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We introduce classical and quantum no-signalling bicorrela-
tions and characterise the different types thereof in terms of 
states on operator system tensor products, exhibiting connec-
tions with bistochastic operator matrices and with dilations 
of quantum magic squares. We define concurrent bicorre-
lations as a quantum input-output generalisation of bisyn-
chronous correlations. We show that concurrent bicorrelations 
of quantum commuting type correspond to tracial states on 
the universal C*-algebra of the projective free unitary quan-
tum group, showing that in the quantum input-output setup, 
quantum permutations of finite sets must be replaced by 
quantum automorphisms of matrix algebras. We apply our 
results to study the quantum graph isomorphism game, de-
scribing the game C*-algebra in this case, and make precise 
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connections with the algebraic notions of quantum graph iso-
morphism, existing presently in the literature.

© 2024 Elsevier Inc. All rights are reserved, including those 
for text and data mining, AI training, and similar 

technologies.
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1. Introduction

In recent years, many fruitful interactions have emerged between entanglement and 
non-locality in quantum systems, on one hand, and the theory of operator algebras and 
operator systems, on the other. At a high level, this connection stems from the laws 
of quantum mechanics, which dictate that the input-output behaviour of local mea-
surements on (bipartite) quantum systems is encoded by non-commutative operator 
algebras of observables and their state spaces. This provides powerful means to trans-
late between questions of a physical nature and questions formulated in the language 
of non-commutative analysis. At the base of these developments lie the work of Junge, 
Navascues, Palazuelos, Perez-Garcia, Scholz and Werner [27], where the relation between 
the Tsirelson Problem in quantum physics and the Connes Embedding Problem in opera-
tor algebra theory was first noticed (see also [42]), and that of Paulsen, Severini, Stahlke, 
Winter and the third author [44], where the notion of synchronous no-signalling correla-
tion was first defined and characterised. The fruitfulness of these connections has been 
borne out by many recent works; see [42,33,35,34,37,36,1,38,9] for an incomplete list. 
We specifically single out Sloftsra’s ground-breaking work [48,47], which injected ideas 
from geometric group theory into the theory of non-local games, showing that the set 
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of bipartite quantum correlations is not closed, and the work of Helton, Meyer, Paulsen 
and Satriano [24], in which an algebraic approach to non-local games was formulated. 
All of these ideas recently culminated in the resolution of the weak Tsirelson problem 
and Connes Embedding problem in the preprint [26] by Ji, Natarajan, Vidick, Wright 
and Yuen.

In the present work, we are primarily interested in investigating the structure of 
quantum input-quantum output bipartite correlations which generalise the bisynchronous
correlations introduced by Paulsen and Rahaman in [45]. Recall that a no-signalling 
bipartite correlation over the quadruple (X, X, A, A), where X and A are finite sets, is 
a family of conditional probability distributions

p = {p(a, b|x, y) : (x, y) ∈ X ×X, (a, b) ∈ A×A}

that has well-defined marginals (see e.g. [33]). Operationally, in the commuting opera-
tor model of quantum mechanics, p describes the input-output behaviour of a bipartite 
quantum system, given by a Hilbert space H in state ξ, interpreted as a unit vec-
tor in H, on which local measurements are jointly performed: for each x, y ∈ X, two 
non-communicating parties Alice and Bob have access to mutually commuting local 
measurement systems Ex = (Ex,a)a∈A ⊆ B(H) (for Alice) and Fy = (Fy,b)b∈A ⊆ B(H)
(for Bob). Given input x, Alice uses the system Ex to measure ξ, and similarly, given y, 
Bob uses Fy to measure ξ; the resulting outcomes of Alice and Bob’s measurements are 
(a, b) ∈ A ×A with probability

p(a, b|x, y) = 〈Ex,aFy,bξ, ξ〉.

We say that a correlation p is synchronous if p(a, b|x, x) = 0 for all x ∈ X and a �= b. 
Heuristically, Alice and Bob’s behaviour is synchronised in that they appear to invoke the 
same “virtual function” X → A to obtain their outputs, depending on the given inputs. 
A correlation p is called bisynchronous [45] if it is synchronous and has the additional 
property that p(a, a|x, y) = 0 for all a ∈ A and x �= y. In this case, the “virtual function” 
X → A behaves as though it were in addition injective.

Using the language of operator algebras and non-commutative geometry, one can make 
the intuition, highlighted in the previous paragraph, precise. Let AX,A = �|X|�

∞(A) be 
the unital free product of |X| copies of the |A|-dimensional abelian C*-algebra �∞(A). 
The C*-algebra AX,A is a C*-cover of the universal operator system SX,A with generators 
ex,a, where x ∈ X and a ∈ A, subject to the relations ex,a = e2

x,a = e∗x,a and 
∑

a∈A ex,a =
1, x ∈ X. Within the framework of non-commutative geometry, AX,A can be regarded 
as a quantisation of the finite-dimensional C∗-algebra C(F(X, A)) of complex-valued 
functions on the set F(X, A) of functions f : X → A. It was shown in [44] that a no-
signalling correlation p of quantum commuting type is synchronous if and only if there 
is a tracial state τ on AX,A such that

p(a, b|x, y) = τ(ex,aey,b), x, y ∈ X, a, b ∈ A. (1)
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If the correlation p is bisynchronous (and |X| = |A|), then [45] p arises via (1) from a 
tracial state τ on the C*-algebra C(S+

X) of the quantum permutation group [53]. Similarly 
to AX,A, the C*-algebra C(S+

X) is the universal unital C*-algebra with generators ex,a, 
x, a ∈ X, further satisfying the additional relations 

∑
x∈X ex,a = 1, a ∈ A. Note that 

C(S+
X) is a free analogue of the algebra C(SX) of complex functions on the permutation 

group SX of X, and is itself a C∗-algebraic quantum group [53].
Bisynchronous correlations arise in the analysis of certain classes of non-local games, 

most notably the graph isomorphism game [1,34,36,9] and the related metric isometry 
game [20]. Here, deep and unexpected connections emerged between quantum permuta-
tion groups, no-signalling correlations and graph theory. At the same time, connections 
were established between graph isomorphism games and quantum graphs [38,39,9]. In 
particular, in the aforementioned works, a natural (operator) algebraic notion of a quan-
tum isomorphism between quantum graphs was introduced.

One of the main motivations behind the present work is the desire to provide an 
operational characterisation of quantum isomorphisms between quantum graphs in terms 
of bipartite correlations. As the term suggests, the description of a quantum graph (in 
any of its many guises [49,38,9,10]) requires a suitable quantum version of the notion of a 
vertex or edge, using the language of bipartite quantum systems. Hence one is naturally 
led to consider bipartite no-signalling correlations which allow quantum states as inputs 
and outputs.

Quantum input-quantum output no-signalling (QNS) correlations were introduced 
by Duan and Winter [18], and subsequently systematically studied in [50,7,10]. Given 
finite sets X and A, and denoting by MX (resp. MA) the full matrix algebra over the 
|X|-dimensional Hilbert space, a QNS correlation over the quadruple (X, X, A, A) is a 
quantum channel

Γ : MX ⊗MX → MA ⊗MA

satisfying a pair of additional constraints, equivalent to the existence of marginal channels 
(see equations (5) and (6), and the article [18] for further details). Since any classical 
no-signalling correlation p over (X, X, A, A) can be regarded as a QNS correlation Γp

that preserves the corresponding diagonal subalgebras, QNS correlations constitute a 
genuine generalisation of their classical counterparts (see also equation (8)).

The main purpose of the present work is to develop a notion, and find (operational and 
operator algebraic) characterisations, of bisynchronicity in the quantum input-output 
setting. In parallel with the classical setting, here we focus our attention on the case where 
the input and output systems are of the same size, that is, |A| = |X|. In this case, it is 
natural to consider “bistochastic” correlations Γ : MX⊗MX → MA⊗MA, that is, unital 
QNS correlations with the additional property that the dual channels Γ∗ are also QNS 
correlations; these channels are referred to as QNS bicorrelations (see Definition 5.1). 
A quantisation of bisynchronicity must involve a suitable quantum counterpart of the 
property of sending identical inputs to identical outputs. In bipartite quantum systems, 
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this is naturally captured by how Γ (and Γ∗) acts on the canonical maximally entangled 
state. More precisely, if (εx,y)x,y∈X is the canonical matrix unit system of MX , and 
JX = 1

|X|
∑

x,y∈X εx,y ⊗ εx,y is the maximally entangled state, then it is natural to 
impose the condition

Γ(JX) = JA. (2)

Condition (2) on a QNS correlation Γ was introduced and studied in detail in our previous 
work [10], where it was called concurrency. For a QNC bicorrelation Γ, its concurrency 
is equivalent to concurrency for Γ∗ (see Remark 6.2). From an operational viewpoint, 
concurrent bicorrelations Γ are characterised by the property that Γ and Γ∗ preserve 
the perfect correlation of local measurements in both directions: the input state JX is 
characterised by the property that local measurements performed on JX in any fixed 
basis are always perfectly correlated with uniformly random outcomes. Concurrent bi-
correlations thus respect this perfect correlative structure, and hence rightfully can be 
interpreted as fully quantum versions of bisynchronous correlations.

We study the various types of QNS bicorrelations (quantum commuting, quantum 
approximate, quantum and local) in detail, providing operator system/algebra charac-
terisations thereof. After providing necessary preliminaries in Section 2, in Section 3 we 
exhibit operator bistochastic matrices, which can be viewed as quantum and operator-
valued generalisations of classical bistochastic matrices. Operator bistochastic matrices 
turn out to be the suitable mathematical objects encoding each of the parties of a QNS 
bicorrelation. We characterise concretely the universal operator system TX of an operator 
bistochastic matrix as the subspace spanned by natural order two products associated 
with the entries of a universal block operator bi-isometry V : C|X|⊗H → C|X|⊗K (that 
is, an isometry V for which the transpose V t is also an isometry). We further identify 
the dual operator system of TX and establish several properties of TX and its universal 
C*-algebra CX . At the heart of our arguments is a factorisation result for bistochastic 
operator matrices (Theorem 3.2). Our results should be compared to those of [50], where 
a similar development was undertaken for the universal operator system TX,A of a block 
operator isometry, and the corresponding C*-algebra CX,A.

The diagonal expectations (intuitively, the classical components) of bistochastic op-
erator matrices coincide with quantum magic squares, introduced by De Las Cuevas, 
Drescher and Netzer in [15]; contrapositively, bistochastic operator matrices can be 
viewed as quantum versions of quantum magic squares. In Section 4, we build up on 
this connection and rephrase some of the results of [15] in the language of operator sys-
tems. Indeed, one of the main results in [15] is the fact that not every quantum magic 
square admits a dilation to a quantum permutation. In Theorem 4.5, we characterise 
the dilatability of a quantum magic square in terms of the complete positivity of natural 
maps, associated with the given quantum magic square, and defined on the operator 
system PX ⊆ C(S+

X) spanned by the coefficients of a quantum permutation matrix. We 
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demonstrate that the non-dilatability of quantum magic squares is due to the distinction 
between different operator system structures.

