∈TH to be determined subsequently. A local counterpart of ψ ,
which is supported on the patch ω, can be defined by applying the patch-local solution
operator K−1

ω instead of K−1, i.e.,

ϕ := K−1
ω g.

In general, the locally supported function ϕ is a poor approximation of its global
counterpart ψ . However, we aim to choose the coefficients (gT )T∈TH such that ψ is
well approximated by its patch-local counterpart ϕ.

5.2 Conormal derivatives

For this purpose, we transfer the concept of conormal derivatives to the spatial network
setting. Let Ṽω denote the subset of V consisting of functions that are supported on
nodes in ω or its neighboring nodes.

The following preliminary result is inevitable for the definition of conormal
derivatives.

Lemma 5.1 (Inner product on Ṽω) The bilinear form

((Lω + Mω) · , ·)
is an inner product on the space Ṽω.

Proof We only need to show the positivity of the inner product which we do by
contradiction. Assume that there exists 0 
= v ∈ Ṽω such that ((Lω + Mω)v , v) = 0.
Let G̃ denote the subgraph of G within ω extended by its neighboring nodes and the
respective edges. We can decompose G̃ into a finite number of connected components
G̃i . For each connected component, we have that v equals a constant ci (otherwise
(Lωv, v) > 0). Denoting with Mi the mass matrix with respect to G̃i , we have that
(Mici , ci ) = c2i (Mi1 , 1) which is only zero if ci = 0. We remark that a connected
component cannot have nodes solely outside of ω since, by definition, these nodes are
connected to nodes within ω. The assertion follows immediately. �


In the spatial network setting, we define the conormal derivative of ϕ, denoted by
Bωϕ ∈ Ṽ ′

ω, as the functional that satisfies, for all v ∈ Ṽω,

(Bωϕ , v) := (Kϕ , v) − (Mg , v). (5.2)

Further, we define its operator norm as

|Bωϕ|Ṽ ′
ω

:= sup
v∈Ṽω

(Bωϕ , v)

|v|V ,ω

,
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914 M. Hauck, A. Målqvist

where we recall that |v|2V ,ω = |v|2M,ω + |v|2L,ω for any v ∈ Ṽω. The following
lemma shows that the operator norm of Bωϕ can be bounded in terms of ϕ and the
corresponding right-hand side g.

Lemma 5.2 (Continuity of conormal derivative) The operator norm of Bωϕ can be
bounded as follows

|Bωϕ|Ṽ ′
ω

≤ max{2β, 1}
√

|ϕ|2L,ω + |g|2M,ω.

Proof We denote by G̃ = (Ñ , Ẽ) the subgraph of G within ω extended by its
neighboring nodes and the respective edges. We define a semi-norm on Ṽω by

|v|2
L̃,ω

:=
∑

x∈Ñ

1

2

∑

Ñ�y∼x

(v(x) − v(y))2

|x − y|

which is equivalent to | · |L,ω. More precisely, for all v ∈ Ṽω, it holds |v|L,ω ≤ |v|L̃,ω

and

|v|2
L̃,ω

≤ 2
∑

x∈N (ω)

1

2

∑

y∼x

(v(x) − v(y))2

|x − y| = 2|v|2L,ω.

Using that g ∈ V̂ω, ϕ ∈ Vω, and v ∈ Ṽω, the norm equivalence, and the discrete
Cauchy–Schwarz inequality, we obtain

(Bωϕ , v) = (Kϕ , v) − (Mg , ω) ≤ β|ϕ|L̃,ω
|v|L̃,ω

+ |g|M,ω|v|M,ω

≤ 2β|ϕ|L,ω|v|L,ω + |g|M,ω|v|M,ω

≤ max{2β, 1}|v|V ,ω

√
|ϕ|2L,ω + |g|2M,ω

which is the boundedness of the conormal derivative. �

The following result enables a computation of the Ṽ ′

ω-norm of the conormal
derivative and is key for the method’s practical implementation.

