
thesis for the degree of doctor of philosophy

On uncertainty estimation in machine learning

Jakob Lindqvist

Department of Electrical Engineering
Chalmers University of Technology

Gothenburg, Sweden, 2024

On uncertainty estimation in machine learning

Jakob Lindqvist
ISBN 978-91-8103-044-0

© 2024 Jakob Lindqvist
All rights reserved.

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie nr 5502
ISSN 0346-718X

Department of Electrical Engineering
Chalmers University of Technology
SE-412 96 Gothenburg, Sweden
Phone: +46 (0)31 772 1000

Printed by Chalmers Digitaltryck
Gothenburg, Sweden, April 2024

For Andromeda

On uncertainty estimation in machine learning
Jakob Lindqvist
Department of Electrical Engineering
Chalmers University of Technology

i

Abstract
This thesis explores the representation of probabilistic machine learning models,
focusing on representing and quantifying uncertainty. The included publica-
tions consider a range of topics, with the common theme of finding methods for
representing probability distributions and uncertainty with machine learning
models.

The thesis can be divided into three main parts. First, we introduce regular-
isation methods that improve the convergence of iterated Gaussian smoothers.
By interpreting smoothing as an optimisation problem, we develop Levenberg-
Marquardt regularisation and line-search methods. These extensions, which
require minimal additional computation, provide accurate Gaussian approx-
imations for a richer set of functions and input data compared to existing
methods.

The second part addresses uncertainty estimation directly. It presents a
general model distillation method for ensembles that efficiently condenses the
ensembles’ knowledge while retaining their ability to decompose prediction
uncertainties into epistemic and aleatoric components. The same type of
uncertainty decomposition is vital for us to propose a generalised active
learning formulation, in which unlabelled data points are selected based on
mutual information between model parameters and noisy labels. The resulting
active learning method can leverage the trade-off between dataset size and
label quality within a fixed annotation budget.

Finally, the third part considers methods for representing and estimating
more complex distributions using generative models. We study the theoretical
properties of several important parameter estimation methods for unnormalised
models, e.g., energy-based models. We prove connections between importance
sampling, contrastive divergence and noise contrastive estimation, thereby
establishing a more coherent framework. We use a technique previously limited
to energy-based models to propose an improved sampling method for composed
diffusion models. By approximating the energy difference between two samples
as a line integral of the score function, we achieve a Metropolis-Hastings-like
correction step for the score parameterised diffusion models. This enables
us to construct improved MCMC sampling methods for standard diffusion
models, which previously required an energy parameterisation.

Keywords: Probabilistic machine learning, uncertainty estimation

ii

List of Publications
This thesis is based on the following publications:

[A] Jakob Lindqvist, Simo Särkkä, Ángel F. García-Fernández, Matti Raito-
harju, Lennart Svensson, “Levenberg–Marquardt and line-search iterated
posterior linearisation smoothing”. Submitted to Signal Processing, April
2023.

[B] Jakob Lindqvist*, Amanda Olmin*, Fredrik Lindsten, Lennart Svens-
son, “A General Framework for Ensemble Distribution Distillation”. Machine
Learning for Signal Processing, 2020.

[C] Jakob Lindqvist, Amanda Olmin, Lennart Svensson, Fredrik Lindsten,
“Generalised Active Learning with Annotation Quality Selection”. Machine
Learning for Signal Processing, 2023.

[D] Amanda Olmin*, Jakob Lindqvist*, Lennart Svensson, Fredrik Lindsten,
“On the connection between Noise-Contrastive Estimation and Contrastive
Divergence”. Accepted for publication in the International Conference on
Artificial Intelligence and Statistics, 2024.

[E] Anders Sjöberg*, Jakob Lindqvist*, Magnus Önnheim, Mats Jirstrand,
Lennart Svensson, “MCMC-Correction for Diffusion Model Composition: En-
ergy Approximation using Diffusion Models”. Manuscript.

Other publications by the author, not included in this thesis, are:

[F] A. Olmin, J. Lindqvist, L. Svensson, F. Lindsten, “Active Learning with
Weak Supervision for Gaussian Processes”. International Conference on Neural
Information Processing, 2022.

[G] D. Hagerman, R. Naeem, J. Lindqvist, C. Lindström, F. Kahl, L. Svensson,
“SwInception – Local Attention Meets Convolutions”. Accepted for publica-
tion in the International Conference on Pattern Recognition and Artificial
Intelligence, 2024.

iii

Acknowledgments
First, I would like to thank my closest collaborators: my main supervisor,
Lennart Svensson, whose support has been constant throughout my PhD
studies; my co-supervisor, Fredrik Lindsten; and my research partners, Amanda
Olmin and Anders Sjöberg, with whom collaboration was always easy.

I would also like to thank my colleagues at Chalmers, in the Signal Processing
group and beyond, for making Chalmers a truly enjoyable workplace with
minimal code of conduct violations. I would particularly like to thank my
long-term mates in the corner office: Ebbe, Jacob, and Adam. Thank you for
all the heated discussions and ethnic desserts.

Finally, I would like to thank my darling wife, my Louise, for always
supporting me, even now when she clearly has more important things to care
about.

This research was financially supported by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut and Alice Wal-
lenberg Foundation.

Acronyms

RHS: Right Hand Side

IID: Independent and Identically Distributed

MSE: Mean Squared Error

PMF: Probability Mass Function

PDF: Probability Density Function

MAP: Maximum A Posteriori

ML: Maximum Likelihood

RTS: Rauch-Tung-Striebel

EKF: Extended Kalman Filter

v

EKS: Extended Kalman Smoother

IPLF: Iterated Posterior Linearisation Filter

IPLS: Iterated Posterior Linearisation Smoother

LM: Levenberg–Marquardt

IS: Importance Sampling

ULA: Unadjusted Langevin Algorithm

SSM: State Space Model

MC: Monte-Carlo

MCMC: Markov Chain Monte-Carlo

CIS: Conditional Importance Sampling

GD: Gradient Descent

SGD: Stochastic Gradient Descent

DAG: Directed Acyclic Graph

ReLU: Rectified Linear Unit

CNN: Convolutional Neural Network

AL: Active Learning

MI: Mutual Information

EBM: Energy-Based Model

ML-IS: Maximum Likelihood - Importance Sampling

NCE: Noise-Contrastive Estimation

CD: Contrastive Divergence

NCE: Noise-Contrastive Divergence

CNCE: Conditional Noise-Contrastive Divergence

vi

RNCE: Ranking Noise-Contrastive Divergence

SM: Score Matching

DSM: Denoising Score Matching

vii

Contents

Abstract ii

List of Papers iii

Acknowledgements v

Acronyms v

I Overview 1

1 Introduction 3
1.1 Contributions of the thesis . 4
1.2 Outline of the thesis . 5

2 Bayesian inference 7
2.1 Bayes’ rule and its components 7
2.2 Inference in state space models 11

Filtering and smoothing in state space models 13
The Kalman filter and Rauch–Tung–Striebel smoother 14
General Gaussian filters and smoothers 16
Iterative general Gaussian filters and smoothers 20

ix

2.3 Approximate inference through sampling 21
Importance sampling . 22
Markov chain Monte Carlo sampling 25

3 Probabilistic machine learning 31
3.1 Machine learning . 31

Loss function . 32
Optimisation . 33

3.2 Neural networks . 34
3.3 A probabilistic view of machine learning 37

Maximum likelihood estimation 38
Classification . 38
Regression . 39

3.4 Quantifying uncertainty . 40
3.5 Uncertainty decomposition . 42
3.6 Active learning . 44

4 Representations of probability distributions 47
4.1 Parametric families of distributions 47

Ensemble models . 48
4.2 Energy-based models . 50

ML estimation with importance sampling 51
MCMC sampling and contrastive divergence 52
Noise-contrastive estimation . 54
Score matching . 57

4.3 Diffusion models . 60

5 Summary of included papers 65
5.1 Paper A . 65
5.2 Paper B . 66
5.3 Paper C . 67
5.4 Paper D . 68
5.5 Paper E . 68

6 Concluding Remarks and Future Work 71

References 73

x

II Papers 83

A LM and line-search IPLS A1
1 Introduction . A3
2 Problem formulation . A5
3 Background . A7

3.1 Linearisations used in smoothing A7
3.2 The Gauss–Newton (GN) method A9
3.3 Levenberg–Marquardt regularisation A9
3.4 The IEKS as a GN method A10

4 LM–IPLS . A11
4.1 GN cost function . A11
4.2 Levenberg–Marquardt regularisation A15
4.3 LM–IPLS Algorithm . A16

5 LS–IPLS . A17
5.1 Armijo–Wolfe conditions for LS–IPLS A17
5.2 LS–IPLS Algorithm . A18

6 Simulation results . A19
6.1 Coordinated turn (CT) model with bearings only mea-

surements . A19
6.2 CT model with time dependent bearings only measure-

ment model . A20
7 Discussion and conclusions . A23
8 Appendix . A23

8.1 Proof of the gradient of the IPLS cost function A23
8.2 Proof details of the IPLS GN connection A26
8.3 Proof of Prop. 3 . A27
8.4 Armijo and Wolfe step length conditions A29

References . A29

B A General Framework for Ensemble Distribution Distillation B1
1 Introduction . B3
2 Background . B5

2.1 Probabilistic predictive models B5
2.2 Uncertainty quantification B5
2.3 Ensembles . B6
2.4 Ensemble distillation . B6

xi

3 Distribution distillation . B6
3.1 Distillation as KL minimisation B7
3.2 A general framework for distribution distillation B7
3.3 Predictions and uncertainty quantification B8

4 Experiments . B9
4.1 Regression . B9
4.2 Classification . B12

5 Discussion and conclusion . B13
5.1 Possible extensions . B13
5.2 Conclusions . B15

References . B15

C Generalised Active Learning with Annotation Quality Selection C1
1 Introduction . C3
2 Problem formulation . C5
3 Computing the MI . C7

3.1 Gaussian linear regression C8
3.2 Binary probit classification C9
3.3 Analytical MI under idealised assumptions C12

4 Experiments . C14
5 Discussion . C16
References . C17

D On the connection between NCE and CD D1
1 Introduction . D3
2 Background . D5

2.1 Importance sampling . D6
2.2 Contrastive divergence D6
2.3 Noise-contrastive estimation D7

3 Importance sampling and RNCE D8
4 Connecting NCE with CD . D10

4.1 RNCE criterion . D10
4.2 CNCE criterion . D11

5 Insights from the CD connection D12
5.1 Choice of proposal distribution q D12
5.2 Persistent NCE . D14
5.3 MH variant of CNCE D15

xii

5.4 Sequential Monte Carlo RNCE D15
6 Experiments . D17

6.1 Adaptive proposal distribution D17
6.2 MH variant and persistent CNCE D18
6.3 Autoregressive EBM . D19

7 Conclusion . D20
8 Theoretical derivations . D21

8.1 Proof of Proposition 1 D21
8.2 Proof of Proposition 2 D22
8.3 Proof of Proposition 3 D25
8.4 Gradient of CNCE criterion D25
8.5 Proof of Proposition 4 D26
8.6 Proofs of Propositions 5 and 6 D26
8.7 Proof of Proposition 7 D28

References . D29

E MCMC-Correction for Diffusion Model Composition: Energy Ap-
proximation using Diffusion Models E1
1 Introduction . E3
2 Background . E5

2.1 Diffusion Models . E5
2.2 Energy-based models . E6
2.3 Energy and score parameterised diffusion models E7

3 MCMC sampling for diffusion models E7
3.1 Sampling from composed models E8

4 MCMC-correction with the score parameterisation E10
4.1 Recovering the energy from the score E10
4.2 MH-correction for composition models E12

5 Results . E13
5.1 2D composition example E13
5.2 Guided diffusion for CIFAR-100 E15

6 Discussion . E19
7 Conclusion . E20
8 Acknowledgments . E20
References . E20

xiii

Part I

Overview

1

CHAPTER 1

Introduction

Machine learning, the ability of computers to learn from data, has a profound
impact on our daily lives and society at large. Interactions with machine
learning models now occur daily, for almost everybody. The models detect
pedestrians around your car, answer online support questions and even create
art.

Machine learning is a way of solving problems that is different from other
forms of mathematical modelling. Modelling historically meant figuring out
underlying logical and physical relationships, reducing and simplifying the
problem until it fits into a neat, manageable equation. A model, thus, is
something that specifies how something works, or at least how an idealised
version of the phenomenon works. Data are, of course, still important, but
their role here is to inspire you to figure out the true model: the proverbial
falling apple gently encouraging your head to think harder.

Machine learning, on the other hand, does not concern itself with how things
work, but rather how they are, and data becomes the guiding principle. Here,
a model mimics data and how it actually does it is less important. From this
point of view, the model becomes a black box: it somehow takes an input
and produces an output and the problem is transformed into finding ways to

3

Chapter 1 Introduction

tune the model to fit the data. This view of modelling has allowed us to solve
problems that were previously considered more fitting for a science fiction
novel.

However, for many applications, we do not simply want a black-box guess
of the output. When your car tells you it is safe to cross a street, you want
that guess to be confident. Therefore, it is desirable to use a probabilistic
model, which can predict a distribution over all the possible outcomes rather
than a single guess. This way, we can quantify the uncertainty in the model’s
prediction and make better decisions.

This thesis studies how machine learning models can represent probabilistic
models and thereby provide quantifiable and accurate uncertainty descriptions.

1.1 Contributions of the thesis
The papers included in this thesis explore a range of theories and methods
related to probabilistic machine learning.

In paper A, we develop regularisation methods for improving the convergence
of iterated Gaussian smoothers by incorporating methods from the optimisation
literature. In the paper, iterated posterior linearisation smoothing is connected
to Gauss–Newton optimisation, which enables two regularising extensions for
this important family of smoothing methods: Levenberg–Marquardt regulari-
sation and line-search methods. Our proposed extensions require little extra
computation and we show in experiments that they outperform non-regularised
smoothers in highly non-linear settings.

Papers B and C deal directly with uncertainty estimation. Paper B develops
a method for efficiently decomposing the total uncertainty in a prediction
into its epistemic and aleatoric parts. This is achieved by proposing a novel
method of model distillation for ensembles that preserves the uncertainty
decomposition.

Paper C uses the same kind of uncertainty decomposition to propose a
general active learning (AL) procedure which selects unlabelled data points
based on the mutual information between model parameters and noisy labels.
By allowing the AL method to annotate labels of different qualities, we obtain
a more general formulation, which can find the optimal balance of data set
size and label quality, for a fixed annotation budget.

Papers D and E study models that can represent complex distributions.

4

1.2 Outline of the thesis

Paper D investigates the properties of different methods for parameter esti-
mation in unnormalised models, such as energy-based models. Although the
commonly used methods appear to be conceptually different, we show strong
connections between three different classes of methods. The connections pro-
vide a foundation for a more coherent framework for unnormalised parameter
estimation. They also give theoretical insights into when the methods give
unbiased gradient estimates and how to select their proposal distributions.

Paper E proposes a method for improved sampling in score-based diffusion
models. We leverage the connection between diffusion and energy-based models
to enable sampling with a Metropolis–Hastings-like correction while keeping
the more efficient score-based parameterisation of the diffusion model.

1.2 Outline of the thesis
The thesis is divided into two parts. The rest of part I aims to review the
theory on which the included papers rely and is organised as follows. Chapter
2 introduces Bayesian inference, with a particular focus on inference in state-
space models and sampling methods for approximate inference. Chapter 3
presents the basics of machine learning and how it can be used for probabilistic
modelling. Chapter 4 reviews different ways of representing probability distri-
butions with machine learning models and how they can be used to quantify
different types of uncertainty. Part I ends with a summary of the included
papers in chapter 5 and concluding remarks in 6.

Part II consists of the papers on which this thesis is based.

5

CHAPTER 2

Bayesian inference

This chapter provides an introduction to Bayesian inference. It presents Bayes’
rule (section 2.1) and the special case of Bayesian inference in state-space
models (section 2.2). From there, a brief review of approximate inference
methods, relevant to this thesis, is given in section 2.3.

2.1 Bayes’ rule and its components
Bayesian statistics is a branch of statistical analysis, which has a different
philosophical interpretation of modelling than its more well-known frequentist
counterpart. From the Bayesian perspective, a probability is interpreted as
the certainty of an event in a single trial, not the relative frequency of an
event in an infinite number of trials [1]. Another way to formulate it is that
a parameter of interest θ, is not interpreted as a single true but unknown
value. Instead, the variable itself is considered a random variable, following
some probability distribution. The parameter θ can be a single value but is
typically a vector with multiple elements.

Bayesian inference is the framework that provides the methods for reasoning
about the distribution of the parameter. Derived from the laws of probability

7

Chapter 2 Bayesian inference

and probability calculus, it provides a principled way of working with uncer-
tainty. In essence, Bayesian inference is the process starting from a point of
uncertainty and, from there, incorporating observations to update our belief
about the distribution of θ.

The information about θ, before any data is observed, is encoded in the
prior distribution p(θ). The prior distribution is based on beliefs about the
relative probability of certain values of θ, which do not depend on observed
data. Thus, the prior can be used to model expert experience or physical
limitations to the problem, within the probabilistic framework. In the lack of
strong prior beliefs, it is also possible to use non-informative priors, which can
be selected in several ways [1, p. 61].

