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A B S T R A C T   

Introduction: With cycling gaining more popularity in urban areas, it is vital to obtain accurate knowledge of 
cyclists’ behavior to develop behavioral models that can predict the cyclist’s intent. Most conflicts between 
cyclists and vehicles happen at crossings where the road users share the path, especially at unsignalized in-
tersections. However, few studies have investigated and modeled the interaction between cyclists and vehicles at 
unsignalized intersections. Method: A bike simulator experiment was conducted to scrutinize cyclists’ response 
process as they interacted with a passenger car at an unsignalized intersection. An existing unsignalized inter-
section in Gothenburg was simulated for test participants. Two independent variables were varied across trials: 
the difference in time to arrival at the intersection (DTA) and intersection visibility (IV). Subjective and quan-
titative data were analyzed to model the cyclists’ behavior. Results: When approaching the intersection, cyclists 
showed a clear sequence of actions (pedaling, braking, and head turning). The distance from the intersection at 
which cyclists started braking was significantly affected by the two independent variables. It was also found that 
DTA, looking duration, and pedaling behavior significantly affected cyclists’ decisions to yield. Finally, the 
questionnaire outputs show that participants missed eye contact or communication with the motorized vehicle. 
Conclusions: The kinematic interaction between cyclists and vehicles, along with the cyclist’s response process 
(visual and kinematic), can be utilized to predict cyclists’ yielding decision at intersections. From the infra-
structural perspective, enhancing visibility at intersections has the potential to reduce the severity of interactions 
between cyclists and vehicles. The analysis of the questionnaire emphasizes the significance of visual commu-
nication between cyclists and drivers to support the cyclist’s decision-making process when yielding. Practical 
applications: The models can be used in threat assessment algorithms so that active safety systems and automated 
vehicles can react safely to the presence of cyclists in conflict scenarios.   

1. Introduction 

Cycling as an active mode of transport is increasing across European 
countries (Pucher & Buehler, 2017). With increasing cycling mobility in 
urban areas, it is getting more critical to assure cyclists’ safety (Cantisani 
et al., 2019). European crash data show that cyclists’ share of fatalities is 
increasing, while the trend for operators of motorized vehicles is the 
opposite. Crossings are the most common place for conflicts between 
bicycles and motorized vehicles, and these encounters are more critical 
at unsignalized intersections (Bjorklund, 2005). In fact, Isaksson- 
Hellman and Werneke have shown that over 70% of bicycle crashes 
occur in areas where cyclists share the path with motorized vehicles 
(Isaksson-Hellman & Werneke, 2017). Active safety systems and 

automated vehicles (AVs) are expected to improve the cyclists’ safety by 
predicting the cyclists’ intent and acting to maximize interaction safety 
(Reyes-muñoz & Guerrero-ibáñez, 2022). Although recent studies have 
shown that with a 100% penetration rate of AVs, conflicts between bi-
cycles and AVs will decrease, AVs still need to be trained to behave 
safely when encountering bicycles (Tafidis et al., 2019). For a successful 
implementation of AVs in urban areas, AVs need to understand the 
intent of vulnerable road users. The three main phases that enable AVs 
to operate are continual detection, prediction, and path planning 
(Vissers et al., 2017). A similar concept also applies to active safety 
systems, which operate based on threat assessment algorithms to detect 
dangerous scenarios. According to Ljung Aust and his colleagues (Aust 
et al., 2023), active safety systems have three main phases: detection, 
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decision strategy, and intervention strategy. The detection phase mainly 
makes use of the vehicle’s sensors to collect data, and the decision phase 
uses the processed data to determine whether an intervention needs to 
be issued. Interventions can be in the form of a warning or an autono-
mous intervention. These phases are important for the successful 
implementation of AVs and active safety systems to avoid intervening 
too early or too late. Both active safety systems and automated vehicles 
require a good understanding of the bicycle-vehicle interaction process 
to determine if an intervention is required, and computational models 
are an obvious way for machines to understand human behavior. 

A few studies have tried to investigate and model the interaction 
between automated vehicles and bicycles at crossing scenarios 
(Hagenzieker et al., 2020). However, the effects of some variables on 
cyclists’ interactions with vehicles (notably, obstructed field of view at 
intersections and time to arrival) have not been sufficiently investigated 
in the literature. A few studies have been performed recently to inves-
tigate and model the interaction between bicycles and vehicles at an 
unsignalized intersection. Silvano et al. (2016) collected data through 
field observation by recording videos at an unsignalized roundabout and 
developed a two-stage logistic model to predict cyclists’ yielding 
behavior using kinematic information (speed and distance). They found 
that time to arrival at the intersection and the vehicle’s speed signifi-
cantly affect the cyclist’s decision whether to yield. However, their work 
took place at a roundabout rather than an unsignalized intersection, and 
the authors did not use a complete trajectory dataset. The data that were 
used in their study only included the presence of bicycle and the car at 
discrete locations at the intersection. Bella and Silvestri (2018) used a 
driving simulator to analyze the effect of different infrastructure designs 
on driver’s response process. They investigated the efficacy of different 
safety countermeasures (like pavement color and raised islands) at 
reducing drivers’ speed when they interacted with a cyclist at the 
crossing. Using data from 36 participants and employing descriptive 
statistics, they aimed to answer the question of which infrastructural 
modifications contribute to safer cyclist-vehicle interactions. Addition-
ally, they reported questionnaire responses from the tests, where par-
ticipants mentioned that colored paved markings had an impact on 
reducing their speed. Velasco et al. (2021) showed videos of oncoming 
vehicles approaching from the left side of the intersection to participants 
in a virtual reality (VR) headset. In the video, the participants were 
cycling toward an unsignalized intersection, and they needed to decide 
whether to cross or yield. Their yielding decision model was tested with 
parameters such as gap distance, stated trust in vehicles, types of vehi-
cles, and priority to cyclists. They used multinomial logistic mixed 
regression to observe the factors that were statistically significant in 
cyclists’ crossing decisions. They found that the distance to the car and 
whether the cyclist has the right of way were the primary factors 
affecting the cyclist’s decision to cross the intersection. 