Lemma 5.3 (Computation of the conormal derivative’s norm) The operator norm of
the conormal derivative Bωϕ ∈ Ṽ ′

ω can be computed as

|Bωϕ|Ṽ ′
ω

= |τ |V ,ω,

where τ ∈ Ṽω solves, for all v ∈ Ṽω,

((Lω + Mω)τ , v) = (Bωϕ , v). (5.3)
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Proof Lemma 5.1 yields the unique existence of a solution τ to problem (5.3).
Furthermore, using (5.3), we can compute the operator norm of Bωϕ as follows

|Bωϕ|Ṽ ′
ω

:= sup
v∈Ṽω

(Bωϕ , v)

|v|V ,ω

= sup
v∈Ṽω

(Lωτ , v) + (Mωτ , v)

|v|V ,ω

= |τ |V ,ω,

where we used that the supremum is attained for v = τ . �


5.3 Choice of local basis

It turns out that ϕ approximates ψ well provided that the parameters (gT )T∈TH are
chosen such that the conormal derivative of ϕ is small, since, for all v ∈ V , it holds

(K (ϕ − ψ) , v) = (Kϕ , v) − (Mg , v) = (Bωϕ , v).

Hence, denoting by R : P0(TH ,ω) → Ṽω, g �→ τ the linear mapping that maps
the right-hand side g to its corresponding function τ defined in (5.3), we choose g as
an | · |M,ω-normalized minimizer of the following quadratic constraint minimization
problem

g ∈ argmin
q∈P0(TH ,ω)

|Rq|2V ,ω

|q|2M,ω

. (5.4)

Due to Lemma 5.3, this is equivalent to the minimization of the conormal derivative.
For a depiction of selected basis functions and their corresponding right-hand sides,
we refer to Fig. 3.

Remark 5.4 (Numerical implementation) Numerically, instead of solving (5.4), one
can equivalently solve for the eigenvector corresponding to the smallest eigenvalue of
the low dimensional generalized eigenvalue problem

Ax = λCx (5.5)

with matrices A,C ∈ R
N×N , N := #TH ,ω, defined as

Ai j = ((Lω + Mω)R1Tj , R1Ti ), Ci j := (Mω1Tj , 1Ti ),

where {Ti : i = 1, . . . N } is some numbering of the elements in TH ,ω.

As the notation in (5.4) already indicates, the solution to the minimization prob-
lem is, in general, non-unique. Indeed, for large oversampling parameters 	 and for
patches ω close to the boundary ∂�, there might by several (linearly independent) g
with similar in size Rayleigh quotients. In such cases, the appropriate choice of g can
be difficult, cf. Section6.1 for an implementation resolving this issue in practice.
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Fig. 3 Basis functions ϕ for 	 = 1 and several coarse mesh sizes H (top) and corresponding right-hand
sides g (bottom)

5.4 Localization error

We define the quantity σT as the norm of the conormal derivative of the selected basis
function

σT = σT (H , 	) = |Rg|V ,ω. (5.6)

The quantity σT determines the local localization error, i.e., the error when approxi-
mating ψ by its local counterpart ϕ.

6 Super-localized approximation

Using the localized basis function introduced in the previous section, this section
transforms the prototypical method (4.5) into a practically feasible method. For a
fixed oversampling parameter, we define the localized ansatz space as

VH ,	 := span{ϕT ,	 : T ∈ TH } ⊂ V .

Note that, in the case of ambiguity, we write ϕT ,	, ψT ,	, and gT ,	 for ϕ, ψ , and g in
order to emphasize their dependence on T , 	.
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The SLOD determines the Galerkin approximation of the solution u to (2.6) in the
space VH ,	, i.e., it seeks uH ,	 ∈ VH ,	 such that, for all vH ,	 ∈ VH ,	,

(KuH ,	 , vH ,	) = ( f , vH ,	). (6.1)

6.1 Riesz basis property of right-hand sides

The choice of right-hand sides (5.4), in general, does not guarantee their linear inde-
pendence. For the analysis, we assume that the right-hand sides {gT ,	 : T ∈ TH } span
P
0(TH ) in a stable way. Subsequently, we also present an implementation strategy that

ensures the basis stability in practice.