The observations (the data) are related to the parameter through a condi-
tional distribution p(x | θ), called the likelihood function, which models the
distribution of the observations, given a certain value of the parameters. It
is common to model the data as conditionally independent, given θ, so that
the likelihood of multiple observations is p({xn}N

n=1 | θ) =
∏N

j=1 p(xn | θ).
This is often written as p(D | θ), where D is a collection of the data used to
estimate θ.

Bayesian inference aims to compute the posterior distribution p(θ | x), i.e.
to state our belief about the distribution of θ, after observing data x. The
relationship between the posterior, prior and likelihood functions is given by
Bayes’ rule [1, p. 7]

p(θ | x) = p(x | θ)p(θ)
p(x) . (2.1)

This rule is trivially derived from the definition of conditional probability, yet
it is the cornerstone of Bayesian inference. Virtually any problem in Bayesian
inference can be reduced to the trials and tribulations of using Bayes’ rule to
calculate the posterior distribution.

The denominator in the RHS of (2.1) is called the marginal probability
(or marginal likelihood) and can be computed by marginalising the joint
probability

p(x) =
∫

p(x, θ) dθ =
∫

p(x | θ)p(θ) dθ; (2.2)

if θ takes discrete values the integration is replaced by summation. The
marginal probability is independent of θ and, therefore, acts as a normalisation
constant, ensuring that p(θ | x) is a valid probability distribution. An

8

2.1 Bayes’ rule and its components

important consequence of this is that the posterior distribution is proportional
to the product of the likelihood and prior distribution p(θ | x) ∝ p(x | θ)p(θ).

Example 2.1.1 Conjugate likelihood. Consider a single parameter θ with
a Gaussian prior and likelihood

p(θ) = N
(
θ; m0, s2

0
)

,

p(x | θ) = N (x; θ, 1/2) ,

with known prior hyperparameters m0 = 1 and s2
0 = 1/2. Assume that x = 1

is observed, then Bayes’ rule provides the updated belief about θ

p(θ | x = 1) = N (1; θ, 1/2)N (θ; 0, 1)∫
N (1; θ, 1/2)N (θ; 0, 1) dθ

.

Fortunately, for this example, the posterior is also Gaussian and its mean and
variance can be calculated analytically. When the prior and the posterior have
the same functional form for a certain likelihood function, we say that we have
a conjugate prior (for that specific likelihood function) [2, p. 117]. Since a
conjugate prior enables exact inference, the prior is often selected with respect
to (w.r.t.) the likelihood function, such that they conjugate.

For this problem, the posterior mean and variance can either be calculated
by hand, or they can be obtained from a general update rule for conjugate
distributions [2, p. 91]:

p(θ | x = 1) = N
(
θ; m1, s2

1
)

, where

m1 = s1

(
m0
s2

0
+ 1

σ2

)
= 2/3,

s1 =
(

1
s2

0
+ 1

σ2

)
= 1/3. (2.3)

The left part of figure 2.1 shows how the posterior is updated from the prior.
It shows the gist of Bayesian inference, namely that after seeing x = 1, we are
not completely confident that θ = 1, instead, the posterior is a compromise
between the observation and the prior belief.

For multiple observations, Bayes’ rule can either be used with all data
simultaneously, by computing the joint likelihood p({xn}N

n=1 | θ), or it can be
used recursively where the current posterior becomes the prior for the next

9

Chapter 2 Bayesian inference

−2 −1 0 1 20

0.2

0.4

0.6

0.8

1

1.2

θ

p(θ)
p(θ | x = 1)

−2 −1 0 1 20

0.2

0.4

0.6

0.8

1

1.2

θ

p(θ | x = 1)
p(θ | x = 1, x′ = 0.5)

Figure 2.1: Bayesian inference for univariate Gaussians. The figure on the left
shows the prior and posterior distribution after observing x = 1. The
figure on the right shows the posterior distribution after another sample
x′ = 1/2 has been observed. Here the posterior in the left figure acts
as the prior.

observation. Going back to the example above, assume that, after computing
the posterior p(θ | x = 1), another observation x′ = 0.5 is made. Then, m1, s2

1
acts as the prior parameters in (2.3) and the new posterior parameters become
m2 = 3/5, s2

2 = 1/5. The prior and posterior distribution for the second
observation is shown on the right in figure 2.1. Note that after receiving more
information, the mean is again shifted slightly and the uncertainty about θ is
further reduced.

Having access to the full posterior distribution over θ, as opposed to a single
point estimate, is clearly useful. We just saw how it can be used to recursively
update our belief about the system we want to model, and it can also be used
to infer the distribution of future observations, using the posterior predictive
distribution

p(x′ | x) = Eθ∼p(θ|x) [p(x′ | θ)] =
∫

p(x′ | θ)p(θ | x) dθ. (2.4)

Additionally, it provides a principled way for us to reason about the uncertain-
ties in the random variable we seek to estimate, which is one of the reasons
why Bayesian inference is appealing.

10

2.2 Inference in state space models

x0 x1

y1

. . .

. . .

xK−1

yK−1

xK

yK

Figure 2.2: Graphical representation of an SSM. The graph encodes the conditional
independencies of the model, where the current state xk only depends
on xk−1 and the measurement yk only depends on xk.

We have now seen an example of exact Bayesian inference with conjugate
priors, and the next section will present another, more useful, instance of exact
inference. However, computing the posterior distribution in closed form is not
generally possible. This is because the integral in (2.2) is intractable in general,
meaning that there is no closed-form expression for the posterior distribution.
Therefore, practical Bayesian inference typically deals with finding approximate
posteriors or with doing inference without a properly normalised distribution.

2.2 Inference in state space models
A state space model (SSM) is a stochastic process defined by a sequence of
random variables x0:K := (x0, x1, . . . xK) (called states) and corresponding
measurements y1:K := (y1, y2, . . . yK) [3, p. 91]. They are commonly used to
model an evolving random variable (the state), which can only be observed
through noisy measurements, such as tracking a vehicle’s position and velocity
from GPS measurements or estimating the true number of individuals infected
by some disease from hospitalisation rates [4]–[6]. In the context of Bayesian
inference, the sequence of states x0:K corresponds to the unknown random
variable we seek to estimate (i.e., θ) and the sequence of measurements y1:K
are the observations (i.e., x).

An SSM has a particular structure of the conditional independencies of the
random variables in the SSM, which can be represented by a graphical model
shown in figure 2.2, The figure encodes two important types of conditional

11

Chapter 2 Bayesian inference

independencies. Firstly, the sequence x0:K has a Markovian property, meaning
that the distribution of the next state in the sequence only depends on the
current state:

p(xk | x0:k−1) = p(xk | xk−1), k = 0, . . . , K. (2.5)

The distribution in the RHS models the stochastic dynamics of the process
and is called the dynamic model (also process or motion model). Secondly, a
measurement at time step k only depends on the state at time step k

p(yk | y1:k−1, yk+1:K , x0:K) = p(yk | xk), k = 1, . . . , K, (2.6)

and it is called the measurement model. Intuitively, the state xk summarises
everything we need to know about the system at time step k, which explains
the conditional independencies in (2.5) and (2.6).

The SSM is specified by the dynamic and measurement model, together
with a prior distribution p(x0). For processes with additive Gaussian noise, it
is common to formulate the SSM on the following form:

xk = f(xk−1) + qk−1, qk−1 ∼ N (0, Q) ,

yk = h(xk) + rk, rk ∼ N (0, R) , (2.7)

where f is called the dynamic function and h the measurement function. It
is perfectly possible to have different functions (and covariance matrices) at
every time step, but for notational brevity, we assume the same dynamic and
measurement models at every time step.

Following the recipe for Bayesian inference, we seek to calculate the poste-
rior distribution of the states x0:K given the measurements y1:K , where the
properties of the SSM enable a simple factorisation of the distributions:

p(x0:K | y1:K) = p(y1:K | x0:K)p(x0:K)
p(y1:K)

=

(∏K
k=1 p(yk | xk)p(xk | xk−1)

)
p(x0)

p(y1:K) . (2.8)

Like all problems in Bayesian inference, this posterior is only tractable to
compute for some special cases of dynamic and measurement models. However,

12

2.2 Inference in state space models

the complexity of computing the posterior in (2.8) also grows with K. For
real-time problems, such as tracking a car over an extended period, this would
quickly become infeasible.

For this reason, inference in state space models often considers variants of
the above problem, which simplifies the inference objective to posterior distri-
butions which can be computed recursively, and with constant computational
complexity. Two such important variants are Bayesian filtering and smoothing,
which are used widely in diverse applications.

Filtering and smoothing in state space models
The basic idea of creating simplified inference problems is to relax the require-
ment of computing the joint posterior distribution over the full sequence of
states x0:K . Instead, the aim is to compute marginal posterior distributions
at each time step. The marginal distributions are less useful than knowing
the full joint posterior, but they can still be used to solve several important
problems, among them filtering and smoothing.

For filtering, the goal is to calculate the distribution p(xk | y1:k). That
is, the distribution of the random variable xk, given all measurements up to
and including time step k. This is useful for online applications, where new
measurements are observed in real-time and the goal is to find the best possible
estimate of the current state xk, given currently available information.

At any time step k = 1, . . . , K, this marginal distribution can be computed
recursively in two steps. First is the prediction step, which computes the
predicted distribution of xk, given the measurements up until time step k − 1,
y1:k−1, given by the Chapman-Kolmogorov equation [3, p. 94]:

p(xk | y1:k−1) =
∫

p(xk | xk−1)p(xk−1 | y1:k−1) dxk−1. (2.9)

Next, the filtering distribution is computed from the predicted distribution
above and using Bayes’ rule to include the measurement at time step k. This
is called the update step:

p(xk | y1:k) = 1
Zk

p(yk | xk)p(xk | y1:k−1),

Zk =
∫

p(yk | xk)p(xk | y1:k−1) dxk, (2.10)

13

Chapter 2 Bayesian inference

is a normalisation constant. By starting from the prior distribution x0, the
marginal distribution p(xk | y1:k) can be computed recursively by iterating
the prediction and update step up until time step k.

For smoothing, the target is instead the marginal distribution p(xk | y1:K),
i.e., the distribution of xk, given the full measurement sequence y1:K Contrary
to filtering, smoothing estimates the random variable xk by also including
future observations, made after time step k. Smoothing is, therefore, an offline
method, which updates the belief about xk, using more information than the
filtering method.

The marginal distributions for the smoothing method can be computed
using the backward recursive equations [3, p. 254]

p(xk | y1:K) = p(xk | y1:k)
∫

p(xk+1 | xk) p(xk+1 | y1:K)
p(xk+1 | y1:k) dxk+1, (2.11)

where p(xk | y1:k) is the filtering distribution at time step k and p(xk+1 | y1:k)
is the predicted distribution at time step k + 1, given by (2.10) and (2.9)
respectively. Thus, by first performing filtering of the entire sequence, the
smoothing distributions can be computed backwards, starting with p(xK |
y1:K) and following the recursion down to time step k = 1.

The Kalman filter and Rauch–Tung–Striebel smoother

Bayesian filtering and smoothing leverages the structure of the SSM to derive
efficient, recursive, equations for computing the marginal posterior distribu-
tions, but the integrals in (2.9)-(2.11) are intractable for general dynamic
and measurement models. There is, however, an important special class of
SSMs for which the filtering and smoothing distributions can be computed
analytically.

With affine motion and measurement models and additive Gaussian noise,
the SSM in (2.7) becomes

xk = F xk−1 + b + qk−1, qk−1 ∼ N (0, Q) ,

yk = Hxk + c + rk, rk ∼ N (0, R) . (2.12)

If the initial prior is also Gaussian p(x0) = N (x0; m0, P0), the marginal
distributions are Gaussian at all time steps and the SSM in (2.12) can also be

14

2.2 Inference in state space models

expressed as conditional distributions

p(xk | xk−1) = N (xk; F xk−1 + b, Q) ,

p(yk | xk) = N (xk; Hxk + c, R) . (2.13)

For this special case, the marginal distributions are normally distributed and
can be fully described by their respective mean vectors and covariance matrices.
Furthermore, exact inference in the form of filtering and smoothing, is tractable
for these SSMs.

For the filtering problem, this results in the Kalman filter (KF) [7], where
the predicted and filtering distributions are given by

p(xk | y1:k−1) = N
(
xk; m−

k , P −
k

)
,

p(xk | y1:k) = N (xk; mk, Pk) , (2.14)

and the parameters of these distributions can be computed with the Kalman
filter prediction step

m−
k = F mk−1 + b,

P −
k = F Pk−1F ⊤ + Q, (2.15)

and update step

Sk = HP −
k H⊤ + R,

Kk = P −
k H⊤S−1

k ,

mk = m−
k + Kk

(
yk −Hm−

k − c
)

,

Pk = P −
k −KkS−1

k K⊤
k , (2.16)

where the recursion goes from k = 1 to k = K.
Similarly, the mean and covariance of the smoothing distributions can be

evaluated in closed form, by using the parameters of the predicted and filtering
distributions above, and performing the backward recursion

Gk = PkF
(
P −

k+1
)−1

,

ms
k = mk + Gk

(
ms

k+1 −m−
k+1
)

,

P s
k = Pk + Gk

(
P s

k+1 − P −
k+1
)

G⊤
k . (2.17)

15

Chapter 2 Bayesian inference

0 10 20 30 40

−20

−10

0

10

20

Pos x

Po
s

y

Estimates

True states xk

Meas. yk
mk

ms
k

Figure 2.3: Filtering and smoothing trajectories for affine motion and measurement
models. The trajectories are based on the noisy measurement sequence
y1:K , while the true states x0:K are unknown. The filtering estimates
(in blue) are represented by the filtered mean mk and the smoothing
estimates (in green) are represented by the smoothed mean ms

k. The
dashed lines show the level curves of the marginal PDFs, three standard
deviations away from the mean. The RTS smoother produces better
estimates than the Kalman filter but also bases its estimates on all
measurements.

The recursion starts with ms
K = mK and P s

k = PK . This method is called
the Rauch–Tung–Striebel smoother [8].

An example of filtering and smoothing trajectories is shown in figure 2.3.

General Gaussian filters and smoothers
Constraining the SSM to only affine models with additive Gaussian noise can
seem restrictive, but there are ways to extend both the Kalman filter and
the RTS smoother to SSMs which have non-linear functions f and h, called
general Gaussian filtering or smoothing. Replacing the non-linear functions

16

2.2 Inference in state space models

with affine approximations, results in an approximate affine SSM, for which
exact inference is possible with the Kalman Filter and the RTS smoother. The
approximated affine SSM is of the same form as in (2.7)

xk = F xk−1 + b + γk−1 + qk−1, γ ∼ N (0, Γ) , qk−1 ∼ N (0, Q) ,

yk = Hxk + c + λk−1 + rk, λ ∼ N (0, Λ) , rk ∼ N (0, R) , (2.18)

but with the difference that the parameters of the affine transformation (F , b, Γ)
and (H, c, Λ) are now estimated by linearisation at every k, where the random
variables γk and λk model the linearisation error. Note that the linearisation
parameters implicitly depend on k.

The most straightforward method of finding an affine approximation is to
use the first-order Taylor expansion, here exemplified by the measurement
function h(·) linearised around some arbitrary x′

h(xk) ≈ h(x′) + Jh(x′) (xk − x′) = Jh(x′)︸ ︷︷ ︸
H(x′)

xk + h(x′)− Jh(x′)x′︸ ︷︷ ︸
c(x′)

, (2.19)

where Jh is the Jacobian of h, evaluated at x′. Note that the parameters of the
affine transformation, the matrix H(x′) and vector c(x′), are now functions
of the linearisation point x′, but we will henceforth drop this dependency to
keep the notation simpler. An affine approximation of the dynamic function f

is derived analogously.
One filtering method based on using this analytical linearisation to ap-

proximate a non-linear SSM is the extended Kalman filter (EKF), and the
corresponding smoother is called the extended Kalman smoother (EKS) (or
conversely, the extended RTS smoother). At any time step k, the EKF uses
the current best approximation of the state xk, as the linearisation point. This
means linearising around mk−1, the filtered mean at time step k − 1, for the
prediction step, and the predicted mean m−

k , for the update step. The EKS
on the other hand, uses the current filtered mean mk, at time k, since it is
available from the filtering pass. The linearisation error is assumed to be zero,
i.e. γ and λ are assumed to have mean zero and zero variance.

The Taylor expansion in (2.19) achieves the best possible affine approxi-
mation of the measurement function, but only locally around that particular
linearisation point. The EKF therefore, will use a good approximation around
the mode of the estimated distribution of the state, but all other points where

17

Chapter 2 Bayesian inference

xk has support, have no impact on the linearisation. This is evident from
the fact that the linearisation does not depend on the estimated covariance
matrix.

There is an alternative method, which aims to find the linearisation, that is
best on average w.r.t. the whole distribution over the state xk. This method is
called statistical linear regression (SLR). Suppose that our current belief about
the random variable xk is described by the distribution π(xk) = N (xk; µ, Σ).
With SLR, the affine approximation of h(xk), based on this distribution, is
selected such that [9]:

(H, c) = argmin
(H′,c′)

Exk∼π

[
(h(xk)−H ′xk − c′)⊤ (h(xk)−H ′xk − c′)

]
,

Γ = Exk∼π

[
(h(xk)−Hxk − c) (h(xk)−Hxk − c)⊤

]
. (2.20)

That is, H and c constitute the affine approximation of h, with the smallest
mean squared error (MSE) and Γ is the covariance matrix of the linearisation
error. The parameters (H, c, Γ) implicitly depend on the distribution π, but
it is omitted for brevity.