Simulators have gained popularity for investigating cyclists’ 
behavior for several reasons. They provide a controlled environment 
that makes it possible to obtain a homogenous dataset. Another 
advantage is that in a conflict scenario (like in this study), participants 
will not be subjected to any harm, and the scenarios can be repeated. In 
addition, one can set up an experiment faster and at a lower cost than on 
a test track. As noted, simulators have recently been used to observe the 
interaction between bicycles and vehicles. However, driving simulators 
are mostly used to investigate the process of overtaking cyclists (Calvi 
et al., 2022; Dols et al., 2021; Farah et al., 2019); only one study was 
found that used a driving simulator to investigate the bicycle-vehicle 
interactions at an unsignalized intersection (Boda et al., 2018). They 
considered three independent variables, which consisted of bicycle 
speed, vehicle speed, and configuration for arrival to model the gas 
pedal release time and brake onset time of drivers using linear mixed- 
effect models. It is noteworthy that they identified the cyclist’s visibil-
ity as the primary factor influencing the driver’s response process during 
the interaction with cyclists. 

In recent studies, cyclists’ visual information, along with kinematics, 

has been proven important in predicting cyclists’ behavior. Implicit and 
explicit communication methods are essential for signaling intent 
among road users. They can also be useful for prediction models 
(Lundgren et al., 2017). Most prediction models have been developed to 
deal with pedestrian-vehicle interactions, and very few studies have 
tried to quantify the role of visual information in predicting cyclists’ 
behavior (Mahadevan et al., 2018). Hemeren et al. (2014) showed 
videos of cyclists crossing an intersection to a group of participants and 
asked them which visual cues were more relevant for predicting the 
cyclist’s future path. In the videos, the cyclists were either going straight 
or turning left at the intersection. The authors found that the cyclist’s 
speed, head turn, and position (leaning or sitting up straight) were the 
most important cues for predicting the cyclist’s intention to go straight 
or turn left. Other studies have also tried to find connections between 
visual cues and cyclists’ intentions; Abadi et al. built a neural network 
model to predict cyclists’ crossing intention using cyclists’ head orien-
tation (Abadi & Goncharenko, 2022). A deep understanding of cyclists’ 
response process in terms of their actions will help to devise more ac-
curate behavioral models for the application in AVs and active safety 
systems. 

The present study aims to give insight into the interactions between 
bicycles and motorized vehicles at unsignalized intersections. In this 
study, the following research objectives were defined: (a) to observe the 
cyclists’ response process when they approach the intersection under 
different configurations of time to arrival and visibility of the 
approaching vehicle; (b) to assess the effect of different variables on 
cyclists’ braking onset and yielding decision; and (c) to examine the 
usefulness of the cycling simulators for evaluating bicycle-vehicle in-
teractions. A fixed-base bicycle simulator was used in this study to 
achieve the objectives. 

This paper is organized as follows. The material and methods section 
outlines the design and execution of our study, including details on 
participants, experimental design, tools, and data analysis. The results 
are then presented in the subsequent section, offering insights into how 
the independent variables affected the cyclists’ responses during the 
interaction with the approaching vehicle. Finally, the discussion and 
conclusion summarize the key findings, discuss their implications, and 
point to potential avenues for future research. 

2. Materials and methods 

2.1. Participants 

The inclusion criteria for this experiment required participants to 
ride a bike at least once a week, be between 18 and 45 years old, not 
have a physical disability, not wear prescribed eyeglasses, and have a 
height under 185 cm. We specifically targeted people with cycling 
experience, establishing a criterion of cycling at least once a week to 
ensure that the participants were frequent cyclists. Additionally, we set 
the age limit at 45 years old, considering our observation in the pilot 
tests that older individuals are more prone to experiencing motion 
sickness in the simulator. The final criteria were the absence of pre-
scribed eyeglasses due to the head-mounted display and the height 
under 185 cm due to the physical constraints of the bike simulator, 
which could not accommodate taller people. The participants were 
recruited through online advertisements in social media and by con-
tacting people from previous experiments. Twenty-seven people 
participated in the study and rode the bicycle simulator. This research 
complied with the tenets of the Declaration of Helsinki and was 
approved by the national ethical review board (Dnr: 2021-01933). All 
participants signed a consent form prior to participation in the 
experiment. 

2.2. Riding simulator and experimental setup 

The bicycle simulator (Fig. 1) was developed by VTI (the Swedish 
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Road and Transport Research Institute) and the experiment was carried 
out in Gothenburg, Sweden. The 3D environment was built using Unreal 
Engine, and the exclusive simulation software was developed by VTI. 
The participants rode the custom-made instrumented bicycle wearing a 
virtual-reality headset that showed the simulated environment. The 
virtual headset was a VIVEPRO, with a 1440 × 1600 pixels-per-eye 
resolution and a field of view of 110 degrees. 