Assumption 6.1 (Riesz stability) The set {gT ,	 : T ∈ TH } is a Riesz basis of P0(TH ),
i.e., there isCr(H , 	) > 0 depending polynomially on H , 	 such that, for all (cT )T∈TH ,

C−1
r (H , 	)

∑

T∈TH

c2T ≤
∣∣∣

∑

T∈TH

cT gT ,	

∣∣∣
2

M
≤ Cr(H , 	)

∑

T∈TH

c2T . (6.2)

The Riesz basis property is closely related to the eigenvalues of the matrix
containing inner products of the right-hand sides gT ,	 as the following remark shows.

Remark 6.2 (Riesz constant) The constantCr is determined by the smallest and largest
eigenvalue of the matrix G ∈ R

m×m , m := #TH defined as

Gi j = (MgTj ,	 , gTi ,	),

where {Ti : i = 1, . . . ,m} is some numbering of the elements in TH . Denoting its
eigenvalues by λ1 ≤ λ2 ≤ . . . ,≤ λm , the constant in the lower (resp. upper) bound
of (6.2) is then the smallest (resp. largest) eigenvalue of G. Thus, we can set

Cr = max{λm, λ−1
1 }.

The stability issue of the basis of right-hand sides similarly appears in the continuous
setting for the SLOD from [19]. Therein, an algorithm is proposed that selects the right-
hand sides in a stable and efficient manner. The algorithm is based on the observation
that stability issues only occur for patches close to the boundary ∂�. By grouping
certain troubled patches and solving one minimization problem of the type (5.4) for
such a group of patches, the stability of the right-hand sideswithin this group of patches
can be ensured by construction. As this procedure only needs to be applied close to the
global boundary for certain groups of patches, the algorithm only introduces minimal
communication between the patches. For more information and a detailed illustrative
description of the algorithm, see [19, Appendix B].
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6.2 A-posteriori error estimate

Wederive an error estimate for theSLODsolution (6.1)which is explicit in the quantity

σ = σ(H , 	) := max
T∈TH

σT (H , 	) (6.3)

withσT defined in (5.6). Thequantityσ determines the size of themethod’s localization
error. Remark 6.4 presents a summary of existing decay results for σ in the continuous
setting and the spatial network setting.

Theorem 6.3 (Uniform localized approximation) Let the network satisfy Assump-
tions 3.1 and 3.3. Further, let {gT ,	 : T ∈ TH } be stable in the sense of Assumption 6.1.
Then, for any f̃ ∈ V̂ , the SLOD approximation defined in (6.1) converges quadrat-
ically in H plus a localization error, i.e., there exists C,C ′ > 0 such that, for all
f̃ ∈ V̂ ,

|u − uH ,	|L ≤ C
(
H | f̃ − �H f̃ |M + C1/2

r (H , 	)	d/2σ(H , 	)| f̃ |M
)

≤ C ′(H2| f̃ |L + C1/2
r (H , 	)	d/2σ(H , 	)| f̃ |M

) (6.4)

with Cr from Assumption 6.1.

Proof Using Céa’s Lemma, we can estimate the energy error of uH ,	 approximating
u by the respective energy error for vH ,	, for any vH ,	 ∈ VH ,	. This yields

|u − uH ,	|K ≤ |u − vH ,	|K .

Next, we add and subtract ūH := K−1�H f̃ and obtain with the triangle inequality

|u − uH ,	|K ≤ |u − ūH |K + |ūH − vH ,	|K .

The first term has already been estimated in the proof of Lemma 4.2. Therein, it
was shown that

|u − ūH |K ≤ C2
�α−1/2H2| f̃ |L .