The SLR parameters can be expressed in the following way [10]:

H = Ψ⊤Σ−1, (2.21)
c = h̄−Hµ, (2.22)
Γ = Φ−HΣH⊤, (2.23)

where

h̄ =
∫

h(x)π(x) dx,

Ψ =
∫

(x− µ)(h(x)− h̄)⊤π(x) dx,

Φ =
∫

(h(x)− h̄)(h(x)− h̄)⊤π(x) dx. (2.24)

The SLR moments in (2.24) are not tractable for most non-linear functions.
There are, however, multiple ways of approximating the integrals above, using,
for instance, sigma-point methods [11]–[14].

Example 2.2.1 Comparing linearisation methods. Let the prior belief

18

2.2 Inference in state space models

−2 0 2 4 6 80

0.2

0.4

0.6

0.8

1

1.2

x

π(x)
π(x | y)

−2 0 2 4 6 8

0

2

4

x

h
(x

)

h(x) = 0.01x3

EKF, π(x)
SLR, π(x)

π(x | y)

Figure 2.4: Different linearisation methods of the measurement function h(x). The
left figure shows the prior (black dashed) and posterior distribution
(blue) of the state x. In the right figure, the green line shows the
first-order Taylor approximation of h around the prior mean. The black
line shows the SLR linearisation w.r.t. to the prior distribution, and
the dashed lines represent the linearisation error. The blue line shows
the SLR linearisation w.r.t. to the posterior distribution. (Adapted
from [10]).

about a scalar state, π(x), be a Gaussian centred in x = 3 and with high
uncertainty and h(x) = 0.01x3, the non-linear measurement function. Figure
2.4 shows a comparison between the EKF and SLR linearisations. From the
figure, it is evident that the linearisation methods have very different behaviour.
The analytical linearisation of the EKF is perfect at x = 3, which is the prior
mean, but underestimates the rapid growth for larger values of x. It further
assumes that the linearisation is perfect, and thus adds no extra uncertainty
to compensate for the approximation. The SLR linearisation is not only a
better fit across the support of π(x), but it also displays high uncertainty due
to the non-linearity of h.

Consider now the effect of observing a rather certain measurement, y = 1.5,
such that the exact posterior distribution π(x | y = 1.5) is as the blue line
on the left in figure 2.4. Since the EKF linearisation has such a small slope,
its update step would have to shift x to the right, in order to explain the
measurement, resulting in a poor estimate of the posterior distribution. The
SLR, on the other hand, would fare better since the increased uncertainty

19

Chapter 2 Bayesian inference

would help to explain an unexpected measurement.

Despite the benefit of SLR linearisation, it still seems suboptimal to linearise
w.r.t. to the prior π(xk). Ideally, the linearisation would be based on the
posterior distribution π(xk | yk), i.e., including the information contained in
the measurement. This is, of course, not possible since π(xk | yk) needs the
linearisation to be computed. However, there is an approximate method for
achieving posterior linearisation, and that is to iterate the update step.

Iterative general Gaussian filters and smoothers
The idea in iterative general Gaussian filtering (smoothing) is to iteratively
refine the affine approximations, by linearising around better and better
estimates of the mean and covariances of the states. For iterative smoothing,
which is of most concern for this thesis, the following two steps are iterated:

Θ(i+1)
1:K = Linearisation

(
m

(i)
1:K , P

(i)
1:K

)
,

(m(i+1)
1:K , P

(i+1)
1:K) = RTS smoothing

(
Θ(i+1)

1:K

)
, (2.25)

where Θ(i+1)
1:K =

(
F

(i+1)
1:K , b

(i+1)
1:K , Γ(i+1)

1:K , H
(i+1)
1:K , c

(i+1)
1:K , Λ(i+1)

1:K

)
are the param-

eters of the affine approximation at iteration i + 1 and m
(i)
1:K , P

(i)
1:K are the

sequences of smoothed means and covariances and iteration i. The initial esti-
mates m

(0)
1:K , P

(0)
1:K are obtained from the standard general Gaussian smoothing

from the previous section.
This procedure is then iterated until the estimates (hopefully) converge, such

that the final linearisation is done w.r.t an accurate approximation of the true
posterior distribution [15]. The procedure applies to both linearisation schemes
above, resulting in the IEKF (IEKS) [16], [17] for the analytical linearisation
and the iterated posterior linearisation filter (IPLF) and smoother (IPLS)
for the SLR linearisation [10], [18]. The IPLF and IPLS are more accurately
described as families of methods since the different methods of estimating
the SLR moments in (2.24) give rise to a sub-genre of different filters and
smoothers.

The iterative methods typically perform much better than their non-iterative
counterparts [16], but they are not guaranteed to converge, especially in highly
non-linear settings. However, some modifications to the IEKS have been

20

2.3 Approximate inference through sampling

proposed to obtain an algorithm that converges for a wider family of problems
[19]–[21]. Paper A in this thesis studies related modifications of the IPLS
algorithm.

2.3 Approximate inference through sampling

For problems where it is not possible to compute the posterior in closed form,
approximate inference is necessary. In the general Gaussian smoothers, we have
already seen an example of this, where the approximation is to assume that
the posterior distribution is Gaussian. This approximation technique is not
restricted to non-linear SSMs, but is widely used, see e.g., [22, p. 341]. There
are, however, problems for which a Gaussian approximation of the posterior is
unsuitable. For these scenarios, it is common to relax the requirement of finding
a parametric approximation to the posterior and instead do inference based
on sampling from the posterior. The following section introduces a selection
of such sampling-based methods, for increasingly complicated posteriors.

A typical inference problem is to estimate expected values w.r.t. a poste-
rior distribution. One example of this is computing the posterior predictive
distribution in (2.4), which is defined as the expected value of the likelihood
p(x′ | θ) w.r.t. p(θ | x), and there are many more such applications.

To make the description more general, let p(z) be some target distribution
(e.g., the posterior) and g(z) some function of z, for which we want to estimate
the expected value

g⋆ := Ep(z) [g(z)] =
∫

g(z)p(z) dz. (2.26)

For approximate Bayesian inference, z would be the parameter of interest θ

and p(z) the posterior distribution p(θ | x).
Consider the case when the integral in (2.26) is intractable, but it is possible

to sample from p(z). Then, g⋆ can be approximated using Monte Carlo (MC)
methods [23]–[25], which estimate the expected value as a sample average. An
interpretation of this is that p(z) is approximated with Dirac delta functions

21

Chapter 2 Bayesian inference

in the samples zj ∼ p(z), to get the approximation

g⋆ =
∫

g(z)p(z) dz ≈
∫

g(z) 1
J

J∑
j=1

δ(z − zj) dz

= 1
J

J∑
j=1

∫
g(z)δ(z − zj) dz = 1

J

J∑
j=1

g(zj) := ĝ. (2.27)

The estimator ĝ is unbiased, which means that it has the correct expected
value Ep(z) [ĝ] = Ep(z) [g(z)]. Furthermore, the variance of the estimator

Varp(z) [ĝ] = 1
J
Ep(z)

[(
g(z)− Ep(z) [g(z)]

)2
]

(2.28)

decreases with the number of samples J and does not depend on the dimen-
sionality of z [2, p. 524].

Importance sampling

For more complicated distributions, it might be impossible to directly sample
from p(z), but the PDF can be evaluated point-wise. A naive way to estimate
g⋆ in this case is to uniformly discretise the input space and compute the average
of g(z)p(z) over all bins. This approach would quickly become infeasible, as
the number of bins would grow exponentially with the dimension of z, and
it is likely that the product g(z)p(z) will be close to zero for many z-values,
which will essentially not contribute to the estimate.

A better solution is to try to obtain approximate samples from p(z). This
can be achieved with importance sampling (IS), which introduces a proposal
distribution q(z) to reformulate the MC approximation in (2.27) as an expected
value over q

g⋆ =
∫

g(z)p(z) dz =
∫

g(z)p(z)
q(z)q(z) dz

= Eq(z)

[
g(z)p(z)

q(z)

]
≈ 1

J

J∑
j=1

w(zj)g(zj) := ĝIS , (2.29)

where zj ∼ q(z) are now sampled from the proposal distribution. The weight

22

2.3 Approximate inference through sampling

−3 −2 −1 0 1 2 30

0.2

0.4

0.6

0.8

1

z

p(z)
g(z)
q1(z)
q2(z)

Figure 2.5: Example of IS with two choices of proposal distribution q1 and q2. The
proposal q1 (solid green) is the best Gaussian approximation of the
posterior distribution (blue), but since the product g(z)p(z) is zero on
parts of the support of p(z), the alternative proposal q2 (dashed green)
is a more suitable choice.

w(zj) = p(zj)
q(zj) corrects the bias introduced by sampling from q(z) rather than

p(z).
The selection of the proposal distribution q then becomes an important

design decision. First, its support must be larger than that of p(z), i.e.
q(z) > 0,∀z : p(z) > 0, for the weights to be defined. It must also be relatively
easy to sample from and evaluate, to be useful for this purpose. A secondary
concern is that a poor choice of q can increase the variance of the estimator ĝIS

significantly. If the support of q differs from the support of p, it will produce
many samples with low weights, which do not contribute much to the sum in
(2.29), essentially reducing the effective sample size. Further complicating the
choice of proposal distribution is that q should ideally produce samples where
the product g(z)p(z) is large. Figure 2.5 shows a simplified scenario where g

greatly influences the choice of proposal distribution.
IS can also be used when p(z) can only be evaluated up to some constant,

23

Chapter 2 Bayesian inference

i.e, when

p(z) = p̃(z)
Z

, where

Z =
∫

p̃(z′) dz′, (2.30)

and p̃(z) can be evaluated, but the normalisation constant Z is intractable.
Recall from Bayes’ rule that the posterior is proportional to the product of the
prior and likelihood, but the normalisation constant (the marginal likelihood)
is often intractable. Therefore, this scenario is common in Bayesian inference.

For an unnormalised distribution p̃(z), IS can be used to estimate the
normalisation constant itself, by reusing samples from the proposal:

Z =
∫

p̃(z′)
q(z′)q(z′) dz′ = Eq(z′)

[
p̃(z′)
q(z′)

]
≈ 1

J

J∑
ℓ=1

p̃(zℓ)
q(zℓ)︸ ︷︷ ︸
w̃(zℓ)

:= ẐIS . (2.31)

The expected value g⋆ can now be approximated using (2.29), replacing w(zj)
with approximate self-normalised weights:

g⋆ ≈ ĝIS ≈
J∑

j=1

w̃(zj)∑J
ℓ=1 w̃(zℓ)

g(zj). (2.32)

IS can also be used to approximately sample from p(z), even in the case
when the PDF is unnormalised. The idea is to draw J i.i.d samples zj ∼ q(z)
and compute the corresponding weights w(zj) for j = 1, . . . , J , computed
either as p(z)

q(z) or with self-normalisation. The weights are used to define a
categorical distribution p̂IS(z) = Categorical ([z1, . . . , zJ]; [w(z1), . . . , w(zJ)]).
Re-weighing the samples draw from q, by sampling from p̂IS(z) (with replace-
ment), corrects for the difference between q(z) and p(z), and will produce
approximate samples from p(z), with exact sampling in the limit J →∞ [2,
p. 535].

24

2.3 Approximate inference through sampling

Markov chain Monte Carlo sampling

The usefulness of important sampling-based methods depends on the ability
to find a good proposal distribution. This can be difficult for complex target
distributions, in particular high-dimensional ones. For such distributions,
Markov chain Monte Carlo (MCMC) sampling can be more suitable. Where IS
directly produces approximate samples from the target distribution, MCMC
samplers instead generate sequences of dependent samples, which converge to
the desired target distribution. This enables powerful sampling methods, which
can produce approximate samples from complex distributions and MCMC
methods are used in a wide range of applications, from statistical physics,
computational biology and approximate Bayesian inference [25]–[27].

A Markov chain consists of a sequence of random variables

z0:T := (z0, z1, . . . , zT),

called states, an initial distribution p(z0) and transition probabilities p(zτ |
zτ−1), τ = 1, . . . , T (also called a kernel). The whole sequence of states is
generated by starting in an initial state z0 ∼ p(z0) and then stepping through
the chain, by sequentially sampling a new state given the previous one.

The joint distribution over the sequence z0:T is specified by the transition
probability since a Markov chain fulfils the conditional independence property
[23, p. 22]

p(zτ | zτ−1, . . . , z0) = p(zτ | zτ−1), τ = 1, . . . , T,

⇒ p(z0:T) = p(z0)
T∏

τ=1
p(zτ | zτ−1) (2.33)

This property is called a Markov property and can be represented with a
chain-like directed graph, shown in figure 2.6. The conditional independence
means that knowing the value in the previous state is sufficient for determining
the distribution of the current state.

Due to the Markov property, the marginal distribution for zτ can be ex-
pressed in terms of the marginal distribution of the previous state zτ−1

p(zτ) = Ep(zτ−1) [p(zτ | zτ−1)] =
∫

p(zτ | zτ−1)p(zτ−1) dzτ−1. (2.34)

25

Chapter 2 Bayesian inference

z0 z1 . . . zK−1 zK

Figure 2.6: Example of a Markov chain. The directed edges encode the conditional
independence, where the distribution of zτ only depends on the previous
state zτ−1.

If a distribution p⋆(z) fulfills the property

p⋆(z′) = Ep⋆(z) [p(z′ | z)] , (2.35)

then it is called invariant w.r.t. to the Markov chain with transition probability
p(z′ | z). This means that a step in the Markov chain will not change the
marginal distribution of z′ if the original sample is drawn from p⋆(z). Another
way of stating it is that the Markov chain has converged to p⋆ since further
steps in the chain will not change the marginal distribution. Therefore p⋆ is
also called the stationary distribution.

If a Markov chain has the property that p(zT) converges to an invariant
distribution p⋆ as T →∞, regardless of the initial distribution p(z0), then it
is called ergodic. This means that an ergodic Markov chain can start in any
state z0 and if it takes sufficiently many steps, then zT will be approximately
drawn from p⋆.

The idea in MCMC is to define an ergodic Markov chain, which has the
target distribution as its invariant distribution. The Markov chain can then be
used to (approximately) sample from the target distribution and the samples
can be used to estimate expected values of the form in (2.27). The caveat is
that the chain may have to be run for many steps before it converges to the
target distribution. Furthermore, the samples z0:T will be auto-correlated,
which will adversely affect the variance of the MC estimate [23, p. 24]. The
correlation issue can be mitigated by running multiple Markov chains in
parallel. Parallel chains do not directly improve the convergence, but will at
least produce more samples in the time it takes to run a single chain.

It is typically not difficult to construct invariant and ergodic Markov chains
[28], [29]. The challenge is rather to achieve good mixing, which means the
ability to quickly reach the target distribution from an arbitrary starting
distribution, while also keeping the auto-correlation low. Furthermore, it can

26

2.3 Approximate inference through sampling

also be difficult to determine when the chain has run for sufficiently many steps
to approximate the target distribution [28]. The following sections present a
few MCMC methods, relevant to this thesis.

Metropolis–Hastings

One way to ensure an invariant distribution p⋆(z) w.r.t. to a Markov chain
with transition probability p(z′ | z) is to require that the two distributions
satisfy the detailed balance condition [23, p. 24]:

p⋆(z)p(z′ | z) = p⋆(z′)p(z | z′). (2.36)

This condition can be interpreted as a form of symmetry, where the pair (z′, z)
can be generated in two ways, either by starting in z and taking a step in the
Markov chain to z′ or reversing the step and going backwards in the chain
from z′ to z.

It is easy to verify that detailed balance implies the invariance condition in
(2.35):

Ep⋆(z) [p(z′ | z)] =
∫

p(z′ | z)p⋆(z) dz =
∫

p(z | z′)p⋆(z′) dz

= p⋆(z′)
∫

p(z | z′) dz = p⋆(z′). (2.37)

The Metropolis–Hastings (MH) method is an MCMC variant, which provides
a flexible way of constructing valid MCMC kernels [30]–[32]. The kernel is
based on a proposal distribution q(z′ | z) (which may depend on the step τ).
The proposal distribution can be chosen with few restrictions, and a valid
MCMC kernel is instead ensured by adding a rejection step in the sampling.
Given a current state z, a proposal sample z′ ∼ q(z′ | z) is randomly either
accepted or rejected with an acceptance probability α(z′, z) ∈ [0, 1], i.e.,

zτ =
{

z′ ∼ q(z′ | zτ−1), with prob. α(z′, zτ−1),
zτ−1, with prob. 1− α(z′, zτ−1).

(2.38)

In effect, the sampling process is a random walk, where some of the proposed
steps are rejected. To achieve good mixing, the proposal distribution should
be chosen such that the random walk explores the state space efficiently, yet

27

Chapter 2 Bayesian inference

still maintains a reasonably high acceptance rate (what this value actually is,
is subject to debate [33]–[35]).