In the experiment, all participants were asked to ride the instru-
mented bicycle in the simulator in a dedicated bike lane (Fig. 2a) and to 

cross the unsignalized three-way intersection (shown in Fig. 2a–b) 
several times. Participants were explicitly told before the experiment 
that they would interact multiple times with a driverless vehicle coming 
from the right. The vehicle had tinted windows and, therefore, the 
participants could not see inside the vehicle. The intersection recreated, 
as closely as possible, a real intersection in Gothenburg, Sweden (GPS 
coordinates: 57◦42′31.1″N, 11◦56′22.9″E). According to Swedish traffic 
rules, bicycles have the right of way over motorized vehicles at in-
tersections, so they may cross first; but cyclists should also pay attention 
to surrounding vehicles and cross the intersection carefully. The par-
ticipants, instructed to cycle and behave as they normally would in real 
traffic, crossed the intersection 12 times during the experiment. Before 
the experiment, the participants performed a test run to get acquainted 
with the bike simulator and get used to turning and braking. In the trials, 
they started cycling 180 m away from the intersection, and their 
maximum speed was set to 18 km/h. A virtual trigger was used to 
activate the passenger car (Volvo XC90, Fig. 2a), which approached the 
intersection from the right side, when the cyclist was 160 m from the 
intersection. The vehicle’s speed—when it was first visible to the 
cyclist—was set to 25 km/h and it gradually decreased until the vehicle 
had passed through the intersection. Both the bicycle’s and the vehicle’s 
speeds were chosen based on field observations of the actual intersection 
by using average speeds. The speed profile of the passenger car followed 
a polynomial function, whose parameters depended on the forecasted 
arrival time at the point of intersection of the trajectories of the bicycle 
and the passenger car and the trial specifications. A truck was parked at 
the corner of the intersection to limit the cyclist’s view (Fig. 2b), and its 
position was changed across trials to investigate the effect of visibility on 
the interaction between the bicycle and the car. 

We chose the difference in time to arrival at the intersection (DTA) 
and the intersection visibility (IV) as independent variables for this 
experiment. The DTA was defined as the time difference between the 
time instants at which each road user would have reached the inter-
section point of their trajectories. For the calculation of DTA, we 
employed a constant speed equal to the one at which each road user 
traveled at the beginning of the intersection. The DTA was calculated 
when the participant reached the virtual trigger, activated when the bike 
arrived at 160 m distance to the intersection. The IV was defined as the 
distance between the passenger car and the intersection along the ve-
hicle’s path (Fig. 2b). The IV was changed by moving the truck that was 
parked at the corner of the intersection as a method to obstruct the 
cyclist’s view. A full factorial design was applied, in which the DTA had 
three levels (1.2 s, 2.5 s, and 3.5 s) and the IV had two (22 m and 27 m). 

Fig. 1. Bike simulator with virtual-reality headset.  

Fig. 2. Layout of the intersection simulated in the experiment; (a) cyclist view of the intersection, (b) top view of the intersection.  
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Positive DTA values show that the cyclist arrived first at the intersection 
by the defined values. One trial (IV = 27 m, DTA = 1.2 s) was removed 
from the full factorial design since the pilot test identified it as an 
extreme condition, and we were afraid that it might have increased the 
risk of motion sickness. Three trials with empty intersections were added 
to the experiment: in these trials, no vehicle approached the intersec-
tion. Further, three additional trials in which the vehicle yielded to the 
cyclist were also added to the experimental protocol. Both the trials with 
empty intersections and the trials in which the vehicle yielded to the 
cyclist were intended to reduce the cyclist’s expectancy about the 
oncoming vehicle and were not considered for the analysis. One surprise 
trial was added at the end, in which the interacting vehicle was a truck 
instead of a passenger car. The full configuration of 12 trials for each 
participant can be seen in Table 1. All trials were randomized except for 
the empty intersections and the last trial (surprise event). There were 
four groups for the randomization of the trials, and each group consisted 
of a specific order of trials. 

2.3. Data analysis 

At first, it was investigated whether there was a learning effect due to 
the experimental setup. Since the trials were randomized between par-
ticipants, trials happened in different orders for different groups of 
participants. The time at which participants stopped pedaling was used 
as a proxy to check if there were any expectations created by the first 
trial that changed participants’ behavior in the following trials. A spe-
cific trial was chosen to investigate the learning effect (DTA = 2.5 s, IV 
= 27 m), which was the 2nd trial for one group and the 7th for the other. 
The longitudinal distance at which each group started to stop pedaling 
was extracted from the data to evaluate a possible learning effect. To 
compare the average longitudinal distances, a 2-tailed t-test was used (α 
= 0.05). 

2.3.1. Cyclists’ action sequence 
To investigate the cyclists’ behavior as they approached the inter-

section, three actions were analyzed: pedaling, braking, and head 
movement toward the oncoming vehicle. Pedaling speed was obtained 
from the data, and the time stamp at which pedaling speed started to 
decrease was marked for each participant. Braking point was extracted 
when the participants reached the maximum brake force. The head yaw 
rate (obtained from the VR headset) was used to analyze the head 
movement. If the participants turned their head more than 15 degrees 
(from the center line of peripheral view) toward the oncoming vehicle, 
that point was considered to be the time they looked at the vehicle for 
the first time. We could not find a suitable reference in the literature for 
choosing a head-turning threshold, so 15 degrees were chosen after 
reviewing all the head yaw rate signals in the data. This threshold was 
selected by analyzing and comparing the cyclists’ yaw rates before the 
intersection (in the straight part of the road) and in the intersection area. 
In a straight path, cyclists rarely turned their head to right and left to 

more than 15 degrees, but in the intersection area they turned their head 
more frequently to more than 15 degrees to monitor vehicle’s behavior. 