For the second term, we use that the prototypical method (4.5) is exact for piecewise
constant right-hand sides, i.e., in particular for �H f̃ . This enables us to represent ūH

using the functions ψT ,	 = K−1gT ,	 from (5.1) as

ūH =
∑

T∈TH

cT ψT ,	,

where (cT )T∈TH are the coefficients of the expansion of �H f̃ in terms of the right-
hand sides gT ,	. This is possible as the gT ,	 are linearly independent which is, in
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particular, guaranteed by Assumption 6.1. For the particular choice

vH ,	 :=
∑

T∈TH

cT ϕT ,	 ∈ VH ,	,

we obtain defining e := ūH − vH ,	

|e|2K =
∑

T∈TH

cT (K (ψT ,	 − ϕT ,	) , e). (6.5)

Writing N	(T ) instead of ω, we obtain using Lemma 5.3 and the definitions of ψT ,	,
the conormal derivative BN	(T ) in (5.2), and σT from (5.6) that

(K (ψT ,	 − ϕT ,	) , e) = (MgT ,	 , e) − (KϕT ,	 , e)

= −(BN	(T )ϕT ,	 , e) = −(BN	(T )ϕT ,	 , ẽ)

≤ σT (H , 	)|ẽ|V ,N	(T ) = σT (H , 	)|e|V ,N	(T ).

(6.6)

Here, we extended definition (5.2) to test functions in V and use the notation ẽ for
the restriction of e ∈ V to the space ṼN	(T ). In the last step, we utilized |ẽ |V ,N	(T ) =
|e|V ,N	(T ) which holds as the norm only considers nodes in the support of ẽ.

The combination of (6.5), (6.6), Assumption 6.1, the discrete Cauchy–Schwarz
inequality, the finite overlap of the patches, and (4.2) yields

|e|2K =
∑

T∈TH

cT (K (ψT ,	 − ϕT ,	) , e) ≤ σ(H , 	)
∑

T∈TH

cT |e|V ,N	(T )

≤ σ(H , 	)

√ ∑

T∈TH

c2T

√ ∑

T∈TH

|e|2
V ,N	(T )

≤ σ(H , 	)C1/2
r (H , 	)|�H f̃ |M Col	

d/2|e|V
≤ ColC

1/2
r (H , 	)	d/2σ(H , 	)α−1/2

√
1 + C2

fr|e|K | f̃ |M

with constant Col > 0 reflecting the overlap of the patches N	(T ). In the last step, we
applied Friedrichs’ inequality (2.8) on the full network. Putting together the previous
estimates and using (2.5), the assertion can be concluded. �

Remark 6.4 (Decay of localization error) In the continuous setting, [19] conjectures
that σ decays super-exponentially in 	. More precisely, there existsCσ > 0 depending
polynomially on H , 	 and Cd > 0 independent of H , 	 such that, for all 	,

σ(H , 	) ≤ Cσ (H , 	) exp(−Cd	
d

d−1 ). (6.7)

In [19, Section 7], this result is justified theoretically using a conjecture from spectral
geometry. Numerical experiments in [19, Section 8] confirm the super-exponential
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decay numerically. Furthermore, [19, Lemma 6.4] provides a rigorous proof that σ

decays at least exponentially in 	.
In the spatial network setting, we also observe a rapid decay of the quantity σ as 	

is increased. Qualitatively, the decay behavior is is similar to the one in the continuous
setting, see the numerical experiments in Sect. 7.2 and Sect. 7.3. Using techniques
from [10], one can show, similarly as in the continuous setting, that σ decays at least
exponentially.

Remark 6.5 (TH -piecewise right-hand sides) For f̃ ∈ P
0(TH ), only the localiza-

tion error in (6.4) is present, as for TH -piecewise constant right-hand sides, it holds
| f̃ − �H f̃ |M = 0.

Remark 6.6 (Relation to AMG coarse spaces) To improve the convergence of the
outer iteration, many AMG methods use problem-adapted coarse spaces. The basis
functions of such coarse spaces are computed, e.g., by solving local eigenproblems
(see, e.g., [7, 11]) or by solving an energy minimization problem subject to a partition
of unity constraint (see, e.g., [26, 32]). Using the coarse space in a one-shot method,
i.e. computing the Galerkin approximation in the coarse space, typically does not yield
satisfactory approximation orders. In contrast, the proposed method achieves optimal
convergence orders introducing a computational overhead (	 must be increased with
the desired accuracy, see Theorem 6.3).

