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Continuous-variable bosonic systems stand as prominent candidates for implementing quantum com-
putational tasks. While various necessary criteria have been established to assess their resourcefulness,
sufficient conditions have remained elusive. We address this gap by focusing on promoting circuits that
are otherwise simulatable to computational universality. The class of simulatable, albeit non-Gaussian, cir-
cuits that we consider is composed of Gottesman-Kitaev-Preskill (GKP) states, Gaussian operations, and
homodyne measurements. Based on these circuits, we first introduce a general framework for mapping
a continuous-variable state into a qubit state. Subsequently, we cast existing maps into this framework,
including the modular and stabilizer subsystem decompositions. By combining these findings with estab-
lished results for discrete-variable systems, we formulate a sufficient condition for achieving universal
quantum computation. Leveraging this, we evaluate the computational resourcefulness of a variety of
states, including Gaussian states, finite-squeezing GKP states, and cat states. Furthermore, our framework
reveals that both the stabilizer subsystem decomposition and the modular subsystem decomposition (of
position-symmetric states) can be constructed in terms of simulatable operations. This establishes a robust
resource-theoretical foundation for employing these techniques to evaluate the logical content of a generic
continuous-variable state, which can be of independent interest.

DOI: 10.1103/PRXQuantum.5.020337

I. INTRODUCTION

Despite recent progress in understanding the relation-
ship between genuine quantum properties and quantum
computation [1–5], unraveling the origin of quantum com-
putational power remains a challenging task. Adopting
insight from the framework of resource theories [4], one
approach to develop our understanding consists of break-
ing down the design of quantum computing architectures
into two subparts: (i) the implementation of a restricted
class of circuits, which can be efficiently simulated with
a classical device and are therefore deemed as free or
allowed; (ii) the preparation of specific states that are able
to promote the restricted class to a universal model [6]
and are therefore deemed as resources. The latter identifies
key properties that enable quantum advantage—namely,
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the ability to solve certain computational problems expo-
nentially faster than classical computers [7].

The choice of the restricted class depends on the model
of quantum computation (QC). In discrete-variable (DV)
qubit-based QC, the restricted class most commonly con-
sidered is the set of Clifford circuits acting on stabilizer
states [8,9]. Clifford circuits alone are incapable of achiev-
ing universality, and consequently quantum advantage.
However, certain states, such as the “magic” T state, are
capable of promoting these circuits to universality [6].
States that have a fidelity to the T state beyond a certain
threshold also fulfill this scope by means of magic state
distillation, whereby a large number of low-quality magic
states can be converted to a smaller number of nearly ideal
ones [6,10–13]. Hence, the fidelity to the closest ideal
magic state yields a sufficient criterion for universality.

In continuous-variable (CV) quantum computing, Gaus-
sian quantum circuits [14–17] are commonly chosen as the
counterpart to Clifford circuits. In fact, it is known that
Gaussian circuits are efficiently simulatable and therefore
incapable of performing universal QC [18]. Adding access
to certain CV resource states, such as the cubic phase
state [19–22], Gottesman-Kitaev-Preskill (GKP) states
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[23], or the cat state [24,25], promotes these circuits to
universality. More broadly, a significant effort has been
devoted to identifying efficiently simulatable circuits [18,
26–28], and therefore the requisite properties for a state to
act as a resource in the CV setting. In particular, neces-
sary conditions have been provided in terms of the Wigner
logarithmic negativity (WLN) [29,30] and the stellar rank
[31], which quantify the degree of non-Gaussian features
of a state. However, in contrast to the DV case, no suffi-
cient criterion exists that can identify whether an arbitrary
CV state is capable of promoting an otherwise simulatable
architecture to universality.

In this work, we establish a sufficient criterion for a
CV state to promote an otherwise simulatable class of cir-
cuits to universality. To accomplish this, we consider a
distinct class, different from Gaussian circuits, as resource-
less. Specifically, we choose circuits composed of ideal
GKP stabilizer states, acted on by Gaussian operations [32]
and measured with homodyne detection. These circuits
have been shown to be efficiently simulatable [33–36]. As
such, throughout this work, we refer to them as simulatable
GKP (SGKP) circuits. Crucially, they include a general
set of simulatable operations significantly beyond logically
encoded qubit Clifford operations. The ability to simu-
late such operations is key to demonstrating our sufficient
criterion for universality in CV QC.

The derived criterion is applicable to any CV state.
As illustrative examples, we provide an analysis of the
resourcefulness of some experimentally relevant states.
We begin by assessing generic Gaussian states, thereby
extending the set of previously known resourceful Gaus-
sian states that only included the vacuum and thermal
states [23]. Since our approach can be applied to generic
states, we also investigate highly non-Gaussian states, such
as realistic GKP states, cat states, and cubic phase states.
We identify parameter regimes where they can be consid-
ered as resources in this framework, and where they exceed
the resourcefulness of the Gaussian states.

Our approach comprises two steps. We first map
the CV state of interest into a two-dimensional space,
effectively associating a qubit state with it. The
maps that we define are inspired by some subsys-
tem decompositions (SSDs) recently introduced in order
to extract the (qubitlike) logical content of a generic
CV state [37–39]. However, crucially, we identify and
focus on maps that can be implemented using solely
SGKP circuits. Therefore, they are free maps in a
rigorous resource-theoretical sense, ensuring they do not
artificially add any resource to the original CV state. In
the second step, we apply known results in DV systems
to evaluate the resourcefulness of the mapped qubit state,
therefore establishing a sufficient condition for the original
CV state to be resourceful.

As a byproduct, by establishing which SSD can be
obtained using SGKP circuits, we are able to establish

whether known SSDs can be grounded in a rigor-
ous resource-theoretic framework. Considering that these
SSDs play a pivotal role in extracting logical information
from both theoretically proposed [40–42] and experimen-
tally generated states [43], we anticipate that this result will
be of independent interest.

The subsequent sections are organized as follows. In
Sec. II we present an overview of the main results of
our work. In Sec. III we present previous methods for
understanding the resourcefulness of quantum states for
universal QC, along with an overview of existing meth-
ods for mapping CV states to DV states. In Sec. IV we
introduce a unified approach for mapping CV states to
DV states and demonstrate how existing maps can be
expressed in this framework. We then introduce a new map
that is implementable using SGKP circuits. In Sec. V we
present our technique for quantifying the resourcefulness
of CV states for quantum advantage by interpreting the CV
state as an encoded DV state, and present results quantify-
ing the resourcefulness of a range of different CV states
using our technique. In Sec. VI we present the conclu-
sions of our work and provide some open questions. In the
appendices, we provide a physical interpretation of the var-
ious maps in terms of circuits, and we demonstrate that the
modular subsystem decomposition admits a physical inter-
pretation in terms of SGKP circuits for states symmetric in
position.

II. MAIN RESULTS

To enhance readability, we report in this section a sum-
mary of the main results of this work. Comprehensive
details and proofs are deferred to subsequent sections.

As mentioned, we introduce a framework to address the
resourcefulness of generic CV states when combined with
the otherwise simulatable class of SGKP circuits. The gen-
eral type of circuits considered is of the form depicted in
Fig. 1, where one can also assume to have access to adap-
tive operations. As proven in Ref. [36], these circuits are
efficiently simulatable on a classical device when employ-
ing only ideal stabilizer GKP states as input. It is important
to recall that this result significantly extends beyond what
could be proven, within the context of CV circuits, based
on the well-known framework of DV Clifford circuits.
From the latter framework, it immediately follows that
GKP-encoded Clifford circuits acting on stabilizer GKP
qubits must be simulatable. However, these circuits repre-
sent only a small (zero-measure) subset of SGKP circuits.
In general, SGKP circuits do not correspond to Clifford cir-
cuits at the logical level, as they can move a given GKP
state out of the code space itself. The ability to encompass
the entire class of SGKP circuits is crucial for our results.
Specifically, it allows us to draw insights from qubit magic
state distillation [6] and GKP error correction [19] to estab-
lish that the circuit in Fig. 1 attains universality when the

020337-2



SUFFICIENT CONDITION FOR UNIVERSAL QC. . . PRX QUANTUM 5, 020337 (2024)

FIG. 1. A circuit diagram displaying the broad class of circuits
that we consider in this work. In input, there are m stabilizer ideal
GKP states (in the diagram these are indicated as 0-logical states
without loss of generality) and n arbitrary CV states ρ̂. These
states are acted on by Gaussian operations and measured with
homodyne measurement. When ρ̂ are also stabilizer GKP states,
these circuits are efficiently simulatable, yielding SGKP circuits
[35,36] (see the text for details).

input CV states ρ̂ can be mapped into resourceful encoded
qubit states via SGKP circuits alone. This approach there-
fore establishes a sufficient criterion for determining the
resourcefulness of a generic CV state ρ̂.

In more detail, we first introduce a method to sys-
tematically map arbitrary single-mode CV states to qubit
states. This method unifies previously defined mappings,
specifically SSDs, which have recently been introduced
for evaluating the qubitlike logical content of CV states.
The approach involves transforming a CV state into an
encoded GKP state and subsequently analyzing the result-
ing encoded qubit state. Depending on the choice of
mapping, different qubit states will emerge. Of particular
relevance for our objectives are those mappings imple-
mentable exclusively using SGKP circuits. This is crucial,
since it guarantees that the associated SSDs do not intro-
duce additional resources beyond those present in the orig-
inal CV state. For this reason, following standard resource
theory nomenclature, we term them allowed mappings.

We review the existing mappings of stabilizer [39] and
modular SSDs [37,38], expressing them within the pre-
sented general formalism. By leveraging on the connection
between the stabilizer SSD and GKP error correction [39],
we show that the stabilizer SSD can be constructed in
terms of SGKP circuits, and therefore it is an allowed
mapping. In contrast, the modular SSD lacks this interpre-
tative advantage in general. To address this, we introduce
a new map termed the Gaussian modular SSD, and prove
its equivalence to the modular SSD when the input CV
state exhibits symmetry in the position representation. Cru-
cially, like the stabilizer SSD, the Gaussian modular SSD
can be understood in terms of allowed maps. This implies
that the modular SSD, too, is a resource-theoretically-
grounded mapping for analyzing relevant position sym-
metric states such as finitely squeezed GKP states, as well

as cat states, among others. However, for nonsymmetric
states, the equivalence breaks down, and implementation
of the modular SSD necessitates operations beyond SGKP
circuits, thus losing its interpretative status as an allowed
map. These three mappings are summarized in Table II
below, accompanied by their circuit diagrams. As men-
tioned earlier, while we have considered these mappings
here for instrumental reasons to prove our main results,
the revealed connection between SSDs and allowed maps
is a result of intrinsic interest. In fact, this connection
provides a rigorous resource-theoretical basis for recently
introduced SSDs.

Using this framework, we provide our main result.
Namely, given a generic CV state ρ̂, we define a suf-
ficient condition for promoting the circuits presented in
Fig. 1 to universality. This condition entails identifying an
allowed map that converts ρ̂ into an encoded qubit state
sufficiently close to an ideal magic GKP state. In particu-
lar, owing to the correspondence between SGKP circuits
and Clifford circuits, it suffices for the mapped qubit state
to exhibit fidelity to an ideal magic state surpassing the cor-
responding known distillation threshold (identified in the
context of Clifford quantum computation via state injec-
tion). Furthermore, beyond the fidelity, the resourcefulness
of qubit states can be quantified by using various magic
measures—such as the robustness of magic (ROM) [44],
relative entropy of magic [45], GKP magic [46], and stabi-
lizer Rényi entropy [47]. For certain measures, such as the
ROM, there exists a threshold R∗ above which a state is
guaranteed to have a fidelity greater than the threshold for
magic state distillation. Therefore, access to a set of qubit
states with a ROM value beyond this threshold is sufficient
to promote Clifford circuits to universality.

In practical terms, given a generic single-mode CV state
ρ̂, our sufficient criterion involves the following steps: (i)
employ a chosen allowed mapping to transform ρ̂ into a
qubit state ρ̂(P)L (details on the nomenclature will be pro-
vided later), and (ii) determine its corresponding ROM.
If the latter exceeds the threshold R∗ then state ρ̂ is a
resource for universal quantum computation.

We apply the above criterion by analyzing the ROM
of the logical states obtained by the two resource-
theoretically-motivated mappings, i.e., the stabilizer SSD
and Gaussian modular SSD. In particular, we analyze the
set of Gaussian states and three classes of non-Gaussian
CV states, namely, finitely squeezed GKP states, cat states,
and cubic phase states. This allows us to identify states
able to promote SGKP circuits to universal quantum com-
putation that extend what has been previously reported
in the literature. We stress that all pure Gaussian states
are equally resourceful for promoting SGKP circuits to
universality, since they can all be generated via SGKP
circuits from vacuum. Furthermore, we find that certain
non-Gaussian states, albeit not necessarily all, have a
ROM value higher than the set of Gaussian states upon
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TABLE I. List of abbreviations.

Abbreviation Definition

QC Quantum computing
DV Discrete variable
CV Continuous variable
GKP Gottesman, Kitaev, and Preskill
WLN Wigner logarithmic negativity
SSD Subsystem decomposition
SGKP Simulatable GKP
ROM Robustness of magic

considered allowed mappings. Finally, note that the fact
that Gaussian states can be considered resourceful in this
model implies that the resourcefulness for SGKP cir-
cuits is independent of the notion of resourcefulness in
all-Gaussian circuits.

III. BACKGROUND

A resource is a component of a quantum circuit that
promotes an otherwise simulatable model to universal-
ity. In this section, we review both DV and CV QC and
their existing known measures of resourcefulness. We also
introduce the families of quantum states that we analyze in
Sec. V below. Finally, we also recall existing methods to
map CV states to DV states, before introducing our unified
approach for this type of mapping, in the next section. We
provide a list of abbreviations used throughout this work
in Table I.

A. Universal quantum computation and resources in
discrete variables

Quantum computation over DVs involves quantum
states defined over a discrete finite eigenspectrum.
For example, qubit-based quantum computation involves
qubits that are expressed in terms of the eigenstates of
Pauli operators. A complete basis can be defined in terms
of the eigenstates of the Ẑ Pauli operator, Ẑ |0〉 = |0〉 and
Ẑ |1〉 = − |1〉.

It is possible to simulate DV quantum circuits under cer-
tain conditions. For example, the Gottesman-Knill theorem
[49] provides a method to simulate circuits with input Pauli
eigenstates, Clifford group operations (i.e., those that map
Pauli operators to Pauli operators), and measurements in
the Pauli basis. If we introduce access to a distillable magic
state then the circuit can perform universal quantum com-
putation. For example, an ideal magic state such as the T
state, defined as [6]

|T〉 = cosβ |0〉 + eiπ/4 sinβ |1〉 , cos(2β) = 1√
3

,

(1)

can be combined with Clifford circuits to produce the full
span of qubit circuits [9,50]. Furthermore, a supply of
states sufficiently close to this state can be converted to a
smaller number of higher-quality versions of this state via
magic state distillation [6]. The resourcefulness of a single-
qubit state ρ̂ can therefore be quantified as the fidelity of
the state with its closest T-type magic state, i.e.,

Fmax
T (ρ̂) = max

Û∈C
〈T| Û†ρ̂Û |T〉 , (2)

where the set C is the set of single-qubit Clifford opera-
tions.