In Section 5, we introduce the types of quantum no-signalling bicorrelations, corre-
sponding to different physical models (local, quantum, approximately quantum, quantum 
commuting and general no-signalling), and characterise them in terms of states on the 
various operator system structures, with which the algebraic tensor product TX ⊗ TX
can be endowed. Here we rely on the tensor product theory developed in [30]. We pay 
a separate attention to classical no-signalling bicorrelations, showing that their corre-
sponding encoding operator system SX is the universal operator system spanned by the 
entries of an X ×X-quantum magic square studied in Section 4, and obtaining similar 
characterisations in terms of states on operator system tensor products on the algebraic 
tensor product SX ⊗ SX .

In Section 6, we focus our attention on concurrent bicorrelations, establishing in The-
orem 6.7 a characterisation of concurrent quantum commuting bicorrelations in terms 
of tracial states. We show that the C*-algebra, whose tracial states are of interest here, 
is the C*-algebra C(PU+

X) of functions on projective free unitary quantum group. Recall 
that the C*-algebra of the free unitary quantum group C(U+

X) is the universal unital 
C*-algebra generated by the entries ux,a of an X ×X bi-unitary matrix U = (ux,a)x,a. 
The C*-algebra C(PUX+) is the C*-subalgebra of C(U+

X), generated length two words of 
the form u∗

x,aux′,a′ . Note that the C*-algebra C(U+
X) is the free analogue of C(UX), the 

C*-algebra of continuous complex functions on the unitary group UX . Similarly, C(PU+
X)

is the free analogue of the algebra of continuous complex functions on the projective uni-
tary group PUX = UX/T . Recall that the natural action of UX on MX by conjugation 
induces an isomorphism of PUX and the group Aut(MX) of ∗-automorphisms of the 
matrix algebra MX . In this way, C(PUX) can be regarded as the quantum version of the 
automorphism group of MX . In fact, using quantum group theory, this reasoning can 
be made precise as, by [3, Corollary 4.1] and [2, Theorem 1], C(PU+

X) is the quantum 
automorphism group of the tracial C*-algebra MX in the sense of Wang [53].

Thus, from an operator algebraic point of view, Theorem 6.7 provides yet another 
justification for our definition of concurrent bicorrelations as the appropriate quantum 
versions of bisynchronous correlations; indeed, at a correlation level, quantisation of 
bisynchronicity amounts to replacing classical channels on DX⊗DX with quantum chan-
nels on MX ⊗MX . At the level of tracial states encoding these channels, Theorem 6.7
shows that this quantisation amounts to replacing C(S+

X) (that is, quantum automor-
phisms of DX) with C(PU+

X) (that is, quantum automorphisms of MX). We remark 
here that the C∗-algebras C(S+

X) and C(PU+
X) are indeed distinct C∗-algebras, as can be 

seen from the K-theory computations in [51, Theorem 4.5]. In summary, the operational 
and the algebraic notions of quantisation are in agreement. Our results complement a 
series of operator characterisations in the literature, part of which we summarise in the 
following table:
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Correlation type: Encoded by states on:
Classical NS correlations Cns SX,A ⊗max SX,A [33, Theorem 3.1]
Classical qc-correlations Cqc SX,A ⊗c SX,A [33, Theorem 3.1]
Classical qa-correlations Cqa SX,A ⊗min SX,A [33, Theorem 3.1]
Synchronous qc-correlations Cs

qc AX,A (tracial) [44, Theorem 5.5]
Bisynchronous qc-correlations Cbis

qc C(S+
X) (tracial) [45, Theorem 2.2]

QNS correlations Qns TX,A ⊗max TX,A [50, Theorem 6.2]
QNS qc-correlations Qqc TX,A ⊗c TX,A [50, Theorem 6.3]
QNS qa-correlations Qqa TX,A ⊗min TX,A [50, Theorem 6.5]
QNS bicorrelations Qbi

ns TX ⊗max TX [Theorem 5.4]
QNS qc-bicorrelations Qbi

qc TX ⊗c TX [Theorem 5.5]
QNS qa-bicorrelations Qbi

qa TX ⊗min TX [Theorem 5.6]
Classical NS bicorrelations Cbi

ns SX ⊗max SX [Theorem 5.10]
Classical qc-bicorrelations Cbi

qc SX ⊗c SX [Theorem 5.10]
Classical qa-bicorrelations Cbi

qa SX ⊗min SX [Theorem 5.10]
Concurrent qc-correlations Qc

qc CX,A (tracial) [10, Theorem 4.1]
Concurrent qc-bicorrelations Qbic

qc C(PU+
X) (tracial) [Theorem 6.7]

In Section 7, we apply concurrent bicorrelations to study quantum graph isomor-
phisms. We consider quantum graphs with respect to MX , viewed as symmetric skew 
subspaces U ⊆ CX ⊗ CX [8,49,17,50,10]. We define quantum isomorphisms between 
quantum graphs in terms of perfect QNS strategies for a suitable quantum graph isomor-
phism game, building up on the approach to quantum graph homomorphisms followed 
in [50]. In Theorem 7.4, we characterise quantum commuting isomorphisms between 
quantum graphs U , V ⊆ CX ⊗ CX in terms of the existence of a bi-unitary matrix 
U = (ux,a)x,a ∈ MX(B(H)) such that C(PUX+) admits a tracial state τ , and

U(S̃U ⊗ 1)U∗ ⊆ S̃V ⊗ B(H) and U t(S̃V ⊗ 1)U t∗ ⊆ S̃U ⊗ B(H), (3)

where S̃U and S̃V are the traceless, symmetric subspaces, canonically associated to U and 
V, respectively. Note that condition (3) is a quantum counterpart of the characterisation 
[1] of quantum isomorphisms of classical graphs in terms of quantum permutations matri-
ces that intertwine the relevant adjacency matrices, through the replacement of quantum 
permutations by bi-unitaries (see Remark 7.6). We further formalise the relations (3) in 
Theorem 7.10, where we introduce a natural game algebra AP,Q whose tracial states 
encode the perfect quantum commuting strategies for the (U , V)-isomorphism game. We 
note, in particular, that when U = V, the algebra AP,Q admits the structure of a com-
pact quantum group, which seems to generalise the quantum automorphism group of a 
classical graph. We leave the study of these quantum groups for future work.

Finally, in Section 8, we compare the operational notion of quantum graph isomor-
phism of Section 7 to the operator algebraic notions that have appeared previously in 
the literature, and which have been based mainly on adjacency matrices [38,39,9,14]. 
We show, in Theorem 8.9, that the algebraic quantum isomorphisms considered in the 
aforementioned works fit into our framework as special cases. The arguments and ideas 
for the proof of this theorem rely on the recent work of Daws on quantum graphs [14]. In 
Theorem 8.14, we establish a partial converse, exhibiting the precise conditions, under 
which the algebraic and the operational notions of quantum graph isomorphism coincide.
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2. Preliminaries

In this section, we collect basic preliminaries on quantum no-signalling correlations, 
set notation and introduce terminology. Let H be a Hilbert space. As usual, we denote 
by B(H) the space of all bounded linear operators on H and sometimes write L(H) if H
is finite dimensional. We denote by IH the identity operator on H and, if ξ, η ∈ H, we let 
ξη∗ be the rank one operator given by (ξη∗)(ζ) = 〈ζ, η〉ξ. In addition to inner products, 
〈·, ·〉 will denote the duality between a vector space and its dual. We let B(H)+ be the 
cone of positive operators in B(H), and further denote by T (H) its ideal of trace class 
operators and by Tr – the trace functional on T (H).

An operator system is a selfadjoint subspace S ⊆ B(H), for some Hilbert space H, 
containing IH . If S is an operator system, the universal C*-cover of S [32] is a pair 
(C∗

u(S), ι), where C∗
u(S) is a unital C*-algebra and ι : S → C∗

u(S) is a unital complete 
order embedding, such that ι(S) generates C∗

u(S) as a C*-algebra and, whenever K is 
a Hilbert space and φ : S → B(K) is a unital completely positive map, there exists a 
*-representation πφ : C∗

u(S) → B(K) such that πφ ◦ ι = φ. If S is a finite dimensional 
operator system then its Banach space dual Sd can be viewed as an operator system [13, 
Corollary 4.5]. We refer the reader to [43] for information and background on operator 
systems and completely positive maps.

We denote by |X| the cardinality of a finite set X, let HX = ⊕x∈XH and write MX

for the space of all complex matrices of size |X| × |X|; we identify MX with L(CX) and 
set IX = ICX . For n ∈ N, we let [n] = {1, . . . , n} and Mn = M[n]. We write (ex)x∈X

for the canonical orthonormal basis of CX , (εx,x′)x,x′∈X for the canonical matrix unit 
system in MX , and denote by DX the subalgebra of MX of all diagonal matrices with 
respect to the basis (ex)x∈X . If V is a vector space, we write MX(V) for the space of all 
X ×X matrices with entries in V; we note that there is a canonical linear identification 
between MX(V) and MX ⊗ V. Here, and in the sequel, we use the symbol ⊗ to denote 
the algebraic tensor product of vector spaces.

For an element ω ∈ MX , we denote by ωt the transpose of ω in the canonical basis, and 
write ω for the complex conjugate of ω; thus, ω = (ωt)∗. The canonical complete order 
isomorphism from MX onto its dual operator system Md

X maps an element ω ∈ MX to 
the linear functional fω : MX → C given by fω(T ) = Tr(Tωt); see e.g. [46, Theorem 
6.2]. We will thus consider MX as self-dual with the pairing
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(ρ, ω) → 〈ρ, ω〉 := Tr(ρωt). (4)

On the other hand, note that the Banach space predual B(H)∗ can be canonically iden-
tified with T (H); every normal functional φ : B(H) → C thus corresponds to a (unique) 
operator Sφ ∈ T (H) such that φ(T ) = Tr(TSφ), T ∈ B(H). In the case where X is a 
fixed finite set (which will sometimes come in the form of a Cartesian product), we will 
use a mixture of the two dualities just discussed: if ω, ρ ∈ MX , S ∈ T (H) and T ∈ B(H), 
it will be convenient to continue writing

〈ρ⊗ T, ω ⊗ S〉 = Tr(ρωt) Tr(TS).