7 Numerical experiments

For the subsequent numerical experiments, we utilize a spatial network constructed
as follows. First, we sample 20,000 lines of length 0.05 which are uniformly rotated
and with midpoints uniformly distributed in [−0.025, 1.025]2. Next, we remove all
line segments outside of the unit square so that all lines are contained in the domain
� = [0, 1]2. We then define the network nodes as the line segments’ endpoints and
intersections. Two nodes are connected by an edge if the nodes share a line segment.
We only consider the largest connected component of the network in order to ensure
that the network is connected. We also remove all hanging nodes (nodes of degree
one) in the interior of the domain along with the respective edges. All nodes at the
boundary ∂� are Dirichlet nodes. The total number of nodes is around 80, 000.

7.1 Poincaré constant

This numerical experiment is to justify Lemma 3.4 numerically. Given T ∈ TH ,
H ∈ H, we construct the subgraph Ḡ = (N̄ , Ē) by means of a breadth-first search
algorithm. Then, we compute the second eigenvalue λ2 of the generalized eigenvalue
problem L̄v = λM̄v posed in the space V̂ (N̄ ) with L̄ , M̄ being defined on Ḡ, see also
the proof of Lemma 3.2.

In Fig. 4, the reciprocal square root of the numerically computed eigenvalues λ2
corresponding to elements T ∈ TH is depicted for different mesh sizes H ∈ H. The
dotted black line interpolates, for all mesh sizes H , the averaged eigenvalue for the
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Fig. 4 Eigenvalues λ2 for
different mesh sizes H

respective H . Note that the scaling of the y-axis is chosen such that the black line
should appear linear if the desired scaling from Lemma 3.4 holds.

Figure 4 confirms Lemma 3.4 numerically. We note that for smaller mesh sizes,
there is a considerable variation in the eigenvalues. This happens when we reach the
critical mesh size, which is H0 ≈ 2−5 in this example.

7.2 Decay of�

In this experiment, we numerically investigate the decay of σ defined in (6.3) which
is the maximum of the local quantities σT from (5.6). For illustration purposes, we
pick an element T ∈ T2−4 whose fourth order patch has no intersection with the
global boundary ∂�. Figure5 then depicts the square root of the eigenvalues of the
eigenvalue problem (5.5) for the patches N	(T ) with 	 = 1, . . . , 4. By definition, the
square root of the smallest eigenvalue coincides with σT . The values of σT are marked
using dashed horizontal lines.

In Fig. 5, one observes a rapid decay of σT as 	 is increased. Note that for 	 ≥ 3,
the difference in magnitude of the smallest and largest eigenvalue of (5.5) is at least
of order 1014 which means that the respective matrices have a large condition number.
This affects the accuracy of the eigenvalue solver and explain the flatting of the decay
for large oversampling parameters as observed in Figs. 5 and 6.

7.3 Super-localization

For this numerical experiment, we consider a weighted graph Laplacian (2.4) with
edge weights γxy independently and uniformly distributed in the interval [0.01, 1].
We choose the right-hand side f̃ ≡ 1 or equivalently f = M1. Since f̃ ∈ P

0(TH ),
the error is bounded solely by the localization error, see Remark 6.5. In Fig. 6 (left),
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Fig. 5 Eigenvalues of the
eigenvalue problem (5.5) for
patches of orders 	. The dashed
lines marks the values of σT for
the respective patches