1. Resourcefulness of DV states: robustness of magic

Magic measures, such as the ROM, also provide a
method to quantify the resourcefulness of a DV state.
First note that, by defining Sn as the set of all pure sta-
bilizer states over n qubits, any nonstabilizer state can be
expressed as a sum of such states—i.e., ρ̂ = ∑

i xiσ̂i for
σi ∈ Sn. In general, there may be many different choices of
{xi} that give the same ρ̂. The ROM of the qubit state ρ̂
is defined as the minimal 1-norm among all those possible
choices of {xi}. Formally, its expression is given by [44]

R(ρ̂) = min
{xi}

{ ∑

i

|xi|; ρ̂ =
∑

i

xiσ̂i

}

. (3)

If the qubit state ρ̂ is a stabilizer state then the ROM is
equal to 1. For nonstabilizer states, the ROM of a single-
qubit state can be simplified to the convenient expression
[51]

R(1)(ρ̂) = |Tr(ρ̂X̂ )| + |Tr(ρ̂Ŷ)| + |Tr(ρ̂Ẑ)|, (4)

where X̂ , Ŷ, Ẑ are the Pauli operators. To avoid confusion,
we have denoted the ROM of a single qubit as R(1)(ρ̂),
where ρ̂ must be a single-qubit state. Note that we can also
express this value in terms of the coefficients of the qubit
density matrix ρ̂,

R(1)(ρ̂) = 2|Reρ01| + 2|Imρ01| + |ρ00 − ρ11|. (5)

For single-qubit states, the ROM is directly related to the
fidelity to the closest T state in Eq. (2) by

Fmax
T (ρ̂) = 1

2
√

3
R(1)(ρ̂)+ 1

2
. (6)

The proof of this relation is given in Appendix A.
It is known [6] that single-qubit states are distil-
lable to T-type magic states if they have fidelity
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Fmax
T (ρ̂) > F∗ = 1

2 (1 + √
3/7). We can express this con-

dition in terms of the ROM as

R(1)(ρ̂) > R∗ = 3√
7

≈ 1.134. (7)

Therefore, to perform magic state distillation, a value of
ROM greater than R∗ is sufficient for universality, in com-
bination with Clifford circuits [12,44,51]. In addition, the
larger the ROM, the more resourceful the state, in the sense
that fewer copies of the state are needed for magic state
distillation [6].

B. Universal quantum computation and resources in
continuous variables

Here we provide a short review of some families of
CV states experimentally relevant to achieving universal
quantum computation.

CV QC involves quantum states defined over a contin-
uous eigenspectrum of relevant observables, such as the
position q̂ and momentum p̂ quadratures of the electromag-
netic field, satisfying the commutation relations [q̂, p̂] = i.
A complete basis of the Hilbert space of a single CV mode
can be defined in terms of the eigenvectors of the position
operator, q̂

∣
∣q̂ = s

〉 = s
∣
∣q̂ = s

〉
.

In CV quantum systems—as in the case of DV
QC—there exist simulatable models that have no expo-
nential computational advantage over a classical computer.
For example, circuits involving all Gaussian input states,
Gaussian operations, and Gaussian measurements, such
as homodyne measurements, are efficiently simulatable
[18,26–28]. Although it is not possible to achieve quantum
advantage with this restricted class of circuits, it is known
that adding access to specific resource states, such as the
cubic phase state or GKP stabilizer states, will promote this
model to universality [19,23].

In the following subsections, we present some specific
examples of experimentally relevant CV states, beginning
with Gaussian states [14]. Then, we present two types of
bosonic code states [52], which encode DV quantum infor-
mation into CV states. Specifically, we present GKP states
[19,23] and cat states [24,25,53]. We then recall the cubic
phase state [19,54,55]. The last three families are known
states able to promote Gaussian circuits to QC universality.

1. Gaussian states

Any pure Gaussian state can be produced via a Gaussian
unitary operation Û acting on the vacuum state. A single-
mode Gaussian unitary can be decomposed in terms of a
rotation (� ∈ [0, 2π ]),

R̂(�) = ei�/(q̂2+p̂2)/2, (8)

squeezing,

Ŝ(ζ ) = e−iζ(q̂p̂+p̂ q̂)/2, (9)

where ζ > 0 represents squeezing in the position basis,
while ζ < 0 represents squeezing in the momentum basis,
and displacement operations [56]

V̂(s) = eiq̂sp e−ip̂sq , (10)

parameterized by s = (sq, sp)
�, where sq ∈ R is the dis-

placement in position, while sp ∈ R is the displacement in
momentum.

Therefore, we can define any pure single-mode Gaussian
state in terms of these operations as

|ζ ,�, s〉 = V̂(s)R̂(�)Ŝ(ζ ) |0〉 , (11)

where |0〉 is the vacuum state.
General Gaussian states can then be constructed out of

pure Gaussian states by considering convex mixtures of
pure states.

2. GKP states

The GKP encoding encodes DV quantum information
using grid states [19]. For qubits, the 0-logical state and
the 1-logical state are defined as

|0GKP〉 =
∑

n

∣
∣q̂ = 2n

√
π

〉
, (12)

|1GKP〉 =
∑

n

∣
∣q̂ = (2n + 1)

√
π

〉
. (13)

Using these two basis states, it is possible to define arbi-
trary qubit states encoded as logical GKP states. For pure
single-qubit states, we have

|ψGKP〉 = cos(θ/2) |0GKP〉 + sin(θ/2)eiφ |1GKP〉 . (14)

However, these ideal states are not normalizable and are
hence not physically implementable. By using a wave
function with Gaussian peaks and a Gaussian envelope
parameterized by a squeezing parameter �, instead of
Dirac delta peaks that extend infinitely in position, it is
possible to define realistic GKP states in terms of the
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unnormalized [57] basis states as [19,38,58]

∣
∣0̄�GKP

〉 =
∫

dxe−x2�2/2ϑ

(
x

2
√
π

,
iπ�2

2π

)
∣
∣q̂ = x

〉
,

∣
∣1̄�GKP

〉 =
∫

dxe−x2�2/2ϑ

(
x

2
√
π

− 1
2

,
iπ�2

2π

)
∣
∣q̂ = x

〉
,

(15)

where ϑ(z, τ) is the Jacobi theta function,

ϑ(z, τ) =
∑

m

eiπm2τe2π imz. (16)

Combining these states allows us to encode any pure (and
hence also mixed) single-qubit state as

∣
∣ψ�

GKP

〉 = 1√NGKP

[
cos(θ/2)

∣
∣0̄�GKP

〉 + sin(θ/2)eiφ
∣
∣1̄�GKP

〉]
,

(17)

where NGKP is a normalization constant, specific to the
squeezing and the parameters of the encoded state.

These states are physically implementable; however, the
logical basis states are no longer orthogonal. This intro-
duces errors in the encoding that can be interpreted as qubit
errors [19]. Furthermore, while for large squeezing, i.e.,
� 	 1, the norm of both unnormalized basis states are
approximately equal [19], for larger values of �, the nor-
malization factors differ and can introduce an asymmetry
in the encoded states [38].

GKP states have been physically implemented in a vari-
ety of experimental setups [59–62] and are known to
promote all-Gaussian circuits to universality [23].

3. Cat states

The second type of non-Gaussian states that we analyze
in this work are cat states [53,63]. Cat states with even
symmetry can be used to encode the 0-logical state of a
qubit, while cat states with odd symmetry encode the 1-
logical state of a qubit. The code space is defined in terms
of the unnormalized [64] basis states [53,65,66]

∣
∣0̄αcat

〉 = |α〉 + |−α〉 , (18)
∣
∣1̄αcat

〉 = |α〉 − |−α〉 , (19)

where |α〉 is a coherent state parameterized by the com-
plex number α ∈ C, which can be equivalently expressed
as α = reiφ . The wave function of a coherent state |α〉 in
the position basis is given by

〈
q̂ = x

∣
∣α

〉 = π−1/4e−(x−√
2r cosφ)2/2+i

√
2rx sinφ . (20)

Any pure (and hence also mixed) qubit state can be
encoded using these basis states. In what follows, we do

not focus on the code aspect of cat states, but rather ana-
lyze the ability of state

∣
∣0̄αcat

〉
to promote SGKP circuits to

universality.
Cat states have been successfully experimentally pro-

duced in a variety of different CV architectures [67–72].
These states can also be used to produce GKP states using
only Gaussian operations [24,25]. Therefore, like GKP
states, they can also be considered a resource for quantum
advantage in Gaussian circuits.

4. Cubic phase state

The final type of state that we analyze is the cubic phase
state [19]. This is defined as

|γ , ζ 〉 = eiγ q̂3
Ŝ(ζ ) |0〉 , (21)

where |0〉 is the vacuum state and the squeezing operator
is defined as in Eq. (9).

The cubic phase state can be used to produce both a T
gate in the GKP encoding [19] and the CV cubic phase
gate, which promotes all-Gaussian circuits to universality
[73]. Cubic phase states have recently been successfully
produced in a microwave cavity [61] and in an optical sys-
tem [74]. Theoretical proposals have been put forward to
also generate them in other platforms [75] or by Gaussian
conversion from other non-Gaussian states [76,77].

C. Existing methods to map CV states to DV states

There exist different methods [23,37,39] to analyze the
logical content of a CV state. GKP states offer a natural
analogy to DV quantum states because they specifically
encode DV quantum information into a CV state. Fur-
thermore, the logical action of Clifford operations in DV
circuits is obtained by Gaussian operations when acting on
GKP states [19].

Although the mapping from DV states to CV states
through the GKP encoding is clear and well defined [19,52,
78], understanding general CV states in terms of DV states
is more challenging. This is due to the fact that the Hilbert
space of CV states is infinite and therefore there is an infi-
nite number of possible mappings. However, by grounding
our choice of mapping in terms of the information we wish
to extract from the CV state, and by using only resourceless
states and operations in our mapping, we can define criteria
for maps that are appropriate to the situation at hand.

Specifically, in this work, we are interested in maps that
inform us of the resourcefulness of CV states to promote
otherwise resourceless SGKP circuits to universality.

Here we review two existing methods of SSD. Namely,
the stabilizer SSD, which effectively implements ideal
GKP error correction on the CV state, and modular SSD,
which has a convenient mathematical form. Note that,
prior to this work, neither of them had received a resource-
theoretical interpretation.

020337-6



SUFFICIENT CONDITION FOR UNIVERSAL QC. . . PRX QUANTUM 5, 020337 (2024)

TABLE II. A summary of the three types of maps considered in this work. The operator K̂(t) = �̂V̂(−t) is the Kraus operator that is
implemented by GKP error correction [23], where t = (tq, tp) contains the measurement results. The modular SSD and Gaussian mod-
ular SSD are equivalent for CV states that are symmetric in position. Note that the implementation of all of these maps requires access
to ideal GKP stabilizer states. The operation R̂Z(θ) is a GKP-encoded rotation around the Z axis on the Bloch sphere; it is therefore
non-Gaussian. The functions �(t) and �̄(t) = 1 − �(t), defined later in Eq. (37), correspond to the probability of implementing each
operation. Finally, ẐL is the GKP-encoded Pauli-Ẑ operator. The probabilistic implementation of the ẐL operator can be equivalently
expressed as a Gaussian channel εtp (ρ̂) = �̄(t)ρ̂ + �(t)Ẑρ̂Ẑ†. The controlled gate with the symbol 
, shown in each circuit, denotes
the inverse of the SUM gate, namely, eiq̂3 p̂1 [48]. Each SSD can be implemented by the circuit shown in this table, where the outcome
over the measurement results are averaged to produce a mixed state.

SSD type Gates Kraus operators
Logical

state Circuit

Stabilizer Gaussian {K̂(t)} ρ̂�

Modular Non-Gaussian {R̂Z(
√
π tp)K̂(t)} ρ̂L

Gaussian modular Gaussian {�(t)ẐLK̂(t), �̄(t)K̂(t)} ρ̂G
L

1. Stabilizer subsystem decomposition

The result of the projection of a CV state ρ̂ into the GKP
encoded subspace, due to GKP error correction, gives a
state of the form [23]

ρ̂�(t) = �̂V̂(−t)ρ̂V̂†(−t)�̂, (22)

where �̂ is the GKP projector defined as

�̂ = |0GKP〉 〈0GKP| + |1GKP〉 〈1GKP| , (23)

and V̂(−t) is the displacement operator in both position
and momentum, given in Eq. (10). The circuit for imple-
menting the stabilizer SSD is given in Table II. The output
of such a circuit depends on the values t = (tq, tp). By
disposing of these measurement outcomes, after the cor-
rective displacements, we are left with a mixed state. This
state is a GKP-encoded qubit state that encodes the result
of the stabilizer SSD [39]. By a slight abuse of notation,
we express the result of the stabilizer SSD as

ρ̂� = 1√
π

∫ √
π/2

−√
π/2

dtq
∫ √

π/2

−√
π/2

dtp ρ̂�(t). (24)

Note that the right-hand side of this equation is defined
over the continuous-variable Hilbert space, while the left-
hand side is defined over the qubit Hilbert space. However,

this can be resolved by considering the implicit change of
the basis states |l〉 to |lGKP〉. We provide further details on
this notation in Appendix B.

2. Modular bosonic subsystem decomposition

The logical content of a general CV state can also be
identified using modular analysis. Modular analysis of CV
states has a long history in quantum information [79,80].
Notably, it was used to first test the Bell inequalities [81–
83], which enabled much higher detection efficiency in
comparison with using DV systems. Furthermore, it has
recently been realized that modular analysis can be used
to reconstruct the logical content of realistic GKP states
[37,38].

The modular SSD has been introduced in Ref. [38] in
an abstract context, without reference to a specific cir-
cuit. Its primary feature is to decompose a CV state into
a logical component and a gauge part. As in Ref. [38],
we begin by providing an example of the decomposition
for a real number, s ∈ R. It is always possible to write the
number in terms of an integer part �s� and its remainder
s − �s�, where �·� is the integer floor function that rounds
the number down to the nearest integer. We can consider
this decomposition as splitting the number s into different
bins on the real number line, where each bin has width
1. Similarly, we can find a different decomposition of the
number s by using a different bin width α ∈ R. We can then
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decompose the number s into the closest integer multiple
of α using the centered floor function �sα = α�s/α + 1

2�
and its remainder {s}α = s − �sα .