2.3.2. Cyclists’ braking onset model 
Linear mixed effect models were used to estimate the effects of the 

independent variables on the distance at which cyclists started braking, 
calculated on longitudinal axes. These models combine fixed effects, 
which represent population-level relationships, with random effects, 
which capture individual variability or group-specific variations. The 
general form of a logistic mixed-effect model can be expressed as in 
Equation (1), where y represents the response variable, X is the design 
matrix for fixed effects, β the vector of fixed effects, Z the random-effects 
regressor matrix, α the vector of random effects, and ε the observation 
error vector. 

y = Xβ+Zα+ ε (1)  

2.3.3. Cyclists’ yielding decision 
Linear mixed-effect models were used to estimate the effects of the 

independent variables on cyclists’ yielding decision. Random effects in 
mixed-effect models control for the differences between participants in 
the model. In this paper, a mixed-effect logistic regression was used. The 
general form of a logistic mixed-effect model can be expressed as in 
Equation (2), where P is the probability that a case is in one category, X 
the fixed-effect regressor matrix, β the vector of fixed effects, Z the 
random-effects regressor matrix, α the vector of random effects, and ε 
the observation error vector. 

log
(

p
1 − p

)

= Xβ+Zα+ ε (2)  

2.3.4. Modeling speed profiles 
Cyclists’ speed profiles were modeled as they approached the inter-

section with respect to time. An arctan function with four coefficients 
was used to fit each individual cyclist’s speed profile. The equation in-
cludes three scaling factors (a, b, and c) and an offset factor (d). Each 
trial’s average speed profile was depicted by the mean speed profile with 
related 95 % corridor. The fit was performed using the MATLAB fit 
function, and the least absolute residual method was used to minimize 
the effect of outliers. The equation that was used to fit the speed profiles 
is as follows: 

Y = a*arctan(b*t + c )+ d (3)  

2.4. Questionnaires 

Two questionnaires were designed to ask participants about their 
experience during and after the experiment and to obtain information 
about their demographics. The first was a misery scale (MISC) ques-
tionnaire to quantify to what extent participants were affected by mo-
tion sickness (Velasco et al., 2021). The scale goes from 0 to 10, with 
0 indicating that participants did not have any symptoms, and 10 
meaning that participants were throwing up. This questionnaire was 
filled out during the test (participants were asked to provide a number 
regarding their level of motion sickness after passing each intersection) 
and at the end. The second questionnaire was mainly about the de-
mographics and participants’ experience in the simulator. Two open 
questions were posed to capture participants’ comments about the sce-
nario and the experiment: (a) How would you compare the scenario to 
real life? (b) How can we improve the simulator? 

3. Results 

3.1. Descriptive statistics 

The 27 participants who joined the study had an average age of 32.7 
years (STD = 8.0) and the ratio of females to males was 33%. Out of 27 

Table 1 
Configuration of trials (*Indicates trials used for the analysis; NA stays for not 
applicable).  

Trial number DTA(s) IV (m) Trial description 

1 2.5 27 Vehicle yields 
2* 2.5 22 Vehicle drives through 
3 NA NA Empty intersection 
4 2.5 22 Vehicle yields 
5* 1.2 22 Vehicle drives through 
6 NA NA Empty intersection 
7* 2.5 27 Vehicle drives through 
8 1.2 22 Vehicle yields 
9 NA NA Empty intersection 
10* 3.5 22 Vehicle drives through 
11* 3.5 27 Vehicle drives through 
12 2.5 22 Surprise event  
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participants, two experienced motion sickness during the training, so 
they did not start the actual experiment. The remaining 25 participants 
(average age = 33 years, STD = 8.5) completed, on average, 8 out of 12 
trials because we stopped the experiment as soon as any mild symptoms 
of motion sickness appeared. 

Regarding the learning effect, as shown in Fig. 3, both groups began 
to stop pedaling at almost the same longitudinal distance from the 
beginning of the trial. Group 1 and 2 had 5 and 4 participants, respec-
tively. The result from the two-sample t-test showed that the difference 
between means of this location was not statistically significant (with a 
5% significance level), and both means are shown as equal. This implies 
that the likelihood of the data being influenced by the participants’ 
expectations is relatively minimal. Including trials with empty 

intersections and trials with the vehicle yielding to the bicycle may have 
helped decrease participants’ expectancy. Furthermore, we included the 
trial’s order as a variable in the computational models to examine this 
concern, and details will be presented in subsequent sections. 

3.2. Cyclists’ action sequence 

The cyclists followed the same sequence of actions as they 
approached the intersection: first they stopped pedaling, then braked, 
and then turned their head toward the passenger car. The only exception 
was Trial 5 (IV = 22 m, DTA = 1.2 s), in which the cyclists looked at the 
vehicle before they braked (see Fig. 6). Figs. 5–9 present the five trials 
designated for analysis (see Table 1 for a description of these trials) plus 

Fig. 3. Average distance from intersection at which participants stopped pedaling for the two groups of participants (who completed Trial 7 in different positions in 
the sequence). 

Fig. 4. Sequence of actions in Trial 1 (Boxplots show the median, 95% confidence interval around the median, 25th percentile, and 75th percentile. Grey area in the 
graph shows the beginning and ending of the intersection. Red circles show the average point of the actions, and their size shows the relative population. The title 
shows the trial specifications and the number of participants that performed the trial). (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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Fig. 5. Sequence of actions in Trial 2.  

Fig. 6. Sequence of actions in Trial 5.  

Fig. 7. Sequence of actions in Trial 7.  
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one trial in which the vehicle yields to the bicycle (trial 1, Fig. 4). In the 
five designated trials, the vehicle always drove through the intersection 
without yielding to the bicycle. In the trials when the vehicle yielded, 
the cyclists’ sequence of actions was unaffected. For the same IV value, 
lowering the DTA value appears to lead to earlier braking and head turn 
towards the vehicle (see for example DTA = 1.2 s in Fig. 6, compared to 
DTA = 2.5 s and DTA = 3.5 s respectively in Figs. 5 and 8, for IV = 22 m; 
and DTA = 2.5 s in Fig. 7, compared to DTA = 3.5 s in Fig. 9, for IV = 27 
m). When comparing trials with varying levels of visibility, while 
maintaining consistent DTA values braking tended to occur earlier when 
visibility was higher, as indicated in Fig. 5 and Fig. 7 (DTA = 2.5 s), and 
Fig. 8 and Fig. 9 (DTA = 3.5 s). In addition, in trials with no vehicle 
coming, the cyclists occasionally braked or looked for a car, but were 
more likely to stop pedaling. Since not all the participants completed all 
the trials due to motion sickness, and the trials were randomized, the 
population numbers differ in the Figures below. 