If X and Y are finite sets, we identify MX ⊗ MY with MX×Y and write MXY in 
its place. Similarly, we set DXY = DX ⊗ DY . For an element ωX ∈ MX and a Hilbert 
space H, we let LωX

: MX ⊗ B(H) → B(H) be the linear map given by LωX
(S ⊗ T ) =

〈S, ωX〉T . If H = CY and ωY ∈ MY , we thus have linear maps LωX
: MXY → MY and 

LωY
: MXY → MX ; note that

〈LωX
(R), ρY 〉 = 〈R,ωX ⊗ ρY 〉, R ∈ MXY , ρY ∈ MY ,

and a similar formula holds for LωY
. We let TrX : MXY → MY (resp. TrY : MXY → MX) 

be the partial trace; thus, TrX = LIX (resp. TrY = LIY ).
Let X, Y , A and B be finite sets. A quantum channel from MX into MA is a completely 

positive trace preserving map Φ : MX → MA. A quantum correlation over (X, Y, A, B)
(or simply a quantum correlation if the sets are understood from the context) is a quan-
tum channel Γ : MXY → MAB . Such a Γ is called a quantum no-signalling (QNS) 
correlation [18] if

TrA Γ(ρX ⊗ ρY ) = 0 whenever Tr(ρX) = 0 (5)

and

TrB Γ(ρX ⊗ ρY ) = 0 whenever Tr(ρY ) = 0. (6)

We denote by Qns the set of all QNS correlations.
A stochastic operator matrix over (X, A), acting on a Hilbert space H, is a positive 

block operator matrix Ẽ = (Ex,x′,a,a′)x,x′,a,a′ ∈ MXA(B(H)) such that TrA Ẽ = I. A 
QNS correlation Γ : MXY → MAB is quantum commuting if there exist a Hilbert space 
H, a unit vector ξ ∈ H and stochastic operator matrices Ẽ = (Ex,x′,a,a′)x,x′,a,a′ and 
F̃ = (Fy,y′,b,b′)y,y′,b,b′ on H such that

Ex,x′,a,a′Fy,y′,b,b′ = Fy,y′,b,b′Ex,x′,a,a′

for all x, x′ ∈ X, y, y′ ∈ Y , a, a′ ∈ A, b, b′ ∈ B, and
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Γ(εx,x′ ⊗ εy,y′) =
∑

a,a′∈A

∑
b,b′∈B

〈Ex,x′,a,a′Fy,y′,b,b′ξ, ξ〉 εa,a′ ⊗ εb,b′ , (7)

for all x, x′ ∈ X and all y, y′ ∈ Y . Quantum QNS correlations are defined as in (7), but 
requiring that H has the form HA ⊗HB , for some finite dimensional Hilbert spaces HA

and HB, and Ex,x′,a,a′ = Ẽx,x′,a,a′ ⊗IB and Fy,y′,b,b′ = IA⊗ F̃y,y′,b,b′ , for some stochastic 
operator matrices (Ẽx,x′,a,a′) and (F̃y,y′,b,b′), acting on HA and HB, respectively. Approx-
imately quantum QNS correlations are the limits of quantum QNS correlations, while 
local QNS correlations are the convex combinations of the form Γ =

∑k
i=1 λiΦi ⊗ Ψi, 

where Φi : MX → MA and Ψi : MY → MB are quantum channels, i = 1, . . . , k.
We write Qqc (resp. Qqa, Qq, Qloc) for the (convex) set of all quantum commuting 

(resp. approximately quantum, quantum, local) QNS correlations, and note the inclusions

Qloc ⊆ Qq ⊆ Qqa ⊆ Qqc ⊆ Qns.

Recall that a (classical) no-signalling (NS) correlation is a family p = {(p(a, b|x, y))a,b :
(x, y) ∈ X × Y } of probability distributions over A ×B, such that

∑
b∈B

p(a, b|x, y) =
∑
b∈B

p(a, b|x, y′), x ∈ X, y, y′ ∈ Y, a ∈ A,

and
∑
a∈A

p(a, b|x, y) =
∑
a∈A

p(a, b|x′, y), x, x′ ∈ X, y ∈ Y, b ∈ B

(see e.g. [33,44]). We denote the (convex) set of all NS correlations by Cns. With a 
correlation p ∈ Cns, we associate the classical information channel Γp : DXY → DAB , 
given by

Γp(εx,x ⊗ εy,y) =
∑
a∈A

∑
b∈B

p(a, b|x, y)εa,a ⊗ εb,b. (8)

The subclasses Ct of Cns, for t ∈ {loc, q, qa, qc}, are defined as in the previous paragraph, 
but using classical stochastic operator matrices, that is, stochastic operator matrices 
of the form E =

∑
x∈X

∑
a∈A εx,x ⊗ εa,a ⊗ Ex,a. Note that the condition for E being 

stochastic is equivalent to the requirement that (Ex,a)a∈A is a positive operator-valued 
measure (POVM) for all x ∈ X. We note the inclusions

Cloc ⊆ Cq ⊆ Cqa ⊆ Cqc ⊆ Cns,

all of which are strict: Cloc �= Cq is the Bell Theorem [4], Cq �= Cqa is a negative answer to 
the weak Tsirelson Problem [47] (see also [19,48]), and Cqa �= Cqc – in view of [23,27,42], 
a negative answer to the announced solution of the Connes Embedding Problem [26].
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3. Bistochastic operator matrices

In this section we define and examine bistochastic operator matrices, which constitute 
a specialisation of stochastic operator matrices [50, Section 3] to the new context to be 
considered herein. Let X be a finite set, and set A = X. The distinct symbols X and A
will continue to be used to indicate the variable with respect to which a partial trace is 
taken; the symbol X usually refers to the domain of a quantum channel, while A – to 
its codomain.

Definition 3.1. Let H be a Hilbert space. A block operator matrix E=(Ex,x′,a,a′)x,x′,a,a′ ∈
(MXA ⊗ B(H))+ is called a bistochastic operator matrix if

TrA E = IX ⊗ IH and TrX E = IA ⊗ IH .

3.1. Factorisation

A block operator matrix V = (Va,x)a,x∈X , where Va,x ∈ B(H, K) for some Hilbert 
spaces H and K, will be called a bi-isometry if V and V t := (Vx,a)a,x∈X are isometries 
as operators in B(HX , KX).

Theorem 3.2. Let H be a Hilbert space and E ∈ (MXA ⊗ B(H))+. The following are 
equivalent:

(i) E is a bistochastic operator matrix;
(ii) there exist a Hilbert space K and operators Va,x ∈ B(H, K), x, a ∈ X, such that 

(Va,x)a,x∈X is a bi-isometry and

Ex,x′,a,a′ = V ∗
a,xVa′,x′ , x, x′, a, a′ ∈ X. (9)

Proof. (ii)⇒(i) Since V is an isometry,
∑
a∈X

Ex,x′,a,a =
∑
a∈X

V ∗
a,xVa,x′ = δx,x′IH ,

and hence TrAE = IX ⊗ IH . Since V t = (Va,x)x,a is an isometry,
∑
x∈X

Ex,x,a,a′ =
∑
x∈X

V ∗
a,xVa′,x = δa,a′IH ,

and hence TrXE = IA ⊗ IH .
(i)⇒(ii) Suppose that E = (Ex,x′,a,a′)x,x′,a,a′ is a bistochastic operator matrix acting 

on H and set Ea,a′ = (Ex,x′,a,a′)x,x′ , a, a′ ∈ A; thus, Ea,a′ ∈ MX ⊗B(H). Let Φ : MA →
MX⊗B(H) be the linear map, given by Φ(εa,a′) = Ea,a′ , a, a′ ∈ A. By Choi’s Theorem, Φ
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is a unital completely positive map and, by Stinespring’s Theorem, there exist a Hilbert 
space K̃, an isometry V : CX ⊗H → K̃ and a unital *-homomorphism π : MA → B(K̃)
such that Φ(T ) = V ∗π(T )V , T ∈ MA. Up to unitary equivalence, K̃ = CA⊗K for some 
Hilbert space K and π(T ) = T ⊗ IK , T ∈ MA. Write Va,x : H → K, a ∈ A, x ∈ X, for 
the entries of V , when V is considered as a block operator matrix. As in [50, Theorem 
3.1], we conclude that Ex,x′,a,a′ = V ∗

a,xVa′,x′ , x, x′ ∈ X, a, a′ ∈ A.
Note that

(TrX ◦Φ) (εa,a′) = TrX (Ea,a′) =
∑
x∈X

Ex,x,a,a′ = δa,a′IH ;

hence

(TrX ◦Φ) (ρ) = Tr(ρ)IH , ρ ∈ MA.

Thus, if ω ∈ T (H) and ρ ∈ MA then

〈ρ,Tr(ω)IA〉 = 〈TrA(ρ⊗ IH), ω〉 = 〈(TrX ◦Φ) (ρ), ω〉 (10)

= 〈TrX (V ∗(ρ⊗ IK)V ) , ω〉 .

On the other hand, writing ρ = (ρa,a′)a,a′∈X , we have

V ∗(ρ⊗ IK)V =
∑

a,a′∈X

ρa,a′V ∗(εa,a′ ⊗ IK)V =

⎡
⎣ ∑
a,a′∈X

ρa,a′V ∗
a,xVa′,x′

⎤
⎦
x,x′

,

implying

〈TrX (V ∗(ρ⊗ IK)V ) , ω〉 =
∑
x∈X

∑
a,a′∈X

ρa,a′ Tr(V ∗
a,xVa′,xω)

=
∑

a,a′∈X

ρa,a′ Tr
(∑

x∈X

V ∗
a,xVa′,xω

)
.

Now (10) implies that

Tr
(∑

x∈X

V ∗
a,xVa′,xω

)
= δa,a′ Tr(ω), a, a′ ∈ X.

The latter equality holds for every ω ∈ T (H); thus,
∑
x∈X

V ∗
a,xVa′,x = δa,a′IK ,

that is, V t is an isometry. �
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3.2. The universal operator system

Recall [25,54] that a ternary ring is a complex vector space V, equipped with a ternary 
operation [·, ·, ·] : V × V × V → V, linear on the outer variables and conjugate linear in 
the middle variable, such that

[s, t, [u, v, w]] = [s, [v, u, t], w] = [[s, t, u], v, w], s, t, u, v, w ∈ V.

A ternary representation of V is a linear map θ : V → B(H, K), for some Hilbert spaces 
H and K, such that

θ ([u, v, w]) = θ(u)θ(v)∗θ(w), u, v, w ∈ V.

We call θ non-degenerate if span{θ(u)∗η : u ∈ V, η ∈ K} is dense in H. A (concrete) 
ternary ring of operators (TRO) [54] is a subspace U ⊆ B(H, K) for some Hilbert spaces 
H and K such that S, T, R ∈ U implies ST ∗R ∈ U . We refer the reader to [6, Section 
4.4] for details about TRO’s and their abstract versions that will be used in the sequel.

Let V0
X be the ternary ring, generated by elements va,x, a, x ∈ X, satisfying the 

relations
∑
a∈X

[va′′,x′′ , va,x, va,x′ ] = δx,x′va′′,x′′ and
∑
x∈X

[va′′,x′′ , va,x, va′,x] = δa,a′va′′,x′′ , (11)

for all x, x′, x′′, a, a′, a′′ ∈ X. Note that relations (11) are equivalent to
∑
a∈X

[u, va,x, va,x′ ] = δx,x′u and
∑
x∈X

[u, va,x, va′,x] = δa,a′u, (12)

for all x, x′, a, a′ ∈ X and all u ∈ V0
X . Conditions (12) imply that the non-degenerate 

ternary representations θ : V0
X → B(H, K) correspond to bi-isometries V = (Va,x)a,x via 

the assignment Va,x = θ(va,x); in this case, we write θ = θV . Following [50, Section 5], 
we let θ̂ = ⊕V θV , where in the direct sum we have chosen one representative from each 
unitary equivalence class of bi-isometries and the cardinality of the underlying Hilbert 
spaces are bounded by that of V. The assignment ‖u‖ := ‖θ̂(u)‖ defines a semi-norm on 
V0
X ; we set VX := V0

X/ ker θ̂, observe that VX is a TRO, and continue to write va,x for 
the images of the canonical generators of V0

X under the quotient map q : V0
X → VX . The 

maps θ̂ and θV (for a bi-isometry V ) give rise to corresponding ternary representations 
of VX , which we denote in the same way.