The position quadrature q̂ can be similarly decomposed.
The position eigenstates

∣
∣q̂ = s

〉
of the position quadra-

ture operator have eigenvalues over the real numbers. The
operator can be written as q̂ = αm̂ + û, where αm̂ = �q̂α
is the integer part of the operator and {û} is the fractional
part. This provides a method of writing the position eigen-
states as simultaneous eigenstates of αm̂ and û. We can
express the position eigenstate as

∣
∣q̂ = s

〉 = ∣
∣αm̂ + û = s

〉

or
∣
∣q̂ = s

〉 = ∣
∣m̂ = m, û = u

〉
, with αm + u = s. Further-

more, by separating the odd and even integers m we
can define a logical subsystem. This can be achieved
by expressing q̂ = αl̂ + 2αm̂G + ûG , where l̂ = m̂ mod 2,
ûG = û, and m̂G = 1

2 (m̂ − l̂). We can then write the posi-
tion basis states in terms of the logical part and gauge
parts:

∣
∣q̂ = s

〉 = |m, u〉 = |l〉L |mG , uG〉G . (25)

We can therefore describe the complete Hilbert space of
a CV state in terms of a logical qubit and a gauge mode,
i.e., HCV = HL ⊗ HG . The identity operator 1CV can be
expressed as

d∑

l=1

|l〉L L 〈l| ⊗
∞∑

mG=−∞

∫ α/d

α/d
duG |mG , uG〉G G 〈mG , uG|.

(26)

It is possible to calculate the logical component of the den-
sity matrix by tracing out the gauge part of the state. The
logical density matrix can be expressed as

ρ̂L = TrG(ρ̂). (27)

While this method has a clear and robust mathematical
definition, it was previously unknown whether this partial
trace corresponds to implementable operations using phys-
ical circuits. In the next section, specifically Sec. IV B 2,
we demonstrate that the interpretation of the mapping
is only well motivated for specific types of input states.
Even though the modular SSD cannot be implemented for
general CV states with only SGKP circuits, we show in
Sec. IV B 2 that, under certain symmetry conditions on the
input state—which, for example, realistic GKP states hap-
pen to obey—the modular SSD can in fact be implemented
with SGKP circuits. Hence, for the class of realistic GKP
states, the modular SSD is a well-motivated mapping.

IV. UNIFIED APPROACH FOR MAPPING CV
STATES TO QUBITS

In this section, we establish a general mapping
from CV states to logically encoded GKP states using

continuous-variable operations. The modular SSD and the
stabilizer SSD, introduced in Sec. III C, fall within this
broad category. However, this general class of maps lacks
a clear interpretation in terms of quantum computational
resources. It may encompass operations that could poten-
tially artificially enhance the computational capabilities of
the original CV state. To address this, we further narrow
down the scope to the class of maps implementable solely
using SGKP circuits. This ensures that no artificial compu-
tational power is introduced during the mapping process.
We demonstrate that this class includes the stabilizer SSD
but not the modular SSD. Additionally, we introduce a new
map, the Gaussian modular SSD, inspired by the modular
SSD but exclusively relying on components from SGKP
circuits. Consequently, it also falls within the restricted
class of maps.

A. Mapping CV states to DV states

We begin by defining a general map MP from an arbi-
trary CV state ρ to an encoded qubit GKP state as

MP : ρ̂ →
∫

R
ds

∑

i

P̂i(s)ρ̂P̂†
i (s), (28)

where the P̂i(s) are Kraus operators that—according to
some parameters s that may depend on measurement
results—consist of CV operations, and R is some inte-
grable region of the space of the measurement outcomes s.
Note that here the state both before and after the mapping
occupies the CV Hilbert space; however, after the mapping
the state is restricted to the logical qubit GKP subspace of
the CV Hilbert space, and can therefore be interpreted as a
qubit state. We denote the set of these Kraus operators as P,
i.e., P = {P̂1(s), . . . , P̂k(s)}. These Kraus operators must
include the GKP projector such that the state is mapped to
a perfectly encoded ideal GKP state; i.e., the Kraus opera-
tors P̂i = �̂P̂′′

i are expressed as an arbitrary CV operation
P̂′′

i followed by the projection �̂ onto the GKP code space.
The encoded qubit state achieved as a result of applying
the set of Kraus operators P is denoted ρ̂(P)L , i.e.,

〈l| ρ̂(P)L

∣
∣l′

〉 = 〈lGKP|
∫

R
ds

∑

i

P̂i(s)ρ̂P̂†
i (s)

∣
∣l′GKP

〉
. (29)

The state that arises from the mapping MP depends on the
choice of the Kraus operators P.

As mentioned, the crucial point to note is that, depend-
ing on the choice of Kraus operators, this general map
may introduce additional resourcefulness to the original
CV state. Therefore, in order to quantify the resourceful-
ness of CV states for SGKP circuits, we must restrict the
Kraus operators to be chosen from the set of SGKP-type
Kraus operators, which we label PSGKP. The correspond-
ing restricted set of maps, i.e., the set of MP such that
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P ∈ PSGKP, are hence all maps that can be implemented
using resourceless operations.

As mentioned, each Kraus operator in any set P must
project onto the GKP basis using the operator �̂. However,
this operator is not, by itself, a valid operation in SGKP
circuits. Despite this apparent contradiction, it remains
possible to perform GKP error correction using SGKP cir-
cuits, which effectively introduces a random displacement
and projects the CV state onto the GKP code basis, and
which can instead be expressed using the Kraus operator
[23]

K̂(t) = �̂V̂(−t). (30)

As a reminder, the circuit diagram corresponding to the
implementation of this Kraus operator is provided in
Table II for several relevant maps.

Therefore, we identify a class of allowed Kraus oper-
ators, which are both implementable with SGKP circuits
and also project onto the GKP basis as

P̂i(s) = P̂′(s)i�̂V̂(−s)Ûi, (31)

where P̂′
i(s) is selected from the set of Kraus opera-

tors implementable by probabilistic GKP-encoded Clif-
ford operations and Ûi is any unitary Gaussian operation
(encompassed in Ref. [36]), which occurs prior to the GKP
error-correction routine, and therefore does not depend
on the measurement outcomes. For simplicity, we choose
Ûi = 1 in our analysis of CV states. A complete charac-
terization of the class of maps MP such that P ∈ PSGKP is
lacking and we leave it for further investigation.

B. Considered maps in terms of the general map

The two maps introduced in Sec. III C can all be
expressed in the form given in Eq. (29). As we will now
see for the stabilizer subsystem decomposition, as well as
for the Gaussian modular subsystem decomposition that
we introduce below, the Kraus operators can be further
expressed as in Eq. (31), implying that these maps can
be implemented by means of SGKP circuits. However, the
Kraus operators implementing modular SSDs are not in the
set PSGKP.

1. Stabilizer subsystem decomposition

If we consider the set of Kraus operators P in Eq. (29) to
consist of a single operator P = K = {K̂(s)}, where K̂(s) is
defined in Eq. (30) and R is the interval [−√

π/2,
√
π/2)

over both sq and sp ,

ρ̂
(K)
L =

∫

R
ds�̂V̂(−s)ρ̂V̂†(−s)�̂, (32)

then we recover the stabilizer SSD [39] as defined in
Eq. (24), i.e., ρ̂(K)L = ρ̂�.

This map can be implemented by performing GKP error
correction according to the original proposal provided by
Ref. [19]. In turn, it is easy to see that GKP error cor-
rection is an SGKP circuit, namely, an allowed map. In
fact, from the circuit diagram in Table II, it consists of
measuring the two GKP stabilizers and displacing the
mode in both position and momentum, where the correc-
tive displacements are performed modulo

√
π over the

interval (−√
π/2,

√
π/2]. Equivalently, this can be imple-

mented by performing the corrective displacements tq, tp
directly, but only accepting the state when the values of
the measurement results tq, tp , modulo 2

√
π , are within

the acceptable interval (−√
π/2,

√
π/2]; otherwise, the

state is discarded [23]. In any case, all these elements
belong to the class of SGKP circuits, therefore ensuring
that the stabilizer SSD map is an allowed map from a
resource theory viewpoint, in that it does not add any com-
putational power to the original state ρ̂. This provides a
resource-theoretic foundation to the stabilizer SSD, there-
fore strongly grounding its use when one wants to associate
a binary (qubitlike) logical content to a generic CV state ρ̂.

In Appendix B 1, we also provide a new alternative form
of the stabilizer SSD, namely, expressing it in the posi-
tion basis. This alternative form is useful for comparing the
effect of the stabilizer SSD with the modular SSD and also
provides a convenient method to calculate the stabilizer
SSD of a general CV state. As mentioned, in Appendix B 2
we derive the circuit implementation of the stabilizer SSD,
also reproduced in Table II.

2. Modular subsystem decomposition

The modular SSD is calculated by tracing out the gauge
part of a bosonic state, i.e., Eq. (27). For a single mode,
this can be expressed in a convenient form using the den-
sity matrix of the state in the position basis, as we show in
Appendix C 1. However, we can also interpret this opera-
tionally as performing GKP error correction, followed by
a logical Ẑ rotation acting on the logical qubit state, as we
explicitly show in Appendix C 2. The resulting interpreta-
tion in terms of a quantum circuit is reproduced in Table II
and makes explicit the connection between modular SSD
with GKP error correction that was implicitly established
in Ref. [84]. Our analysis allows us to express the modular
SSD as

ρ̂L =
∫

R
dtR̂Z(tp

√
π)ρ̂�(t)R̂

†
Z(tp

√
π), (33)

where the logical Ẑ rotation is given by

R̂Z(θ) = cos
θ

2
1 − i sin

θ

2
Ẑ, (34)

and ρ̂�(t) is given in Eq. (22). The set of Kraus opera-
tors defining the modular SSD, in terms of the general map
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defined in Eq. (29), therefore consists of a single Kraus
operator, i.e., P = {R̂Z(tp

√
π)K̂(−t)}.

It is relevant to note that the logical Ẑ rotation is, for gen-
eral θ , a non-Clifford operation in the qubit framework and
its GKP-encoded operation is accordingly non-Gaussian.

By inserting the rotation operator given in Eq. (34) into
Eq. (33), we show that the expression can be interpreted
as a summation of a Gaussian ρ̂G

L term and a non-Gaussian
ρ̂NG

L term, i.e., ρ̂L = ρ̂G
L + ρ̂NG

L . As we explicitly derive in
Appendix C 3, these terms are given by

ρ̂G
L =

∫

R
dt cos2

(
tp

√
π

2

)

ρ̂�(t)+ sin2
(

tp
√
π

2

)

Ẑρ̂�(t)Ẑ†

(35)

and

ρ̂NG
L = −i

∫

R
dt

sin
(
tp

√
π

)

2
[Ẑρ̂�(t)− ρ̂�(t)Ẑ†]. (36)

In general, since the logical Ẑ rotation corresponds to a
non-Gaussian operation, it is not implementable via an
SGKP circuit and therefore it could add computational
power to the original state ρ̂, as it could increase the magic
content of the corresponding qubit state. However, as we
will see in the next subsection, for certain states ρ̂, specif-
ically those that are symmetric in position, state ρ̂L is
equivalent to the Gaussian modular SSD ρ̂G

L and can be
prepared with only SGKP circuits.

For the purpose of analyzing realistic GKP states, as
given in Eq. (17), which are symmetric in position, we
therefore find that the modular SSD can, in fact, be imple-
mented using only components selected from the class of
SGKP circuits. This implies that the modular SSD is also
endowed with a resource-theoretic foundation, as the sta-
bilizer SSD, when it is applied to the analysis of the logical
content of realistic GKP states.

3. Gaussian modular subsystem decomposition

We now introduce a new map that can be performed
using only the set of simulatable SGKP circuits; i.e., the
set of Kraus operators P is contained within PSGKP. This
map is the result of performing only the Gaussian part of
the modular SSD and, therefore, the resulting state is given
by ρ̂G

L .
To operationally produce this state from state ρ̂ with

the otherwise free resources of SGKP circuits, we per-
form GKP error correction that gives measurement out-
comes tq, tp and then randomly apply a logical Z gate with
probability

�(t) = sin2
(

tp
√
π

2

)

= 1 − cos
(
tp

√
π

)

2
. (37)

The measurement results should then be discarded to pro-
duce the statistical mixture over the possible values of

tq, tp . Further details, and a circuit diagram of this proce-
dure, are presented in Appendix D; see also Table II.

The Kraus operators that define this map, in terms of
Eq. (29), are given by P = {�̄(t)K̂(t),�(t)ẐLK̂(t)}, where
�̄(t) = 1 − �(t) is the complement probability, i.e., the
probability of not implementing a ẐL operation.

This mapping has the benefit of being implementable
with the resourceless SGKP operations, while also main-
taining part of the structure of the modular SSD. In fact, as
we explicitly demonstrate in Appendix E, when the input
state is symmetric in position, the non-Gaussian part of the
density matrix of the modular SSD, Eq. (36), evaluates to
zero, i.e.,
〈
q̂ = x

∣
∣ ρ̂

∣
∣q̂ = x′〉 = 〈

q̂ = −x
∣
∣ ρ̂

∣
∣q̂ = −x′〉

for all x, x′ ∈ R =⇒ ρ̂L = ρ̂G
L .

(38)

V. RESOURCEFULNESS OF CV STATES FOR
SGKP CIRCUITS

We now use the maps described in the previous subsec-
tions to analyze the resourcefulness of arbitrary CV states
to promote the otherwise simulatable model of SGKP
circuits to universality.

A. Resourcefulness of the DV state resulting from a
general mapping

In order to quantify the resourcefulness of generic CV
states, we calculate the ROM of its associated qubit:

R[MP(ρ̂)]. (39)

As mentioned, for this quantity to have a grounded
resource-theoretic meaning, we restrict the allowed Kraus
operators to those that are included in the simulatable
model of simulatable GKP circuits, i.e., P ∈ PSGKP.

By this logic, we can quantify the resourcefulness of an
arbitrary single-mode CV state to promote SGKP circuits
to universality by means of the functional

RSGKP(ρ̂) = max
P∈PSGKP

R[MP(ρ̂)]. (40)

Although a full search over all possible mappings is chal-
lenging, for the purpose of a sufficient condition of uni-
versality, it is only required that there exists some map
such that the ROM is above the threshold of distillabil-
ity R∗. This is because SGKP circuits contain stabilizer
GKP states and Gaussian operations, yielding encoded
Clifford circuits. The addition of a supply of GKP-encoded
magic states, above the distillation threshold, promotes
these circuits to universal QC.

We can therefore inspect the quantity given in Eq. (39)
for different choices of mappings MP, all with P ∈ PSGKP.
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If, for one of these mappings, the ROM is greater than
R∗ then the CV state can clearly be converted to a GKP-
encoded distillable magic state by some allowed mapping.
Hence, the ROM of the logical state found via a specific
mapping MP gives a lower bound of RSGKP.