The detailed balance condition can be used to derive the relative acceptance
probability for the two ways the pair (z′, z) could have been generated:

p(z)p(z′ | z) = p(z′)p(z | z′)⇒ p(z′)
p(z) = p(z′ | z)

p(z | z′) = q(z′ | z)α(z′, z)
q(z | z′)α(z, z′)

⇒ α(z′, z)
α(z, z′) = p(z′)q(z | z′)

p(z)q(z′ | z) . (2.39)

The optimal acceptance probability is a compromise between ergodicity and
stationarity. Ideally, new samples should always be accepted since we want
to explore the state space, but this may not produce the correct invariant
distribution p⋆. The MH method uses the acceptance probability

α(z′, z) = min
(

p(z′)q(z | z′)
p(z)q(z′ | z) , 1

)
, (2.40)

which can be shown to fulfil the detailed balance condition [2, p. 541]. It
is, in fact, the optimal choice in the sense that it gives the highest possible
acceptance probability while still maintaining the correct invariant distribution.
Note that the normalisation constant of the target distribution cancels, and it
is only necessary to evaluate the unnormalised distribution (see (2.30)).

Score-based sampling

In the MH method, new states are proposed by a random walk, which can render
exploration inefficient. To improve on this, several hybrid Monte Carlo methods
have been proposed, which use information about the target distribution to
propose new samples. They are inspired by simulations of dynamical systems,
which use a specific probability distribution q(z) ∝ exp(−E(z)) (called the
canonical distribution) over the states, where E(z) is the energy in the state
z. We will, however, introduce them as methods to sample from a general
target distribution p(z).

The main idea is to construct a proposal distribution, based on the derivative
of p(z), such that proposed samples are biased towards regions of higher
probability under the target distribution. Specifically, we define the score

28

2.3 Approximate inference through sampling

function as
s(z) = ∇z log p(z), (2.41)

assuming that this derivative can be evaluated.
The definition of the score function comes from the fact that for the special

case log p(z) = −E(z), the target distribution p(z) is equal to the canonical
distribution q(z). A more practical reason, however, is that by taking the
logarithm of p(z), we only need access to the unnormalised distribution, since
the normalisation constant does not depend on z, i.e.,

∇z log p(z), = ∇z log p̃(z)−∇z log Z = ∇z log p̃(z). (2.42)

A proposal distribution can then be constructed, where we start in z, take
a step along the direction of the score s(z) and add noise. The simplest form
of score-based MCMC sampling is the unadjusted Langevin algorithm (ULA)
[22, p. 496], which proposes new samples as

z′ = z + δ2

2 ∇z log p(z) + δξ, ξ ∼ N (0, I) . (2.43)

Here, δ2 is a hyperparameter controlling the typical step length. Too small a
step will cause slow mixing, whereas too large a step might make the samples
fail to converge to the desired target distribution.

From this basic idea, more samplers can be constructed, such as the
Metropolis-Adjusted Langevin Algorithm [36], which adds an MH correc-
tion step, allowing for larger step lengths and Hamiltonian Monte Carlo, which
uses more complex dynamics to produce better proposals [37].

29

CHAPTER 3

Probabilistic machine learning

3.1 Machine learning

Machine learning is a field of mathematical modelling in which the model is
not explicitly derived from mathematical principles but rather learned from
data. This is particularly useful for problems where constructing an explicit
model may be very difficult or even impossible. Consider, for example, the task
of image classification. This task is often trivial for the human mind; indeed,
even very young children can take a quick look at a picture and deduce which
class it belongs to (say, a flower or a car). To explain how this process works,
however, is another thing altogether. That is, to explain how the combination
of values of each pixel relates to that picture belonging to the class of flower
pictures, for instance, is very challenging.

Machine learning does not attempt to explicitly describe this kind of relation.
Instead, it introduces a general function fθ : X → Y, defined by a parameter
vector θ that maps input values (e.g., images) x ∈ X to output values (e.g.,
class labels) y ∈ Y. Each parameter vector defines a specific function, so
technically fθ is a whole class of functions. Ideally, the unknown true model is
a member of the model class fθ, such that there exists an optimal parameter

31

Chapter 3 Probabilistic machine learning

vector θ⋆ for which fθ⋆ describes the true relation between input and output.
This is almost never the case, but if fθ is sufficiently expressive, meaning that
it can model complex functions, the best model in our class of functions may
provide a reasonable approximation to the true model.

The true mapping between input and output is unknown, but we generally
have at our disposal a data set of training examples D. What the data set
contains, depends on the particular problem we study. It can, for example,
be only input data x or be pairs of input data and a corresponding true
label (often called the ground truth) (x, y). Common for all settings is that
we assume that the data set D consists of N independent and identically
distributed samples (i.i.d), drawn from the true joint probability distribution
pD(·).

Loss function
To proceed, we would like a principled strategy to use the available data to
approximate the unknown function of interest. In machine learning, model
parameters are almost always selected such that they minimise a loss function,
which quantifies how well the model prediction matches real data.

Let us, for clarity, assume that each data point consists of pairs of input
data xn and label yn, that is D = {(xn, yn)}N

i=1. From (x, y), assume that
we obtain the model prediction as ŷ = fθ(x) ∈ Y. We define a loss function
ℓ : Y × Y → R, based on the real and predicted label. The loss function (also
called objective function or criterion) maps a prediction ŷ and true output y

to a non-negative number, encoding the quality of the prediction. The loss is,
by convention, interpreted as something that should be minimised; the smaller
the loss is, the better the prediction corresponds to the true label. This way,
the loss function specifies what problem we are trying to solve. For a regression
problem, for example, we would use the squared error ℓ(ŷ, y) = ∥ŷ − y∥2,
indicating that a good prediction is one that is as close as possible to the
true output. Since we are interested in how θ affects ŷ for a given x, the loss
function is typically written on the form

ℓ(θ; x, y) := ℓ(fθ(x), y). (3.1)

Naturally, we are not interested in the prediction of a single data point.
Instead, the model should produce good predictions for all data points, i.e., to

32

3.1 Machine learning

minimise the expected value of the loss w.r.t. to pD, called the risk function
L(θ). This expected value is not possible to compute in general, but it can be
estimated as the average loss across the whole data set, which is called the
empirical risk function and is an unbiased estimate of L(θ). This turns the
problem of finding the optimal parameters θ⋆ of the model into an optimisation
problem:

θ⋆ = argmin
θ

L(θ) = argmin
θ

E(x,y)∼pD [ℓ(θ; x, y)]

≈ argmin
θ

L̂(θ) = argmin
θ

1
N

N∑
n=1

ℓ(θ; xn, yn). (3.2)

Note that the term risk is somewhat rare in subsets of the machine learning
literature and the term loss is used to denote both the loss function, as well
as the risk function (a sin committed by yours truly in some of the papers
included in this thesis). Regardless, when we refer to training or learning a
model to perform a specific task, we mean selecting parameters that minimise
the (empirical) risk.

Optimisation

The choice of method for solving the optimisation problem in (3.2), depends
on the loss function, the type of data and most importantly, on the model class
fθ. The machine learning models studied in this thesis, are primarily neural
networks, which are almost exclusively optimised with gradient descent (GD)
methods [2, p. 240]. This is because higher-order derivatives are increasingly
computationally expensive to compute as the dimension of the parameter
vector grows, making most methods which require higher-order derivatives
infeasible.

The basic GD method is a procedure in which the parameters are initialised
to some value θ(0) and then iteratively updated in the negative gradient
direction. The update step at iteration step i is:

θ(i+1) = θ(i+1) − η(i)∇θL̂(θ), (3.3)

where η(i) ∈ (0,∞) is a hyperparameter called the learning rate (a hyperpa-
rameter is a parameter, external to the model which is not directly optimised

33

Chapter 3 Probabilistic machine learning

along with θ). Under some mild conditions on η(i) the parameter θ(i) will
converge to a local optima of L̂ as i goes to infinity [38].

In practice, it is often computationally infeasible to calculate ∇θL̂(θ) over
all the training data. Instead, the parameter update is done with a noisy
gradient estimate based on a random subset of the training data, called a
mini-batch, resulting in the stochastic GD method (SGD). The introduced
stochasticity in the optimisation process will result in higher variance in the
estimates of ∇θL(θ), but the mini-batch gradient estimates of ∇θL̂(θ) are
unbiased, meaning that the steps, on average, will be in the GD direction [39,
p. 191].

3.2 Neural networks

Neural networks is a large class of models which are particularly well-suited
for machine learning. Originally, neural networks were modelled on the human
brain, but nowadays, this principle rarely guides the development of new types
of neural networks. Most neural networks of interest are parametric functions
with a particular structure called a directed acyclic graph (DAG) [40], An
example of a neural network with a DAG structure is shown in figure 3.1. This
is also almost always what people actually mean when they refer to a neural
network [2], [41], [42]. One key reason for the prevalence of networks with the
DAG structure is that they are convenient to optimise using GD methods,
even with a very large number of parameters.

We use a specific terminology to describe a DAG that represents a neural
network. The nodes in the graph are called neurons and figure 3.1 shows them
arranged in L horizontal layers, the neurons in layer l are associated with
bias vector b[l]. The edges that connect neurons from one layer to the next
are each associated with a scalar value, and together they constitute a weight
matrix W [l]. The set of all weight matrices and bias vectors is the learnable
parameters θ of the network fθ.

The values of neurons in layer l (called activations h[l]) are commonly
computed by propagating the activations of the previous layer h[l−1] through
an affine transformation

h[l] = f
[l]
θ (h[l−1]) = σ[l]

(
W [l]h[l−1] + b[l]

)
, (3.4)

34

3.2 Neural networks

x1

x2

h
[1]
2

h
[1]
1

h
[1]
2

h
[2]
2

h
[2]
1

h
[2]
3

y

W [1]
W [2]

W [3]

Figure 3.1: A neural network represented by a DAG, here with an input layer, two
hidden layers and a single-neuron output layer. The directed edges
between the layers represent the flow of information from the input to
the output layers. Note that there are neither no edges going backwards
to previous layers, nor is there any edges between neurons in the same
layer. The directed edges are associated with a weight, where all the
edges between layers comprise the weight matrices W [l], l = 1, 2, 3.

35

Chapter 3 Probabilistic machine learning

followed by an element-wise activation function σ[l](·). The activations in the
first layer (called the input layer) are simply the value of the input h[1] = x.
The whole network then constitutes a mapping from input space to output
space:

y = fθ(x) = f
[L]
θ (f [L−1]

θ (. . . f
[1]
θ (x))). (3.5)

The activation functions serve to add non-linearities to the model. Without
them the entire network would simply consist of a sequence of nested affine
transformations (which itself is an affine transformation). Common activation
functions are tanh, the sigmoid function and rectified linear unit (ReLU) [42,
p. 168].

The reason that the DAG structure is suitable for GD-based optimisation is
that it enables efficient, automatic differentiation of the network output, w.r.t.
to its parameters, i.e., to compute ∂fθ(x)

∂θ , and subsequently the derivatives
of the loss function. Specifically, the DAG structure of the network ensures
that the derivative of the parameters in layer l can be computed using only
the information about the derivatives in layer l + 1 [41, p. 234]. This method
of differentiation, where the derivative information flows backwards through
the network, is called backpropagation [43].

Consequently, we can compose different layers into neural networks of
arbitrary complexity and, as long as we specify how to differentiate the output
of each layer w.r.t. to its input, backpropagation provides an algorithm to
automatically compute the derivatives of the entire network. With these
derivatives, SGD can be used to train networks with billions of parameters,
making backpropagation one of the most important factors behind the success
of neural networks.

Therefore, a substantial part of the research in the machine learning field has
been dedicated to constructing new types of layers and new ways of composing
them to solve problems of ever-increasing complexity. The functional form of
the network is called its architecture. New architectures are devised to create
models with specific properties. Notable examples are convolutional neural
networks (CNN), which were developed for image data to have translationally
equivariant layers and transformers which model unordered set-to-set mappings.
For the purposes of this thesis, specific model architectures are not that
important and we mostly treat the neural networks as black-box mappings
from input to output.

36

3.3 A probabilistic view of machine learning

3.3 A probabilistic view of machine learning

Whether the real world is fundamentally predictable is a philosophical question
that this thesis does not settle. You could perhaps predict the outcome of a
coin toss if you had access to all information about the situation, but in terms
of modelling, it is often more useful to predict the probability of different
outcomes, rather than guessing on a specific one. It is, therefore, natural to
frame machine learning in a probabilistic setting.

An important benefit of the probabilistic view is that it provides a principled
way of modelling uncertainties. This is essential, for instance when a model’s
predictions are used to make decisions in autonomous systems. Consider a
model used in a self-driving car, which predicts whether the road ahead is
free of obstacles. Here, a prediction with full confidence and a 51% prediction
should definitely lead to different control decisions from the car’s computer,
but if the model can only give a binary yes or no output, then these scenarios
are identical as far as the model is concerned.

Probabilistic machine learning can mean many different things. It has, for
instance, been a long-standing goal to develop Bayesian neural networks in
which the network parameters are treated as a random variable and to use
Bayes’ rule in (2.1) to infer not just a point estimate θ⋆, but the full posterior
distribution p(θ | D). However, inference methods have struggled to keep up
with the fast-increasing complexity of the neural networks they are supposed
to estimate. A compromise is to develop methods to approximately sample
parameters from p(θ | D), such as ensembles, MC-dropout and stochastic
weight averaging (SWA) [44]–[46].

Probabilistic matching learning can also mean to use neural networks to
represent probability distributions. Here, the distinction between probabilistic
and ordinary machine learning is much vaguer, since some machine learning
tasks, like classification, have typically been posed as probabilistic, while
others, like regression, have not. Probabilistic models can model more complex
problems by combining classification and regression tasks in a probabilistic
way. Examples of this are object detection, which combines classification
and regression to predict the likely presence and location of objects [47] and
semantic segmentation which in essence is a joint classification of every part
of the input data [48], [49].

There are also tasks which are exclusive to the field of probabilistic machine
learning, such as generative modelling. Here, major breakthroughs have been

37

Chapter 3 Probabilistic machine learning

made in recent years, notably in text and image generation.

Maximum likelihood estimation
One core component in most probabilistic machine learning is maximum likeli-
hood (ML) estimation, which is the process of selecting the model parameters
that maximise the likelihood of the input data. As a loss function, it is
formulated in terms of the negative logarithm of the likelihood function (NLL)

ℓNLL(θ; x) = − log pθ(y | x), (3.6)

where pθ constitutes the probabilistic model, i.e., a probability distribution,
parameterised by θ.

ML estimation differs from the Bayesian inference we introduced in chapter
2 in a few important ways. Here, θ is not a random variable, it is simply
a variable that we find through optimisation. We can make it more similar
to Bayesian inference, by introducing a prior distribution over θ and instead
optimise the product pθ(y | x)p(θ). From Bayes’ rule, we know that this
objective is proportional to the posterior distribution of θ and the outcome of
the optimisation would instead be the Maximum a posteriori (MAP) estimate.
However, we note that both the ML and MAP estimates are point estimates,
where the ultimate objective in Bayesian inference is to provide the full posterior
distribution over the random variable θ.

While exact Bayesian inference may be more appealing in principle, it is
often intractable and then ML (or MAP) estimation is a more practical choice.
We will now introduce two important problems where ML estimation is used.

Classification
Classification is a machine learning task that is naturally represented in
a probabilistic way. At first glance, the task of predicting a class label
y ∈ {1, 2, . . . , C} for a given input x ∈ X may come across as ill-suited for a
model which outputs a continuous value, as an object’s class can not be in
between a car and a flower. Instead, we construct a model which outputs a
conditional categorical PMF pθ(y | x) = Categorical (y; πθ(x)), where πθ(x)
is a probability vector, such that each element in the vector πθ,c(x) ∈ [0, 1], c =
1, . . . , C and

∑C
c′ πθ,c = 1. Note, that with this formulation, the model output

38

3.3 A probabilistic view of machine learning

is differentiable w.r.t. θ, enabling the use of GD-based methods.
The probability vector πθ(x) is usually computed in two steps. First, a

learnable model (e.g., a neural network) maps input to an unconstrained
vector fθ : X → RC , then a fixed mapping transforms the output into a valid
probability vector. The elements in the output vector fθ(x) are called logits,
and each logit is mapped to a value πθ,c(x), corresponding to the probability
of class c. This mapping is called the soft-max function and is defined as

πθ,c(x) = exp(fθ(x))c∑C
c′=1 exp(fθ(x))c′

. (3.7)

It is easy to verify that the soft-max function produces a valid probability
vector πθ, and together with fθ(x), it completes the probabilistic model:

pθ(y | x) = Categorical (y; soft-max (fθ(x))) . (3.8)

The parameters θ are estimated by optimising the NLL loss in (3.6) to learn
θ:

ℓNLL(θ; x, y) = − log p(y | x) = − log πθ,y(x). (3.9)

Regression

A regression model, which predicts a continuous output y from an input x,
need not be probabilistic. It is perfectly fine to have a model fθ : X → Y , with
Y being some continuous space, and optimise θ based on, for instance, the
squared error. It can, however, easily be converted to a probabilistic model,
for example by assuming that y|x is normally distributed, and modifying the
model architecture such that fθ(x) now outputs a mean vector µθ(x) and a
scalar log σ2

θ(x):

pθ(y | x) = N
(
y; µθ(x), σ2

θ(x)I
)

. (3.10)

Note that the model here outputs log σ2
θ ∈ R so that exponentiation ensures a

positive variance. It is also possible to parameterise the model such that it
outputs a square matrix Aθ(x) and define Σθ(x) = Aθ(x)Aθ(x)⊤ to predict
a full, positive semi-definite, covariance matrix.