Let CX be the right C*-algebra of the TRO VX (so that, up to a *-isomorphism, 
CX ∼= span(θ̂(VX)∗θ̂(VX))), write ex,x′,a,a′ = v∗a,xva′,x′ , and let

TX = span{ex,x′,a,a′ : x, x′, a, a′ ∈ X},

viewed as an operator subsystem of CX . It is immediate that
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(ex,x′,a,a′)x,x′,a,a′ ∈ MXX(CX)+ (13)

and that the relations
∑
b∈A

ex,x′,b,b = δx,x′1 and
∑
y∈X

ey,y,a,a′ = δa,a′1, x, x′, a, a′ ∈ X, (14)

hold true. For a bi-isometry V , acting on the Hilbert space H, we write πV : CX → B(H)
for the *-representation of CX , given by

πV (S∗T ) = θV (S)∗θV (T ), S, T ∈ VX . (15)

Lemma 3.3. The following hold true:

(i) Every non-degenerate ternary representation of VX has the form θV , for some bi-
isometry V .

(ii) The map θ̂ is a faithful ternary representation of VX .
(iii) Every unital *-representation π of CX has the form πV , for some bi-isometry V .

Proof. The arguments are similar to the ones in [50, Lemma 5.1] where a version of 
our current setup is considered for isometries (that are not necessarily bi-isometries). 
We address (iii) for the convenience of the reader. Let π : CX → B(H) be a unital *-
representation. Then there exists a ternary representation θ : VX → B(H, K) such that 
π(S∗T ) = θ(S)∗θ(T ), S, T ∈ VX,A (see e.g. [5, Theorem 3.4] and [21, p. 1636]). Since π
is unital, θ is non-degenerate. By the universality of VX described in (i), there exists an 
operator matrix V = (Va,x), whose entries satisfy the relations (11), such that θ = θV , 
and hence π = πV . �

Let VX,A be the universal TRO of an isometry (ṽa,x)a,x∈X , defined similarly to the 
TRO VX [50, Section 5]. Thus, the TRO VX,A arises from a ternary ring, whose canonical 
generators ṽa,x, x, a ∈ X, are required to satisfy only the first of the relations (11). We 
let CX,A be the right C*-algebra of TX,A. Letting ẽx,x′,a,a′ = ṽ∗a,xṽa′,x′ , x, x′, a, a′ ∈ X, 
we write

TX,A = span{ẽx,x′,a,a′ : x, x′, a, a′ ∈ X}, (16)

viewed as an operator subsystem of CX,A [50]. It was shown in [50, Theorem 5.2] that, 
for a Hilbert space H, the unital completely positive maps φ : TX,A → B(H) correspond 
to stochastic operator matrices (Ex,x′,a,a′)x,x′,a,a′ via the assignment φ(ex,x′,a,a′) =
Ex,x′,a,a′ . We next provide a bistochastic version of this fact, to be used subsequently.

Theorem 3.4. Let H be a Hilbert space and φ : TX → B(H) be a linear map. Consider 
the conditions
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(i) φ is a unital completely positive map;
(ii) (φ(ex,x′,a,a′))x,x′,a,a′ ∈ MXA ⊗ B(H) is a bistochastic operator matrix;
(iii) there exists a unital *-representation π : CX → B(H) such that φ = π|TX

,

and

(i’) φ is a completely positive map;
(ii’) (φ(ex,x′,a,a′))x,x′,a,a′ ∈ (MXA ⊗ B(H))+.

Then (i)⇔(ii)⇔(iii) and (i’)⇔(ii’). Thus, the pair (CX , ι), where ι is the inclusion map 
of TX into CX , is the universal C*-cover of TX .

Moreover, if (Ex,x′,a,a′)x,x′,a,a′ is a bistochastic operator matrix acting on a Hilbert 
space H then there exists a (unique) unital completely positive map φ : TX → B(H) such 
that φ(ex,x′,a,a′) = Ex,x′,a,a′ for all x, x′, a, a′.

Proof. (i)⇒(ii) By Arveson’s Extension Theorem and Stinespring’s Theorem, there exist 
a Hilbert space K, a *-representation π : CX → B(K) and an isometry W ∈ B(H, K), 
such that φ(u) = W ∗π(u)W , u ∈ TX . By Lemma 3.3, π = πV for some bi-isometry 
V = (Va,x)a,x. By (13), E := (π(ex,x′,a,a′))x,x′,a,a′ ∈ (MXA ⊗ B(K))+, and hence

(φ(ex,x′,a,a′)) = (IX ⊗ IA ⊗W )∗E(IX ⊗ IA ⊗W ) ∈ (MXA ⊗B(H))+ .

In addition,
∑
b∈X

W ∗V ∗
b,xVb,x′W = δx,x′W ∗W = δx,x′I, x, x′ ∈ X,

and
∑
y∈X

W ∗V ∗
a,yVa′,yW = δa,a′W ∗W = δa,a′I, a, a′ ∈ X,

that is, the operator matrix (φ(ex,x′,a,a′))x,x′,a,a′ is bistochastic.
(ii)⇒(iii) By Theorem 3.2, there exist a Hilbert space K and a bi-isometry V =

(Va,x)a,x ∈ B(HX , KX) such that

φ(ex,x′,a,a′) = V ∗
a,xVa′,x′ , x, x′, a, a′ ∈ X.

Recalling (15), we have

πV (ex,x′,a,a′) = θV (va,x)∗θV (va′,x′) = V ∗
a,xVa′,x′ = φ(ex,x′,a,a′),

and hence the *-representation πV of CX is an extension of φ.
(iii)⇒(i) is trivial.
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(i’)⇒(ii’) is a direct consequence of (13) and the fact that TX is an operator subsystem 
of CX .

(ii’)⇒(i’) Let T = φ(1) and note that, for any x, a ∈ X, we have
∑
b∈X

Ex,x,b,b =
∑
b∈X

φ(ex,x,b,b) = T =
∑
y∈X

φ(ey,y,a,a) =
∑
y∈X

Ey,y,a,a. (17)

Assume first that T is invertible. Following the proof of [50, Proposition 5.4], let ψ :
TX → B(H) be the map given by

ψ(u) = T−1/2φ(u)T−1/2, u ∈ TX . (18)

Setting F = (ψ(ex,x′,a,a′))x,x′,a,a′ , we have that

F =
(
IXA ⊗ T−1/2

)
E
(
IXA ⊗ T−1/2

)
≥ 0,

and (17) shows that F is a bistochastic operator matrix. By the implication (ii)⇒(i), ψ
is completely positive, and hence so is φ, as φ(·) = T 1/2ψ(·)T 1/2.

Now relax the assumption that T be invertible. Using the implication (ii)⇒(i), let 
f : TX → C be the state given by f(ex,x′,a,a′) = 1

|X|δx,x′δa,a′ and, for ε > 0, let 
φε : TX → B(H) be given by φε(u) := φ(u) + εf(u)I. Then

(φε(ex,x′,a,a′))x,x′,a,a′ = E + ε

|X|IXX

and φε(I) = T + εI is invertible. By the previous paragraph, φε is completely positive 
and, since φε →ε→0 φ in the point-norm topology, we conclude that φ is completely 
positive.

Finally, suppose that E = (Ex,x′,a,a′)x,x′,a,a′ is a bistochastic operator matrix acting 
on H. Letting V be the bi-isometry, associated with E via Theorem 3.2, we have that 
the completely positive map φ := πV |TX

satisfies the equalities φ(ex,x′,a,a′) = Ex,x′,a,a′

for all x, x′, a, a′. �
We note that, if S is an operator system, its Banach space dual Sd can be equipped 

with a natural matricial order structure. To this end, we recall [13, Section 4] that any 
matrix φ = (φi,j)ni,j=1 ∈ Mn(Sd) gives rise to a linear map Fφ : S → Mn, defined by 
letting

Fφ(u) =
n∑

i,j=1
φi,j(u)εi,j , (19)

and set

Mn(Sd)+ = {φ ∈ Mn(Sd) : Fφ is completely positive}.
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It was shown in [13, Corollary 4.5] that, if S is a finite dimensional operator system 
then the (matrix ordered) dual Sd is an operator system, when equipped with a suitable 
faithful state as an Archimedean order unit. It is straightforward to verify that, in this 
case, Sdd ∼=c.o.i. S.

We identify an element T ∈ MXA with its matrix (λx,x′,a,a′)x,x′,a,a′ , where

λx,x′,a,a′ = 〈T (ex′ ⊗ ea′), ex ⊗ ea〉, x, x′ ∈ X, a, a′ ∈ A.

Let

LX,A =
{

(λx,x′,a,a′) ∈ MXA : ∃ c ∈ C s.t.
∑
a∈A

λx,x′,a,a = δx,x′c, x, x′ ∈ X

}

and consider LX,A as an operator subsystem of MXA. It was shown in [50, Proposition 
5.5] that the linear map Λ̃ : T d

X,A → LX,A, given by

Λ̃(φ) = (φ(ẽx,x′,a,a′))x,x′,a,a′∈X ,

is a unital complete order isomorphism between T d
X,A and LX,A. Let

LX = {(λx,x′,a,a′)x,x′,a,a′ ∈ MXX : there exists c ∈ C s.t.∑
b∈X

λx,x′,b,b = δx,x′c and
∑
y∈X

λy,y,a,a′ = δa,a′c, for all x, x′, a, a′ ∈ X}.

Remark 3.5. If C = (λx,x′,a,a′)x,x′,a,a′ ∈ MXA is a matrix and c1, c2 are scalars such that ∑
b∈X λx,x′,b,b = δx,x′c1 for all x, x′ ∈ X and 

∑
y∈X λy,y,a,a′ = δa,a′c2 for all a, a′ ∈ A, 

then

c1 = 1
|X|Tr(C) = c2.

Proposition 3.6. The linear map Λ : T d
X → LX , given by

Λ(φ) = (φ(ex,x′,a,a′))x,x′,a,a′∈X (20)

is a well-defined complete order isomorphism.

Proof. The arguments follow the proof of [50, Proposition 5.5], and we only highlight 
the required modifications. Using Theorem 3.4, we see that the map Λ+ :

(
T d
X

)+ → L+
X , 

given by

Λ+(φ) = (φ(ex,x′,a,a′)) ′ ′ , φ ∈
(
T d
X

)+
,
x,x ,a,a
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is well-defined; by additivity and homogeneity, Λ+ extends to a (C-)linear map Λ : T d
X →

LX . A further application of Theorem 3.4, combined with Theorem 3.2, shows that Λ is 
completely positive and bijective.

Let φi,j ∈ T d
X , i, j = 1, . . . , m, be such that the matrix (Λ(φi,j))mi,j=1 is a pos-

itive element of Mm (LX). Let Φ : TX → Mm be given by Φ(u) = (φi,j(u))mi,j=1. 
Then (Φ(ex,x′,a,a′)) ∈ Mm (LX)+. By Theorem 3.4, Φ is completely positive, that is, 
(φi,j)mi,j=1 ∈ Mm

(
T d
X

)+. Thus, Λ−1 is completely positive, and the proof is complete. �
Corollary 3.7. The linear map f : TX → TX , given by f(ex,x′,a,a′) = ex′,x,a′,a, is a complete 
order automorphism.