To test the effect of the independent variables on cyclists’ sequence 
of actions, cyclists’ braking distance on longitudinal axes (longitudinal 
distance was measured from the beginning of the trial) was modeled, 
using linear mixed effect models. For the ith participant, the linear 
expression may be written as equation (4), where β0,1,⋯,4 represents the 
intercept of the model and the fixed main effect, and α0i represents the 

random effects. 

Yi = β0 + β1X1i + β2X2i + β3X3i +⋯+ α0i + εi (4) 

The variables that were tested in the model consisted of DTA, IV, 
gender, age, surprise event (truck), order of trial, and cycling frequency. 
Some variables like gender, age, and cycling frequency (indicating 
cycling experience) were extracted from the questionnaire inputs. 
Table 2 shows the variables that were tested in the model. 

Table 3 and Table 4 report the descriptive statistics of the variables 
that were tested in the models presented in this section and in Section 
3.3. 

The results of the braking distance model are shown in Table 5. 
Among the variables that were tested in the model only DTA and IV 

affected the location where cyclists started braking. By increasing the 
DTA, cyclists braked later in distance and by increasing the IV, cyclists 
braked earlier. Equation (4) is written as equation (5), with the signif-
icant variables in the model and the grouping variable. 

Yi = β0 + β1XDTAi + β2XIVi + αparticipanti + εi (5)  

Fig. 8. Sequence of actions in Trial 10.  

Fig. 9. Sequence of actions in Trial 11.  
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3.3. Cyclists’ yielding decision 

The mixed effect logistic regression evaluated the effect of inde-
pendent variables on cyclists’ yielding decisions. The data from 25 
participants were used to develop the mixed effect logistic regression 

model. For the ith participant, the logistic linear expression may be 
written as equation (6), where β0,1,⋯,4 represents the intercept of the 
model and the fixed main effect, and α0i represents the random effects. 

log
(

pi

1 − pi

)

= β0 + β1X1i + β2X2i + β3X3i +⋯+ α0i + εi (6) 

The independent variables considered in the model are DTA, IV, 
gender, age, cycling frequency, trial order, pedaling, trial with truck, 
and looking duration. Table 6 shows the variables that were tested in the 
yielding decision model and their description. 

Pedaling behavior is a binary variable indicating whether the cyclist 
was pedaling at the beginning of the intersection or not. Cyclists 
pedaling at the beginning of the intersection (edge of the curb, when 
entering the intersection) might have crossed the intersection first. The 
“looking duration” refers to the cumulative sum of timestamps when the 
cyclist turns their head by more than 15 degrees toward the approaching 
vehicle. This measurement is taken from the moment the cyclist enters 
the intersection until reaching the intersection points of trajectories. 

Table 3 
Descriptive statistics of numeric variables.  

Numeric variables Mean STD Min Max 

Cyclists’ braking distance (m)  182.77  4.12 175.02 193.9 
Age  33.67  8.03 19 47 
Trial order  5.96  3.63 1 12 
Looking duration  296.14  186.6 41 748 
Cycling frequency  2.84  0.82 1 4  

Table 4 
Descriptive statistics of categorical variables.  

Variable Summary 

Yielding decision 27% cyclists crossed first, and 73% vehicles crossed first 
Gender 25% female, 75% male participants 
Pedaling 22% were pedaling at the beginning of the intersection 
Surprise event (truck) One surprise event out of 12 trials  

Table 5 
Summary of the estimation results for the braking onset model.  

Fixed effects: Estimate Std. 
error 

t 
value 

Pr(>|z|) 5% CI 95% 
CI 

Intercept 0.512 0.047 5.13 1.49e-15  2.74  5.93 
DTA 0.108 0.054 2 0.048  0.008  0.42 
IV − 0.205 0.172 − 5.31 7.83e− 07  − 0.25  0.11 
Random 

effects: 
Variance Std. 

dev.     
Participants 0.0218 0.148      

Table 6 
Variables that were tested in the yielding decision model (*yielding decision is 
the dependent variable in the model).   

Variable Unit Type Description 

1 Yielding 
decision* 

Dummy Categorical 0 cyclist crossed first, 1 vehicle 
crossed first 

2 DTA s Continuous Difference in time to arrival at the 
intersection 

3 IV m Discrete Intersection visibility 
4 Age  Continuous Age of the participant 
5 Gender Dummy Categorical Gender (male or female) of the 

participant 
6 Surprise 

event 
Dummy Categorical Trial with truck or without truck 

7 Trial order  Continuous The cardinal number indicating 
the order of trial 

8 Cycling 
frequency 

Nominal Categorical Participant’s experience in cycling 
(1 occasional cyclist, 2 regular 
cyclist, 3 frequent cyclist, 4 daily 
cyclist) 

9 Pedaling Dummy Categorical Pedaling or not at the beginning of 
the intersection 

10 Looking 
duration 

s Continuous Looking duration towards the 
oncoming vehicle  

Table 2 
Variables tested in the brake onset model (*cyclists’ braking distance is the dependent variable in the model).   

Variable Unit Type Description 

1 Cyclists’ braking distance* m Continuous Braking distance assessed in the longitudinal axis 
2 DTA s Continuous Difference in time to arrival at the intersection 
3 IV m Discrete Intersection visibility 
4 Age  Continuous Age of the participant 
5 Gender Dummy Categorical Gender (male or female) of the participant 
6 Surprise event Dummy Categorical Trial with truck or without truck 
7 Trial order  Continuous The cardinal number indicating the order of trial 
8 Cycling frequency Nominal Categorical Participant’s experience in cycling (1 occasional cyclist, 2 regular cyclist, 3 frequent cyclist, 4 daily cyclist)  

Table 7 
Summary of the model estimation results (only statistically significant results are 
shown).  