In other words, given access to a supply of the CV state
ρ̂, if the ROM of a logical state found via a specific map-
ping MP is above the distillation threshold, R[MP(ρ̂)] >
R∗, then it is possible to produce a supply of GKP-encoded
magic states above the distillation threshold from ρ̂ using
only resourceless SGKP operations. Furthermore, since the
operations required for magic state distillation consist of
only encoded GKP-Clifford operations and adaptive homo-
dyne measurements, it is possible to produce a supply of
T states with arbitrarily high quality using a polynomial
number of operations [6], given access to a supply of the
CV state ρ̂. In this sense, the ROM value after an allowed
mapping yields an upper bound to the number of copies
to be used in the magic state distillation procedure. There-
fore, for a given mapping, the larger the ROM, the more
resourceful the state. Note however that different mappings
can yield different hierarchies between states, as we show
in Appendix F.

Finally, we note that the ROM value of a logical state
found via a mapping of the form given in Eqs. (28) and (29)
is convex. Specifically, when considering a mixed CV state
ρ̂ = ∑

k pkρ̂k with
∑

k pk = 1 consisting of a weighted
sum of pure CV states, the corresponding logical state is
equal to a weighted sum of the set of logical states found
from each of the corresponding CV pure states ρ̂k, i.e.,
ρ̂L = ∑

k pkMP(ρ̂k). Since the ROM is convex for qubit
states [44], we therefore must have

R(MP(ρ̂)) = R
(

MP

( ∑

k

pkρ̂k

))

≤
∑

k

pkR(MP(ρ̂k)).

(41)

B. Analysis of CV states

We use the methods described in Sec. V A to analyze
the ROM of the mapped CV states selected from the set of
Gaussian states and three families of non-Gaussian states
introduced in Sec. III B. Here we present the ROM val-
ues of the resource-theoretically-motivated SSDs, i.e., the
stabilizer SSD and the Gaussian modular SSD. For the
symmetric cat and GKP states, the Gaussian modular SSD
is equivalent to the modular SSD, and therefore the ROM
values of the two decompositions are equal.

1. Gaussian states

We begin with an analysis of pure Gaussian states. We
then consider the case of mixed Gaussian states.

We recalled in Sec. III B 1, specifically in Eq. (11), that
any pure Gaussian state can be defined via a Gaussian uni-
tary operation—parameterized in terms of the squeezing

(b)

(a)

FIG. 2. ROM of the (a) stabilizer SSD and (b) (Gaussian)
modular SSD of a rotated-squeezed Gaussian state, as defined in
Eq. (42), for different values of squeezing ζ and rotation angles
�. The regions inside the dashed white boundaries in each plot
indicate the regions of distillability.

parameter ζ , a rotation angle �, and a displacement vec-
tor s—acting on the vacuum state. In Fig. 2 we plot the
ROM value of the qubit state arising from the different
choices of SSD of a pure Gaussian state, parameterized by
the squeezing parameter ζ and rotation angle �. Specifi-
cally, in Fig. 2(a) we plot the ROM of the stabilizer SSD of
a Gaussian state and in Fig. 2(b) we plot the modular SSD
of a Gaussian state. Note that in the figure we choose the
value of the displacement vector s to be zero in both posi-
tion and momentum; however, when we later optimize to
identify the maximally resourceful states, we also optimize
over the choice of s. Also, note that Fig. 2(b) equivalently
shows the ROM of the Gaussian modular SSD because the
wave function of a pure Gaussian state centered in phase
space is symmetric in position.

We start by inspecting Fig. 2(b), which shows the ROM
of the stabilizer SSD for different pure Gaussian states.
As a reminder, values of � = 0 and ζ = 0 correspond to
the vacuum state, while nonzero values correspond to a
rotated and squeezed state. We find that the stabilizer SSD
of the vacuum state has a ROM value of R(ρ̂�) ≈ 1.160,
which is greater than the threshold for T-magic state dis-
tillation. This result is in line with what was reported in
Ref. [23], where it was shown that a supply of vacuum
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states allows for distilling 0-logical GKP states into magic
states with Gaussian operations alone, although in that
work distillation towards H states was rather considered.
However, the vacuum is not the optimal Gaussian state
to achieve a high ROM value [85]. Instead, we find that
the ROM value (and, hence, fidelity to T) is greater when
using a rotated squeezed state. Specifically, by numerically
optimizing over all the parameters of the Gaussian unitary
we find that, by choosing rotation angle � = π/4, squeez-
ing parameter ζ ≈ 0.26, and displacement s = (0, 0), a
ROM of 1.303 can be achieved. Note that the ROM of the
stabilizer SSD is symmetric in both ζ and �.

Next, inspecting Fig. 2(b), we see that the ROM of the
modular SSD of the vacuum state is 1. This is because
the modular SSD of the vacuum state evaluates to the
maximally mixed state. To achieve a ROM value above
the distillation threshold for the modular SSD, it is nec-
essary to instead use a Gaussian state with both nonzero
squeezing and rotation.

Note that, since it is possible to convert between any
Gaussian state with only Gaussian operations, in virtue
of the possibility of optimizing over Gaussian unitaries
in Eq. (31), all pure Gaussian states should be considered
equally resourceful for SGKP circuits. Furthermore, given
that the ROM value of the SSD of a CV state is convex, as
shown in Eq. (41), the ROM value of the SSD of a mixed
Gaussian state can only be less than or equal to the ROM
value of the SSD of a pure Gaussian state. This implies that
the optimal ROM values for the pure single-mode Gaus-
sian states are also optimal over all single-mode Gaussian
states, including thermal states.

2. GKP states

We start by numerically calculating the ROM of an
encoded realistic GKP state of the form given in Eq. (17),
where we fix φ = π/4. The state is given by

∣
∣ψ�

GKP(θ)
〉 = 1√NGKP

[cos(θ/2)
∣
∣0̄�GKP

〉

+ sin(θ/2)eiπ/4
∣
∣1̄�GKP

〉
], (42)

which is only parameterized by the logical encoding angle
θ and the squeezing parameter �. Fixing φ = π/4 allows
us to identify a selection of insightful logical states with
only varying θ . For θ = 0, this state is simply the 0-logical
GKP state. For θ = π , this state is the 1-logical GKP
state. For θ = arccos(1/

√
3) and θ = π − arccos(1/

√
3),

the state is an encoded magic |T〉 state and its orthogo-
nal magic state, respectively. Each of these states is an
encoded finitely squeezed state, parameterized by�. From
these states, we evaluate the resulting qubit state from each
SSD introduced in Sec. IV and plot the ROM of each
state in Fig. 3. The red vertical lines correspond to the
encoded T states and have the highest ROM for any choice

(a)

(b)

FIG. 3. ROM of the (a) stabilizer SSD and (b) (Gaussian)
modular SSD of a decomposed encoded qubit GKP state, as
defined in Eq. (42), for different values of squeezing � and rota-
tion angles θ and a fixed phase of φ = π/4. The red dashed lines
indicate the values of θ for which the state is an encoded T state,
i.e., θ = arccos(±1/

√
3). The large regions inside the dashed

white boundaries in each plot indicate the regions of distillabil-
ity. The inset plots show a subset of the same data plotted with θ
on the x axis and the ROM value on the y axis. The solid blue,
red, green, and purple lines correspond to � = 0, 1/2, 3/4, 1,
respectively. Equivalently, the lines for each increasing � have
decreasing maxima. Note that the ROM value in the main figures
and the insets is always greater than or equal to 1.

of �, reaching, in fact, the maximal achievable ROM
(i.e, R = √

3) for � = 0. The plot shows ample regions
of distillability in terms of the parameters θ and �, i.e.,
regions where R[MP(ρ̂)] > R∗, identified by the shaded
white contour. These results are in line with and generalize
what was reported in Ref. [36], where it was shown that a
supply of realistic GKP states allows for distilling magic
states from 0-logical GKP states with Gaussian operations
alone, although that result referred to distillation towards
H states.

Note that there is an asymmetry in the shape of the con-
tour levels of the ROM in Fig. 3 that arises as the level of
squeezing is decreased, i.e., � is increased. We provide an
explanation for this asymmetry in Appendix G.
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We also note that the stabilizer SSD state has higher
ROM values for all � and θ , as compared to the ROM
of the modular SSD.

Furthermore, we stress that the threshold of the ROM,
R∗, is not a necessary condition for achieving quantum
advantage. For example, the 0-logical state with squeezing
� = 1, which approximates the vacuum state, has a ROM
value below the distillation threshold, meaning that it can-
not be distilled to the T state. Despite this fact, the state
can be distilled to the H state and can therefore still be
considered a resource for quantum advantage [23].

We leave further discussion of these results for specific
GKP states to Appendix H, where we also provide a com-
parison of the ROM of the stabilizer SSD of the GKP states
with the WLN of the same states.

Finally, we note that the maximal achievable ROM
using GKP states is significantly higher than that which
is possible using Gaussian states.

3. Cat states

After having analyzed the two most natural classes of
states for our framework—namely, Gaussian and (realis-
tic) GKP states—we now move to a class of states with no
specific relation to SGKP circuits. In particular, we analyze
the even cat state as defined in Eq. (18). We parameterize
the cat state using the complex number α by separating its
magnitude r and phase �, i.e., α = rei�.

Because of the fact that these states have a wave func-
tion that is symmetric in position, the modular SSD is
equivalent to the Gaussian modular SSD. The ROM of
the stabilizer SSD and the Gaussian modular SSD (equiv-
alently, the modular SSD) of the state, for different values
of r and �, are plotted in Fig. 4, where the regions above
the distillation threshold are enclosed by the dashed white
lines. We find that, for most choices of α, the ROM of the
stabilizer SSD is greater than the ROM of the Gaussian
modular SSD.

Note that the value of � corresponds to a rotation in
phase space and can be implemented using Gaussian uni-
tary operations, which are included in the set of SGKP
circuits. Therefore, we should consider the lower bound
of the maximum ROM, as defined in Eq. (40), to be the
maximum of all angles � for a given r.

We also observe that both the values of the stabilizer
SSD ROM and the values of the modular SSD ROM each
display symmetry. Specifically, when the state is rotated
by π/2, the values of each respective ROM are equal.
This can be seen from the equal ROM values in Figs. 4(a)
and 4(b) at angles� and�+ π/2. This angle corresponds
to a Fourier transform that can be equivalently considered
a change of basis of the quadratures, q̂, p̂ . The stabilizer
SSD is known to be symmetric in q̂, p̂ , so this symmetry
is to be expected for the stabilizer SSD ROM [39]. How-
ever, the modular SSD is not symmetric in general. Instead,

(a)

(b)

FIG. 4. Plot (a) shows the ROM of even cat states decomposed
using the stabilizer SSD, while plot (b) shows the ROM of the
same class of states decomposed with the (Gaussian) modular
SSD (equivalently, the modular SSD). We parameterize the even
cat state by α = rei�. The white dashed lines show the regions
where the SSD ROM is above the threshold for distillability
and hence the states are resourceful for quantum advantage with
SGKP circuits. The wave functions of the states labeled with a
cross are plotted in Fig. 5 below.

this symmetry arises from the definition of the cat state that
implies, as we explain in Appendix I, that, for these angles,
the resulting logical states are equivalent up to single-qubit
Clifford operations.

We also note the decreasing ROM values for higher val-
ues of r. This effect can be understood by considering the
wave function of the state. As such, we have provided plots
of the wave function of the cat states for some selected val-
ues of r,� in Fig. 5. We first consider the modular SSD
(equivalently, the Gaussian modular SSD). However, in
the limit of large r the logical state will be a computa-
tional basis state, and so the logical state will also be the
same for the stabilizer SSD. This is because the diagonal
elements of the logical qubit density matrix of each decom-
position are equal, as shown in Appendix C 1. From the
same appendix, we also use the fact that it is possible to
evaluate the diagonal elements 〈l| ρ̂L |l〉 of the logical den-
sity matrix provided by the modular SSD by evaluating
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FIG. 5. Wave functions of the cat state for different choices
of α = rei�, these choices of � and r are selected to correspond
with the points A–C and I–III that are highlighted within the sub-
plots of Fig. 4 with a cross. The regions with a white and blue
background represent areas that contribute to the 0-logical and
1-logical components of each SSD, respectively.

the overlap of the general input CV state with a displaced
logical GKP state and integrating over displacements in
position from −√

π/2 to
√
π/2. Therefore, we see that a

0-logical state is obtained when the wave function of the
input CV state is restricted to the blue regions of Fig. 5
and a 1-logical state is obtained when restricting the wave
function to the white regions. The value of r corresponds
to the distance between the peaks of the wave function,
and also the width of the individual peaks. As the peaks
become further apart, each peak can be binned inside one
type of region, rather than across two or more regions. In
the limit of large r, the state consists of two peaks, both
contained entirely in either the region corresponding to the
0-logical state or the region corresponding to the 1-logical
state. This implies that the SSD of the state will be a logical
basis state.

Finally, we note that the maximal ROM of the stabi-
lizer SSD of an even cat state is 1.39, which is higher
than the maximal achievable with Gaussian states alone.
While strictly speaking this would imply that the number
of copies of such a cat state required to distill a high-quality
magic T state [6] is less than the same number of copies of
a vacuum state, we do not expect this fact to be of partic-
ular experimental relevance due to the ease of producing
vacuum states.

4. Cubic phase state

The ROM of the stabilizer SSD and the Gaussian mod-
ular SSD of the cubic phase state are plotted in Fig. 6.
We find that, counterintuitively, the ROM of the stabilizer
SSD of the state is maximum when both the cubicity and
squeezing are zero, i.e., γ = 0, ζ = 0, which corresponds
to the vacuum state. Note that this is somewhat surprising

(a)

(b)

FIG. 6. The ROM of a decomposed cubic phase state for dif-
ferent values of squeezing ζ and cubicity γ . Plot (a) shows the
ROM of the stabilizer SSD of the state, while plot (b) shows
the ROM of the Gaussian modular SSD of the state. Note that,
because the wave function of the cubic phase state is not sym-
metric in position, plot (b) is not equivalent to the ROM of the
modular SSD of the cubic phase state. The white region in plot
(a) shows the region of states that are resourceful for SGKP cir-
cuits. Note that no states are above the distillation threshold for
the Gaussian modular SSD ROM.

since the maximally resourceful state among this family of
states is that for which the state is Gaussian and the WLN is
zero. However, given that, for SGKP circuits, we consider
the already highly Wigner negative stabilizer GKP states to
be resourceless, we know that negativity is not necessary
for the promotion of these circuits to universality.