Proof. The map Φ : MXX → MXX , given by Φ(εx,a ⊗ εx′,a′) = εx′,a′ ⊗ εx,a, is a (uni-
tarily implemented) complete order automorphism. Further, Φ(LX) = LX , and hence 
Φ induces a complete order automorphism Φ0 : LX → LX . Using Proposition 3.6, we 
have that its dual Φ∗

0 a complete order automorphism of TX . For x, x′, a, a′ ∈ X and 
T = (λx,x′,a,a′) ∈ LX , we have

〈Φ∗
0(ex,x′,a,a′), T 〉 = 〈ex,x′,a,a′ ,Φ0(T )〉 = λx′,x,a′,a = 〈f(ex,x′,a,a′), T 〉 ,

and the proof is complete. �
Write

JX = span

⎧⎨
⎩
∑
y∈X

ẽy,y,a,a′ − δa,a′1 : a, a′ ∈ X

⎫⎬
⎭ ; (21)

thus, JX is a linear subspace of the operator system TX,A defined in (16). Let J̃X be the 
closed ideal of CX,A, generated by JX . Write qX for the quotient map from TX,A onto 
TX,A/JX .

Recall that, if S is an operator system, a subspace J ⊆ S is called a kernel [31, 
Definition 3.2] if there exist an operator system R and a unital completely positive map 
(equivalently, a completely positive map) φ : S → R such that J = ker(φ).

Proposition 3.8. The space JX is a kernel in TX,A and the linear map ι, given by

ι (qX (ẽx,x′,a,a′)) = ex,x′,a,a′ , x, x′, a, a′ ∈ X, (22)

is a well-defined complete order isomorphism from TX,A/JX onto TX . In addition, 
CX,A/J̃X

∼= CX , up to a canonical *-isomorphism.

Proof. Let α : LX → LX,A be the inclusion map. Since LX and LX,A are operator 
subsystems of MXX , we have that α is a complete order embedding. By [22, Proposition 
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1.15], [50, Proposition 5.5] and Proposition 3.6, its dual α∗ : TX,A → TX is a complete 
quotient map. Note that, if T ∈ LX and a, a′ ∈ X then

〈
α∗

⎛
⎝∑

y∈X

ẽy,y,a,a′ − δa,a′1

⎞
⎠ , T

〉
=
〈∑

y∈X

ẽy,y,a,a′ − δa,a′1, α(T )
〉

= 0,

that is, JX ⊆ ker(α∗).
Consider the canonical linear mappings

TX,A → TX,A/JX → TX,A/ ker(α∗) → TX ,

of which the first two are surjective linear maps whose composition is completely positive, 
while the third is a complete order isomorphism (note that the quotient TX,A/JX is linear 
algebraic). Dualising and using Proposition 3.6, we obtain the chain of maps

LX
∼= (TX,A/ ker(α∗))d ↪→ (TX,A/JX)d → LX,A. (23)

By the definition of JX (see (21)), the elements of (TX,A/JX)d correspond, via the last 
of the three maps in (23), to elements of the subspace LX of LX,A. It now follows that 
the middle map in (23) is a linear isomorphism, and hence ker(α∗) = JX . In particular, 
JX is a kernel in TX,A and (TX,A/JX)d ∼= LX complete order isomorphically. Dualising, 
we see that TX,A/JX

∼= TX complete order isomorphically via the map ι defined in (22).
By the universal property of CX , there exists a unital *-epimorphism π : CX,A → CX

such that π(ẽx,x′,a,a′) = ex,x′,a,a′ , x, x′, a, a′ ∈ X. Let J = ker(π) and π̃ : CX,A/J → CX
be the induced *-isomorphism. We have

π

(
δa,a′1 −

∑
x∈X

ẽx,x,a,a′

)
= δa,a′1 −

∑
x∈X

ex,x,a,a′ = 0;

thus, J̃X ⊆ J .
The block operator matrix 

(
ẽx,x′,a,a′ + J̃X

)
x,x′,a,a′ is bistochastic, and hence it gives 

rise, via Theorem 3.4, to a canonical unital surjective *-homomorphism π′ : CX →
CX,A/J̃X . We thus have a chain of unital *-homomorphisms

CX π′
−→ CX,A/J̃X −→ CX,A/J π̃−→ CX ,

whose composition is the identity. It follows that J = J̃X , and the proof is complete. �
In the sequel, write q̂X : CX,A → CX for the quotient map arising from Proposition 3.8, 

and continue to write qX for the quotient map from TX,A onto TX . Before formulating 
the next corollary, we recall that an operator system S is said to possess the local lifting 
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property [31, Section 8] if for every finite dimensional operator subsystem S0 ⊆ S, C*-
algebra A, and closed ideal J ⊆ A, every unital completely positive map φ0 : S0 → A/J
admits a lifting to a completely positive map φ : S0 → A (that is, if q : A → A/J denotes 
the quotient map, the identity q ◦ φ = φ0 holds).

Corollary 3.9. The operator system TX has the local lifting property.

Proof. By [50, Corollary 5.6], TX,A is an operator system quotient of MXX while, by 
Proposition 3.8, TX is an operator system quotient of TX,A. It follows that TX is an 
operator system quotient of MXX . The statement is now a consequence of [29, Theorem 
6.8]. �

Realising the commuting tensor product of operator systems as an operator subsystem 
of maximal tensor products has been of importance from the beginning of the tensor 
product theory in the operator system category [30]. By Theorem 3.4 and [30, Theorem 
6.4], for an arbitrary operator system R, we have TX ⊗c R ⊆c.o.i. CX ⊗max C∗

u(R); the 
next proposition establishes a stronger inclusion.

Proposition 3.10. Let R be an operator system. Then TX ⊗c R ⊆c.o.i. CX ⊗max R.

Proof. Let ι : TX → CX be the inclusion map. By the functioriality of the commuting ten-
sor product and the fact that the commuting and the maximal tensor products coincide 
provided one of the terms is a C*-algebra [30, Theorem 6.7], ι ⊗id : TX⊗cR → CX⊗maxR
is a (unital) completely positive map. Assume that

w ∈ Mn (TX ⊗R) ∩Mn (CX ⊗max R)+ ,

let H be a Hilbert space, and φ : TX → B(H) and ψ : R → B(H) be unital completely 
positive maps with commuting ranges. By Theorem 3.4, φ extends to a *-homomorphism 
π : CX → B(H). Since CX is generated by TX as a C*-algebra, π(u) ∈ ψ(R)′ for every 
u ∈ CX ; thus,

(φ · ψ)(n)(w) = (π · ψ)(n)(w) ∈ Mn (B(H))+ ,

and hence w ∈ Mn (TX ⊗c R)+. It follows that ι ⊗ id is a complete order embedding. �
4. Quantum magic squares

In [15], the concept of a quantum magic square was defined and studied, exhibiting 
examples which show that not every quantum magic square dilates to a magic unitary. 
The aim of this section is to present an operator system viewpoint on this result, linking 
the dilation properties of a quantum magic square to complete positivity of canonical 
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maps, associated with it. The universal operator system of a quantum magic square and 
its properties will further be used in Section 5.

Recall [15] that a block operator matrix E = (Ex,a)x,a∈X , where Ex,a ∈ B(H), x, a ∈
X, is called a quantum magic square if Ex,a ≥ 0 and

∑
b∈X

Ex,b =
∑
y∈X

Ey,a = I for all x, a ∈ X.

The quantum magic square E is called a magic unitary (or a quantum permutation) if 
Ex,a is a projection for all x, a ∈ X (see e.g. [34, Definition 2.3]). Noting that DXX ⊗
B(H) ⊆ MXX ⊗ B(H), we have that E is a quantum magic square precisely when ∑

x,a∈X εx,x ⊗ εa,a ⊗ Ex,a is a bistochastic operator matrix in MXX ⊗ B(H).
Two subclasses of quantum magic squares were singled out in [15] (see [15, Definition 

5 and Example 8]). We will call a quantum magic square (Ex,a)x,a, acting on a Hilbert 
space H, dilatable if there exists a Hilbert space K, an isometry V : H → K, and a 
quantum permutation (Px,a)x,a acting on K, such that

Ex,a = V ∗Px,aV, x, a ∈ X. (24)

The quantum magic square (Ex,a)x,a will be called locally dilatable if (24) holds for a 
commuting family {Px,a}x,a that forms a quantum permutation. It is clear that, up to 
unitary identifications, condition (24) can be replaced by the conditions Ex,a = QPx,aQ, 
where we have assumed that H ⊆ K, and Q : K → H is the orthogonal projection.

For x, a ∈ X, we set ex,a := ex,x,a,a and

SX := span{ex,a : x, a ∈ X},

viewed as an operator subsystem of TX .

Theorem 4.1. Let H be a Hilbert space and φ : SX → B(H) be a linear map. Consider 
the conditions

(i) φ is a unital completely positive map;
(ii) (φ(ex,a))x,a is a quantum magic square,

and

(i’) φ is a completely positive map;
(ii’) (φ(ex,a))x,a ∈ (DXX ⊗ B(H))+.

Then (i)⇔(ii) and (i’)⇔(ii’). Moreover, if (Ex,a)x,a is a quantum magic square acting 
on a Hilbert space H then there exists a (unique) unital completely positive map φ :
SX → B(H) such that φ(ex,a) = Ex,a for all x, a ∈ X.
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Proof. (i)⇒(ii) Let φ : SX → B(H) be a unital completely positive map, for some 
Hilbert space H. By Arveson’s Extension Theorem, φ has a completely positive ex-
tension φ̃ : TX → B(H). Setting Ex,x′,a,a′ := φ̃(ex,x′,a,a′), Theorem 3.4 implies that 
(Ex,x′,a,a′)x,x′,a,a′ is a bistochastic matrix. In particular, (φ̃(ex,a))x,a, that is, (φ(ex,a))x,a, 
is a quantum magic square.

(ii)⇒(i) Set Ex,a := φ(ex,a) and Ẽx,x′,a,a′ := δx,x′δa,a′Ex,a, x, x′, a, a′ ∈ X. Then 
(Ẽx,x′,a,a′)x,x′,a,a′ is a bistochastic operator matrix and, by Theorem 3.4, there exists 
a (unital) completely positive map φ̃ : TX → B(H) such that φ̃(ex,x′,a,a′) = Ẽx,x′,a,a′ , 
x, x′, a, a′ ∈ X. As φ = φ̃|SX

, the map φ is completely positive.
(i’)⇒(ii’) is a direct consequence of Theorem 3.4 and Arveson’s Extension Theorem.
(ii’)⇒(i’) Set Ex,a := φ(ex,a), x, a ∈ X. For x ∈ X, let T =

∑
a∈X Ex,a; then T ∈

B(H)+. Assume first that T is invertible. Then the matrix 
(
T−1/2Ex,aT

−1/2)
x,a

is a 
quantum magic square; by the implication (ii)⇒(i), the linear map ψ : SX → B(H), 
given by ψ(ex,a) = T−1/2Ex,aT

−1/2, is completely positive. Since φ(u) = T 1/2ψ(u)T 1/2, 
u ∈ SX , the map φ is completely positive. If T is not invertible, we fix a state f : SX → C

and, for ε > 0, consider the map φε : SX → B(H), given by φε(u) = φ(u) + εf(u)I. The 
proof now proceeds similarly to the proof of the implication (ii’)⇒(i’) of Theorem 3.4.

The last statement in the theorem follows from the proof of the implication 
(ii)⇒(i). �

Let

MX = {(μx,a)x,a ∈ DXX :
∑

b∈X μx,b =
∑

y∈X μy,a, x, a ∈ X},

considered as an operator subsystem of DXX . Since every operator system is spanned 
by its positive elements, MX is the operator system spanned by the scalar bistochastic 
matrices in DXX .

Corollary 4.2. We have that Sd
X

∼= MX , up to a canonical unital complete order isomor-
phism.