39

Chapter 3 Probabilistic machine learning

We can use the NLL loss to learn θ

ℓNLL(θ; x, y) = − log p(y | x) = 1
2σ2

θ(x) ∥y − µθ(x)∥2
2 + log σθ + C, (3.11)

where C is a constant that does not depend on θ. Such constants are typically
omitted from loss functions, as they do not change the location of optima.
We can make two observations about the NLL loss. Firstly, the NLL loss for
this probabilistic model is similar to the squared error loss used in standard
regression. The main difference is that the probabilistic model allows for
reducing the loss by increasing the extra output σ2

θ(x) for regions in X where
the variance in the output is high, but the loss simultaneously penalises large
values of σ2

θ overall. This forces the model to prioritise where it predicts high
variance, which has a regularising effect. Secondly, both the classification and
regression problem are optimised using the NLL loss. By framing them as
problems of predicting probability distributions, we have essentially merged
the two problem classes and have a common well-defined loss function. This
is an appealing property of the probabilistic framework. Henceforth, we will
refer to models which predict the distribution of a variable y given an input x

as probabilistic predictive models.

3.4 Quantifying uncertainty
The probabilistic framework provides methods for quantifying the uncertainty
in a model’s output. This enables a principled way of reasoning about and
understanding the confidence of predictions, a vital feature for (among others)
security-critical applications, e.g., autonomous driving and medical diagnoses.
This section introduces a selection of metrics for quantifying the uncertainty
in a random variable, the similarity of two probability distributions and the
information between random variables.

Among the metrics quantifying the uncertainty in a random variable, the
variance (or covariance)

Var [y] := E
[
(y − E [y])2

]
= E

[
y2]− E [y]2 , (3.12)

is perhaps the best known and it is usually the choice for continuous random
variables. For discrete random variables, it is common to use the entropy (or

40

3.4 Quantifying uncertainty

Shannon entropy to distinguish it from the entropy used in physics) [50, p. 13]

Hp [y] := −
∑
y∈Y

p(y) log p(y) = −Ep [log p(y)] . (3.13)

For continuous variables, it is possible to replace the summation in the RHS
with integration over all possible values of y (when the integral is defined), but
this results in the differential entropy which has slightly different properties
than the standard, discrete entropy [50, p. 224]. It is, therefore incorrect,
although common, to conflate the two.

There are also ways of quantifying the similarity between two probability
distributions. The Kullback–Leibler (KL) divergence, for instance, is used to
compare distributions as the relative entropy

KL [p∥q] := Ep

[
log
(

p

q

)]
, (3.14)

which has the properties that it is always non-negative and is zero, only when
p = q [50, p. 20]. It is tempting to interpret the KL divergence as some
distance metric between p and q, but it should be noted that it is not a true
distance as it is not symmetric, i.e., KL [p∥q] ̸= KL [q∥p] in general.

From the KL divergence, we can also introduce the concept of mutual
information (MI). The MI between the random variables x and y measures
the information gained about x if we observe y (or vice versa). It is based
on comparing the difference between the joint distribution and the product of
the marginals [50, p. 18]:

MI [x; y] := KL [p(x, y)∥p(x)p(y)] . (3.15)

if x and y are independent, then there is no mutual information between
them. This can be seen from the definition: for independent x and y, the
joint distribution will factorise as the product of the marginal distribution,
which leads to the KL divergence being zero since the compared distributions
are identical. Note that the MI, in contrast to the KL divergence, is indeed
symmetric. The MI can also be expressed in terms of (relative) entropies:

MI [x; y] = H [x]−H [x | y] = H [y]−H [y | x] , (3.16)

41

Chapter 3 Probabilistic machine learning

which follows from the definitions of the KL divergence and the entropy [50,
p. 19]. This relationship also holds for continuous variables but instead uses
the differential entropy.

3.5 Uncertainty decomposition

The uncertainty in a prediction can be further analysed by decomposing it
into different types of uncertainty. This can be useful as a general tool for
better understanding the black-box predictions of the model but it also has
more practical uses, such as identifying difficult samples for model training.

Suppose we have obtained a posterior distribution p(θ | D) by using some
data D to update our belief about some model parameters θ. Predictions on
new data x are made with the posterior predictive distribution p(y | x,D)
in (2.4). The uncertainty in this prediction can be decomposed into two
components, epistemic and aleatoric uncertainty.

Epistemic uncertainty is the uncertainty in y which stems from uncertainty
about the parameter θ, encoded by p(θ | D). This uncertainty can be reduced
by observing more data, which will essentially make the posterior distribution
sharper. Aleatoric uncertainty, on the other hand, is uncertainty which cannot
be reduced, i.e., the inherent noise in y, even when we know θ, encoded by
p(y | x, θ).

The canonical example is someone trying to cheat you, by gambling with a
possibly biased coin. You can reduce the uncertainty about the coin’s bias by
tossing it many times and estimating the probability of it coming up heads.
This experimentation reduces the epistemic uncertainty. After many trials,
you may be reasonably sure that the coin is indeed biased, with the probability
of heads being roughly 40%. You, therefore, make the bet that the next toss
will be tails. There is still a 40% chance of you losing the bet, due to the
aleatoric uncertainty, and you cannot be entirely confident in your prediction,
even if you observe an infinite number of coin tosses.

We can use the uncertainty metrics previously introduced in this section to
quantify the different types of uncertainty in p(y | x,D). The total uncertainty
in a prediction is

Utot = I [y | x,D] = I
[
Ep(θ|D) [y | x, θ]

]
, (3.17)

42

3.5 Uncertainty decomposition

where I is some uncertainty metric, like the ones defined above. The aleatoric
uncertainty is the uncertainty that remains when we condition on the true
value of θ, which on average is

Uale = Ep(θ|D) [I [y | x, θ]] . (3.18)

The epistemic uncertainty can be quantified by measuring some form of
variability in θ, but it is also common to simply model it as the remaining
uncertainty Uepi = Utot − Uale.

Example 3.5.1 Uncertainty decomposition for a continuous variable.
Consider a linear model with a scalar output y and normally distributed
likelihood and posterior,

p(θ | D) = N (θ, µθ, Σθ) ,

p(y | x, θ) = N
(
y; θ⊤x, σ2) , (3.19)

for which the posterior predictive distribution is

p(y | x,D) =
∫
N
(
y; θ⊤x, σ2)N (θ, µθ, Σθ) dθ

= N
(
y; µ⊤

θ x, σ2 + x⊤Σθx
)

. (3.20)

For continuous random variables, the variance is often a suitable uncertainty
metric, which then leads to an uncertainty decomposition according to (3.17)
and (3.18)

Utot = Var [y | x,D] = σ2 + x⊤Σθx,

Uale = Ep(θ|D) [Var [y | x, θ]] = σ2,

Uepi = x⊤Σθx. (3.21)

That is, the total uncertainty is the variance parameter in the posterior
predictive distribution, while the aleatoric uncertainty is the variance parameter
of the likelihood, which is not reduced by observing more data. The epistemic
uncertainty is a function of the posterior covariance parameter, which can be
reduced since more data will decrease the uncertainty in the posterior belief
about θ.

43

Chapter 3 Probabilistic machine learning

Example 3.5.2 Uncertainty decomposition for a discrete variable.
For the second example, consider a discrete random variable y, where we
instead will use the (conditional) entropy as the uncertainty metric. The
resulting uncertainty decomposition is

Utot = H [y | x,D] = H
[
Ep(θ,D) [y | x, θ]

]
,

Uale = Ep(θ|D) [H [y | x, θ]] ,

Uepi = H [y | x,D]− Ep(θ|D) [H [y | x, θ]] . (3.22)

We see that the total uncertainty is the entropy of the average probability vector,
while the aleatoric uncertainty is the average entropy across all probability
vectors under p(θ | D). The epistemic uncertainty is again the remaining
uncertainty after the aleatoric is accounted for, but it can actually be shown
that it corresponds to the MI between y and θ [50, p. 20].

The ability to decompose the uncertainty in this way is very useful. On
its own, it provides some explainability, in that it identifies the source of
the uncertainty in a prediction. It can also provide the basis for performing
out-of-distribution detection, i.e., identifying data that do not fit into the
original data distribution, as the model uncertainty is typically high for such
previously unseen data [51], [52].

3.6 Active learning
Up to this point in the thesis, the assumption has been that a suitable data set
has been available for training any model. In practice, this is rarely the case
and aggregating a useful data set can constitute the lion’s share of work to
learn a machine learning model. The worst case is when data overall are scarce,
but usually, input data x are abundant and it is the labels, or annotations,
y which are hard to come by. The labels typically require some form of
human intervention, often by manually annotating a large data set, which is a
time-consuming process.

The field of active learning (AL) seeks to modify the label acquisition process,
in order to make a more principled selection of input data points to annotate.
Compared to the baseline of randomly selecting which data points to label, AL
specifically seeks to find the data points that are the most useful for estimating
the model parameters[53]. This has the potential to be useful for deep learning

44

3.6 Active learning

models, which need large data sets to train [54], [55].
The standard AL problem formulation is to start with some small labelled

data set DL = {(xn, yn)}N
n=1 and a larger, unlabelled, data set DU = {xm}M

m=1.
The goal is to obtain the best possible model pθ(y | x), given a fixed annotation
budget, which limits the number of data points that can be labelled.

The selection of unlabelled points to annotate is normally determined by an
acquisition function ϕDL(x), which is supposed to measure the usefulness of
annotating a data point x. A common AL setup is to acquire data iteratively,
where at each step a new data point is moved from the unlabelled to the
labelled data set:

DL ← DL ∪ (xm⋆ , ym⋆), DU ← DU \ xm⋆ , where
xm⋆ = argmax

xm∈DU

ϕDL(xm), (3.23)

where ym⋆ is obtained by labelling xm⋆ . After a new data point and label is
acquired, the model is re-trained, using the enlarged labelled data set,

The reason for re-training the model at each step is that the acquisition
function ϕDL(x) is typically defined in terms of the predictions of the model
pθ(y | x). For classification, with a scalar label y ∈ {1, 2, . . . , C}, examples of
acquisition functions are

• the least confident sample: ϕDL(x) = 1−maxy pθ(y | x) [56];

• the margin sample: ϕDL(x) = pθ(y(1) | x)− pθ(y(2) | x), where y(1), y(2)

are the first and second most probable label [57];

• the highest entropy sample: ϕDL(x) = −∑C
y=1 pθ(y | x) log pθ(y | x)

[58].
These examples all use the posterior predictive distribution to define ϕDL ,

where the entropy-based acquisition function is equivalent to the total un-
certainty in (3.17). More recently, though, it has been common to use the
methods of uncertainty decomposition to instead define ϕDL in terms of the
epistemic uncertainty [59]–[62]. This approach is called disagreement-based
AL [53, p. 15] and it aims to select the data point with the highest model
uncertainty. The intuition is that it is better to prioritise data points with
high epistemic uncertainty since that is the uncertainty which can be reduced
by observing more data, as opposed to the sample with the highest total
uncertainty, which also contains the irreducible aleatoric uncertainty.

45

Chapter 3 Probabilistic machine learning

Further motivation for the disagreement-based AL is the connection between
the epistemic uncertainty and the MI. Recall the uncertainty decomposition
for a classification model in (3.22) and its connection to the MI. By selecting
the data point with the highest epistemic uncertainty, we select the sample
that maximises the MI between the label and the parameters, which intuitively
makes sense in an AL context.

In practice, AL methods typically assume a binary selection process, where
a new label is either acquired with perfect annotation quality or is not labelled
at all. In Paper C, we propose a generalisation of the standard AL formulation
to a more flexible approach that considers the possibility of acquiring labels at
lower quality for a lower cost.

46

CHAPTER 4

Representations of probability distributions

The previous chapter described the foundations of probabilistic machine learn-
ing and how neural networks can be used to model simple probability distri-
butions. This chapter provides further methods for representing probability
distributions of increasing complexity.

4.1 Parametric families of distributions
The classification and regression examples in Section 3.3 were examples of
models in parametric families of distributions, which is arguably the intuitive
way of defining probabilistic machine learning models. The learned models
predicted the parameters of a probability distribution over y rather than
directly mapping input x to output y. This means that whatever architecture
or parameters were selected for the neural network in question, the model is
still a member of the corresponding distribution family.

Using a parametric distribution has many advantages; the resulting distri-
bution is a well-known type of distribution which can be selected to be a good
fit for the data distribution, while still allowing for large expressive models
to estimate the parameters. Furthermore, a suitable (and often tractable)

47

Chapter 4 Representations of probability distributions

loss function is always available in the form of the NLL loss in (3.6). The
downside is that as the complexity of the actual data distribution increases,
the constrained nature of the parametric families can limit the model’s ability
to represent the data accurately.

Ensemble models
A common strategy to increase the representative capability of parametric
distributions is to combine several of them into ensemble models. An ensemble
consists of a collection of individual models, called members, where each
member represents the same probability distribution. Ensembles have been
shown to improve overall predictive performance, as well as to make predictions
more robust [51].

It is common, but not necessary, for all the members to belong to the same
parametric family. The ensemble thus consists of a set of parameter vectors
{θℓ}L

ℓ=1, where L is the number of members in the model (the ensemble size).
The main idea behind ensembles is that aggregating several models’ predictions
will result in improved modelling performance. The aggregation can be done
in multiple ways, but a standard approach is to let the ensemble prediction be
the average prediction of the members

p{θℓ}L
ℓ=1

(y | x) = 1
L

L∑
ℓ=1

pθℓ
(y | x). (4.1)

Consider the example where the true distribution is multimodal. A single
member of the normal distribution family would be ill-suited to represent
this, but an ensemble of normal distributions, where each member models
its respective mode of the target distribution, would be a good fit. A closely
related concept is mixture models, which are also based on averaging multiple
distributions. However, in these models, the weight of each distribution is
typically also considered a learnable parameter.

For the ensemble to be useful, the members should be distinct. Otherwise,
a single member would, of course, suffice. To ensure a diverse ensemble, the
parameters of each member should be estimated in different ways. This can
be achieved by using different kinds of ensemble members, perhaps sourcing
them from multiple parametric families, or using different neural network
architectures. Another alternative is to train each model on different subsets

48

4.1 Parametric families of distributions

of the data. The most convenient way, however, is to randomly initialise the
members’ parameters and trust that the randomness of the SGD training will
produce sufficiently different members. This approach works well in practice
[51].

The set of parameters {θℓ}L
ℓ=1 can be interpreted as approximate samples

from the posterior distribution p(θ | D), which connects the ensemble’s pre-
diction to the approximate Bayesian inference methods discussed in section
2.3 [51], [63]. With this interpretation, the ensemble prediction in (4.1) is an
approximation of the posterior predictive distribution in (2.4):

p(y | x,D) =
∫

p(y | θ)p(θ | D) dθ ≈ 1
L

L∑
ℓ=1

pθℓ
(y | x) = p{θℓ}L

ℓ=1
(y | x).

(4.2)
With the Bayesian interpretation, the ensemble can also be used to per-

form the uncertainty decomposition presented in section 3.5. The total and
aleatoric uncertainty are both quantified by expected values over the posterior
distribution, which can be approximated by the same MC estimate as the
posterior predictive distribution above:

Utot ≈ I
[
p{θℓ}L

ℓ=1
(y | x)

]
,

Uale ≈
1
L

L∑
ℓ=1

I [pθℓ
(y | x)] . (4.3)

The advantages of the ensemble come with an increased cost, both in terms
of computation and memory. Not only does it require L times more resources
when training the model, but this extends also to making new predictions,
where L models need to be stored in memory and evaluated to make a single
prediction. Therefore, it is common to perform ensemble distillation, which is
the process of learning a separate model that imitates the predictions of the
full ensemble.

The typical distillation setup is to introduce a new model which can be
larger than an individual ensemble member, but significantly smaller than the
whole ensemble. The distilled model is then trained to imitate the ensemble’s
predictions, and this can typically result in a model that performs better than
an identical model trained only on the training data. This is partly due to the
ability of the ensemble to accurately quantify uncertainty and partly because

49

Chapter 4 Representations of probability distributions

more data can potentially be used as the distillation process does not require
labelled data, as the labels are instead generated by the ensemble.

In Paper B, we propose a distillation method which can compress the
ensemble model, while retaining the ability to decompose uncertainty.

4.2 Energy-based models
The parametric families of distribution can be too restrictive, even when
multiple models are combined into an ensemble. Again, consider a normal
distribution pθ(y | x) = N (y; µθ(x), Σθ(x)) can only represent a unimodal
distribution, regardless of the functions modelling the distribution’s parameters.
Similarly, an ensemble struggles if the modes of the true PDF are not well-
represented by any parametric distributions.

A less constrained representation is the energy-based model (EBM) [64]. An
EBM is a type of unnormalised generative model, which can represent highly
complex probability distributions and has seen use in many different fields,
such as object detection, [65]–[68].

An EBM uses a scalar non-negative energy function Eθ : RDx → R+ to
represent a probability distribution pθ(x). The term energy stems from physics
and the interpretation is that states with low energy are more probable than
high-energy ones. That is, the energy function is supposed to take low values
in regions with high probability density and high values where the PDF has
little or no support[64].