Note that, unlike the other states considered in this work,
the cubic phase state is not symmetric in the position basis.
Therefore, the modular SSD of this state is not equiva-
lent to the Gaussian modular SSD. Hence, evaluating the
ROM of the modular SSD does not provide a resource-
theoretically meaningful quantifier of the resourcefulness
of the cubic phase state—as in this case the modular
SSD requires non-Gaussian operations, in addition to GKP
states, to be implemented. For completeness, we provide a
plot of the ROM of the modular SSD for the cubic phase
state in Appendix J.
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VI. CONCLUSION

In quantum computation over DV systems, the fidelity
to a target magic state is a well-established criterion for
determining whether a state can promote otherwise sim-
ulatable Clifford circuits to universality, potentially lead-
ing to quantum computational advantage. In CV systems,
while the presence of negativities in the Wigner func-
tion of a given circuit serves as a necessary condition for
universality, it falls short of providing a sufficient crite-
rion. To bridge this gap, we have introduced a resource-
theoretically-motivated framework, enabling the formula-
tion of a sufficient criterion to assess the resourcefulness of
a generic CV state for quantum computation.

Specifically, we have introduced such a criterion in the
framework of SGKP circuits. Our criterion is based on the
evaluation of a measure of magic on the encoded logical
state associated with a generic CV state ρ̂, upon map-
ping it to the computational subspace of the GKP code.
For resource-theoretically-grounded mappings—such as
the stabilizer SSD and the Gaussian modular SSD—this
quantity can be understood as the resourcefulness of state
ρ̂ to promote otherwise simulatable GKP circuits to univer-
sality. Applying such a criterion we find that all pure Gaus-
sian states are equally resourceful for promoting SGKP
circuits to universality. Moreover, we found that certain
non-Gaussian states, albeit not necessarily all, have a ROM
value higher than the set of Gaussian states.

Furthermore, our work provides a rigorous and resource-
theoretically-grounded interpretation of recently intro-
duced methodologies aimed at extracting the binary logical
content of generic CV states. In particular, we have eluci-
dated that the mapping established by the stabilizer SSD
[39] can be understood in terms of resourceless opera-
tions in the context of SGKP circuits, for any state. This
interpretation also holds for the modular SSD [37], albeit
exclusively for states symmetric in the position represen-
tation. Considering the relevant role of SSDs in extracting
the logical content of states in the emerging field of quan-
tum computation over CV systems, we expect that this
result will hold independent interest.

We conclude by recalling that the ideal GKP states con-
sidered in the SGKP framework are infinitely squeezed.
Therefore, in order to provide a conclusive validation of
the result presented here from a practical and operational
viewpoint—including the interpretation of SSDs in terms
of resourceless mapping—it would be necessary for our
findings to also hold in the presence finite squeezing—and
for the SSDs to be implemented with finite squeezing. We
leave this analysis for future work.
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APPENDIX A: MEASURE OF
RESOURCEFULNESS FOR QUBITS

In this appendix, we explicitly derive a threshold for the
robustness of magic [44] of a qubit state for which a supply
of such states, to otherwise all-Clifford circuits, are suffi-
cient for universality. While we believe that these results
are known to the community, we have not seen explicit
proof of these relations elsewhere. We use the results of
Ref. [12], which provides a sufficient condition of univer-
sality in terms of the Bloch vector of single-qubit states
supplied to otherwise all-Clifford circuits. We then use
Refs. [44,51] to relate this condition to the robustness of
magic.

1. Fidelity to the T state

We first begin by explicitly deriving the threshold given
in Theorem 1 of Ref. [12]. Two arbitrary DV states, ρ̂1 and
ρ̂2, can be described in terms of their Bloch vectors a(1) and
a(2). This allows us to evaluate the fidelity between these
two states as

F = 1
2 (1 + a(1) · a(2)). (A1)

We can choose a(1) = aT to be the Bloch vector of the T
state, i.e.,

aT = 1√
3

⎛

⎝
1
1
1

⎞

⎠ . (A2)

Note also that arbitrary reflections in each axis correspond
to different types of T states given by

a±±±
T = 1√

3

⎛

⎝
±1
±1
±1

⎞

⎠ . (A3)

The fidelity to the closest T state can be evaluated by
choosing different combinations of ± ± ± such that the
fidelity is maximized. This fidelity to any choice of T state
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is given by

F±±±
T (ρ̂a) = 1

2
+ 1

2
√

3

⎛

⎝
±1
±1
±1

⎞

⎠ · a

= 1
2

+ 1

2
√

3
(±a1 ± a2 ± a3), (A4)

where the values of a1, a2, a3 can be positive or negative,
but, when maximizing the fidelity, we pick the one such
that each coefficient becomes positive. This means that the
fidelity to the closest T state is given by

Fmax
T (ρ̂a) = max±±± F±±±

T (ρ̂a)

= 1
2

+ 1

2
√

3
(|a1| + |a2| + |a3|), (A5)

which can be equivalently written as

Fmax
T (ρ̂a) = 1

2
+ 1

2
√

3
||a||1. (A6)

The condition for the state to be above the threshold is
given by

Fmax
T (ρ̂a) >

1
2

(

1 +
√

3√
7

)

, (A7)

i.e.,

1

2
√

3
||a||1 >

√
3

2
√

7
=⇒ ||a||1 > 3√

7
. (A8)

Hence, we recover the threshold in terms of the norm of
the Bloch vector, as given in Theorem 1 of Ref. [12].

The ROM for nonstabilizer states is simply defined as
[44]

R(ρ̂) = |〈X 〉| + |〈Y〉| + |〈Z〉|
= |Tr(ρ̂X )| + |Tr(ρ̂Y)| + |Tr(ρ̂Z)|
= |a1| + |a2| + |a3|
= ||a||1. (A9)

Clearly, if R(ρ̂) > 3/
√

7, we satisfy the condition for T-
type magic state distillation.

2. Fidelity to the H state

For completeness, we also now provide an explicit rela-
tion between the robustness of magic and the threshold of
the fidelity to the H state for magic state distillation. We
begin with an explicit derivation of Theorem 2 of Ref. [12].
We now consider the fidelity of an arbitrary Bloch vector

with the Bloch vector of the H state. That is, we choose
a(1) = aH in Eq. (A1), where

aH = 1√
2

⎛

⎝
1
1
0

⎞

⎠ , (A10)

which can also be transformed under single-qubit Clifford
operations as

a(±,±,3)
H = 1√

2

⎛

⎝
±1
±1
0

⎞

⎠ , (A11)

a(±,±,2)
H = 1√

2

⎛

⎝
±1
0

±1

⎞

⎠ , (A12)

a(±,±,1)
H = 1√

2

⎛

⎝
0

±1
±1

⎞

⎠ . (A13)

The fidelity to an arbitrary state ρ̂ with Bloch vector a is
therefore given by

F (±,±,j )
H = 1

2 (1 + a · a(±,±,j )
H ), (A14)

which can be evaluated as

F (±,±,3)
H (ρ̂a) = 1

2

(

1 + 1√
2
(±a1 ± a2)

)

, (A15)

F (±,±,2)
H (ρ̂a) = 1

2

(

1 + 1√
2
(±a1 ± a3)

)

, (A16)

F (±,±,1)
H (ρ̂a) = 1

2

(

1 + 1√
2
(±a2 ± a3)

)

. (A17)

The maximum value of the fidelity to any H state is thus
given by

Fmax
H (ρ̂a) = max±±± F±±±

H (ρa) = 1
2

(

1 + 1√
2

max(|a1|

+ |a2|, |a2| + |a3|, |a1| + |a3|)
)

. (A18)

Given that the distillation threshold for the H state is tight
[86], we know that

Fmax
H (ρ̂a) > F∗ = 1

2

(

1 + 1√
2

)

, (A19)

meaning that the threshold for H state distillation can be
expressed as [86]

max(|a1| + |a2|, |a2| + |a3|, |a1| + |a3|) > 1. (A20)
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Unlike the case of the T state, the robustness of magic is
not directly related to this quantity. Instead, we must con-
sider the minimum robustness of magic of an arbitrary state
required to satisfy this inequality.

Formally, we need to identify R∗
H such that

|a1| + |a2| + |a3| > R∗
H

=⇒ max(|a1| + |a2|, |a2| + |a3|, |a1| + |a3|) > 1.
(A21)

The best possible bound can be found by identifying when
|a1| + |a2| = |a2| + |a3| = |a1| + |a3| = 1, which implies
that all |a1| = |a2| = |a3| = 1

2 . Therefore, R∗
H = 3

2 . This
is significantly higher than the bound found in terms of the
fidelity to the nearest T state. Also, note that, unlike the
previous bound, this does not identify all qubits states that
have a value of fidelity to the closest H state above the
distillation threshold.

APPENDIX B: STABILIZER SUBSYSTEM
DECOMPOSITION

In this appendix, we formalize the definition of the sta-
bilizer SSD given in Eq. (24). Note that the result of the
stabilizer SSD is identical to that of Ref. [39], where it is
defined in terms of the Zak basis. In Ref. [39], it was also
stated that the stabilizer SSD is equivalent to GKP error
correction. However, here we provide the formal definition

of the stabilizer SSD in the context of GKP error correc-
tion. We also provide details on calculating the density
matrix of a qubit state after this mapping, from the density
matrix in the position basis of a CV state. We also provide
a circuit diagram illustrating the procedure to implement
this mapping.

We first formalize the definition of the stabilizer SSD by
inspecting Eq. (24), which maps the CV state ρ̂ to a qubit
state ρ̂�. Note, however, that the right-hand side is a CV
state and, hence, we should expect a CV state on the left-
hand side. Formally, we can resolve this by defining the
CV state after the transformation as

ρ̂CV
� = 1√

π

∫ √
π/2

−√
π/2

dtq
∫ √

π/2

−√
π/2

dtp�̂V̂(−t)ρ̂V†(−t)�̂,

(B1)

which only has support on the GKP basis. We can there-
fore transform the basis of ρ̂CV

� from |jGKP〉 → |j 〉. We can
express the qubit density matrix as

ρ̂� = (|0〉 〈0GKP| + |1〉 〈1GKP|) ρ̂CV
�

× (|0GKP〉 〈0| + |1GKP〉 〈1|) . (B2)

Given this definition of the stabilizer SSD, in the following
subsection we identify a general method to calculate the
stabilizer SSD of a CV mode, from the density matrix of
the mode in the position basis.

1. Position basis representation of the stabilizer SSD

We now express the stabilizer SSD for a single mode in the position basis. We begin by writing a general expression
for each of the four elements of the stabilizer SSD, before simplifying the expression for each term. We see from Eq. (B1)
that the general density matrix element of the qubit resulting from the stabilizer SSD is given by

〈l| ρ̂�
∣
∣l′

〉 = 1√
π

∫ √
π/2

−√
π/2

dtq
∫ √

π/2

−√
π/2

dtp 〈lGKP| e−itp q̂eitqp̂ ρ̂e−itqp̂ eitp q̂
∣
∣l′GKP

〉

= 1√
π

∫ √
π/2

−√
π/2

dtq
∫ √

π/2

−√
π/2

dtp
∑

n,n′

〈
q̂ = (2n + l)

√
π

∣
∣ e−itp (2n+l)

√
πeitqp̂ ρ̂e−itqp̂ eitp (2n′+l′)√π ∣

∣q̂ = (2n′ + l′)
√
π

〉

= 1√
π

∫ √
π/2

−√
π/2

dtq
∫ √

π/2

−√
π/2

dtp
∑

n,n′
e−itp (2n+l)

√
πeitp (2n′+l′)√π 〈

q̂ = (2n + l)
√
π + tq

∣
∣ ρ̂

∣
∣q̂ = (2n′ + l′)

√
π + tq

〉
.

(B3)

We can evaluate each term of the qubit density matrix individually. First, we integrate over tp , where we use the fact that

∫ √
π/2

−√
π/2

dxe−ixs
√
π =

∫ √
π/2

−√
π/2

dx cos
(−xs

√
π

) + i sin
(−xs

√
π

) =
[

sin
(−s

√
π

)

−s
√
π

]√
π/2

−√
π/2

= 2 sin(sπ/2)
s
√
π

, (B4)

which will be zero for any even integer s, unless s → 0, at which point it will approach 1/
√
π [87]. Therefore, the integral

over tp can be evaluated as
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〈l| ρ̂� |l〉 = 1√
π

∫ √
π/2

−√
π/2

dtq
∑

n,n′

( ∫ √
π/2

−√
π/2

dtpe−itp (2n−2n′)√π
)

〈
q̂ = (2n + l)

√
π + tq

∣
∣ ρ̂

∣
∣q̂ = (2n′ + l′)

√
π + tq

〉

=
∫ √

π/2

−√
π/2

dtq
∑

n,n′
δn,n′

〈
q̂ = (2n + l)

√
π + tq

∣
∣ ρ̂

∣
∣q̂ = (2n′ + l)

√
π + tq

〉

=
∫ √

π/2

−√
π/2

dtq
∑

n

〈
q̂ = (2n + l)

√
π + tq

∣
∣ ρ̂

∣
∣q̂ = (2n + l)

√
π + tq

〉
. (B5)

Now we evaluate the two off-diagonal terms. These two terms are equal up to conjugation and, therefore, it suffices to
identify the value of a single off-diagonal term. We calculate the term 〈0| ρ̂� |1〉 by integrating over tp , and using Eq. (B4)
to find that

∫ √
π/2

−√
π/2

dtpe−itp (2n−2n′−1)
√
π = 2 sin[(2n − 2n′ − 1)π/2]

(2n − 2n′ − 1)
√
π

= − 2 cos[(n − n′)π ]
(2n − 2n′ − 1)

√
π

= (−1)n−n′ 2
(1 − 2n + 2n′)

√
π

, (B6)

such that

〈0| ρ̂� |1〉 = 1√
π

∫ √
π/2

−√
π/2

dtq
∑

n,n′
(−1)n−n′ 2

(1 − 2n + 2n′)
√
π

〈
q̂ = 2n

√
π + tq

∣
∣ ρ̂

∣
∣q̂ = (2n′ + 1)

√
π + tq

〉
. (B7)

This can be simplified further by making the substitution n → n + n′,

〈0| ρ̂� |1〉 = 1
π

∫ √
π/2

−√
π/2

dtq
∑

n,n′
(−1)n

2
(1 − 2n)

〈
q̂ = 2(n + n′)

√
π + tq

∣
∣ ρ̂

∣
∣q̂ = (2n′ + 1)

√
π + tq

〉
. (B8)

Together, Eqs. (B5) and (B8) provide a method to evaluate
the stabilizer SSD directly from the density matrix of any
single-mode CV state.

2. Circuit implementation of the stabilizer SSD

We now demonstrate that the stabilizer SSD [39] is
equivalent to performing GKP error correction [19], where
the measurement results are discarded. Although this result
was previously shown in Ref. [39], we here give the exact
details of the procedure in terms of the error-correction cir-
cuit and using only the definition of the stabilizer SSD in
the position basis.

Error correction according to the GKP protocol [19] is
performed on a mode by measuring the momentum sta-
bilizer e2i

√
π q̂ and the position stabilizer e2i

√
π p̂ , and then

shifting the mode depending on the phase of these mea-
surement outcomes. Measurement of a stabilizer in the
GKP code consists of a homodyne measurement of a
coupled ideal GKP state.