Proof. Let M+
X,1 be the convex set of all scalar bistochastic matrices, that is, matrices 

T = (tx,a)x,a ∈ M+
X with 

∑
a∈X tx,a = 1, x ∈ X. By Theorem 4.1, if T ∈ M+

X,1 then 
the map γ(T ) : SX → C, given by γ(T )(ex,a) = tx,a, is a (well-defined) state on SX . 
Writing an arbitrary element T ∈ MX as a linear combination T =

∑k
i=1 λiTi, where 

Ti ∈ M+
X,1, i = 1, . . . , k, set γ(T ) :=

∑k
i=1 λiγ(Ti). The map γ is (linear and) well-

defined: if Ti = (t(i)x,a) ∈ M+
X,1, i = 1, . . . , k, and 

∑k
i=1 λiTi = 0, then 

∑k
i=1 λit

(i)
x,a = 0

for all x, a ∈ X, which implies that 
∑k

i=1 λiγ(Ti) = 0.
Let E = (E(i,j))ni,j=1 ∈ Mn(MX)+ and, using the canonical shuffle, write E =

(Ex,y)x,y, where Ex,y ∈ Mn, x, y ∈ X, are such that
∑
′

Ex,y′ =
∑
′

Ex′,y, x, y ∈ X. (25)

y ∈X x ∈X
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Using Theorem 4.1, we see that there exists a completely positive map φ : SX → Mn

such that φ(ex,y) = Ex,y, x, y ∈ X. On the other hand, the element γ(n)(E) of Mn(Sd
X)

gives rise, via (19), to a linear map Fγ(n)(E) : SX → Mn. We have that

Fγ(n)(E)(ex,a) =
n∑

i,j=1
γ
(
E(i,j)

)
(ex,a)εi,j = Ex,y = φ(ex,a), x, a ∈ X,

that is, Fγ(n)(E) = φ. In particular, Fγ(n)(E) is completely positive, and it follows that 
the map γ is completely positive.

It follows from Theorem 4.1 that the (linear) map γ is surjective; thus, it is injective. 
We show that γ−1 is completely positive. Assume that W ∈ Mn(Sd

X)+; this means that 
the linear map FW : SX → Mn, canonically associated with W , is completely positive. 
Set Ex,y := FW (ex,y), x, y ∈ X; by Theorem 4.1, E := (Ex,y)x,y ∈ (Mn ⊗MX)+. This, 
in turns, means that (γ−1)(n)(W ) ∈ (Mn ⊗MX)+. Since relations (25) are satisfied for 
the matrices Ex,y, we have that, in fact, (γ−1)(n)(W ) ∈ (Mn ⊗MX)+, and the proof is 
complete. �

Let

J �=
X = span {ex,x′,a,a′ : x �= x′ or a �= a′} ;

note that J �=
X is a linear subspace of the operator system TX .

Proposition 4.3. The space J �=
X is a kernel in TX and, up to a unital complete order 

isomorphism, SX
∼= TX/J �=

X .

Proof. By Theorem 3.4, there exists a unital completely positive map β : TX → SX , 
such that β(ex,x′,a,a′) = δx,x′δa,a′ex,a, x, x′, a, a′ ∈ X. It is clear that J �=

X ⊆ ker(β). On 
the other hand, by Proposition 3.6 and Corollary 4.2, we have a chain of four canonical 
linear maps

MX
∼= Sd

X −→ (TX/ ker(β))d −→
(
TX/J �=

X

)d
−→ T d

X
∼= LX ; (26)

of which the first, the second and the fourth are completely positive. In addition, the 
image of MX in LX under the composition of these maps coincides with itself; thus, 
ker(β) ⊆ J �=

X and hence J �=
X is a kernel in TX . Dualising the second map in (26), we 

further obtain a chain

TX/J �=
X → SX → TX → TX/J �=

X

of completely positive maps, whose composition is the identity map on TX/J �=
X . On the 

other hand, we have a chain of canonical completely positive maps
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SX → TX → TX/J �=
X → SX ,

whose composition is the identity map on SX . It follows that SX
∼= TX/J �=

X , up to a 
canonical complete order isomorphism. �

In Theorem 4.5 below, we characterise the dilatable and locally dilatable quantum 
magic squares in operator system terms. Let C(S+

X) be the universal C*-algebra gener-
ated by projections px,a, x, a ∈ X, with the properties

∑
b∈X

px,b =
∑
y∈X

py,a = 1, x, a ∈ X

(thus, C(S+
X) is the universal C∗-algebra of functions on the quantum permutation group 

on X; see e.g. [9]). Write

PX = span{px,a : x, a ∈ X},

viewed as an operator subsystem of C(S+
X).

Recall [46, Section 3] that the minimal operator system based on PX has matricial 
cones Mn(OMIN(PX))+, given by

Mn(OMIN(PX))+ = {(ti,j)i,j ∈ Mn(PX) :
n∑

i,j=1
λiλjti,j ∈ P+

X ,

for all λi ∈ C, i ∈ [n]},

and that the corresponding maximal operator system based on PX has matricial cones 
Mn(OMAX(PX))+ generated, as cones with an Archimedean order unit, by the elemen-
tary tensors of the form T ⊗ u, where T ∈ M+

n and u ∈ P+
X .

Proposition 4.4. There exist canonical unital completely positive maps

OMAX(PX) −→ SX −→ PX . (27)

Proof. By Theorem 4.1, the linear map q : SX → PX , given by q(ex,a) = px,a, x, a ∈ X, 
is (unital and) completely positive.

Suppose that φ ∈ (Sd
X)+; by Proposition 4.3, φ can be canonically identified with 

a matrix (λx,a)x,a in M+
X . By Birkhoff’s Theorem and the argument in the proof of 

Corollary 4.2, we can further assume that there exists a permutation f : X → X such 
that λx,a = δf(x),a, x, a ∈ X. By the universal property of C(S+

X), the permutation f
gives rise to a canonical *-representation π : C(S+

X) → C. It follows that π|PX
: PX → C

is (completely) positive. We thus obtain a canonical positive map r : Sd
X → Pd

X which, by 
the universal property of the minimal operator system structure, gives rise to a canonical 
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completely positive map Sd
X → OMIN(Pd

X); dualising, we have a canonical completely 
positive map OMAX(PX) → SX .

Note that the composition of the maps in (27) is the identity map on PX ; hence q is 
invertible. Since q−1 = r, we have that q−1 is positive, completing the proof. �
Theorem 4.5. Let H be a Hilbert space and E = (Ex,a)x,a be a quantum magic square 
acting on H. Then

(i) E is dilatable if and only if there exists a completely positive map φ : PX → B(H), 
such that φ(px,a) = Ex,a, x, a ∈ X;

(ii) E is locally dilatable if and only if there exists a completely positive map φ :
OMIN(PX) → B(H), such that φ(px,a) = Ex,a, x, a ∈ X.

Proof. (i) Let P = (Px,a)x,a be a magic unitary on a Hilbert space K containing H
such that, if Q is the projection from K onto H, then Ex,a = QPx,aQ, x, a ∈ X. By the 
universal property of C(S+

X), there exists a unital *-homomorphism π : C(S+
X) → B(K)

such that π(px,a) = Px,a, x, a ∈ X. Let φ : PX → B(H) be the linear map, defined by 
φ(u) = Qπ(u)Q, u ∈ PX . As a compression of a completely positive map, φ is completely 
positive; by construction, φ(px,a) = Ex,a, x, a ∈ X.

For the converse direction, let φ̃ : C(S+
X) → B(H) be a unital completely positive 

extension of φ, whose existence is guaranteed by Arveson’s Extension Theorem. Using 
Stinespring’s Theorem, let K be a Hilbert space, π : C(S+

X) → B(K) be a unital *-
representation, and V : H → K be an isometry, such that φ̃(u) = V ∗π(u)V , u ∈ C(S+

X). 
Letting Px,a = π(px,a), we have that (Px,a)x,a is a magic unitary that dilates E.

(ii) We first consider the case where n := dim(H) is finite. Identifying B(H) with Mn, 
suppose that φ : OMIN(PX) → Mn is a unital completely positive map. Let

fφ : Mn(OMIN(PX)) → C

be the canonical functional, associated with φ as in [43, Chapter 6]; thus,

fφ((wi,j)i,j) = 1
n

∑
〈φ(wi,j)ej , ei〉, (wi,j)i,j ∈ Mn(PX).

By [43, Theorem 6.1], fφ is positive. By [46, Theorem 4.8], fφ can be canonically iden-
tified with an element of Mn(OMAX(Pd

X))+ (see [46, Section 3]). By Proposition 4.4, 
Corollary 4.2 and the definition of the maximal operator system structure,

fφ ≡
rφ∑
l=1

αl ⊗ βl, (28)

where αl ∈ M+
X and βl ∈ M+

n , l ∈ [rφ].
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Assume that the representation (28) has the form fφ ≡ α ⊗ β, where α ∈ MX and 
β ∈ Mn. In this case, φ is given by

φ(px,y) = αx,yβ, x, y ∈ X.

In particular, if Pθ is the permutation unitary corresponding to the permutation θ on 
X, and fφ ≡ Pθ ⊗ β, where β ∈ Mn, then

φ(px,y) =
{
β if θ(x) = y

0 otherwise,
x, y ∈ X.

Returning to the representation (28), use Birkhoff’s Theorem to write αl =
∑

θ λ
(l)
θ Pθ, 

where the summation is over the permutation group of X, the coefficients λ(l)
θ are non-

negative. Thus,

fφ ≡
∑
θ

Pθ ⊗ γθ, (29)

where γθ ∈ M+
n and the summation is over the permutation group of X. By the previous 

paragraph,

Ex,y =
∑

{γθ : θ(x) = y}, x, a ∈ X.

Now [15, Theorem 12 and Remark 7] implies that (φ(px,a))x,a is locally dilatable, after 
noticing that the matrix convex hull of the set denoted CP(|X|) therein coincides with 
the locally dilatable magic quantum squares over Mn. The converse direction follows by 
reversing the given arguments.

We now relax the assumption on the finite dimensionality of H. For simplicity, we 
consider only the case where H is separable. Fix a sequence (Qn)n∈N of projections 
of finite rank such that Qn →n→∞ I in the strong operator topology. Assuming that 
E is locally dilatable, so is (IX ⊗ Qn)E(IX ⊗ Qn) for every n ∈ N and hence, by the 
assumption, the map φn : OMIN(PX) → B(QnH), given by φn(px,a) = QnEx,aQn, 
x, a ∈ X, i ∈ I, is completely positive. Since φ(u) = limn→∞ φn(u), in the weak operator 
topology, u ∈ PX , we have that φ is completely positive.