Fig. 6 Plot of the relative localization errors as a function of the oversampling parameter 	 of the SLOD
and the LOD (left). Depiction of the relative localization errors of the SLODwith the estimator (7.1) (right)

the localization errors for the SLOD are shown. The localization errors are plotted
for several coarse grids TH with respect to 	. We additionally depict the localization
errors when using the LOD for localizing the same prototypical ansatz space VH

from (4.4). As reference, we indicate lines showing the expected rates of decay of
the localization errors for the SLOD and LOD which is super-exponential decay for
the SLOD, cf. (6.7), and exponential decay for the LOD. In Fig. 6 (right), we again
depict the localization errors for the SLOD but this time together with the values of
its estimator

est(H , 	) := C1/2
r (H , 	)	d/2σ(H , 	) (7.1)
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Fig. 7 Plot of the errors |u − uH ,	|L/|u|L as a function of the mesh size H of the SLOD (left) and the
LOD (right)

appearing in the error estimate in Theorem 6.3. Note that the scaling of the x-axis
in Fig. 6 is chosen such that a super-exponentially decaying curve appears to be a
straight line.

Figure 6 (left) numerically confirms the super-exponential decay rates of the local-
ization errors as known for the continuous setting [19]. Note that, similarly as for the
decay of σ in Sect. 7.2, we can also observe a flattening of the decay for 	 ≥ 3. This
might again be explained by the high condition number of the matrices in (5.5), see
Sect. 7.2. The localization error of the LOD, depicted in Fig. 6 (left), decays exponen-
tially, see, e.g., [1, 10]. Much larger values of 	 are necessary in order to reach the
accuracy level of the SLOD.

Figure 6 (right) shows that the error estimator is quite well aligned with the local-
ization error and thereby underlines the sharpness of the estimator. For 	 = 4, we
observe that also the estimator is slightly affected by the aforementioned conditioning
issue.

7.4 Optimal convergence

For demonstrating the convergence of the SLOD for spatial networks, we consider the
edge weights from the previous numerical example and the right-hand side

f̃ (x1, x2) = sin(x1) sin(x2).

Figure7 shows the convergence plots for the SLOD (left) and the LOD (right) for
different oversampling parameters as the coarse mesh TH is refined. Note that we only
consider combinations of H , 	 for which there is no patch N	(T ) that coincides with
the whole domain �. As reference, lines of slope 2 are depicted.

Figure 7 confirms the method’s convergence properties as stated in Theorem 6.3,
i.e., provided that the oversampling parameter 	 is chosen sufficiently large, optimal
convergence of order 2 can be observed. Note that in Fig. 7 (left), the yellow line is
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Fig. 8 Spatial network with high conductivity channels indicated in green (left) and SLOD solution (right)

partially below the purple line and thus is difficult to see. For the LOD, the optimal
order convergence is difficult to see. The reason is that, for all considered localization
parameters, the localization error still dominates the optimal order error.

7.5 High-contrast example

In this numerical experiment, we use edge weights γxy that are independently and
uniformly distributed in [0.01, 1] and add several channels of high conductivity with
edge weights of 104. Hence, the contrast in this numerical example is of order 106. For
an illustration of the setup, we refer to Fig. 8 (left), where the high-conductivity chan-
nels are marked in green. The high conductivity effectively extends the homogeneous
Dirichlet boundary conditions also to the channels. We consider this experiment as
particularly challenging as the channels are not aligned with the considered Cartesian
meshes TH and thus, artificial boundary-like conditions are imposed on the SLOD
basis functions. As right-hand side, we choose f̃ ≡ 1, i.e., only the localization error
is present, cf. Remark 6.5.

For this experiment, theSLOD is again able to achieve very accurate approximations
for much smaller oversampling parameters than the LOD. For example, for the mesh
T2−4 and 	 = 3, the SLOD achieves a relative L-norm error of 2.75× 10−3, while the
LOD, for the same discretization parameters, only achieves an error of 1.73 × 10−1.
For reaching a similar accuracy as the SLOD, for the LOD, we would need to choose
	 so large that many patch problems are already global problems.

Note that in Fig. 8, for the ease of illustration, we only depicted a subnetwork and
the correspondingly restricted solution. Plotting the full network is infeasible as the
high density of the lines would make the lines nearly impossible to distinguish.
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