If we measure a value of tq in the momentum stabi-
lizer measurement and a measurement of tp in the position
stabilizer measurement, we then shift the mode by the
measured value modulo

√
π , where the modulus is taken

over the interval (−√
π/2,

√
π/2]. We can express the

measurement results using the same notation for modular
variables as provided in Sec.III C 2 (and that of Ref. [38])
as t = �t√

π + {t}√π , where, as a reminder, �t√
π =√

π�t/
√
π − 1

2� is the centered floor function and {t}√π =
tq − �t√

π is the remainder. Note that the remainder can
be equivalently expressed as {t}√π = t mod

√
π , where

the modulus is taken over the interval (−√
π/2,

√
π/2].

Note that �t√
π is an integer multiple of

√
π , while {t}√π

is a real number on the interval (−√
π/2,

√
π/2]. A circuit

diagram implementing GKP error correction is provided in
Fig. 7.

We can analyze the action of this circuit in terms of two
Kraus operators: one which implements the position error
correction K̂q and one which implements the momentum

FIG. 7. GKP error correction as a circuit. We draw the oper-
ation eiq̂3 p̂1 using the symbol 
, which can be considered the
inverse of the SUM gate [48].
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error correction K̂p . These can be expressed as

K̂p(tq) = eip̂1{tq}√π 〈
p̂2 = tq

∣
∣ eiq̂1q̂2 |0GKP〉2 ,

K̂q(tp) = e−iq̂1{tp }√π 〈
p̂3 = tp

∣
∣ eiq̂3p̂1 |0GKP〉3 .

(B9)

We now demonstrate that the combined action of these
Kraus operators is to implement the operation �̂V̂(−t),
which is present in the expression for the stabilizer SSD
given in Eq. (B1). We do so by first simplifying the expres-
sions of the two Kraus operators and we then demonstrate
that, combined, they give the desired action.

We begin by evaluating the first operator by inserting
the wave function of the 0-logical GKP state

K̂p(tq) = eip̂1{tq}√π 〈
p̂2 = tq

∣
∣ eiq̂1q̂2

∑

n

∣
∣q̂2 = 2n

√
π

〉

= eip̂1{tq}√π 〈
p̂2 = tq

∣
∣
∑

n

e2in
√
π q̂1

∣
∣q̂2 = 2n

√
π

〉

∝ eip̂1{tq}√π
∑

n

e2in
√
π q̂1e−i2n

√
π tq

= eip̂{tq}√π
∑

n

e2in
√
π(q̂−tq), (B10)

where we have dropped the index in the last line as the
effect of the Kraus operator only applies to the mode being
error corrected. Note that we can also use the fact that the
wave function of the 0-logical state in the momentum basis
ψ̃(x) can be expressed as [23]

ψ̃0,L(x) =
∑

n

e2in
√
πx =

∑

n

δ(x − n
√
π), (B11)

to simplify the expression further. We find that

K̂p(tq) ∝ eip̂{tq}√π ψ̃0,L(q̂ − tq)

= eip̂{tq}√π e−itqp̂ψ̃0,L(q̂)eitqp̂

= e−ip̂(tq−{tq}√π )ψ̃0,L(q̂)e
i(�tq√

π+{tq}√π )p̂

= e−ip̂�tq√
π ψ̃0,L(q̂)e

i(�tq√
π+{tq}√π )p̂

= ψ̃0,L(q̂ − �tq√
π)e

i{tq}√π p̂

= ψ̃0,L(q̂)e
i{tq}√π p̂ , (B12)

where in the final line we have used the facts that �tq√
π

is an integer multiple of
√
π and that the wave function in

the momentum basis is periodic in
√
π . The second Kraus

operator also simplifies using the same methods,

K̂q(tp) = e−iq̂1{tp }√π 〈
p̂3 = tp

∣
∣ eiq̂3p̂1 |0GKP〉3

= e−iq̂1{tp }√π 〈
p̂3 = tp

∣
∣
∑

n

e2in
√
π p̂1

∣
∣q̂3 = 2n

√
π

〉

∝ e−iq̂{tp }√π
∑

n

e2in
√
π p̂ e−i2ntp

√
π

= e−iq̂{tp }√π ψ̃0,L(p̂ − tp)

= e−iq̂{tp }√π ψ̃0,L(p̂ − tp)e
iq̂{tp }√π e−iq̂{tp }√π

= ψ̃0,L(p̂ − tp + {tp}√π)e−iq̂{tp }√π

= ψ̃0,L(p̂ − �tp√
π)e

−iq̂{tp }√π

= ψ̃0,L(p̂)e
−iq̂{tp }√π . (B13)

Combining these two operators allows us to find an expres-
sion for the combined Kraus operator as

K̂(t) = ψ̃0,L(p̂)e
−i{tp }√π q̂

ψ̃0,L(q̂)e
i{tq}√π p̂

= ψ̃0,L(p̂)ψ̃0,L(q̂)e
−i{tp }√π q̂ei{tq}√π p̂

= �̂V̂(−{t}√π), (B14)

where we have used the fact that the GKP projector �̂,
defined in Eq. (23), is equivalent to [23]

ψ̃0,L(p̂)ψ̃0,L(q̂)

=
∑

n,n′

[
∣
∣p̂ = n

√
π

〉 〈
p̂ = n

√
π

∣
∣
∣
∣q̂ = n′√π 〉

× 〈
q̂ = n′√π ∣

∣
]

∝
∑

n,n′

∣
∣p̂ = n

√
π

〉
e−inn′π 〈

q̂ = n′√π ∣
∣

=
∑

n,n′

[
∣
∣p̂ = n

√
π

〉
e−2inn′π 〈

q̂ = 2n′√π ∣
∣

+ ∣
∣p̂ = n

√
π

〉
e−in(2n′+1)π 〈

q̂ = (2n′ + 1)
√
π

∣
∣
]

=
∑

n,n′

[
∣
∣p̂ = n

√
π

〉 〈
q̂ = 2n′√π ∣

∣ + (−1)n
∣
∣p̂ = n

√
π

〉

× 〈
q̂ = (2n′ + 1)

√
π

∣
∣
]

= |0GKP〉 〈0GKP| + |1GKP〉 〈1GKP|
= �̂, (B15)
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and the displacement operator implements a displace-
ment where both elements of the vector are taken mod-
ulo

√
π on the interval (−√

π/2,
√
π/2], i.e., {t}√π =

({tq}√π , {tp}√π).
The statistical mixture of the output state after a round

of GKP error correction, where the measured values are
ignored, can be evaluated as

ρ̂CV
� ∝

∫

R2
dtK̂(t)ρ̂K̂†(t). (B16)

However, due to the fact that the Kraus operator is periodic
in both elements of t with a period of

√
π , centered around

the origin, we can evaluate the output state by integrating
over a single period,

ρ̂CV
� ∝

∫ √
π/2

−√
π/2

dtq
∫ √

π/2

−√
π/2

dtp K̂†(t)ρ̂K̂(t). (B17)

This also allows us to simplify the expression of the Kraus
operator to K̂(t) = �̂V̂(−t), where K̂ is now only defined
over this interval. This is precisely the same expression (up
to normalization) as the density matrix we identified at the
beginning of this appendix, in Eq. (B1).

APPENDIX C: MODULAR SUBSYSTEM
DECOMPOSITION

In this appendix, we demonstrate similar properties for
the modular SSD. We begin by writing the full expression
for the modular SSD, as given in Eq. (27), and show how to
calculate the modular SSD of an arbitrary CV state from its
density matrix in the position basis. We then demonstrate
that this decomposition can be implemented using a CV
circuit. Note, however, that this implementation includes
non-Gaussian operations, in addition to the non-Gaussian
GKP states. Following this, we also express the modu-
lar SSD in terms of the stabilizer SSD, to highlight their
connection.

1. Position basis representation of the modular SSD

In this subsection, we provide an expression to evaluate
the modular SSD of a CV state in the position basis. To
do so, we first recall the definition of the modular SSD.
Using the identity defined over modular variables, given
in Eq. (26), we can express any CV state as

1CVρ̂1CV =
∑

l,l′

∑

mG ,m′
G

∫

duGdu′
G |l, mG , uG〉 〈l, mG , uG| ρ̂

× ∣
∣l′, m′

G , u′
G
〉 〈

l′, m′
G , u′

G
∣
∣ . (C1)

The modular SSD of any CV state can then be calculated,
according to Eq. (27), by tracing out the Gauge part of the

state, i.e., [37]

ρ̂L = TrG[ρ̂]

=
∑

mG∈Z

∫ α/2

−α/2
duGG 〈mG , uG|ρ̂ |mG , uG〉G

=
∑

l,l′

∑

mG∈Z

∫ α/2

−α/2
duG |l〉 〈l, mG , uG| ρ̂ ∣

∣l′, mG , uG
〉 〈

l′
∣
∣ .

(C2)

We can convert this expression to the position basis by
using the fact that |l〉L |mG , uG〉G = ∣

∣q̂ = αl + dαmG + uG
〉

[37], such that the modular SSD can be expressed as

ρ̂L = TrG[ρ̂]

=
∑

l,l′
|l〉

∑

mG∈Z

∫ α/2

−α/2
duG〈q̂ = αl + dαmG + uG|

× ρ̂
∣
∣q̂ = αl′ + dαmG + uG

〉 〈
l′
∣
∣ . (C3)

If we take the GKP peak separation α = √
π and d = 2,

we can evaluate the elements of the density matrix of the
resulting logical qubit as

〈l| ρ̂L
∣
∣l′

〉 =
∑

mG∈Z

∫ √
π/2

−√
π/2

duG
〈
q̂ = √

π l + 2
√
πmG + uG

∣
∣ ρ̂

× ∣
∣q̂ = √

π l′ + 2
√
πmG + uG

〉
. (C4)

By changing the summation and integration variable
labels, uG → tq and mG → n, we can equivalently express
this as

〈l| ρ̂L
∣
∣l′

〉 =
∑

n∈Z

∫ √
π/2

−√
π/2

dtq
〈
q̂ = 2

√
πn + √

π l + tq
∣
∣ ρ̂

× ∣
∣q̂ = 2

√
πn + √

π l′ + tq
〉
. (C5)

Note that, for the diagonal elements l = l′ of the result-
ing modular SSD state, this corresponds with the stabilizer
SSD, i.e.,

〈l| ρ̂L |l〉 = 〈l| ρ̂� |l〉 . (C6)

2. Circuit implementation of the modular SSD

In this subsection, we demonstrate that the modular SSD
can be implemented as a circuit involving GKP stabilizer
states and non-Gaussian operations. By doing so, we also
demonstrate that the modular SSD can be interpreted as the
average of the GKP error-correction map following a log-
ical Ẑ rotation. While the connection has been previously
explored in Refs. [39,84], we here directly derive the rela-
tionship in terms of the position basis representation of the
input CV state.
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We begin by rewriting the expression for the elements of the density matrix after the modular SSD, given in Eq. (C5), as

〈l| ρ̂L
∣
∣l′

〉 =
∑

n∈Z

∫ √
π/2

−√
π/2

dtq
〈
q̂ = 2

√
πn + √

π l + tq
∣
∣ ρ̂

∣
∣q̂ = 2

√
πn + √

π l′ + tq
〉

=
∑

n∈Z

∫ √
π/2

−√
π/2

dtq
〈
q̂ = (2n + l)

√
π

∣
∣ eip̂tq ρ̂e−ip̂ tq

∣
∣q̂ = (2n + l′)

√
π

〉

∝
∑

n,n′∈Z

∫ √
π/2

−√
π/2

dtqδ(2
√
πn − 2

√
πn′)

〈
q̂ = (2n + l)

√
π

∣
∣ eip̂tq ρ̂e−ip̂tq

∣
∣q̂ = (2n′ + l′)

√
π

〉

∝
∑

n,n′∈Z

∫ ∞

−∞
ds

∫ √
π/2

−√
π/2

dtqe−i2
√
πs(n−n′) 〈q̂ = (2n + l)

√
π

∣
∣ eip̂tq ρ̂e−ip̂ tq

∣
∣q̂ = (2n′ + l′)

√
π

〉

∝
∑

n,n′∈Z

∫ ∞

−∞
ds

∫ √
π/2

−√
π/2

dtq
〈
q̂ = (2n + l)

√
π

∣
∣ e−i2

√
πsneip̂tq ρ̂e−ip̂ tqei2

√
πsn′ ∣∣q̂ = (2n′ + l′)

√
π

〉
. (C7)

Note that we have dropped normalization constants in this expression; however, this expression will preserve the relative
values of 〈l| ρ̂L

∣
∣l′

〉
and normalization can be restored by normalizing the density matrix at the end of the calculation. Next,

we identify a period in the integrand of this expression, by shifting the value of s → s + √
π to find that

∑

n,n′∈Z

∫ ∞

−∞
ds

∫ √
π/2

−√
π/2

dtq
〈
q̂ = (2n + l)

√
π

∣
∣ e−i2

√
π(s+√

π)neip̂tq ρ̂e−ip̂tqei2
√
π(s+√

π)n′ ∣∣q̂ = (2n′ + l′)
√
π

〉

=
∑

n,n′∈Z

∫ ∞

−∞
ds

∫ √
π/2

−√
π/2

dtq
〈
q̂ = (2n + l)

√
π

∣
∣ e−i2

√
πsne−i2πneip̂tq ρ̂e−ip̂tqei2

√
πsn′

ei2πn′ ∣∣q̂ = (2n′ + l′)
√
π

〉
. (C8)

Given that n, n′ are both integers, we see that e2π in′ = e−2π in = 1, which means that the integrand is periodic in s with
period

√
π . Hence, we can integrate over only this period, which allows us to express the elements of the qubit density

matrix as

〈l| ρ̂L
∣
∣l′

〉 ∝
∑

n,n′∈Z

∫ √
π/2

−√
π/2

ds
∫ √

π/2

−√
π/2

dtq
〈
q̂ = (2n + l)

√
π

∣
∣ e−i2

√
πsneip̂tq ρ̂e−ip̂ tqei2

√
πsn′ ∣∣q̂ = (2n′ + l′)

√
π

〉
. (C9)

We then rewrite the integration variable s = tp and rewrite the exponents as operators, to find that

〈l| ρ̂L
∣
∣l′

〉 ∝
∑

n,n′∈Z

∫ √
π/2

−√
π/2

dtp
∫ √

π/2

−√
π/2

dtq
〈
q̂ = (2n + l)

√
π

∣
∣ e−i(q̂−l

√
π)tp eip̂tq ρ̂e−ip̂tqei(q̂−l′√π)tp ∣

∣q̂ = (2n′ + l′)
√
π

〉

=
∫ √

π/2

−√
π/2

dtp
∫ √

π/2

−√
π/2

dtqei(l−l′)√π tp 〈lGKP| e−iq̂tp eip̂tq ρ̂e−ip̂tqeiq̂tp
∣
∣l′GKP

〉

=
∫ √

π/2

−√
π/2

dtp
∫ √

π/2

−√
π/2

dtqei(l−l′)√π tp 〈lGKP| V̂(−t)ρ̂V̂†(−t)
∣
∣l′GKP

〉
. (C10)

Note that, for l = l′, the elements are equal to the elements of the stabilizer SSD as in Eq. (C6) and, therefore, the state
must also have the same normalization factor, i.e.,

〈l| ρ̂L
∣
∣l′

〉 = 1√
π

∫ √
π/2

−√
π/2

dtp
∫ √

π/2

−√
π/2

dtqei(l−l′)√π tp 〈lGKP| �̂V̂(−t)ρ̂V̂†(−t)�̂
∣
∣l′GKP

〉
. (C11)
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FIG. 8. Modular subsystem decomposition as a circuit. We use the same notation for the inverse SUM gate as presented in Fig. 7.