The PDF of an EBM is defined in terms of the energy function:

pθ(x) = exp(−Eθ(x))
Zθ

, (4.4a)

Zθ =
∫

exp(−Eθ(x′)) dx′, (4.4b)

where Zθ is a normalisation constant (also called the partition function)
which ensures a valid probability distribution. The requirement to be able to
normalise the PDF means that Eθ must be chosen such that Zθ <∞. Without
it, we could simply increase the likelihood of our model by lowering the energy
at every point in the domain of x. Therefore, Zθ effectively regularises the
energy function, so that it prioritises the regions of the input space where it
assigns low energies. Note, that in some fields, the energy function is scaled

50

4.2 Energy-based models

with an additional parameter β, but we will assume β = 1.
Just as with the parametric families of distributions, energy functions can

be modelled with neural networks parameterised by θ. The difference is that
the EBM assumes no functional form of the energy function, other than that
it should map the input x to a non-negative scalar. A sign of this flexibility
is that we can obtain several of the parametric distributions in 4.1 as special
cases of EBMs.

Example 4.2.1 A normal distribution as a special case of an EBM. An
EBM is equivalent to a normal distribution if the energy function is constrained
to the specific form

Eθ(x) = 1
2(x− µθ)⊤Σ−1

θ (x− µθ). (4.5)

Plugging this function into (4.4a) will recover the PDF of a normal distribution
with mean µθ and covariance Σθ. For this special case, the normalisation
constant Zθ is known, since the integral in (4.4b) is tractable.

This increased flexibility comes at the expense of the ability to easily evaluate
the PDF of an EBM. In particular, it is difficult to normalise an EBM, except
for special cases like the above example. By normalising, we mean to compute
the normalisation constant Zθ in (4.4b), such that the total probability is 1.
This integral is intractable for general energy functions. Therefore, the PDF
of and EBM can only be evaluated up to the constant exp(−Eθ(x)). However,
we saw in section 2.3, that only having access to an unnormalised distribution
can still be useful. Using only Eθ, we can evaluate the relative probability of
samples and even sample from pθ, but first, we need methods to estimate the
EBM parameters θ from data.

ML estimation with importance sampling

In principle, the parameters of Eθ can be estimated through ML estimation
with SGD. From a sample of the underlying data distribution x ∼ pD(·), the
NLL criterion in (3.6) is evaluated for the EBM in (4.4a) as

ℓNLL(θ; x) = − log pθ(x) = Eθ(x) + log Zθ, (4.6)

51

Chapter 4 Representations of probability distributions

but since we cannot compute Zθ in closed form, we cannot directly evaluate
the NLL, making a gradient search infeasible.

The most straightforward solution is to estimate Zθ with importance sam-
pling (see section 2.3). Let q(x) be a proposal distribution such that it a)
covers the support of pθ(x) and b) is easy both to sample from and to evaluate
its PDF. Draw J i.i.d. samples x1:J := [x1, . . . , xJ] from q and approximate
Zθ using (2.31). In terms of the EBM, the approximation of the normalisation
constant is:

Zθ ≈ ẐIS
θ = 1

J

J∑
j=1

w̃(xj), where w̃(xj) = exp(−Eθ(xj))
q(xj) . (4.7)

Approximating Zθ in (4.6) with ẐIS
θ , results in an approximate NLL criterion

based on x ∼ pD(·) and xj ∼ q(·), j = 1, . . . , J . To simplify the notation we
rename x = x0 to define the sequence x0:J = [x0, x1, . . . , xJ] and for the rest
of the EBM section, we assume x0 ∼ pD(·) and x1, . . . , xJ are drawn from the
proposal distribution q. This leads to an approximate NLL criterion, based on
IS

ℓML-IS(θ; x0:J) = Eθ(x0) + log ẐIS
θ = Eθ(x0) + log 1

J

J∑
j=1

w̃(xj). (4.8)

The caveat with using the IS approximation is that, although ẐIS
θ is an unbiased

estimate of Zθ, the gradient ∇ log ẐIS
θ is not [69], [70]. Thus, IS introduces a

bias in the gradients, which can adversely impact the convergence of the SGD
algorithm [71].

MCMC sampling and contrastive divergence

Another way of estimating the EBM’s parameters is to directly estimate the
gradient of the EBM NLL criterion in equation (4.6) w.r.t. the parameters.

52

4.2 Energy-based models

This gradient can expressed via the identity[64]:

∇θℓNLL(θ; x0) = ∇θEθ(x0) +∇θ log Zθ = ∇θEθ(x0) + 1
Zθ
∇θZθ

= ∇θEθ(x0) + 1
Zθ

∫
∇θ exp(−Eθ(x′)) dx′

= ∇θEθ(x0)−
∫ exp(−Eθ(x′))

Zθ
∇θEθ(x′) dx′

= ∇θEθ(x0)− Epθ(x′) [∇θEθ(x′)] . (4.9)

This equation enforces our intuition that the NLL is improved by decreasing the
energy (recall θ is shifted in the negative gradient direction) for samples from
the data distribution x0, while increasing it for other samples (here, drawn
from the model distribution x′ ∼ pθ(·)). Unfortunately, the gradient in (4.9)
is yet again intractable since it includes an expected value w.r.t. to pθ which
generally cannot be computed in closed form. The solution is to approximate it,
using sampling techniques from section 2.3, for instance with MCMC sampling.
Combining MCMC with SGD has some limitations, as SGD optimisation
typically requires a large number of small gradient steps to converge and
MCMC sampling requires long Markov chains for the sampling distribution to
converge, making the optimisation process prohibitively expensive.

Contrastive divergence (CD) is a method that aims to mitigate this issue
[72]. CD uses the approximation

∇θℓNLL(θ; x0) = ∇θEθ(x0)− Epθ(x′) [∇θEθ(x′)]
≈ ∇θEθ(x0)− EKθ(x′|x0) [∇θEθ(x′)] , (4.10)

where Kθ(x′ | x0) is an MCMC-kernel, initialised at a sample from the data
distribution x0, such that pθ is invariant w.r.t. Kθ. The chain is run for k

steps (the variants of CD are subsequently called CD-k) and the k is typically
very small. Indeed, taking only a single step (i.e., CD-1) is a common choice.
Such a short chain is typically not enough to converge and obtain actual
samples from pθ, but the idea in CD is that, by starting the MCMC-chain at
x0, samples will be close to the modes of pθ, and thus require fewer steps of
the chain to obtain good samples from the model distribution. Furthermore,
the argument is that, since the gradient step is repeated many times, it is
acceptable if the gradient estimate is slightly off and that, on average, it will

53

Chapter 4 Representations of probability distributions

update the parameters in the correct direction. There is empirical evidence
that parameters estimated with CD have a smaller bias, compared to the ML
estimate [73].

Note, that this derivation of the CD gradient estimate differs slightly from
when it was first proposed by Hinton [72]. The original derivation is based on
a different criterion, but it ultimately results in the same gradient estimate,
and the derivation presented here seems to be more common recently [74],
[75].

Noise-contrastive estimation
There are also methods which do not use the NLL criterion in (4.6) and instead
introduce alternative criteria for EBM parameter estimation. Noise-contrastive
estimation (NCE), is a method that changes the problem formulation from
model estimation to learning to discriminate between samples from the true
data distribution pD and samples from a noise distribution pN [76]. That is,
the model is presented with either a real data point or noise and is trained
to predict which distribution the point originates from. The motivation
for introducing this proxy task is that for a model to properly be able to
discriminate between real and noisy samples, it has to learn an accurate
representation of the underlying data distribution pD.

The original NCE criterion is derived as a simple binary classification
problem, for which a latent variable z is introduced with prior

p(z) = Bernoulli (z; 1− η) , η ∈ [0, 1]. (4.11)

Here, z indicates whether a sample is a real or noisy data point, such that

pD,N (x | z = 0) = pD(x),
pD,N (x | z = 1) = pN (x). (4.12)

The parameter η is the prior probability of sampling z = 0 and is defined in
terms of the number of noisy samples J per real data point:

η = 1
1 + J

⇒ J = 1− η

η
. (4.13)

That is, (1 − η)/η corresponds to the average number of noise samples for

54

4.2 Energy-based models

every real data sample.
To sample from the joint distribution pD,N (x, z) = pD,N (x|z)p(z), we simply

sample z from a Bernoulli coin toss to choose whether to sample x from pD or
pN . We then pretend that we do not know the origin of x and compute the
posterior distribution of z, given x:

pD,N (z | x) = pD,N (x | z)p(z)
pD,N (x | z = 0)p(z = 0) + pD,N (x | z = 1)p(z = 1)

= (1− z)ηpD(x) + z(1− η)pN (x)
ηpD(x) + (1− η)pN (x) , (4.14)

wherein the last equality, the binary property of z is used to express the
posterior in terms of pD and pN . The posterior can be rewritten in terms of
J , by dividing the numerator and denominator by η:

pD,N (z | x) =
(1− z)pD(x) + z 1−η

η pN (x)
pD(x) + 1−η

η pN (x)

= (1− z)pD(x) + zJpN (x)
pD(x) + JpN (x) . (4.15)

The posterior can not be evaluated since the PDF of the true data distribution
pD is not known. To get a usable criterion for estimating θ, pD is approximated
with the PDF of the EBM pθ, to obtain the NCE criterion as the negative log
posterior

ℓNCE(θ; x, z) = − log pθ,N (z | x) = − log (1− z)pθ(x) + zJpN (x)
pθ(x) + JpN (x) , (4.16)

but the criterion is still evaluated on samples drawn from pD,N (x, z).
Note, that the NCE criterion requires a normalised distribution pθ. In

practice, it is common to estimate Zθ as an additional, learnable, parameter.
The learned model is, therefore, a proper normalised PDF, but this also
limits the types of distributions that can be approximated. If we aim to
model a conditional distribution pθ(y | x), then the normalisation depends on
the conditioning, i.e., Zθ(x), making it impractical to estimate as additional
parameters. Several modifications and extensions to the original NCE criterion,
have been proposed, partly to mitigate this [66], [77]–[81]. Two important
extensions are conditional NCE (CNCE) [78] and ranking NCE (RNCE) [79].

55

Chapter 4 Representations of probability distributions

In CNCE, the original NCE criterion above is extended to allow a noise
distribution pN (x′ | x) conditioned on a sample from the data distribution
x ∼ pD(·). The rationale is, that if pN should closely resemble pD, then an
easy way to achieve this is to add noise to real data samples, with

pN (x′ | x) = N (x′; x, Σ) , (4.17)

being an obvious example (the covariance matrix Σ must still be manually
tuned).

The CNCE criterion is derived analogous to the original NCE criterion,
but conditioning on x ∼ pD(·) has important implications. Again, z is
introduced as a latent indicator variable, but the prior is assumed to be
p(z) = Bernoulli (z; 1/2). Now, two data points x and x′ are sampled, given
z:

pD,N (x, x′ | z = 0) = pD(x)pN (x′ | x)
pD,N (x, x′ | z = 1) = pD(x′)pN (x | x′). (4.18)

Given a pair (x, x′), the posterior distribution of z is computed (again, substi-
tuting the unknown pD for pθ)

pθ,N (z = 0 | x, x′) = pθ,N (x, x′ | z = 0)p(z = 0)
pθ,N (x, x′ | z = 0)p(z = 0) + pθ,N (x, x′ | z = 1)p(z = 1)

= pθ(x)pN (x′ | x)
pθ(x)pN (x′ | x) + pθ(x′)pN (x | x′) , (4.19)

the posterior for z = 1 is computed analogously.
In contrast to the NCE posterior in (4.15), the CNCE posterior has a factor

pθ in every term in both numerator and denominator. Recall from (4.4b) that
the normalisation constant Zθ is independent of the input data, which means
that pθ(x) and pθ(x′) have the same normalisation. Therefore, Zθ cancels out
in the CNCE posterior and the resulting criterion is

ℓCNCE(θ; x, x′, z = 0) = − log pθ,N (z = 0 | x, x′)

= − log exp(−Eθ(x))pN (x′ | x)
exp(−Eθ(x))pN (x′ | x) + exp(−Eθ(x′))pN (x | x′) , (4.20)

which does not require a normalised PDF pθ. This property means that ℓCNCE

56

4.2 Energy-based models

can be optimised to estimate θ without having to ever estimate Zθ, but at
the same time, the model pθ will only be learned up to a constant.

The second important NCE extension is ranking NCE (RNCE). It ex-
tends the binary classification problem to a categorical classification problem.
Whereas the original NCE method controls the ratio of real and noisy samples
with the Bernoulli parameter η, RNCE always sample a single real data point
x0 ∼ pD(·) and x1:J from q. From this variation of the sampling process,
the RNCE criterion is derived in much the same way as the other two NCE
criteria, by calculating the posterior distribution of x0 being the true sample,
i.e.

pD,N (z = 0 | x0:J) = pD,N (x0:J | z = 0)p(z)
pD,N (x0:J)

=
pD(x0)

∏J
j=1 pN (xj)p(z = 0)∑J

j=0 pD(xj)
∏

ℓ ̸=j pN (xℓ)p(z = j)
. (4.21)

This expression can be further simplified, where the key step is to divide
the numerator and denominator by

∏J
j=0 pN (xj), which will lead to the final

RNCE criterion [79], where the pθ replaces pD:

ℓRNCE(θ; x0:J , z = 0) = − log pθ,N (z = 0 | x0:J)

= − log exp(−Eθ(x0))/pN (x0)∑J
j=0 exp(−Eθ(xj))/pN (xj)

. (4.22)

Similarly to the CNCE criterion, the normalisation constant cancels out and
does not need to be estimated to evaluate the criterion.

The role of the noise distribution pN in the NCE criteria and how it should
be selected is not a settled question. There are those that claim that the ideal
choice is q = pD [65], [66], [76], [78], [80], while others claim that it should
be q = pθ [82], [83]. While this argument has mostly been explored for the
vanilla NCE criterion, Paper D of this thesis provides theoretical arguments
for the optimal q for the CNCE and RNCE criteria.

Score matching
Another way to avoid computing the normalisation is to formulate a criterion
in terms of the gradient of the distribution we seek to approximate. The

57

Chapter 4 Representations of probability distributions

intuition behind this method is that two functions, f(x) and g(x), which
have the same derivatives, must only differ up to some constant, i.e., f(x) =
g(x) + C. Therefore, we can estimate the parameters of a model distribution
by introducing a criterion based only on the derivatives of the model and
target distributions.

For an EBM it is specifically useful to base a criterion on the score function,
defined in (2.41), as the score function is independent of the normalisation
constant Zθ

∇x log pθ(x) = −∇xEθ(x)−∇x log Zθ = −∇xEθ(x). (4.23)

Thus, this form of estimation is called score matching [84], as the EBM
parameters are estimated by matching the score functions of the EBM and
data distributions, leading to the criterion

LSM(θ) = Ex∼pD

[
1
2 ∥∇x log pθ(x)−∇x log pD(x)∥2

2

]
. (4.24)

The RHS is equivalent to the Fisher divergence DF [pθ∥pD] [85], and SM
can, therefore, be interpreted as finding the EBM most similar to the data
distribution in terms of this divergence.

To use SM as a parameter estimation method, we need to consider two
important properties. The first one is that matching the derivatives can only
estimate the model up to some normalisation constant and the resulting model
is thus unnormalised. The second thing is that the objective in (4.24) cannot
be directly evaluated since the score function of the true data distribution pD
is unknown.

Computing the score of pD can be avoided by expressing the difference of
score functions in (4.24) by expanding the square and partially integrating
the only term which depends on both θ and the derivative of log pD [84].
The drawback is that the resulting criterion involves second-order derivatives
of log pθ, which can be prohibitively costly to compute for complex models
[86]. The computational complexity can be reduced by instead computing a
noisy estimate using Hutchinson’s trace estimator [87]. Then, computing the
second-order derivatives can be reduced to computing two gradients of scalar
functions, reducing the number of times needed to perform backpropagation.
Thus, this variant allows for controlling a trade-off between computational

58

4.2 Energy-based models

complexity and accuracy of the estimate and it is termed Sliced SM [88].
Another common variant is Denoising SM (DSM), which approximates the

criterion in (4.24) by introducing a noisy version of the data distribution [89]

qσ(x′) =
∫

qσ(x′ | x)pD(x) dx, qσ(x′ | x) = N
(
x′; x, σ2I

)
. (4.25)

The DSM criterion is based on the Fisher divergence between the model and
the perturbed version of the data distribution

DF [pθ(x′)∥qσ(x′)] = Ex′∼qσ(x′)

[
1
2 ∥∇x log pθ(x′)−∇x log qσ(x′)∥2

2

]
,

(4.26)

and it is equivalent to the criterion in (4.24) in the limit of σ → 0.
It is not obvious that this noisy Fisher divergence is easier to evaluate, as

qσ(x′) is also a complex function, based on the unknown data distribution.
However, it can be shown that [89, p. 12]

argmin
θ

DF [pθ(x′)∥qσ(x′)]

= argmin
θ

Ex′∼qσ(x′)

[
1
2 ∥∇x log pθ(x′)−∇x log qσ(x′)∥2

2

]
= argmin

θ
EpD(x)qσ(x′|x)

[
1
2 ∥∇x log pθ(x′)−∇x log qσ(x′ | x)∥2

2

]
︸ ︷︷ ︸

:=LDSM(θ)

. (4.27)

That is, in DSM we construct a tractable criterion for score matching with
the drawback that the parameter estimation is guided towards a perturbed
version of the actual target distribution. The choice of noise level σ is a design
parameter, where a higher noise level can improve convergence properties but
will also result in a noisier target distribution.

It is evident from this section, that there are many methods for estimating
the parameters of an EBM. There is no strong consensus in the literature for
which is the best choice. Furthermore, each method has additional design
choices to consider, such as noise and proposal distributions. In Paper D, we
try to improve this situation by proving theoretical connections between IS,
NCE and CD. Additionally, these connections are used to motivate the choice

59

Chapter 4 Representations of probability distributions

of noise and proposal distribution.

