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Abstract—Leveraging our initial work on detecting 

eavesdropping events in WDM optical systems [1], we propose a 

mechanism that utilizes bisecting k-means on dynamic optical 

performance monitoring (OPM) data to initialize the detection. 

We develop a method to detect and localize single and multiple 

eavesdropping events in WDM optical systems. Very small losses 

caused by eavesdropping can be detected using OPM data 

collected at the receiver, while the in-line OPM data enables 

localizing single and multiple eavesdropping events.  

Keywords—eavesdropping, power, machine learning 

I. INTRODUCTION  

Security in optical networks is becoming very critical due to 
the increasing amount of data and critical services utilizing fiber 
network infrastructures. [2]. Physical-layer-based monitoring 
systems and various detection methods need to be employed to 
enhance security.. The most commonly used detection methods 
are based on time domain reflection [3,5] and Rayleigh 
scattering [4]. However, such methods are costly and complex 
[5]. Moreover, monitoring link impairments and other channel 
conditions may lead to the negative impact on transmission.  

The development of machine learning applied in optical 
communications offers a promising solution to ensure 
transmission quality while conducting failure localization [6]. 
Various data sources, including transceiver parameters at 
multiple nodes, can be utilized to localize soft faults in optical 
networks (device insertion loss exceeds twice the maximum 
normal value, amplifier gain less than half of the minimum 
normal value, etc.) [7]. In [8], interpretable artificial intelligence 
is used to localize 11 dB additional attenuation in 3 spans of fiber 
link with a single monitor at the receiver or multiple monitors 
along the lightpath. Nevertheless, detection and localization of 

events that do not significantly degrade transmission 
performance, such as eavesdropping, remain challenging. 

In this paper we leverage on our prior work [1] on detecting 
individual instances of eavesdropping in a WDM system, and 
we study scenarios where multiple eavesdroppers may be 
present. The primary contribution of this paper is: i) the proposal 
of a clustering-based approach for identifying and localizing 
multiple eavesdropping events, ii) subdivision and discussion of 
different eavesdropping cases at the transmitter end for WDM 
systems, iii) application of clustering algorithms to dynamic data 
for more flexible eavesdropping detection, making the approach 
more general as well as fitting to the real scenarios involving 
WDM systems. We validate our proposal by simulations 
conducted on a two-channel WDM system spanning four fibre 
spans. An attenuator inducing power loss of 0.8dB [9] is used as 
the emulator of a fibre-bending-based eavesdropping event. 
OPM data at the receiver and in-line link are collected for 
eavesdropping detection and localization purposes. With the 
data for the normal case (i.e., without eavesdropping), the agent 
can decide when to start detecting. Based on the variation of 
average sum of squared errors (SSE), an eavesdropping event 
can be detected. The detection results demonstrate that fiber-
bending eavesdropping with 0.8dB power loss all achieve a 100% 
label matching rate with receiver OPM data. Besides, 100% 
label matching rate localization can be achieved by leveraging 
in-line OPM data including of transmitter, receiver, and spans 

data. In addition ， we define D representing the distance 

between the central points of clustering, which can be used to 
get an estimate of how many possible eavesdropping points are 
in the spans. 

This work is supported by the EUREKA cluster CELTIC-NEXT project AI-NET PROTECT funded by VINNOVA, the Swedish Innovation Agency. 



II. FLOW CHART FOR DETECTING MULTIPLE EAVESDROPPERS  

In a WDM system, eavesdropping can occur at different 
places, including the transmitter before the signal booster, 
within the path, and at the receiver end. Among those options, 
eavesdropping after the receiver booster is easiest to detect due 
to obvious power loss. In this context, we classify the system's 
conditions into three distinct types. The absence of 
eavesdropping is characterized as the normal scenario. When 
eavesdropping occurs at the transmitter, its impact is confined to 
a specific channel within the WDM signal, while others remain 
unaffected. We refer to this as "selective eavesdropping", which 
can be discerned through the disparities in the OPM data across 
the different channels. Conversely, when eavesdropping occurs 
within the in-line fiber link, it affects all WDM channels equally. 
We term this as "uniform eavesdropping". Eavesdropping 
before the booster and in fiber spans both belong to this category. 
For eavesdropping detection, OPM data about the receiver and 
other in-line links in normal scenarios must be collected as a 
benchmark. As the system operates, fresh OPM data is 
continuously collected. This new set of OPM data is called 
"pending data" representing "pending event".  