Conversely, assuming that φ : OMIN(PX) → B(H) is completely positive, let φn :
OMIN(PX) → B(QnH) be the (completely positive) map, given by φn(u) = Qnφ(u)Qn, 
u ∈ PX . Write fφn

=
∑

θ Pθ ⊗ γ
(n)
θ , where γ(n)

θ ∈ B(QnH)+ and the summation is over 
the permutation group of X. Let E(n)

x,y =
∑

{γ(n)
θ : θ(x) = y}; then E(n)

x,y = QnEx,yQn. 
Since ‖Ex,y‖ ≤ 1 for every x, y ∈ X, we therefore have that ‖γ(n)

θ ‖ ≤ 1 for every n ∈ N. 
We can now choose successively weak* cluster points of the sequences 

(
γ

(n)
θ

)
n∈N

, and 

assume that
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fφn
→ f :=

∑
θ

Pθ ⊗ γθ,

where γθ ∈ B(H)+ for every permutation θ of X, in the weak* topology of MX ⊗B(H). 
We further have that Ex,y =

∑
{γθ : θ(x) = y}. The proof of the implication (a)⇒(b) of 

[15, Theorem 12] implies, after replacing the identity operator denoted Is therein with 
IH , that E is locally dilatable. �
5. Representations of bicorrelations

In this section, we define the notion of a bicorrelation and obtain representations of 
the different bicorrelation types in terms of operator system tensor products. We will 
use the main operator system tensor products, introduced in [30]: the minimal (min), 
the commuting (c), and the maximal (max). If τ ∈ {min, c, max} and φi : Si → Ti are 
completely positive maps between operator systems, i = 1, 2, we write φ1 ⊗τ φ2 for the 
corresponding tensor product map from S1 ⊗τ S2 into T1 ⊗τ T2 (note that this map is 
well-defined by [30, Theorems 4.6, 5.5. and 6.3]).

We fix throughout this section finite sets X and Y , and let A = X and B = Y . The 
symbols A and B will continue to be used for clarity, as needed.

5.1. Quantum bicorrelations

If Γ : MXY → MXY is a unital quantum channel then, after the canonical identifica-
tion Md

XY ≡ MXY , its dual Γ∗ : MXY → MXY , defined via the formula

〈Γ∗(ω), ρ〉 = 〈ω,Γ(ρ)〉 = Tr
(
ωΓ(ρ)t

)
, ω, ρ ∈ MXY ,

is also a (unital) quantum channel.

Definition 5.1. A QNS correlation Γ : MXY → MXY is called a QNS bicorrelation if 
Γ(IXY ) = IXY and Γ∗ is a QNS correlation.

We let Qbi
ns be the set of all QNS bicorrelations. We next define different types of QNS 

bicorrelations, motivated by the analogous definitions of QNS correlation types. A QNS 
bicorrelation Γ : MXY → MXY is quantum commuting if there exist a Hilbert space 
H, a unit vector ξ ∈ H and bistochastic operator matrices Ẽ = (Ex,x′,a,a′)x,x′,a,a′ and 
F̃ = (Fy,y′,b,b′)y,y′,b,b′ on H with mutually commuting entries, such that the Choi matrix 
of Γ coincides with

(〈Ex,x′,a,a′Fy,y′,b,b′ξ, ξ〉)y,y
′,b,b′

x,x′,a,a′ (30)

(equivalently, relation (7) holds true). Quantum QNS bicorrelations are defined simi-
larly, but requiring that H has the form HA ⊗HB , for some finite dimensional Hilbert 
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spaces HA and HB, and Ex,x′,a,a′ = Ẽx,x′,a,a′ ⊗ IB , and Fy,y′,b,b′ = IA ⊗ F̃y,y′,b,b′ , for 
some bistochastic operator matrices (Ẽx,x′,a,a′) and (F̃y,y′,b,b′), acting on HA and HB , 
respectively. Approximately quantum QNS bicorrelations are the limits of quantum QNS 
bicorrelations, while local QNS bicorrelations are the convex combinations of the form 
Γ =

∑k
i=1 λiΦi ⊗ Ψi, where Φi : MX → MA and Ψi : MY → MB are unital quantum 

channels, i = 1, . . . , k.
For t ∈ {loc, q, qa, qc}, we let Qbi

t be the set of all QNS bicorrelations of type t.

Remark 5.2. If t ∈ {loc, q, qa, qc, ns} and Γ ∈ Qbi
t then Γ∗ ∈ Qbi

t . The claim is part of 
the definition in the case where t = ns and straightforward in the case where t = loc. 
For the case t = qc, suppose that E = (Ex,x′,a,a′)x,x′,a,a′ and F = (Fy,y′,b,b′)y,y′,b,b′

are bistochastic operator matrices with mutually commuting entries, such that the Choi 
matrix of Γ coincides with (30). Let Ẽa,a′,x,x′ := Ex,x′,a,a′ and F̃b,b′,y,y′ := Fy,y′,b,b′ , and 
set Ẽ = (Ẽa,a′,x,x′)a,a′,x,x′ and F̃ = (F̃b,b′,y,y′)b,b′,y,y′ . We have that Ẽ =

∑
x,x′,a,a′ εa,a′⊗

εx,x′ ⊗ Ex,x′,a,a′ and hence Ẽ is a unitary conjugation of E, implying that Ẽ ≥ 0; 
similarly, F̃ ≥ 0. The claim now follows from the fact that the Choi matrix of Γ∗ is 
equal to 

(〈
Ẽa,a′,x,x′ F̃b,b′,y,y′ξ, ξ

〉)b,b′,y,y′

a,a′,x,x′ . The case t = q is analogous, while t = qa is a 
consequence of the continuity of taking the dual channel.

Remark 5.3. Suppose that Γ ∈ Qloc is unital. Write

Γ =
k∑

i=1
λiΦi ⊗ Ψi (31)

as a convex combination, where Φi : MX → MX and Ψi : MY → MY are quantum 
channels, i = 1, . . . , k. We have that 

∑k
i=1 λiΦi(IX) ⊗ Ψi(IY ) = IXY . It follows that 

0 ≤ Φi(IX) ⊗ Ψi(IY ) ≤ IXY ; since IXY is an extreme point in the unit ball of M+
XY , 

we have that Φi(IX) ⊗ Ψi(IY ) = IXY , for every i = 1, . . . , k. Thus, there exist ci > 0
such that Φi(IX) = ciIX and Ψi(IY ) = 1

ci
IY , for all i = 1, . . . , k. Replacing Φi (resp. 

Ψi) with 1
ci

Φi (resp. ciΨi), we conclude that the representation (31) can be chosen with 
the property that Φi and Ψi are unital quantum channels, i = 1, . . . , k, that is, Γ is 
automatically a local bicorrelation.

We write fy,y′,b,b′ (resp. f̃y,y′,b,b′), y, y′, b, b′ ∈ Y , for the canonical generators of the 
operator system TY (resp. TY,B). If s is a linear functional on TX ⊗ TY or on CX ⊗ CY , 
we write Γs : MXY → MXY for the linear map, given by

Γs (εx,x′ ⊗ εy,y′) =
∑

a,a′∈X

∑
b,b′∈Y

s (ex,x′,a,a′ ⊗ fy,y′,b,b′) εa,a′ ⊗ εb,b′ . (32)

We note that Γ∗
s is given by the identities

Γ∗
s (εa,a′ ⊗ εb,b′) =

∑
′

∑
′

s (ex,x′,a,a′ ⊗ fy,y′,b,b′) εx,x′ ⊗ εy,y′ . (33)

x,x ∈X y,y ∈Y
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Clearly, the correspondence s → Γs is a linear map from the vector space dual (TX,A ⊗
TY,B)d into the space L(MXY ) of all linear transformations on MXY .

Theorem 5.4. Let X and Y be finite sets and Γ : MXY → MXY be a linear map. The 
following are equivalent:

(i) Γ is a QNS bicorrelation;
(ii) there exists a state s : TX ⊗max TY → C such that Γ = Γs.

Proof. (ii)⇒(i) Suppose that s is a state of TX ⊗max TY such that Γ = Γs, and let 
s̃ = s ◦ (qX ⊗max qY ), where qX : TX,A → TX (resp. qY : TY,B → TY ) is the quotient map 
(see the paragraph of equation (21)); we have that s̃ is a state of TX,A ⊗max TY,B . Since 
Γ = Γs̃, by [50, Theorem 6.2], Γ ∈ Qns. In addition,

Γ(IXY ) =
∑

x,a,a′∈X

∑
y,b,b′∈Y

s(ex,x,a,a′ ⊗ fy,y,b,b′)εa,a′ ⊗ εb,b′

=
∑

a,a′∈X

∑
b,b′∈Y

δa,a′δb,b′εa,a′ ⊗ εb,b′ = IXY .

We verify that Γ∗ is no-signalling: for any ωX = (λa,a′)a,a′ ∈ MX and any ωY =
(μb,b′)b,b′ ∈ MY with Tr(ωY ) = 0, by (33) we have

TrY Γ∗(ωX ⊗ ωY )

= TrY
∑

x,x′,a,a′∈X

∑
y,y′,b,b′∈Y

λa,a′μb,b′s(ex,x′,a,a′ ⊗ fy,y′,b,b′)εx,x′ ⊗ εy,y′

=
∑

x,x′,a,a′∈X

∑
b,b′∈Y

λa,a′μb,b′
∑
y∈Y

s(ex,x′,a,a′ ⊗ fy,y,b,b′)εx,x′

=
∑

x,x′,a,a′∈X

∑
b,b′∈Y

λa,a′μb,b′δb,b′s(ex,x′,a,a′ ⊗ 1)εx,x′

=
(∑

b∈Y

μb,b

) ∑
x,x′,a,a′∈X

λa,a′s(ex,x′,a,a′ ⊗ 1)εx,x′ = 0.

Similarly, if ωX ∈ MX has trace zero and ωY ∈ MY is arbitrary then TrXΓ∗(ωX⊗ωY ) = 0
and hence Γ∗ is no-signalling.

(i)⇒(ii) Let C =
(
Ca,a′,b,b′

x,x′,y,y′

)a,a′,b,b′

x,x′,y,y′
be the Choi matrix of Γ; thus, the entries of C

are given by

Ca,a′,b,b′

x,x′,y,y′ = 〈Γ(εx,x′ ⊗ εy,y′), εa,a′ ⊗ εb,b′〉 .

By [50, Theorem 6.2], C ∈ (LX,A ⊗min LY,B)+.
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Let C̃ =
(
C̃x,x′,y,y′

a,a′,b,b′

)x,x′,y,y′

a,a′,b,b′
be the Choi matrix of Γ∗. As both Γ and Γ∗ are no-

signalling, there exist scalars c̃b,b
′

y,y′ , d̃a,a
′

x,x′ , cb,b
′

y,y′ and da,a
′

x,x′ , such that

∑
x∈X

C̃x,x,y,y′

a,a′,b,b′ = δa,a′ c̃b,b
′

y,y′ , y, y′, b, b′ ∈ Y,

∑
y∈Y

C̃x,x′,y,y
a,a′,b,b′ = δb,b′ d̃

a,a′

x,x′ , x, x′, a, a′ ∈ X,

∑
a∈X

Cx,x′,y,y′

a,a,b,b′ = δx,x′cb,b
′

y,y′ , y, y′, b, b′ ∈ Y

and
∑
b∈Y

Cx,x′,y,y′

a,a′,b,b = δy,y′da,a
′

x,x′ , x, x′, a, a′ ∈ X.

Observe that the equalities C̃x′,x,y,y′

a,a′,b,b′ = Ca,a′,b,b′

x,x′,y,y′ hold. The relations, together with 
Remark 3.5, now imply that Lω(C) ∈ LX and Lω′(C) ∈ LY for all ω ∈ MY Y and 
all ω′ ∈ MXX (recall that Lσ denotes the slice map along a functional σ). Thus, C ∈
(LX ⊗min LY )+. Statement (ii) now follows from the canonical identification (TX ⊗max
TY )d ∼= LX ⊗min LY . �
Theorem 5.5. Let X and Y be finite sets and Γ : MXY → MXY be a linear map. The 
following are equivalent:

(i) Γ ∈ Qbi
qc;

(ii) there exists a state s : TX ⊗c TY → C such that Γ = Γs;
(iii) there exists a state s : CX ⊗max CY → C such that Γ = Γs.