Fixed effects: Estimate Std. 
error 

Z 
value 

Pr(>| 
z|) 

5 % CI 95 % 
CI 

Intercept 6.3 4.97  1.26  0.2  − 3.44  16.06 
DTA − 2.68 1.11  1.11  0.015  − 4.86  − 0.5 
Looking 

duration 
3.44 1.47  1.48  0.019  0.54  6.34 

Pedaling 2.64 1.32  1.99  0.046  0.086  5.27 
Random 

effects: 
Variance Std. 

dev.     
Participants 4.37 2.09      

Fig. 10. Cyclist crossing decision with respect to changes in DTA.  

A. Mohammadi et al.                                                                                                                                                                                                                          



Journal of Safety Research xxx (xxxx) xxx

9

The full results of the mixed effect logistic regression are shown in 
Table 7. Based on Table 7, DTA, looking duration, and pedaling were 
significant in cyclists’ decision to yield. It should be noted that the 
surprise event (interaction with a truck instead of a car) did not show 
any change in the cyclists’ decision to yield. So, the vehicle type 

(passenger car or truck) was not significant in the model. From the re-
sults of the model, cyclists looking longer at the vehicle had higher 
probability to yield for the vehicle. The influence of DTA can be un-
derstood from the bubble plots shown in Fig. 10. A larger share of cy-
clists decided to cross the intersection first when the DTA value was 2.5 s 
instead of 1.2 s. Finally, if the cyclists were pedaling before the begin-
ning of the intersection, they were more likely to cross the intersection 
first. 

Considering the modeling outputs in Table 7, Equation (6) can be 
rewritten as equation (7). 

Log
(

pi

1 − pi

)

= β0 + β1XDTAi + β2Xlookingdurationi + β3Xpedalingi +αparticipanti + εi

(7) 

Fig. 11. Bicycles’ average fitted speed profiles for the five main trials.  

Table 8 
Summary of fitting results.  

Trial number Maximum slope R2 

2  − 8.21  0.906 
5  − 9.92  0.947 
7  − 7.60  0.941 
10  − 9.23  0.988 
11  − 6.48  0.984  

Fig. 12. Average speed profiles and confidence intervals: (A) a comparison between trials that have the same DTA and different IV and (B) a comparison between 
trials that have the same IV and different DTA. 
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3.4. Bicycle speed profiles 

Equation (3) was fitted on all the successfully performed trials 
considered for the analyses (see Trials 2, 5, 7, 10, and 11 in Table 1). The 
time axis in Fig. 11 is normalized between 0 and 1, where 0 corresponds 
to 15 m from the intersection and 1 corresponds to the distance when 
they stopped braking. In the trials with the longer (27 m) IV, the par-
ticipants reduced their speed sooner than in the trials with the shorter 
(22 m) IV (Fig. 11). Table 8 summarizes the modeling outputs for the 
main five trials. For the trials that had the same IV but different DTAs, 
the cyclists had the most severe braking profile at the lowest DTA value. 

Fig. 12 compares the average speed profiles considering a single inde-
pendent variable in each figure (while keeping constant the other in-
dependent variable) and their respective confidence intervals. We drew 
the two-sided confidence interval (confidence level value: 95%) for the 
variance to compare the average speed profiles. 

3.5. Questionnaires 

The results from the first questionnaire showed that the average 
MISC score at the end of the experiment was 3.18 (STD = 2.01) out of 10. 
As a result, by the end of the experiment, participants experienced a 

Fig. 13. Participants’ responses about the simulator experiment (numbers above the bars show the number of responses out of 25 participants). Participants could 
provide multiple answers since it was an open question. 

Fig. 14. Participants’ suggestions for improving the simulator (numbers above the bars show the number of responses out of 25 participants). Participants could 
provide multiple answers since it was an open question. 
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level of motion sickness that they found relatively tolerable. Fig. 13 
shows a summary of participants’ responses to the open question, “How 
would you compare the scenario to real life?” This open question was an 
option for participants to express their experience in detail about the 
scenario. Notably, 36% of participants mentioned that the scenario was 
realistic, and 28 % of them said that a lack of communication and eye 
contact with the driver influenced their behavior to be more cautious 
when interacting with the vehicle (Fig. 13). 

Fig. 14 shows participants’ suggestions for improving the simulator. 
44% of participants suggested that the braking and steering experience 
could be improved to match real cycling. Some participants complained 
about the low maximum speed; as mentioned in the methodology, it was 
chosen based on the average bicycle speed in the same intersection. 
Difficulty perceiving the speed in the bike simulator could explain why 
some participants felt the speed was low. There were also a few com-
ments about adding more road users; however, our intention was to have 
a clean environment that would not complicate the interaction process. 
Other suggestions to improve the bike included: providing a degree of 
freedom in the lateral control, providing realistic sound for the 
approaching car, and raising the saddle. Addressing all these issues 
would help to create a better environment for test participants. 

4. Discussion 

4.1. Cyclists’ behavioral patterns 

Cyclists followed a consistent sequence of actions when interacting 
with the oncoming vehicle at the unsignalized intersection: stop 
pedaling, braking, and looking at the vehicle. In this study, a look to the 
vehicle was registered when the head yaw rate became larger than 15 
degrees. However, the cyclists might have noticed the vehicle in their 
peripheral view before looking at it and decided to stop pedaling and 
braking, based on that information. Looking at the vehicle was probably 
used by the participants to closely observe the behavior of the vehicle 
and decide if yielding or not. A different sequence of actions was found 
in Trial 5 (IV = 22 m, DTA = 1.2 s), which was the most severe. Sur-
prisingly, the participants looked before braking, the cyclists’ actions 
were closer together, and the participants braked more often than they 
stopped pedaling. The different sequence of actions might be motivated 
by the need for the cyclist to brake harder to avoid the vehicle during an 
interaction, which was more critical due to the limited visibility and 
smaller DTA. 