The proposed eavesdropping detection method consists of 
three steps shown in Fig. 1. Step 1 starts with categorizing the 
pending events as either normal scenario or eavesdropped, 
which involves the OPM data available at the receiver end in 
both the pending event and the normal scenario. Eavesdropping 
can be detected using the dynamic data clustering method 
described in Section IV. The results of the detection are the basis 
for the next two steps. Step 2 determines if there is selective 
eavesdropping (only eavesdropping at partial channel 
transmitters). OPM data from different channels is attempted to 
be categorized into two groups. Successful categorization 
indicates the presence of transmitter eavesdropping on the worst 
channels. Subsequently, the data associated with the better 
channel conditions are selected for localization in  STEP 3. This 

step requires OPM data from both the receiver and the in-line 
link. These two sets of OPM data are separately employed to 
carry out binary classification of the pending and the normal data. 
In the event of a successful classification, it confirms that an 
eavesdropping point exists either preceding the booster or within 
the spans. The approach is applicable to known transmission 
lines. Detection and localization of the entire topological 
network is not involved. There is a particular case worth noting. 
If the pending event is identified as being eavesdropped in STEP 
1, however, determined to be free of selective transmitter 
eavesdropping [STEP 2] and the presence of transmitter 
eavesdropping [STEP 3] at the same time, it signifies that all 
channels' transmitters are subject to eavesdropping. 

III. EAVESDROPPING SIMULATION SYSTEM 

A. Simulation Setup 

The low-loss eavesdropping simulation system in Fig. 2 is 
based on the previous work in [1]. Compared than before, the 
transmitter cases are subdivided into normal scenario, selective 
eavesdropping and uniform eavesdropping. As well as the 
eavesdropping is extended from a single point to multiple points. 
So both detection and localization are more complicated. We 
have a 112Gbps dual-polarization quadrature phase shift keying 
(DP-QPSK) WDM system with two channels (1550.12 nm and 
1550.92 nm) and four fiber spans, which can be divided into four 
parts: two transmitters, link (with four spans), two receivers, and 
multiple monitors (see Fig. 2). All parameters at the transmitters 
are held constant to keep the output power at 0 dBm. The 
attenuator is used to simulate different power loss events. The 
booster gain is adjusted so that the power into the in-line fiber 
remains at 0 dBm. The in-line amplifiers compensate for all the 
attenuation in the current span so that the power into the next 
fiber span can be consistent.  

B. OPM Data Collection 

The sample data obtained from each run includes the 
following nine optional parameters: optical signal noise ratio 
(OSNR), bit error rate (BER), power at the receiver (Prx), power 
at the transmitter (Ptx), power before the booster (Plink), and 
power of each span (Pspani, i=1, 2, 3, 4). Power can be obtained from 
the optical power meter. OSNR is available from the WDM 
analyzer. The BER is calculated by the BER test set located at 
the transmitter part, which compares the transmitted and 
received sequences and counts the different bits for BER 
calculation. These parameters can be obtained directly from the 
monitoring components. In real- deployed systems, OSNR, BER, 
and Prx can be acquired directly at the receiver. At the same time, 
the remaining parameters need to be communicated to the 
receiver end, e.g., via the control/management plane.  

In the simulation, an attenuator emulates the eavesdropping 
device. The power loss induced by a typical clip-on coupler-
based eavesdropping device [9] is measured as a benchmark to 
establish the scope of the power range under investigation. 
Measured by OTDR, a power loss of 0.8dB on the link can be 
observed. Attenuators are used to emulate eavesdropping at six 
possible locations indicated as dashed arrows in Fig.2 (two cases 
before the booster and four cases in spans). There are four 
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Fig. 1. Flow-chart for multi-eavesdropping detection procedure. 



combinations of two-point eavesdropping: transmitter & pre-
booster, transmitter & spans, pre-booster & spans, and two-
points in spans. In addition, we can distinguish between two 
cases involving transmitter eavesdropping. Since the data with 
better channel conditions, i.e., no transmitter eavesdropping, are 
selected after the [STEP 2] of the judgment, there are no cases 
in which the results of both [STEP 2] and [STEP 3] are YES. 
For each case, 200 data samples are collected, where each data 
sample includes nine parameters. The simulation system collects 
1400 data samples for multi-eavesdropping detection and 
localization. 

IV. DYNAMIC DATA BISECTING K-MEANS CLUSTERING 

K-means clustering is a method that aims to partition n 
observations into k clusters by minimizing within-cluster 
variations. The detailed process and the reason it is selected can 
be found in [1]. Differently from [1], the dynamic data clustering 
method detects the eavesdropping by constantly changing the 
amount of data, setting the value of K, and observing the results 
for SSE. The performance indicators considered in this work are 
label matching rate and SSE (calculation formula is also in [1]). 
A small SSE represents a better clustering result. Since the 
amount of data constantly changes, we consider SSE/data 
volume instead of SSE, implying the average Euclidean distance 
of the data points involved in the clustering to their centers, 
hereafter referred to as SSEDV.. It is necessary to clarify that 
when clustering methods are utilized to solve the detection 
problem, only the K=1 or K=2 clustering is involved. In the 
normal scenario, the SSEDV should not vary much (whether 
K=1 or K=2) between the clustering of the receiver data 
collected and the known normal data. The pending and known 
normal data are mixed for clustering whenever eavesdropping is 
taking place. If K=1 is set, SSEDV will increase with the number 
of outliers. So when it is found that the SSEDV for K=1 is 
increasing, we check the results for K=2. If SSEDV for K=2 is 
more stable and smaller than for K=1, it can be concluded that 
the observed event is an eavesdropping. 