4.3 Diffusion models

Diffusion processes are well-known in the field of stochastic differential [90],
but in recent years, they have become very important for machine learning in
the form of denoising diffusion probabilistic models [91]–[93]. They have been
especially successful in the computer vision domain [94], but also in many
others [95], [96].

The idea behind diffusion models is to simplify the sampling problem by
reducing it into many small steps. The diffusion model is, in principle, a full
sequence of models, each responsible for predicting a less noisy version of its
input. This way, diffusion models generate high-quality samples from complex
data distributions.

The data for diffusion models comes from a known forward process, which
samples corrupted versions of the input data at different noise levels. Let
x0 ∼ pD(x0) := q(x0) be a sample from the data distribution, then construct
a Markov chain of latent variables x1:T := (x1, . . . , xT), with transition
probabilities

q(xt|xt−1) = N
(

xt;
√

1− βtxt−1, βtI
)

. (4.28)

The sequence βt ∈ [0, 1), ∀t = 1, . . . , T is called the beta-schedule, and is
a hyperparameter [93]. At each step in the chain, the mean value of the
distribution is scaled towards zero and more noise is added to the sample,
such that for large enough T we have q(xT) ≈ N (xT ; 0, I). Figure 4.1 gives
a schematic view of the diffusion process. Note that other parameterisations
of the forward processes are possible and somewhat common, but they all
follow the same basic idea presented here. Similarly, the choice of Gaussian
transition probabilities is common but not necessary.

A useful property of the forward process is that since all transition prob-
abilities are Gaussian, the conditional diffusion probability q(xt|x0) can be

60

4.3 Diffusion models

x0 xT

Known forward process q(xt | xt−1)

Learned reverse process pθ(xt−1 | xt)

Figure 4.1: A sample x0 ∼ pD(x0) := q(x0) is drawn from the data distribution. A
known forward process adds small amounts of noise such that (approxi-
mately) all information about the input image is removed at t = T . The
diffusion model learns to reverse this process by gradually denoising
the input at every step.

computed in closed form,

q(xt | x0) =
∫

q(x1:t | x0) dx1:t−1 =
∫ t∏

s=1
q(xt | xt−1) dx1:t−1

= N
(
xt;
√

ᾱtx0, (1− ᾱ)I
)

, (4.29)

where αt = 1 − βt and ᾱt =
∏t

s=1 αt [93]. This means that we can sample
xt | x0 with the forward process, without having to traverse the entire Markov
chain up to t.

The goal with diffusion models is to learn a model, pθ(xt−1 | xt), that
removes the noise from a sample at any diffusion step t. Approximate samples
from q(x0) can then be drawn, by starting from xT ∼ N (0, I) and traversing
the chain backwards until t = 0. This is called the reverse process.

Knowledge of the forward process helps us choose how to parameterise
pθ(xt−1 | xt). If βt is sufficiently small, the posterior, reverse, distribution
q(xt−1|xt) can be approximated by a Gaussian distribution. Therefore, it is
reasonable to use the parameterisation

pθ(xt−1|xt) = N (xt−1; µθ(xt, t), Σθ(xt, t)) . (4.30)

To learn the model, we would ideally minimise the NLL under the data

61

Chapter 4 Representations of probability distributions

distribution − log q(x0), but this is intractable. However, we can derive an
upper bound of the NLL by incorporating the latent variables x1:T [93]

Eq(x0) [− log pθ(x0)] ≤ Eq(x0:T)

[
KL [q(xT | x0)∥pθ(xT)]− log pθ(x0 | x1)

+
∑
t>1

KL [q(xt−1 | xt, x0)∥pθ(xt−1 | xt)] .
]

(4.31)

The main component of the upper bound is the summation at the end of (4.31),
where the distribution q(xt−1 | xt, x0) = N

(
xt−1; µ̃(xt, x0), Σ̃(xt, x0)

)
is a

Gaussian and its parameters can be computed in closed form. The expressions
for the involved Kullback–Leibler divergences in (4.31) can be further simplified
if we assume a fixed covariance matrix Σθ = β̃I:

KL [q(xt−1 | xt, x0)∥pθ(xt−1 | xt)]

=
∫
N
(
xt−1; µ̃, Σ̃

)
log
N
(
xt−1; µ̃, Σ̃

)
N
(
xt−1; µθ, β̃I

) dxt−1

= ∥µ̃(xt, x0)− µθ(xt, t)∥2
2β̃

+ C. (4.32)

The loss function that is used in practice, replaces the summation over t in
(4.31) with samples (x0, xt) ∼ q(x0)q(xt | x0) (from (4.29)):

Eq(x0)q(xt|x0)

[∥µ̃(xt, x0)− µθ(xt, t)∥2
2β̃

]
. (4.33)

The actual parameterisation of the model µθ as well as the value of β̃

is a design choice. The most common parameterisation is based on the
functional form of q(xt−1 | xt, x0) [93], such that the mean of the distribution
is parameterised as

µθ(xt, t) = 1√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)
)

. (4.34)

We recall that µθ represents the mean of xt−1, and note that this parameteri-
sation essentially obtains this mean by removing noise from xt. The learnable
model, ϵθ(xt, t), is therefore called a noise prediction model, and is typically

62

4.3 Diffusion models

parameterised by a neural network.
Diffusion models can be related to EBMs via a connection to denoising

score matching [92], [97], [98]. In Paper E, we use this connection to propose
Metropolis–Hastings corrected MCMC sampling methods for diffusion models.

63

CHAPTER 5

Summary of included papers

This chapter provides a summary of the included papers.

5.1 Paper A
Jakob Lindqvist, Simo Särkkä, Ángel F. García-Fernández, Matti Raito-
harju, Lennart Svensson
Levenberg–Marquardt and line-search iterated posterior linearisation
smoothing
Signal Processing (submitted), Apr 2023,.

Bayesian smoothing in nonlinear state-space models with additive Gaussian
noise is commonly done with general Gaussian smoothers. They are a type of
smoother which linearises the state space model around some estimate of the
state and then applies the Rauch-Tung-Striebel (RTS) smoother to the ap-
proximated state-space model. A well-known example is the extended Kalman
Smoother (KS), which linearises the state-space model through a first-order
Taylor approximation around the prior mean of the state, at time k. Another
class of smoothers use statistical linear regression (SLR) to approximate the

65

Chapter 5 Summary of included papers

state-space model with the optimal linearisation w.r.t. to the full prior dis-
tribution, e.g., the unscented RTS smoother. This method of linearisation is
more expensive to compute, but it typically improves smoothing performance
and does not require a closed-form expression for the Jacobian of the motion
and measurement models. The process can then be repeated, with a new
linearisation around the estimated states, resulting in iterative versions of the
smoothers (e.g., the IEKS and the IPLS) with increased performance. The
iterative smoothing is not guaranteed to converge, however, and it is of interest
to develop extensions with better convergence properties. The IEKS has pre-
viously been shown to be equivalent to Gauss–Newton (GN) optimisation of a
cost function based on the nonlinear state space model. Standard regularising
techniques from the general optimisation literature can therefore be applied to
the IEKS, such as Levenberg–Marquardt regularisation and line-search meth-
ods. Developing similar regularised versions of the, typically more performant,
IPLS is therefore of interest, but deriving a corresponding GN cost function
for the IPLS is more involved, due to the nature of SLR-based linearisation.
In this paper, we derive a sequence of cost functions for the IPLS, such that
GN optimisation of these is equivalent to IPLS smoothing at each iteration.
From this GN connection, we propose the Levenberg–Marquardt-IPLS and
line-search-IPLS. We perform numerical simulations to demonstrate the benefit
of these extensions in highly nonlinear scenarios.

5.2 Paper B
Jakob Lindqvist*, Amanda Olmin*, Fredrik Lindsten, Lennart Svens-
son
A General Framework for Ensemble Distribution Distillation
Machine Learning for Signal Processing, 2020.

Ensembles of multiple models are used not only for improved predictive per-
formance but also to provide more reliable uncertainty estimates. In particular,
ensembles enable decomposition into aleatoric and epistemic uncertainties.
To mitigate the cost of using and storing multiple models, it is common to
perform ensemble distillation, which is to compress the full ensemble into a
smaller model, by training it to predict similar outputs as the ensemble. In
standard distillation, the distilled model typically predicts parameters for the
same family of distributions as a single ensemble member. This approach

66

5.3 Paper C

works well with regards to maintaining model performance but the uncertainty
decomposition property is lost in the process. This paper proposes a form of
ensemble distribution distillation which preserves the uncertainty decomposi-
tion. This is achieved by having the distilled model predict the parameters
for another family of distributions, modelling the distribution of parameters
predicted by the full ensemble. We develop a framework for this new form of
ensemble distillation, the framework is general and applies to several problems,
including classification and regression.

5.3 Paper C

Jakob Lindqvist, Amanda Olmin, Lennart Svensson, Fredrik Lindsten
Generalised Active Learning with Annotation Quality Selection
Machine Learning for Signal Processing, 2023,.

Supervised learning methods rely on annotated training data sets of data
points and their corresponding label. The annotation process is costly as it
almost always requires human labour or long computer simulations. Active
learning (AL) are a family of methods which seeks to quantify which data
points are the most useful for learning a model, and select those for labelling,
thereby achieving the optimal training data set, under a constrained annotation
budget. The AL problem is typically formulated as a binary selection decision,
to either select a particular data point for labelling or or not. When a data
point is selected, it is typically assumed that the label is acquired by a fixed cost
and with perfect accuracy, In practical applications, however, it is reasonable
to assume that allowing labels to be acquired at different noise levels, ought to
affect the annotation cost. Coupled with the fact that model estimation with
noisy labels is a well-studied field, we have a generalisation of the standard
active learning formulation, where the standard binary acquisition decision is
extended to a continuous choice of annotation quality. We derive a concrete
criterion for this novel AL approach, based on the mutual information (MI)
between model parameters and noisy labels. The usefulness of our formulation
is demonstrated with both classification and regression examples, but we find
that the complexity of the MI criterion limits its application to more complex
models.

67

Chapter 5 Summary of included papers

5.4 Paper D
Amanda Olmin*, Jakob Lindqvist*, Lennart Svensson, Fredrik Lind-
sten
On the connection between Noise-Contrastive Estimation and Contrastive
Divergence
Accepted for publication in International Conference on Artificial Intel-
ligence and Statistics, 2024.

Unnormalised models, for example, EBMs, can model complex distributions,
but the intractable normalisation constant prohibits standard ML estimation
techniques. Alternative methods for parameter estimation in unnormalised
models therefore remain an active research field. Among the plethora of
methods, we can identify two important groups: those that approximate the
ML criterion with sampling methods, such as importance sampling (ML-IS)
and contrastive divergence (CD), and those that introduce a proxy criterion to
avoid having to compute the normalisation constant, namely noise-contrastive
estimation (NCE) and its variants, conditional NCE (CNCE) and ranking
NCE (RNCE). These two groups are conceptually different and are generally
treated as two distinct ways of doing parameter estimation. In this paper we
show that both CNCE and RNCE can be viewed as ML estimation methods,
connecting the two groups. Specifically, we show that the RNCE criterion is
equivalent to ML estimation with a variant of IS, called conditional importance
sampling. We also show that both RNCE and CNCE are special cases of CD.
By constructing two invariant MCMC kernels for CD, we obtain CD criteria
which are equivalent to RNCE and CNCE respectively. These findings not only
enable a more coherent framework for unnormalised parameter estimation by
connecting the two groups but also provide theoretical arguments for why the
noise-contrastive methods outperform ML-IS empirically. Furthermore, the
connection allows us to apply existing extensions of CD to NCE, the benefits
of which, we demonstrate with numerical experiments.

5.5 Paper E
Anders Sjöberg*, Jakob Lindqvist*, Magnus Önnheim, Mats Jirstrand,
Lennart Svensson
MCMC-Correction for Diffusion Model Composition: Energy Approxi-

68

5.5 Paper E

mation using Diffusion Models
Manuscript, 2024.

This paper proposes an improved sampling method for diffusion models. The
method is based on a connection between diffusion models and energy-based
models, which is the fact that both model types can be used to approximate
the score function of a marginal distribution in a Markov chain. For the EBM,
the score function can be obtained through explicit differentiation of the energy
function, whereas the diffusion model’s noise prediction is directly proportional
to the score. The energy and score parameterised versions of the diffusion
model both have appealing properties. The energy parameterisation enables
a Metropolis–Hastings correction step in the sampling process, while the
more common score parameterisation has more available pre-trained models,
which is important when composing different models to sample from new
distributions. We propose a method for adding a similar correction step for
a score-parameterised model, by estimating an energy difference as a curve
integral of the score.

69

CHAPTER 6

Concluding Remarks and Future Work

This thesis explores a range of theories and methods related to uncertainty
estimation in probabilistic machine learning. The included publications contain
contributions on various aspects of uncertainty estimation in probabilistic
models. Hopefully, the work done within the confines of this thesis has
furthered the cause of probabilistic machine learning in some way or, at the
very least, showed that it is a topic well worth further exploration.

Paper A proposes an improved version of Bayesian smoothing for SLR-based
iterated smoother. This paper stands out somewhat in this thesis since it
does not directly involve deep learning. However, the SLR-based smoothers
studied in the paper can, in principle, be used with more complex models than
those evaluated in our work. A natural first step is to investigate how these
methods can be extended to other probabilistic graphical models such as those
that appear in simultaneous localisation and mapping (SLAM). Developing
hybrid methods with, for instance, a measurement model parameterised by a
neural network, with gradients propagated through the Markov chain is also
an interesting case for future work.

Papers B and C concern the quantification of uncertainty, both how it is
represented and how it can be used in downstream applications. Uncertainty

71

Chapter 6 Concluding Remarks and Future Work

estimation is a vital part of most active learning algorithms, and we have
shown that an alternative formulation can improve performance. However,
finding more computationally feasible methods for estimating the value of
unlabelled data remains challenging and deserves more attention from our
research community.

Papers D and E deal with generative models, arguably the most researched
topic in machine learning today. A common theme in these two papers
is that their contributions bridge seemingly different techniques: Paper D
connects different parameter estimation methods, and Paper E combines
sampling techniques for diffusion and energy-based models. These types of
contributions are important as they provide tangible improvements and further
our understanding of the underlying methods on a more profound level. These
papers are but two examples of a growing category of contributions, which
blurs the boundaries between the existing forms of deep generative models
[98]–[101] and this trend shows little sign of slowing down.

72

References

[1] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Rubin, A. Vehtari, and
D. B. Dunson, Bayesian data analysis. (Texts in statistical science
series). Chapman & Hall/CRC, 2014, isbn: 9781439840955.

[2] C. M. Bishop, Pattern recognition and machine learning. Springer, 2006.
[3] S. Särkkä and L. Svensson, Bayesian Filtering and Smoothing (Institute

of Mathematical Statistics Textbooks), 2nd ed. Cambridge University
Press, 2023.

[4] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Est. with Appl. to
Tracking and Navigation: Theory, Alg. and Software. John Wiley &
Sons, Ltd, Jan. 2004, isbn: 047141655X.

[5] S. J. Godsill and P. J. W. Rayner, Digital Audio Restoration. Springer
London, 1998, isbn: 9781447115618.

[6] S. K. Nanda, G. Kumar, V. Bhatia, and A. K. Singh, “Kalman-
based compartmental estimation for covid-19 pandemic using advanced
epidemic model,” Biomedical Signal Processing and Control, vol. 84,
p. 104 727, 2023, issn: 1746-8094.

[7] R. E. Kalman, “A New Approach to Linear Filtering and Prediction
Problems,” Journal of Basic Engineering, vol. 82, no. 1, pp. 35–45, Mar.
1960, issn: 0021-9223.

[8] H. E. Rauch, F. Tung, and C. T. Striebel, “Maximum likelihood esti-
mates of linear dynamic systems,” AIAA Journal, vol. 3, no. 8, pp. 1445–
1450, 1965.

73

References

[9] H. Arasaratnam, S. Haykin, and R. Elliott, “Discrete-time nonlinear
filtering algorithms using gauss–hermite quadrature,” Proceedings of
the IEEE, vol. 95, pp. 953–977, Jun. 2007.

[10] Á. F. García-Fernández, L. Svensson, M. R. Morelande, and S. Särkkä,
“Posterior linearization filter: Principles and implementation using
sigma points,” IEEE Transactions on Signal Processing, vol. 63, no. 20,
pp. 5561–5573, 2015.

[11] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear
estimation,” Proceedings of the IEEE, vol. 92, no. 3, pp. 401–422, 2004.

[12] I. Arasaratnam and S. Haykin, “Cubature kalman filters,” IEEE Trans-
actions on Automatic Control, vol. 54, no. 6, pp. 1254–1269, 2009.

[13] I. Arasaratnam and S. Haykin, “Cubature Kalman smoothers,” Auto-
matica, vol. 47, no. 10, pp. 2245–2250, 2011, issn: 0005-1098.

[14] S. Särkkä, “Unscented Rauch–Tung–Striebel smoother,” Automatic
Control, IEEE Transactions on, vol. 53, May 2008.

[15] A. Gelb, Applied optimal estimation. MIT Press, 1974, isbn: 0262200279.
[16] B. M. Bell and F. W. Cathey, “The iterated Kalman filter update as

a Gauss–Newton method,” IEEE Transactions on Automatic Control,
vol. 38, no. 2, pp. 294–297, 1993.