We now demonstrate how to convert an arbitrary CV state to the modular SSD of the state, encoded in the GKP basis.
The remaining exponent term in Eq. (C11) can be considered to be a logical Ẑ rotation [84], where

R̂Z(θ) = |0GKP〉 〈0GKP| + eiθ |1GKP〉 〈1GKP| . (C12)

We can therefore express a transformation of a CV state to a GKP-encoded qubit state following the modular SSD as

ρ̂CV
L = 1√

π

∫ √
π/2

−√
π/2

dtp
∫ √

π/2

−√
π/2

dtqR̂Z(tp
√
π)�̂V̂(−t)ρ̂V̂†(−t)�̂R̂†

Z(tp
√
π)

= 1√
π

∫ √
π

−√
π

dtp
∫ √

π/2

−√
π/2

dtqR̂Z(tp
√
π)ρ̂�(t)R̂

†
Z(tp

√
π), (C13)

where we have used Eq. (22) to express state ρ̂ after GKP error correction as ρ̂�(t). This means that the modular SSD can
be understood as performing GKP error correction followed by a logical Ẑ rotation and an integration over all possible
outcomes. We provide a circuit diagram of this circuit in Fig. 8. Note that, as in the case of the stabilizer SSD, it is possible
to convert the CV state, given in Eq. (C13), to a normalized qubit state by transforming the encoded basis to the qubit
basis.

3. Modular SSD in terms of a Gaussian and non-Gaussian part

We now demonstrate that the modular SSD can be expressed in terms of a summation of a part involving only Gaussian
Kraus operators and a part involving non-Gaussian Kraus operators. Note that state ρ̂ may be non-Gaussian, and the GKP
error-correction routine also requires access to non-Gaussian GKP states.

Given that Rz(θ) = cos(θ/2)1 − i sin(θ/2)Ẑ, we can write

ρ̂CV
L ∝

∫ √
π/2

−√
π/2

dtp
∫ √

π/2

−√
π/2

dtqR̂Z(tp
√
π)ρ̂�(t)R̂

†
Z(tp

√
π)

=
∫ √

π/2

−√
π/2

dtp
∫ √

π/2

−√
π/2

dtq[cos
(
tp

√
π/2

)
1 − i sin

(
tp

√
π/2

)
Ẑ]ρ̂�(t)[cos

(
tp

√
π/2

)
1 + i sin

(
tp

√
π/2

)
Ẑ†]

∝ ρ̂
CV,G
L + ρ̂

CV,NG
L , (C14)

where the Gaussian part—i.e., consisting of only Gaussian Kraus operators—is given by

ρ̂
CV,G
L ∝

∫ √
π/2

−√
π/2

dtp
∫ √

π/2

−√
π/2

dtq cos2(tp
√
π/2)ρ̂�(t)+ sin2(tp

√
π/2)Ẑρ̂�(t)Ẑ†, (C15)

while the non-Gaussian part is given by

ρ̂
CV,NG
L ∝

∫ √
π/2

−√
π/2

dtp
∫ √

π/2

−√
π/2

dtq
i
2

sin
(
tp

√
π

)
[ρ̂�(t)Ẑ†−Ẑρ̂�(t)]. (C16)

APPENDIX D: GAUSSIAN MODULAR SUBSYSTEM DECOMPOSITION

We propose an alternative map that, for symmetric states, is equivalent to the modular SSD. The motivation for intro-
ducing such a map is that this map can be implemented in terms of SGKP circuits, in contrast to modular SSD. The map
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is given in Eq. (C15) as the Gaussian part of the modular SSD. The logical qubit density matrix of the state after Gaussian
modular SSD can be expressed as

〈l| ρ̂G
L

∣
∣l′

〉 = 1
NG

∫ √
π/2

−√
π/2

dtp
∫ √

π/2

−√
π/2

dtq
〈
l′GKP

∣
∣ [cos2(tp

√
π/2)ρ̂�(t)+ sin2(tp

√
π/2)Ẑρ̂�(t)Ẑ†] |lGKP〉 , (D1)

where NG is a normalization constant, which, as we later show, is equal to
√
π .

1. Position basis representation of the Gaussian modular SSD

We now demonstrate how to calculate the density matrix ρ̂G
L of the Gaussian modular SSD from the position basis

representation of a general CV state. We do so by first calculating the diagonal components, followed by calculating the
off-diagonal components.

We begin with evaluating the diagonal components 〈l| ρ̂G
L |l〉 as

〈l| ρ̂G
L |l〉 = 1

NG

∫ √
π/2

−√
π/2

dtp
∫ √

π/2

−√
π/2

dtq
[

cos2(tp
√
π/2) 〈lGKP| ρ̂�(t) |lGKP〉 + sin2(tp

√
π/2) 〈lGKP| Ẑρ̂�(t)Ẑ† |lGKP〉

]

= 1
NG

∫ √
π/2

−√
π/2

dtp
∫ √

π/2

−√
π/2

dtq
[

cos2(tp
√
π/2) 〈lGKP| ρ̂�(t) |lGKP〉 + sin2(tp

√
π/2) 〈lGKP| (−1)lρ̂�(t)(−1)l |lGKP〉

]

= 1
NG

∫ √
π/2

−√
π/2

dtp
∫ √

π/2

−√
π/2

dtq[cos2(tp
√
π/2)+ sin2(tp

√
π/2)] 〈lGKP| ρ̂�(t) |lGKP〉

= 1
NG

∫ √
π/2

−√
π/2

dtp
∫ √

π/2

−√
π/2

dtq 〈lGKP| ρ̂�(t) |lGKP〉 , (D2)

which coincides with the diagonal elements of the stabilizer SSD and hence also the modular SSD, i.e.,

〈l| ρ̂G
L |l〉 = 〈l| ρ̂� |l〉 = 〈l| ρ̂L |l〉 . (D3)

Taking the trace of both the Gaussian modular SSD and the modular SSD implies that the normalization constant
NG = √

π .
Meanwhile, for the off-diagonal element 〈0| ρ̂G

L |1〉, we can simplify the expression as

〈0| ρ̂G
L |1〉 = 1√

π

∫ √
π/2

−√
π/2

dtp
∫ √

π/2

−√
π/2

dtq
[

cos2(tp
√
π/2) 〈0GKP| ρ̂�(t) |1GKP〉 + sin2(tp

√
π/2) 〈0GKP| Ẑρ̂�(t)Ẑ† |1GKP〉

]

= 1√
π

∫ √
π/2

−√
π/2

dtp
∫ √

π/2

−√
π/2

dtq
[

cos2(tp
√
π/2) 〈0GKP| ρ̂�(t) |1GKP〉 − sin2(tp

√
π/2) 〈0GKP| ρ̂�(t) |1GKP〉

]

= 1√
π

∫ √
π/2

−√
π/2

dtp
∫ √

π/2

−√
π/2

dtq[cos2(tp
√
π/2)− sin2(tp

√
π/2)] 〈0GKP| ρ̂�(t) |1GKP〉

= 1√
π

∫ √
π/2

−√
π/2

dtp
∫ √

π/2

−√
π/2

dtq cos
(
tp

√
π

) 〈0GKP| ρ̂�(t) |1GKP〉 . (D4)
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We can then insert Eq. (22) into this expression to find that

〈0| ρ̂G
L |1〉 = 1√

π

∫ √
π/2

−√
π/2

dtp
∫ √

π/2

−√
π/2

dtq cos
(
tp

√
π

) 〈0GKP| V̂(−t)ρ̂V̂†(−t) |1GKP〉

= 1√
π

∫ √
π/2

−√
π/2

dtp
∫ √

π/2

−√
π/2

dtq cos
(
tp

√
π

) 〈0GKP| e−itp q̂eitqp̂ ρ̂e−itqp̂ eitp q̂ |1GKP〉

= 1√
π

∫ √
π/2

−√
π/2

dtp
∫ √

π/2

−√
π/2

dtq cos
(
tp

√
π

) ∑

m,m′

〈
q̂ = 2m

√
π

∣
∣ e−itp q̂eitqp̂ ρ̂e−itqp̂ eitp q̂

∣
∣q̂ = (2m′ + 1)

√
π

〉

= 1√
π

∫ √
π/2

−√
π/2

dtp
∫ √

π/2

−√
π/2

dtq cos
(
tp

√
π

) ∑

m,m′

〈
q̂ = 2m

√
π

∣
∣ e−itp 2m

√
πeitqp̂ ρ̂e−itqp̂ eitp (2m′+1)

√
π

∣
∣q̂ = (2m′ + 1)

√
π

〉

= 1√
π

∫ √
π/2

−√
π/2

dtp
∫ √

π/2

−√
π/2

dtq cos
(
tp

√
π

)

×
∑

m,m′
e−itp (2m)

√
πeitp (2m′+1)

√
π

〈
q̂ = (2m)

√
π + tq

∣
∣ ρ̂

∣
∣q̂ = (2m′ + 1)

√
π + tq

〉
. (D5)

We can integrate the relevant terms over tp by using the fact that

∫ √
π/2

−√
π/2

dx cos
(
x
√
π

)
e−ixs

√
π =

∫ √
π/2

−√
π/2

dx cos
(
x
√
π

)
[cos

(−xs
√
π

) + i sin
(−xs

√
π

)
]

=
∫ √

π/2

−√
π/2

dx cos
(
x
√
π

)
cos

(
xs

√
π

) = 2s sin(sπ)√
π(1 − s2)

. (D6)

Note that the denominator will be zero when s = ±1. The numerator will be zero for any integer s. In the limit of s → 1
or s → −1 we find [87] that

lim
s→±1

2s sin(sπ)√
π(1 − s2)

= √
π . (D7)

Therefore, for any m, m′ ∈ Z, we have

∫ √
π/2

−√
π/2

dtp cos
(
tp

√
π

)
e−itp (2m)

√
πeitp (2m′+1)

√
π =

√
π

2
δm,m′ +

√
π

2
δm−1,m′ . (D8)

Using this result to integrate Eq. (D5), we find that

〈0| ρ̂G
L |1〉 = 1

2

∫ √
π/2

−√
π/2

dtq
∑

m,m′
(δm,m′ + δm−1,m′)

〈
q̂ = 2m

√
π + tq

∣
∣ ρ̂

∣
∣q̂ = (2m′ + 1)

√
π + tq

〉

= 1
2

∫ √
π/2

−√
π/2

dtq
∑

m

[ 〈
q̂ = 2m

√
π + tq

∣
∣ ρ̂

∣
∣(2m + 1)

√
π + tq

〉 + 〈
2m

√
π + tq

∣
∣ ρ̂

∣
∣q̂ = (2m − 1)

√
π + tq

〉 ]
.

(D9)

The other off-diagonal term is equal to the Hermitian conjugate of this term, i.e.,

〈1| ρ̂G
L |0〉 = (〈0| ρ̂G

L |1〉)∗
. (D10)
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FIG. 9. Gaussian modular subsystem decomposition as a circuit. We use the same notation for the inverse SUM gate as presented in
Fig. 7. The Gaussian channel εtp is defined in Eq. (D12).

2. Circuit implementation of the Gaussian modular SSD

Inspecting Eq. (C15), we see that we can consider the action of the Gaussian modular SSD as first implementing the
GKP error-correction routine, which transforms the state

ρ̂ → ρ̂�(t) (D11)

with some measurement values t, followed by a Gaussian channel defined as

εtp (ρ̂) = cos2(tp
√
π/2)ρ̂ + sin2(tp

√
π/2)Ẑρ̂Ẑ†, (D12)

where Ẑ = ei
√
π q̂ is the logical Ẑ operation in the GKP encoding. The channel can be interpreted as implementing a Ẑ flip

on the encoded qubit state with probability sin2(tp
√
π/2).

Therefore, we can prepare the Gaussian modular SSD state, encoded in the GKP basis, by performing GKP error
correction followed by applying the channel given in Eq. (D12). This is equivalent to performing GKP error correction,
followed by applying a logical Z operation with a probability pZ(tp) and then discarding t such that the resulting state is a
mixed state over the possible measurement values of t. The circuit diagram to prepare ρ̂G

L from ρ̂ is given in Fig. 9.

APPENDIX E: EQUIVALENCE OF MODULAR SSD AND GAUSSIAN MODULAR SSD FOR SYMMETRIC
DENSITY MATRICES

In this appendix, we demonstrate that the modular SSD and the Gaussian modular SSD are equivalent when the density
matrix of the CV state is symmetric, i.e., when

〈
q̂ = x

∣
∣ ρ̂

∣
∣q̂ = x′〉 = 〈

q̂ = −x
∣
∣ ρ̂

∣
∣q̂ = −x′〉 . (E1)

Note that, for a pure state, this would mean that the wave function is symmetric in position, i.e., ψ(x) = ψ(−x), or that
the wave function is antisymmetric, i.e., ψ(−x) = −ψ(x).