V. RESULTS AND DISCUSSION 

The results are discussed following the three main steps 
presented in Fig.1. The collected OPM data is standardized 
before implementation of the clustering algorithm. It is 

transformed into pure dimensionless values in order to make it 
comparable and for weighting data of different units or 
magnitudes. This allows for the calculation of D, i.e., the 
distances between the centroids of the different clusters. Higher 
D means that the data of this two clusters are more distinct. 

A. Eavesdropping Detection by Dynamic Data Clustering 

The eavesdropping detection results based on the dynamic 
data bisecting k-means clustering are shown in Fig. 3. The 
system continuously collects new OPM data and classifies it 
with the existing normal scenario data. The x-axis represents the 
increasing amount of pending data and the y-axis represents 
SSEDV. If the pending event is normal scenario, the resulting 
SSEDV is relatively stable no matter K=1 or K=2. However, the 
presence of eavesdropping data does cause the SSEDV to 
increase for all classification results, indicating that the results 
are getting worse. As the eavesdropping data keeps increasing, 
the SSEDV for K=2 is very similar to the results in the 
classification with only normal scenario and K=1, indicating 
that the classification results are once again stabilizing. Thus, the 
pending data does include extra-normal scenarios data, i.e., 
eavesdropping. 
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Fig. 2. Flow chart of power-loss eavesdropping simulation system. 
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B. Selective Eavesdropping 

Fig. 4 shows the results of STEP 2, selective transmitter 
eavesdropping detection. The case of K = 2 shows that different 
channel states are classified together as eavesdropping, 
indicating that selective eavesdropping does not affect the 
eavesdropping detection results. The clustering result for K=3 
with the same data shows that the receiver OPM data can be used 
to distinguish between different channel states. Following the 
eavesdropping detection procedure, pending data that is closer 
to the normal scenario (i.e., the better channel state) should be 
selected for the next step. 

C. Localizing the Eavesdropping in the In-line Link 

Localizing the suspected eavesdropping points requires in-
line OPM data of both the normal scenario and the pending 
event. The suspected points are determined independently by 
dividing the link into two sections: before the booster and within 
the spans. The location of the pre-booster section requires two 
parameters, Ptx and Plink, while the spans section requires the 
Pspani, i=1, 2, 3, 4. Different parameters compose different 

dimensions of the data. If the chosen parameters can 
differentiate the data, there will be a variation in the data within 
this dimension, indicating a potential eavesdropping point. Fig. 
5 illustrates several possible categorization outcomes. 

In Fig. 5, the (a), (b), and (c) diagrams show three possible 
clustering results for the pre-booster, each illustrated with 
different data examples: (a) indistinguishable data (divided into 
two groups with random initial center points), (b) data 
distinguishable in one dimension, and (c) data distinguishable in 
two dimensions. Likewise, in the within-spans section, (d), (e), 
and (f) diagrams correspond to the three possible outcomes: (d) 
indistinguishable data, (e) data distinguishable in one dimension, 
and (f) data distinguishable in two dimensions. However, it's 
worth noting that (e) and (f) can be challenging to differentiate 
based on the clustering results obtained from the selected 
mapping parameters. This situation raises the issue of potentially 
multiple eavesdropping points within the spans. To address this 
problem, the parameter D is introduced, i.e., the distance 
between the central points of clustering. The more 
eavesdropping points in spans, the more significant the gap 
between the two groups of data, and the distance between the 
clustering centers is farther away. The method allows for an 
estimation of the number of eavesdropping points. Notably, the 
clustering results exhibit a label-matching rate of 100% across 
all scenarios except for (a) and (d). 

VI. CONCLUSION 

A three-step cluster-based method for eavesdropping 
detection in a WDM optical system is proposed and validated. It 
requires only OPM data and achieves a 100% label-matching 
rate for  an eavesdropping caused 0.8 dB power loss. In addition, 
bisecting K-means clustering algorithms are applied to detect 
eavesdropping. Validation of this method in an experimental 
system and using semi-supervised learning for automatic 
detection are envisioned for future work. 

 

Fig. 5. Clustering results for the before booster and spans. (a) before booster section: indistinguishable (b) before booster section: distinguishable in one 

dimension (c) distinguishable in two dimensions (d) spans section: indistinguishable (e) spans section: in one dimension (f) spans  section: in two dimensions 

  

Fig. 4. Detection results for the selective transmitter eavesdropping case. 
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