The independent variables IV and DTA influenced the response 
process. With increased IV, the cyclists’ response process started earlier; 
they spotted the vehicle sooner, reacted to it earlier and, braking 
happened before the beginning of the intersection. On the other hand, 
lower DTA values caused the cyclists to decelerate more severely and to 
brake more often. Overall, cyclists usually stopped pedaling before the 
beginning of the intersection. The average place where they started 
braking differed in the different trials. 

The information about cyclists’ sequence of actions can be used by 
AVs to predict cyclists’ behavior in different circumstances. Previous 
studies pointed out the importance of behavioral cues in predicting cy-
clist’s intentions (Hemeren et al., 2014; Westerhuis & De Waard, 2017). 
In this study, we observed how behavioral cues (pedaling, head move-
ment, and braking) changed in response to the independent variables. It 
is suggested that future work develop behavioral models of cyclists that 
include these cues to improve the models’ predictive capabilities. 

4.2. Cyclists’ brake onset model 

The outcomes of the brake onset model for cyclists indicated that the 
two independent variables significantly influenced the point at which 
cyclists initiated their braking maneuvers. Specifically, an increased 
level of visibility prompted cyclists to start braking earlier, a phenom-
enon attributable to their enhanced ability to detect the approaching 

vehicle. Therefore, increasing visibility in unsignalized intersections can 
assist cyclists in detecting the threat in time to react safely. Conversely, 
an increase in the DTA resulted in cyclists initiating their braking ma-
neuvers later in the distance. This delay can be attributed to the later 
arrival of the vehicle in scenarios with a greater DTA, which, in turn, led 
to cyclists perceiving and reacting to its presence later along their tra-
jectory. The findings from this model substantiate the observations 
made in the sequence of action graphs (Figs. 4–9), emphasizing the 
significant influence of the independent variables on cyclists’ decision- 
making and actions. 

4.3. Cyclists’ yielding decision 

As shown in Table 7, three variables affected the cyclists’ decision to 
cross. With increased DTA, more cyclists crossed the intersection first. 
This finding supports previous studies on vehicle interactions with 
vulnerable road users (Oxley et al., 2005; Velasco et al., 2021). The DTA 
values have been chosen on the positive side (cyclists arrived first at the 
intersection) to persuade cyclists to cross first. Based on field observa-
tions in the real intersection, cyclists crossed the intersection first more 
often at lower DTA values (Mohammadi et al., 2023). The simulator 
produced different results, potentially influenced by factors like the 
driverless nature of the interacting vehicle or specific conditions within 
the simulated environment. Nevertheless, DTA or its equivalent in dis-
tance, has been proven to be important in many studies that have 
investigated the interaction between vehicles and vulnerable road users 
(Lubbe & Rosén, 2014) and this study confirms the results of previous 
research. As the duration of cyclists’ head turn towards the vehicle grew 
longer, their inclination to be the first to cross decreased. This height-
ened focus on the approaching vehicle might indicate cyclists exercising 
caution in response to uncertainty about the vehicle’s actions, leading 
them to opt for yielding as a safety measure. The cyclists’ pedaling 
behavior aligns with our initial anticipation, suggesting that those who 
wish to be the first to cross the intersection will continue pedaling. This 
observation corresponds with the results reported by Mohammadi et al. 
in their 2023 study, which established a connection between sustained 
pedaling and the intention to crossing the intersection first (Mohammadi 
et al., 2023). 

The IV and the vehicle type were not significant in the model. 
However, the IV affected the braking distance (as described earlier) and 
cyclists’ speed profile (which will be discussed in the next paragraph). 
The trial order was not also significant meaning that the sequence of 
trials was not important for the participants and participants’ expec-
tancy was reasonably low. Interacting with a truck did not affect the 
cyclists’ decision to cross. This trial was the surprise event, at the end of 
the experiment—few participants performed it, due to motion sickness. 
Consequently, there was a small sample size (11) for this trial. Our 
preliminary results showed, however, that vehicle type does not change 
the cyclists’ response process. 

4.4. Cyclists’ speed profiles 

Results obtained from the average fitted speed profiles (Fig. 11) 
indicate that in trials with increased visibility, there was an earlier speed 
reduction observed for the cyclists. Based on Fig. 12.A, with higher IV, 
cyclists decreased their speed sooner, and the difference is evident in 
confidence intervals. This finding is in line with the results of the braking 
distance model, which showed that with higher IV, cyclists braked 
earlier (sooner speed reduction). Overall, with higher visibility, cyclists 
notice the vehicle sooner and react faster. Lack of proper visibility at 
crossings has been found to be a key contributing factor in crashes with 
vulnerable road users (González-Gómez & Castro, 2019; Narksri et al., 
2019). So, providing more visibility at unsignalized intersections will 
help to have safer vehicle-cyclist interactions. Improving visibility at all 
the intersections that suffer from low visibility might not be feasible due 
to cost limitations. It is the AV’s responsibility to be aware of the 
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situation they are approaching regarding visibility and to behave safely 
at crossings. AVs can recognize the environment they are approaching 
by their online navigating and information system (Yan et al., 2018). 

By lowering DTA values (Fig. 12.B), harsher braking profiles were 
recorded (higher deceleration rates). These findings align with what was 
found in the sequence of actions. With lower DTA values, cyclists react 
to an unexpected encounter with the vehicle by braking harder. 