First, we recall Eq. (D3), which informs us that, for all input states, the diagonal elements of the Gaussian modular
SSD are equal to the corresponding elements of the modular SSD. Therefore, to demonstrate that the two decomposi-
tions are equivalent, for the case of a symmetric CV state, it suffices to show that the off-diagonal elements of the two
decompositions are equal. As a reminder, the off-diagonal element of the two states after each decomposition can be
expressed as

〈0| ρ̂G
L |1〉 = 1

2

∫ √
π/2

−√
π/2

dtq
∑

n∈Z

[〈
q̂ = 2n

√
π + tq

∣
∣ ρ̂

∣
∣q̂ = (2n + 1)

√
π + tq

〉 + 〈
q̂ = 2n

√
π + tq

∣
∣ ρ̂

∣
∣q̂ = (2n − 1)

√
π + tq

〉]

(E2)

and

〈0| ρ̂L |1〉 =
∑

n∈Z

∫ √
π/2

−√
π/2

dtq
〈
q̂ = 2

√
πn + tq

∣
∣ ρ̂

∣
∣q̂ = 2

√
πn + √

π + tq
〉
. (E3)

Inspecting 〈0| ρ̂G
L |1〉, given in Eq. (E2), we see that we can split the expression into the sum of two terms, for each ±1,

expressed together as

1
2

∫ √
π/2

−√
π/2

dtq
∑

n∈Z

〈
q̂ = 2n

√
π + tq

∣
∣ ρ̂

∣
∣q̂ = (2n ± 1)

√
π + tq

〉
. (E4)
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We can use the symmetric condition, given by Eq. (E1), to rewrite the second term as

1
2

∫ √
π/2

−√
π/2

dtq
∑

n∈Z

〈
q̂ = 2n

√
π + tq

∣
∣ ρ̂

∣
∣q̂ = (2n − 1)

√
π + tq

〉

= 1
2

∫ √
π/2

−√
π/2

dtq
∑

n∈Z

〈
q̂ = −2n

√
π − tq

∣
∣ ρ̂

∣
∣q̂ = (−2n + 1)

√
π − tq

〉
. (E5)

By substituting n → −n and tq → −tq into this term, we find that it is equal to the first term, i.e.,

1
2

∫ √
π/2

−√
π/2

dtq
∑

n∈Z

〈
q̂ = 2n

√
π + tq

∣
∣ ρ̂

∣
∣q̂ = (2n − 1)

√
π + tq

〉

= 1
2

∫ √
π/2

−√
π/2

dtq
∑

n∈Z

〈
q̂ = 2n

√
π + tq

∣
∣ ρ̂

∣
∣q̂ = (2n + 1)

√
π + tq

〉
, (E6)

and thus we can conclude that the sum of these two terms equals 〈0| ρ̂L |1〉. Therefore, for symmetric states, we find that
the modular SSD is indeed equivalent to the Gaussian modular SSD, i.e., ρ̂G

L = ρ̂L.

APPENDIX F: EFFECT OF THE CHOICE OF
MAPPING ON THE ROM OF THE LOGICAL

STATE

The logical resourcefulness of different CV states
depends on the choice of mapping. We also find that dif-
ferent mappings can result in different hierarchies of states.
We illustrate this with an example, given in Fig. 10, where
we plot the ROM of the logical state resulting from map-
ping a specific GKP state, Eq. (42), with Bloch angles
φ = π/4 and θ = π/25, with varying values of �. The
ROM of the logical states reached via each decomposition
are also plotted in Fig. 3, and the ROM of the stabilizer

FIG. 10. Comparison of the ROM of the resulting logical state
found by the modular SSD (blue, solid lines) and the stabilizer
SSD (red, dashed lines) of a GKP state, Eq. (42), with Bloch
angles φ = π/4 and θ = π/25 and varying squeezing �. The
inset plot shows the gradient of the ROM of each decomposition,
for each value of �.

SSD and modular SSD of each state in Fig. 10 can be con-
sidered a vertical cross section through Figs. 3(a) and 3(b),
respectively. We see that the ROM can be below the thresh-
old for distillation when using one mapping, while it is
above the distillation threshold for the other.

Furthermore, we plot the gradient of the ROM for each
mapping in the inset figure. We find that there are some
values of �, e.g., � ≈ 0.7, where the gradient of the sta-
bilizer SSD is positive, while the gradient of the modular
SSD is negative. This difference means that the two differ-
ent decompositions result in logical states where increasing
� increases the ROM for the logical state resulting from
the stabilizer SSD; meanwhile, the same increase in �

decreases the ROM for the logical state resulting from the
modular SSD.

APPENDIX G: ALTERNATIVE DEFINITIONS OF
A REALISTIC GKP STATE

We summarize two alternative definitions of the realis-
tic GKP state and how these choices of definitions affect
the corresponding logical state achieved by each SSD. For
a detailed analysis of the different definitions of realistic
GKP states and their equivalence, we refer the reader to
Ref. [58]. This allows us to provide an explanation for why
the logical state found by the stabilizer SSD of the realis-
tic GKP state given in Eq. (17) differs from that found in
Ref. [39]. Furthermore, we also explain the asymmetry in
the shape of the contour levels of the ROM in Fig. 3, as
identified in Sec. V B 2.

Throughout our work, we use the definition of the real-
istic GKP state given in Eq. (17), which is the same
definition used in Ref. [38], where the modular SSD of the
GKP state was first analyzed.
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In Ref. [39], where the stabilizer SSD is defined, the
realistic GKP state is defined in terms of the finite energy
operator e−�′2â†â applied to the ideal GKP state, given in
Eq. (14). For high squeezing, i.e.,� = �′ 	 1, the fidelity
of the two corresponding wave functions is very high.
However, for low squeezing, the two states diverge. A key
difference is that, for the definition in terms of the finite
energy operator, any GKP state will approach the vacuum
in the limit that �′ → ∞. Meanwhile, for the definition
used throughout this work, the equivalent low-squeezing
limit is reached when� → 1, where the 0-logical state has
high fidelity to the vacuum state. However, the 1-logical
state does not approach the vacuum state.

The asymmetry of the ROM in Fig. 3 can be interpreted
as arising from the fact that, using this definition of the
GKP state, the norm of the unnormalized 0-logical state
is in general larger than the norm of the unnormalized
1-logical state. Therefore, when the states are combined
in superposition and normalized together, the 0-logical
component contributes more than the 1-logical compo-
nent. For values of � 	 1, the norm of each state is
approximately equal and hence this asymmetry is no longer
present [19,38].

In Fig. 11 we plot the wave function of this GKP state
for various levels of squeezing. This provides a visual
explanation as to why the ROM of the stabilizer SSD of
the encoded GKP state is asymmetric. We observe that, for
� = 1 and θ = 0, the state approximates the vacuum state,
which is a known resource [23,36]. However, at θ = π the
state retains two peaks. This difference affects the logical
content of the decomposed state.

APPENDIX H: ANALYSIS OF THE GKP STATE
WITH LARGE VALUES OF THE SQUEEZING

PARAMETER

In this appendix we provide a more detailed analysis of
the ROM of the stabilizer SSD of two specific logical GKP
states, following the discussion in Sec. V B 2.

We now focus on two specific logical states shown in
Fig. 3(a), with different levels of squeezing. Specifically,
we plot the ROM of the stabilizer SSD of the 0-logical
and T-logical states for different levels of squeezing � in
Fig. 12. These lines display the same values as shown in
Fig. 3(a) for θ = 0 and θ = arccos(1/

√
3). We also plot

the WLN of these states for each �.
First, note that in the limit of infinite squeezing,� → 0,

the WLN of each state converges to the value of the log-
arithmic negativity of a unit cell of the respective Wigner
function [88]. For the 0-logical state, the logarithmic neg-
ativity converges to log2(2) = 1; meanwhile, for the T-
logical state, it converges to log2(1 + √

3) ≈ 1.45. The
reason for this is that each cell contributes a finite value of
negativity [46,89] that is normalized over the full Wigner
function. Approximating the Wigner function of a highly
squeezed GKP state as consisting of a large number of
cells, each contributing an equal cell WLN that is normal-
ized over the number of cells, the total negativity will then
be independent of the number of cells.

As seen in Fig. 12, for the T-logical state, both the WLN
and ROM increase as expected at increasing squeezing
level (i.e., decreasing �).

Instead, for the 0-logical state, the ROM is decreas-
ing at increasing squeezing level, while the WLN is

FIG. 11. Wave functions of a realistic GKP state with various levels of squeezing � ∈ {1/4, 1/2, 1}, encoding states with φ =
π/4 and θ ∈ {0,π/2,π}. Note that the wave function with θ = 0 corresponds to the 0-logical state, whereas the wave function with
θ = π corresponds to the 1-logical state, up to a global phase. The state with θ = π/2 corresponds to the Pauli-Ŷ basis state with
eigenvalue 1.
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FIG. 12. Comparison of the WLN (red) and ROM of the
resulting state given by the stabilizer SSD (blue) for the 0-logical
(solid lines) and T-logical (dashed lines) GKP states defined in
terms of the squeezing parameter�. Note that the ROM value of
the 0-logical state begins to decrease after � > 0.78.

increasing, for � < 0.78. In the context of all Gaussian
circuits, including the supply of Gaussian states such as
the vacuum, highly squeezed GKP states can be consid-
ered a sufficient resource for universality [23]. This is
supported by the high Wigner negativity of near-ideal
GKP states. Meanwhile, in the context of SGKP circuits,
noise introduced by finite squeezing can be considered the
resource [36]. Intuitively, this is because the finite squeez-
ing increases the overlap of a 0-logical GKP state with
a magic T-logical GKP state. This is supported by the
increasing ROM when the GKP states are increasingly
noisy, i.e., for increasing �.

We also observe that the ROM of the stabilizer SSD of
the 0-logical state begins to decrease for values of � >

0.78. To understand why this occurs, we must consider the
state obtained by the stabilizer SSD. Following the expres-
sion for the stabilizer SSD given in Appendix B, we find
that, for a pure state ψ(x), the unnormalized coefficients of
the density matrix ρ̂� of the resulting logical state can be
expressed as

ρ̄00
� =

∑

n

∫ √
π/2

−√
π/2

dtq|ψ(tq + 2
√
πn)|2, (H1)

ρ̄11
� =

∑

n

∫ √
π/2

−√
π/2

dtq|ψ((2n + 1)
√
π + tq)|2, (H2)

ρ̄01
� =

∑

n,n′

∫ √
π/2

−√
π/2

dtqkn,n′ρ(tq + 2n
√
π , tq + (2n′ + 1)

√
π),

(H3)

where

kn,n′ = (−1)n−n′ 2
1 − 2n + 2n′ , (H4)

and ρ(x, x′) = ψ(x)ψ∗(x′). When the pure CV state has
the property that ψ(x) ≈ 0 for |x| > √

π , we find that the
summation over n only contributes for n = 0. Meanwhile,
the summation over n′ only contributes when n′ = 0 or
n′ = −1. Hence, the off-diagonal coefficient of the den-
sity matrix of the state after the stabilizer SSD can be
expressed as

ρ̄01
� ≈ 2

∫ √
π/2

−√
π/2
ψ(tq)ψ∗(tq + √

π)+ ψ(tq)ψ∗(tq − √
π).

(H5)

Furthermore, we can also make the change of variable
tq → −tq in the second term, which implies that, for a sym-
metric state, the integral over each term must be equal and,
hence,

ρ̄01
� ≈ 4

∫ √
π/2

−√
π/2
ψ(tq)ψ∗(tq + √

π). (H6)

The modulus square of the wave function |ψ(x)|2 and the
product of the wave function with the conjugate of its dis-
placed product, multiplied by a factor of 2, 2ψ(x)ψ(x +√
π), are both plotted in Fig. 13. The area under the curve

of |ψ(x)|2, in the white regions of the main plot, equals
the approximate value of ρ̄00

� /2, where the factor of 1/2
arises due to the fact that the plot is in the range x ≥ 0.
Meanwhile, the area under the curve of the blue regions
of the main plot equals the approximate value of ρ̄11

� /2.
Furthermore, by plotting twice the value of the integrand
in Eq. (H6), the area under the curve of the inset plot

FIG. 13. The modulus square of the wave function of the 0-
logical GKP state for large values of �. We omit the values for
x < 0 because the state is symmetric in position. The values in
the white regions of the plot contribute to the relative value of
ρ00
� , while the blue region contributes to the relative value of ρ11

� .
The inset figure shows the product of the wave function and the
wave-function offset by

√
π . The integral of the curve in this

region contributes to the relative value of ρ01
� = ρ10

� .
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equals the approximate value of ρ̄01
� /2. Hence, each corre-

sponding area is proportional to the relevant density matrix
element.

Given that the ROM of the state can be expressed as in
Eq. (5) and using the fact that the 0-logical GKP state has a
real wave function for any � and, therefore, also real ρ̄01

� ,
we find that the ROM is proportional to

R(1)(ρ̂�) ∝ 2|ρ̄01
� | + |ρ̄00

� − ρ̄11
� |. (H7)

Therefore, the stabilizer SSD of a 0-logical GKP state will
have maximum ROM when the sum of the difference of
the areas under the curve in each region of the main plot
and the area under the curve of the inset plot is maximized.
We observe that, although the value of ρ00

� increases as �
increases, the value of ρ01

� also decreases. The value � =
0.78 is the optimal value of this summation and is therefore
also the optimal value of �, for this type of state, with
maximum ROM.

APPENDIX I: SYMMETRY OF THE ROM OF THE
MODULAR SSD OF CAT STATES

In this appendix, we provide an explanation for the sym-
metry observed in Fig. 4(b), where ROM values are the
same for input cat states with angles� and�+ π/2. In the
CV, this angle corresponds to a Fourier transform, which is
not preserved in general by the modular SSD.

To explain this symmetry, first note that the cat state is
symmetric under rotations around π , i.e.,

R̂(π)
∣
∣0̄αcat

〉 = ∣
∣0̄αcat

〉
. (I1)

We also see that the wave function of a coherent state with
angle� is the complex conjugate of the wave function of a
state with angle −�. This also implies that the wave func-
tion of the cat state with angle � is equal to the complex
conjugate of the wave function with angle −�, i.e.,

〈q̂ = x|0̄α=rei�

cat 〉 = (〈q̂ = x|0̄α=re−i�

cat 〉)∗. (I2)

Given that the state is also symmetric under rotations by
π , we see that the wave function of the cat state with angle
� is equal to the complex conjugate of the cat state with
angle π −�. This also means that, for a density matrix
ρ̂ of a cat state with angle �, the corresponding density
matrix of a cat state with angle π −� can be considered
to be ρ̂∗. In terms of the logical density matrix of a cat state
ρ̂L,� with angle �, the corresponding density matrix with
angle π −� is given by ρ̂L,π−� = ρ̂∗

L,�, which is equiv-
alent to applying a phase gate to the density matrix ρ̂L,�.
The phase gate is Clifford and therefore the ROM of each
state is equal.

FIG. 14. ROM of the modular SSD of the cubic phase state.
The white dashed lines show the distillation threshold of the qubit
state prepared from the modular SSD. However, this threshold is
not a criterion for universality.

APPENDIX J: MODULAR SSD OF THE CUBIC
PHASE STATE

We include here for completeness a plot of the ROM of
the modular SSD for the cubic phase state in Fig. 14. How-
ever, we stress that in general, the ROM of the decomposed
state has no operational meaning. For the cubic phase state,
we cannot make the connection to the Gaussian modular
SSD due to the fact that the state does not have a den-
sity matrix that is symmetric in position. Note that the
plot includes squeezed vacuum states along the axis γ = 0.
These states are symmetric in position and therefore their
modular SSD decomposition is equivalent to the Gaussian
modular SSD in Fig. 6(b) along the same axis. This axis,
in turn, also includes the vacuum state at γ = 0, ζ = 0. As
is the case for the Gaussian modular SSD ROM, the state
prepared using the modular SSD from the vacuum state
is not above the distillation threshold. However, two new
distillation regions appear, characterized by low squeezing
and moderate cubicity.
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