[17] B. M. Bell, “The iterated Kalman smoother as a Gauss–Newton method.,”
SIAM Journal on Optimization, vol. 4, no. 3, pp. 626–636, 1994, issn:
10526234.

[18] Á. F. García-Fernández, L. Svensson, and S. Särkkä, “Iterated posterior
linearization smoother,” Transactions on Automatic Control, vol. 62,
no. 4, pp. 2056–2063, 2017.

[19] S. Särkkä and L. Svensson, “L-M and line–search extended Kalman
smoothers,” in Int. Conf. on Acoustics, Speech and Signal Processing,
2020.

[20] Y. Chen and D. Oliver, “Levenberg–Marquardt forms of the itera-
tive ensemble smoother for efficient history matching and uncertainty
quantification,” Computational Geosciences, vol. 17, Aug. 2013.

[21] J. Mandel, E. Bergou, S. Gürol, and S. Gratton, “Hybrid Levenberg–
Marquardt and weak constraint ensemble Kalman smoother method,”
Nonlinear Processes in Geophysics Disc., vol. 2, May 2015.

74

References

[22] D. J. C. MacKay, Information theory, inference, and learning algorithms.
Cambridge University Press, 2003, isbn: 0521642981.

[23] R. M. Neal, Bayesian Learning for Neural Networks. [electronic re-
source]. (Lecture Notes in Statistics: 118). Springer New York, 1996,
isbn: 9781461207450.

[24] C. Andrieu, N. de Freitas, A. Doucet, and M. I. Jordan, “An introduction
to MCMC for machine learning,” Machine Learning, vol. 50, no. 1–2,
pp. 5–43, 2003.

[25] M. Chen, Q. Shao, and J. Ibrahim, Monte Carlo Methods in Bayesian
Computation (Springer Series in Statistics). Springer New York, 2001,
isbn: 9780387989358.

[26] A. Gupta and J. B. Rawlings, “Comparison of parameter estimation
methods in stochastic chemical kinetic models: Examples in systems
biology,” AIChE journal. American Institute of Chemical Engineers,
vol. 60, no. 4, pp. 1253–1268, Apr. 2014, issn: 0001-1541.

[27] M. F. Kasim, A. F. A. Bott, P. Tzeferacos, D. Q. Lamb, G. Gregori,
and S. M. Vinko, “Retrieving fields from proton radiography without
source profiles,” Physical Review E, vol. 100, no. 3, p. 033 208, Sep. 24,
2019, Publisher: American Physical Society.

[28] A. Gelman and D. B. Rubin, “Inference from iterative simulation using
multiple sequences,” Statistical Science, vol. 7, no. 4, Nov. 1, 1992, issn:
0883-4237.

[29] M. K. Cowles and B. P. Carlin, “Markov chain monte carlo convergence
diagnostics: A comparative review,” Journal of the American Statistical
Association, vol. 91, no. 434, pp. 883–904, 1996, Publisher: [American
Statistical Association, Taylor & Francis, Ltd.], issn: 0162-1459.

[30] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, and A. H. Teller,
“Equation of state calculations by fast computing machines,” The
Journal of Chemical Physics, vol. 21, no. 6, pp. 1087–1092, 1953.

[31] W. K. Hastings, “Monte Carlo sampling methods using Markov chains
and their applications,” Biometrika, vol. 57, no. 1, pp. 97–109, 1970.

[32] L. Tierney, “Markov Chains for Exploring Posterior Distributions,”
The Annals of Statistics, vol. 22, no. 4, pp. 1701–1728, 1994.

75

References

[33] A. Gelman, W. R. Gilks, and G. O. Roberts, “Weak convergence and
optimal scaling of random walk Metropolis algorithms,” The Annals of
Applied Probability, vol. 7, no. 1, pp. 110–120, 1997.

[34] G. O. Roberts and J. S. Rosenthal, “Optimal scaling for various
metropolis-hastings algorithms,” Statistical Science, vol. 16, no. 4,
pp. 351–367, 2001, issn: 08834237.

[35] M. Bédard, “Optimal acceptance rates for metropolis algorithms: Mov-
ing beyond 0.234,” Stochastic Processes and their Applications, vol. 118,
no. 12, pp. 2198–2222, Dec. 1, 2008, issn: 0304-4149.

[36] G. O. Roberts and O. Stramer, “Langevin diffusions and metropolis-
hastings algorithms.,” Methodology & Computing in Applied Probability,
vol. 4, no. 4, pp. 337–357, 2002, issn: 13875841.

[37] S. Duane, A. Kennedy, B. J. Pendleton, and D. Roweth, “Hybrid monte
carlo,” Physics Letters B, vol. 195, no. 2, pp. 216–222, 1987, issn:
0370-2693.

[38] H. Robbins and S. Monro, “A Stochastic Approximation Method,” The
Annals of Mathematical Statistics, vol. 22, no. 3, pp. 400–407, 1951.

[39] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning:
From Theory to Algorithms. Cambridge University Press, 2014.

[40] D. Koller and N. Friedman, Probabilistic graphical models : principles
and techniques. (Adaptive computation and machine learning). MIT
Press, 2009, isbn: 9780262013192.

[41] C. M. Bishop, Deep Learning: Foundations and Concepts. 2024, isbn:
978-3-031-45468-4.

[42] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016.

[43] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, vol. 323, pp. 533–536,
1986.

[44] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and Scalable
Predictive Uncertainty Estimation using Deep Ensembles,” in NeurIPS,
2017.

76

References

[45] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning,” in Proceedings of
The 33rd International Conference on Machine Learning, M. F. Balcan
and K. Q. Weinberger, Eds., ser. Proceedings of Machine Learning
Research, vol. 48, New York, New York, USA: PMLR, 20–22 Jun 2016,
pp. 1050–1059.

[46] P. Izmailov, D. Podoprikhin, T. Garipov, D. Vetrov, and A. Wilson,
“Averaging weights leads to wider optima and better generalization,”
English (US), in 34th Conference on Uncertainty in Artificial Intelli-
gence 2018, UAI 2018, ser. 34th Conference on Uncertainty in Artificial
Intelligence 2018, UAI 2018, Association For Uncertainty in Artificial
Intelligence (AUAI), 2018, pp. 876–885.

[47] G. Hess, C. Petersson, and L. Svensson, “Object detection as probabilis-
tic set prediction,” in Computer Vision–ECCV 2022: 17th European
Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part X,
Springer, Oct. 2022, pp. 550–566.

[48] R. Ranftl, A. Bochkovskiy, and V. Koltun, “Vision transformers for
dense prediction,” in 2021 IEEE/CVF International Conference on
Computer Vision (ICCV), 2021, pp. 12 159–12 168.

[49] R. Strudel, R. Garcia, I. Laptev, and C. Schmid, “Segmenter: Trans-
former for semantic segmentation,” in 2021 IEEE/CVF International
Conference on Computer Vision (ICCV), 2021, pp. 7242–7252.

[50] T. M. Cover and J. A. Thomas, Elements of information theory. Wiley-
Interscience, 2006, isbn: 0471748811.

[51] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable
predictive uncertainty estimation using deep ensembles,” in Proceedings
of the 31st International Conference on Neural Information Processing
Systems, ser. NIPS’17, Long Beach, California, USA: Curran Associates
Inc., 2017, pp. 6405–6416, isbn: 9781510860964.

[52] Y. Ovadia, E. Fertig, J. Ren, et al., “Can you trust your model’s
uncertainty? evaluating predictive uncertainty under dataset shift,”
in Advances in Neural Information Processing Systems, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d ’Alché-Buc, E. Fox, and R. Garnett,
Eds., vol. 32, Curran Associates, Inc., 2019.

77

References

[53] B. Settles, Active Learning. (Synthesis Lectures on Artificial Intelligence
and Machine Learning). Morgan & Claypool Publishers, 2012, isbn:
978-1-60845-726-7.

[54] C. Aggarwal, X. Kong, Q. Gu, J. Han, and P. Yu, “Active learning: A
survey,” English (US), in Data Classification. CRC Press, Jan. 2014,
pp. 571–605, Publisher Copyright: © 2015 by Taylor & Francis Group,
LLC., isbn: 9781466586741.

[55] P. Ren, Y. Xiao, X. Chang, et al., “A survey of deep active learning,”
ACM Comput. Surv., vol. 54, no. 9, Oct. 2021, issn: 0360-0300.

[56] D. D. Lewis and J. Catlett, “Heterogeneous uncertainty sampling for
supervised learning,” in Machine Learning Proceedings 1994, W. W.
Cohen and H. Hirsh, Eds., San Francisco (CA): Morgan Kaufmann,
1994, pp. 148–156, isbn: 978-1-55860-335-6.

[57] T. Scheffer, C. Decomain, and S. Wrobel, “Active hidden markov models
for information extraction,” in Proceedings of the 4th International Con-
ference on Advances in Intelligent Data Analysis, ser. IDA ’01, Berlin,
Heidelberg: Springer-Verlag, 2001, pp. 309–318, isbn: 3540425810.

[58] B. Settles and M. Craven, “An analysis of active learning strategies for
sequence labeling tasks,” in Proceedings of the Conference on Empirical
Methods in Natural Language Processing, ser. EMNLP ’08, Honolulu,
Hawaii: Association for Computational Linguistics, 2008, pp. 1070–
1079.

[59] N. Houlsby, F. Huszár, Z. Ghahramani, and M. Lengyel, “Bayesian
Active Learning for Classification and Preference Learning,” arXiv
e-prints, arXiv:1112.5745, arXiv:1112.5745, Dec. 2011.

[60] A. Kirsch, J. van Amersfoort, and Y. Gal, “Batchbald: Efficient and
diverse batch acquisition for deep B ayesian active learning,” in Advances
in Neural Information Processing Systems, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d ’Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32,
Curran Associates, Inc., 2019.

[61] N. Tishby, C. Pereira, and W. Bialek, “The information bottleneck
method,” Proceedings of the 37th Allerton Conference on Communica-
tion, Control and Computation, vol. 49, Jul. 2001.

78

References

[62] L. Wang, M. Chen, M. Rodrigues, D. Wilcox, R. Calderbank, and L.
Carin, “Information-theoretic compressive measurement design,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1150–1164, Jun.
2017, issn: 0162-8828.

[63] A. Kendall and Y. Gal, “What uncertainties do we need in bayesian
deep learning for computer vision?” In Advances in Neural Information
Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, et al., Eds.,
vol. 30, Curran Associates, Inc., 2017.

[64] Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, F. Huang, and et al.,
“A tutorial on energy-based learning,” Predicting structured data, 2006.

[65] F. K. Gustafsson, M. Danelljan, R. Timofte, and T. B. Schön, “How
to train your energy-based model for regression,” in British Machine
Vision Virtual Conference, 2020.

[66] R. Gao, E. Nijkamp, D. P. Kingma, Z. Xu, A. M. Dai, and Y. N. Wu,
“Flow contrastive estimation of energy-based models,” in IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020.

[67] Y. Du, S. Li, J. Tenenbaum, and I. Mordatch, “Improved Contrastive
Divergence Training of Energy Based Models,” in International Con-
ference on Machine Learning, 2021.

[68] P. Florence, C. Lynch, A. Zeng, et al., “Implicit behavioral cloning,” in
Conference on Robot Learning, 2022.

[69] C. A. Naesseth, F. Lindsten, and T. B. Schön, “Elements of sequential
Monte Carlo,” Foundations and Trends in Machine Learning, vol. 12,
no. 3, pp. 307–392, Nov. 2019.

[70] C. P. Robert, G. Casella, and G. Casella, Monte Carlo statistical
methods. Springer, 1999.

[71] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for
large-scale machine learning,” SIAM Review, vol. 60, no. 2, pp. 223–311,
2018.

[72] G. E. Hinton, “Training products of experts by minimizing contrastive
divergence,” Neural Comput., vol. 14, no. 8, pp. 1771–1800, Aug. 2002.

[73] M. A. Carreira-Perpinan and G. Hinton, “On contrastive divergence
learning,” in International Workshop on Artificial Intelligence and
Statistics, 2005.

79

References

[74] M. Welling, A. Mnih, and G. E. Hinton, “Wormholes improve contrastive
divergence,” Advances in Neural Information Processing Systems, 2003.

[75] A. U. Asuncion, Q. Liu, A. T. Ihler, and P. Smyth, “Particle filtered
MCMC-MLE with connections to contrastive divergence,” in Interna-
tional Conference on Machine Learning, 2010.

[76] M. Gutmann and A. Hyvärinen, “Noise-contrastive estimation of unnor-
malized statistical models, with applications to natural image statistics,”
English, Journal of Machine Learning Research, vol. 13, pp. 307–361,
2012.

[77] M. Pihlaja, M. Gutmann, and A. Hyvärinen, “A family of computation-
ally efficient and simple estimators for unnormalized statistical models,”
in Conference on Uncertainty in Artificial Intelligence, Catalina Island,
CA: AUAI Press, 2010, pp. 442–449.

[78] C. Ceylan and M. U. Gutmann, “Conditional noise-contrastive estima-
tion of unnormalised models,” in International Conference on Machine
Learning, 2018.

[79] R. Jozefowicz, O. Vinyals, M. Schuster, N. Shazeer, and Y. Wu, “Explor-
ing the limits of language modeling,” arXiv preprint arXiv:1602.02410,
2016.

[80] N. Xu, “Self-adapting noise-contrastive estimation for energy-based
models,” M.S. thesis, Tsinghua University, 2022.

[81] Z. Ma and M. Collins, “Noise contrastive estimation and negative
sampling for conditional models: Consistency and statistical efficiency,”
in Conference on Empirical Methods in Natural Language Processing,
2018.

[82] I. Goodfellow, “On distinguishability criteria for estimating generative
models,” in Workshop Contribution in International Conference on
Learning Representations, 2015.

[83] F. K. Gustafsson, M. Danelljan, and T. B. Schön, “Learning proposals
for practical energy-based regression,” in International Conference on
Artificial Intelligence and Statistics, 2022, pp. 4685–4704.

[84] A. Hyvärinen, “Estimation of Non-Normalized Statistical Models by
Score Matching,” Journal of Machine Learning Research, vol. 6, pp. 695–
709, 2005.

80

References

[85] O. T. Johnson, Information Theory And The Central Limit Theorem.
World Scientific Publishing Company, 2004, isbn: 9781860945373.

[86] J. Martens, I. Sutskever, and K. Swersky, “Estimating the hessian
by back-propagating curvature,” in Proceedings of the 29th Interna-
tional Coference on International Conference on Machine Learning,
ser. ICML’12, Edinburgh, Scotland: Omnipress, 2012, pp. 963–970,
isbn: 9781450312851.

[87] M. Hutchinson, “A stochastic estimator of the trace of the influence
matrix for laplacian smoothing splines,” Communications in Statistics
- Simulation and Computation, vol. 19, no. 2, pp. 433–450, 1990.

[88] Y. Song, S. Garg, J. Shi, and S. Ermon, “Sliced score matching: A
scalable approach to density and score estimation,” in Conference on
Uncertainty in Artificial Intelligence, 2019.

[89] P. Vincent, “A connection between score matching and denoising au-
toencoders,” Neural Computation, vol. 23, pp. 1661–1674, 2011.

[90] F. C. Klebaner, Introduction to stochastic calculus with applications.
Imperial College Press, 2012, isbn: 9781848168329.

[91] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli,
“Deep unsupervised learning using nonequilibrium thermodynamics,” in
International conference on machine learning, PMLR, 2015, pp. 2256–
2265.

[92] Y. Song and S. Ermon, “Generative modeling by estimating gradients
of the data distribution,” Advances in neural information processing
systems, vol. 32, 2019.

[93] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic
models,” Advances in neural information processing systems, vol. 33,
pp. 6840–6851, 2020.

[94] P. Dhariwal and A. Nichol, “Diffusion models beat GANs on image
synthesis,” Advances in neural information processing systems, vol. 34,
pp. 8780–8794, 2021.

[95] D. Lüdke, M. Biloš, O. Shchur, M. Lienen, and S. Günnemann, “Add
and thin: Diffusion for temporal point processes,” in Thirty-seventh
Conference on Neural Information Processing Systems, 2023.

[96] K. Wang, Z. Xu, Y. Zhou, et al., Neural network diffusion, 2024.

81

References

[97] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B.
Poole, “Score-based generative modeling through stochastic differential
equations,” in International Conference on Learning Representations,
2021.

[98] Y. Du, C. Durkan, R. Strudel, et al., “Reduce, Reuse, Recycle: Compo-
sitional generation with energy-based diffusion models and MCMC,” in
Proceedings of the 40th International Conference on Machine Learning,
A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and J.
Scarlett, Eds., ser. Proceedings of Machine Learning Research, vol. 202,
PMLR, Jul. 2023, pp. 8489–8510.

[99] M. S. Albergo, N. M. Boffi, and E. Vanden-Eijnden, Stochastic inter-
polants: A unifying framework for flows and diffusions, 2023.

[100] S. Yang, Y. Du, B. Dai, D. Schuurmans, J. B. Tenenbaum, and P.
Abbeel, “Probabilistic adaptation of black-box text-to-video models,”
in The Twelfth International Conference on Learning Representations,
2024.

[101] R. Gao, Y. Song, B. Poole, Y. N. Wu, and D. P. Kingma, “Learning
energy-based models by diffusion recovery likelihood,” in International
Conference on Learning Representations, 2021.

82