4.5. Motion sickness 

Some participants felt motion sick at some point during the experi-
ment due to full immersion (using VR headset), the lack of motion cues 
in the bike simulator, latency in visualization, and the sensory mismatch 
compared to real braking and steering. The experiment was stopped if 
there were mild symptoms of motion sickness during the test. Previous 
literature has reported that VR headsets induce more motion sickness 
than large screens (Mittelstaedt et al., 2018). There is a need to quantify 
the role of each mentioned issue in inducing motion sickness in bike 
simulators to further improve the simulators. Matvienko et al. evaluated 
the role of different countermeasures, like steering control and the 
moving environment, in reducing motion sickness in bike simulators 
(Matviienko et al., 2022). What is not mentioned in their study is 
braking performance, which we believe is a key factor in motion sick-
ness. Others have tried to reduce motion sickness by using proper 
airflow, background music, and a pleasant scent (Keshavarz & Hecht, 
2014). Creating a convincing and realistic cycling simulator may have a 
long way to go, but based on our experience, addressing the issues with 
visualization method, braking, and steering are the obvious starting 
points to developing an optimal bike simulator. 

4.6. Questionnaires 

Based on the responses to the first open question (Fig. 13), many 
participants felt that the interaction scenario was realistic. One impor-
tant point mentioned by the participants in the questionnaire was that 
they lacked eye contact and communication with the driver. This might 
have been the reason leading them to behave cautiously and yield more 
often to the vehicle. In fact, communication with the driver plays an 
important role in cyclists’ decision-making (Hemeren et al., 2014) and 
the lack of communication between drivers and other road users should 
be considered for the design of AVs. Cyclists will eventually adapt to the 
presence of AVs in the future traffic system, but it takes a while to build 
trust in their safe performance (Vlakveld et al., 2020). 

Most of the suggestions in response to the second open question, as 
anticipated, were related to the bike’s braking, steering, and speed. The 
two important issues they mentioned were an unreal braking experience 
and sensitive steering. The braking issue was due to the lack of motion 
cues in the simulator, which made some participants feel dizzy. The 
maximum speed of the bike was set to be constant to control the time to 
arrival at the intersection (DTA). 

4.7. Limitations and future work 

The first limitation of the experiment was that it had fewer partici-
pants than expected due to the pandemic. The experiment was carried 
out during the spring of 2021, and people were still concerned about 
infection, so the participation rate was lower than in pre-pandemic 
times. In the end, reasonable number (27) of participants was tested 
but having more data in the future will help drawing more sound con-
clusions. The next limitation of the experiment refers back to the un-
avoidable issues with the simulator. As mentioned by some participants 
in the questionnaires, the braking, steering, and speed control did not 
accurately replicate a real cycling experience (Figs. 13 and 14). This 
mismatch caused participants to feel motion sick at different levels 
during the experiment. Attempts were made to preserve the data by 
stopping the experiment once the motion sickness symptoms appeared, 

but the resulting data loss for the missed trials was unfortunate. The bike 
simulator had a fixed saddle height, limiting us to testing people taller 
than 185 cm. In addition, given that the bike simulator was static, there 
was no possibility of leaning when steering. In summary, developing a 
bike simulator that could overcome the above limitations may help to 
recreate a more realistic scenario for interacting with vehicles. Pres-
ently, we do not know the extent to which our results were affected by 
the technical limitations of the riding simulator. 

As mentioned in previous studies, communication and eye contact 
with the driver play an important role in cyclist-vehicle interactions 
(Guéguen et al., 2016; Hemeren et al., 2014). In this study, the inter-
acting vehicle clearly had no driver inside for cyclists to communicate 
with. For future work we suggest using external HMI (Human-Machine 
Interface) on the vehicle as a substitute for the driver and testing the 
communication methods with the cyclists at crossings. 

There is a need to evaluate the ecological validity of the bike simu-
lator and investigate to what extent the results from the bike simulator 
match reality. Further analysis should be done to compare the results 
from field data and the bike simulator data. In addition, there is also a 
need to observe the interaction process from the driver’s perspective by 
redoing the experiment, possibly using a driving simulator that interacts 
with a simulated cyclist. 

5. Conclusion 

This study investigated the cyclists’ response process when deciding 
whether to cross ahead of a vehicle at an unsignalized intersection in a 
riding simulator. Two independent variables, DTA and IV, were 
manipulated in this experiment. 

The cyclists’ response process was consistent in all trials except one. 
Cyclists approached the intersection by stopping pedaling, braking, and 
looking at the approaching vehicle. Based on the mixed effect model, 
DTA, looking duration, and pedaling significantly affected cyclists’ 
yielding decision. Although visibility did not significantly affect the 
yielding decision, it had a significant influence on the braking onset 
decision, together with DTA. With higher visibility, cyclists reacted 
sooner to the presence of the car. Providing more visibility at unsign-
alized intersections may lead to less severe encounters between road 
users. Lowering the DTA values resulted in a lower probability of cyclists 
crossing first and harsher braking profiles for the bike. Therefore, the 
model’s outcome can help find DTA thresholds at which an AV can cross 
the intersection safely when interacting with a cyclist. 

Another important finding of this study is that participants high-
lighted the lack of communication and eye contact with the driver as one 
of the main differences with daily cycling. The lack of communication 
with the driver will also be a characteristic trait of the interaction be-
tween cyclists in future driverless vehicles. Particular attention should 
be placed on ensuring that the lack of communication would not un-
dermine cycling safety. Some surrogate communication may be needed, 
not only to grant safety but also to make the introduction of automated 
vehicles more comfortable and safer. 

The bike simulator used for this study may be improved for future 
studies by adding cycling motion cues, a better graphical interface, and a 
lateral degree of freedom. Overcoming the limitations in the bike sim-
ulators can be beneficial for recreating critical cyclists’ interaction sce-
narios in the virtual environment and, most of all, to avoid motion 
sickness. 
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