Proof. By Theorem 3.4 and [30, Theorem 6.4], TX⊗cTY ⊆ CX⊗maxCY completely order 
isomorphically and hence, by Krein’s Extension Theorem, (ii) and (iii) are equivalent.

(i)⇒(iii) follows from the universal property of CX detailed in Theorem 3.4 and argu-
ments, similar to the ones in [50, Theorem 6.3].

(iii)⇒(i) The GNS representation of s and the universal property of the maximal C*-
algebraic tensor product yield *-representations πX : CX → B(H) and πY : CY → B(H)
with commuting ranges, and a unit vector ξ ∈ H, such that s(u ⊗v) = 〈πX(u)πY (v)ξ, ξ〉, 
u ∈ CX , v ∈ CY . The claim follows by setting Ex,x′,a,a′ = πX(ex,x′,a,a′) and Fx,x′,a,a′ =
πY (fy,y′,b,b′), and appealing to Theorem 3.4. �
Theorem 5.6. Let X and Y be finite sets and Γ : MXY → MXY be a linear map. The 
following are equivalent:

(i) Γ ∈ Qbi
qa;
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(ii) there exists a state s : TX ⊗min TY → C such that Γ = Γs;
(iii) there exists a state s : CX ⊗min CY → C such that Γ = Γs.

Proof. (ii)⇔(iii) follows from the injectivity of the minimal tensor product.
(i)⇒(iii) Given ε > 0, let E and F be bistochastic operator matrices acting on finite 

dimensional Hilbert spaces HX and HY , respectively, and ξ ∈ HX⊗HY be a unit vector, 
such that

|〈Γ(εx,x′ ⊗ εy,y′), εa,a′ ⊗ εb,b′〉 − 〈(Ex,x′,a,a′ ⊗ Fy,y′,b,b′) ξ, ξ〉| < ε,

for all x, x′, a, a′ ∈ X, y, y′, b, b′ ∈ Y . By Lemma 3.3, there exists a *-representation πX

(resp. πY ) of CX (resp. CY ) on HX (resp. HY ) such that Ex,x′,a,a′ = πX(ex,x′,a,a′) (resp. 
Fy,y′,b,b′ = πY (fy,y′,b,b′)), x, x′, a, a′ ∈ X (resp. y, y′, b, b′ ∈ Y ). Let sε be the state on 
CX ⊗min CY given by

sε (u⊗ v) = 〈(πX(u) ⊗ πY (v)) ξ, ξ〉 ,

and s be a cluster point of the sequence {s1/n}n in the weak* topology. Then

s (ex,x′,a,a′ ⊗ fy,y′,b,b′) = lim
n→∞

s1/n (ex,x′,a,a′ ⊗ fy,y′,b,b′)

=
〈
Γ(exe∗x′ ⊗ eye

∗
y′), eaea′ ⊗ ebe

∗
b′
〉
,

giving Γ = Γs.
(iii)⇒(i) Let s be a state satisfying (iv) and ε > 0. By [28, Corollary 4.3.10], there 

exist faithful *-representations πX : CX → B(HX) and πY : CY → B(HY ), unit vectors 
ξ1, . . . , ξn ∈ HX ⊗HY and positive scalars λ1, . . . , λn, with 

∑n
i=1 λi = 1 such that

∣∣∣∣∣s(ex,x′,a,a′ ⊗ fy,y′,b,b′) −
n∑

i=1
λi 〈(πX(ex,x′,a,a′) ⊗ πY (fy,y′,b,b′)) ξi, ξi〉

∣∣∣∣∣ < ε,

for all x, x′, a, a′ ∈ X, y, y′, b, b′ ∈ Y . Let ξ = ⊕n
i=1

√
λiξi ∈ Cn⊗(HX⊗HY ); then ‖ξ‖ = 1. 

Set Ex,x′,a,a′ = In ⊗ πX(ex,x′,a,a′) and Fy,y′,b,b′ = πY (fy,y′,b,b′). Then (Ex,x′a,a′)x,x′,a,a′

(resp. (Fy,y′,b,b′)y,y′,b,b′) is a bistochastic operator matrix on Cn ⊗HX (resp. HY ), and

|s (ex,x′,a,a′ ⊗ fy,y′,b,b′) − 〈Ex,x′a,a′ ⊗ Fy,y′,b,b′ξ, ξ〉| < ε.

Let (Pα)α (resp. (Qβ)β) be a net of finite rank projections on HX (resp. HB), converging 
to the identity in the strong operator topology. Set Hα = PαHA (resp. Kβ = QβHB), 
Eα = (I⊗Pα)E(I⊗Pα) (resp. Fβ = (I⊗Qβ)F (I⊗Qβ)), and ξα,β = 1

‖(Pα⊗Qβ)ξ‖ (Pα⊗Qβ)ξ
(note that ξα,β is eventually well-defined). Then Eα and Fβ are bistochastic operator 
matrices acting on PαH and QβK, respectively, and the QNS correlation associated with 
the triple (Eα, Fβ , ξα,β) is a quantum bicorrelation. �
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Remark 5.7. By Remark 5.2,

Qbi
qc ⊆ Qqc ∩ Qbi

ns. (34)

We do not know if equality holds in (34). The problem reduces to a question about the 
equality of canonical operator system structures. Indeed, it is not difficult to verify that 
the subspace JXY := TX,A ⊗ JY + JX ⊗ TY,B of the operator system TX,A ⊗c TY,B is a 
kernel, and that the states on (TX,A ⊗c TY,B)/JXY correspond precisely to the elements 
of Qqc ∩ Qbi

ns. However, while there is a canonical bijective unital completely positive 
map (TX,A ⊗c TY,B)/JXY → TX ⊗c TY , it is unclear whether its inverse is completely 
positive. If this is the case then Theorem 5.5 will imply the reverse inclusion in (34).

5.2. Classical bicorrelations

In this subsection, we consider a class of correlations that constitute a natural classical 
counterpart of the quantum bicorrelations defined in Subsection 5.1. We fix finite sets 
X and Y , and set A = X and B = Y .

Definition 5.8. An NS correlation p = {(p(a, b|x, y))a,b : (x, y) ∈ X×Y } over the quadru-
ple (X, Y, X, Y ) is called an NS bicorrelation if the family

p∗ := {(p(a, b|x, y))x,y : (a, b) ∈ X × Y }

is an NS correlation.

We let Δ : MXY → DXY be the canonical diagonal expectation. Given an NS correla-
tion p over (X, Y, X, Y ), we let Ep : DXY → DXY be the (classical) information channel, 
given by

Ep(εx,x ⊗ εy,y) =
∑
a∈X

∑
b∈Y

p(a, b|x, y)εa,a ⊗ εb,b.

Further, for a given classical information channel E : DXY → DXY , let ΓE : MXY →
MXY be the quantum channel, given by

ΓE(ω) = (E ◦ Δ)(ω), ω ∈ MXY ,

and set Γp = ΓEp
for brevity. In the reverse direction, given a quantum channel Γ :

MXY → MXY , let EΓ : DXY → DXY be the classical information channel, defined by 
letting EΓ(ω) = (Δ ◦ Γ)(ω), ω ∈ DXY . We note the relation EΓE = E .

Proposition 5.9. Let p be an NS bicorrelation over (X, Y, X, Y ). Then Γp∗ = Γ∗
p. Thus, 

if p ∈ Cbi
ns then Γp ∈ Qbi

ns.
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Proof. For x, a ∈ X and y, b ∈ Y , we have

〈
E∗
p (εx,x ⊗ εy,y), εa,a ⊗ εb,b

〉
= 〈εx,x ⊗ εy,y, Ep(εa,a ⊗ εb,b)〉
= p(x, y|a, b) = p∗(a, b|x, y)
= 〈Ep∗(εx,x ⊗ εy,y), εa,a ⊗ εb,b〉 ,

implying that Ep∗ = E∗
p . For ω1, ω2 ∈ MXY , we thus have

〈
Γ∗
p(ω1), ω2

〉
= 〈ω1, (Ep ◦ Δ)(ω2)〉 = 〈ω1, (Δ ◦ Ep ◦ Δ)(ω2)〉
= 〈Δ(ω1), (Ep ◦ Δ)(ω2)〉 =

〈
(E∗

p ◦ Δ)(ω1),Δ(ω2)
〉

= 〈(Ep∗ ◦ Δ)(ω1),Δ(ω2)〉 = 〈Γp∗(ω1),Δ(ω2)〉
= 〈Γp∗(ω1), ω2〉 ,

completing the proof. �
For t ∈ {loc, q, qa, qc}, let

Cbi
t =

{
p ∈ Cbi

ns : Γp ∈ Qbi
t
}
.

It is straightforward to verify that an NS bicorrelation p over (X, Y, X, Y ) belongs to Cbi
qc

precisely when there exist a Hilbert space H, a unit vector ξ ∈ H and quantum magic 
squares (Ex,a)x,a∈X and (Fy,b)y,b∈Y with commuting entries, such that

p(a, b|x, y) = 〈Ex,aFy,bξ, ξ〉, x, a ∈ X, y, b ∈ Y. (35)

Similarly, p ∈ Cbi
q precisely when the representation (35) is achieved for H = HA ⊗HB , 

where HA and HB are finite dimensional Hilbert spaces, Ex,a = E′
x,a ⊗ IHB

and 
Fy,b = IHA

⊗ F ′
y,b, x, a ∈ X, y, b ∈ Y . Finally, p ∈ Cbi

loc precisely when p is the con-
vex combinations of correlations of the form p(1)(a|x)p(2)(b|y), where (p(1)(a|x))x,a and 
(p(2)(b|y))y,b are (scalar) bistochastic matrices.

For a linear functional s : SX ⊗SY → C, let ps : X×Y ×X×Y → C be the function 
given by

ps(a, b|x, y) = s(ex,a ⊗ ey,b), x, a ∈ X, y, b ∈ Y.

Theorem 5.10. Let X and Y be finite sets and p be an NS correlation over (X, Y, X, Y ). 
Consider the statements

(i) p is an NS bicorrelation;
(ii) there exists a state s : SX ⊗max SY → C such that p = ps;
(i’) p ∈ Cbi

qc;
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(ii’) there exists a state s : SX ⊗c SY → C such that p = ps;
(i”) p ∈ Cbi

qa;
(ii”) there exists a state s : SX ⊗min SY → C such that p = ps.

Then (i)⇔(ii), (i’)⇔(ii’) and (i”)⇔(ii”).

Proof. (i)⇔(ii) By Proposition 4.3 and [22, Proposition 1.16], the states of the maximal 
tensor product SX⊗maxSY correspond in a canonical fashion to the elements of MX⊗min

MY . The proof of the claim can now be completed using a straightforward modification 
of the proof of Theorem 5.4.

(i’)⇒(ii’) Write ιX : SX → TX and ιY : SY → TY for the inclusion maps and let 
p ∈ Cbi

qc. By Theorem 5.5, there exists a state s : TX ⊗c TY → C such that Γp = Γs. Let 
s̃ = s ◦ (ιX ⊗ ιY ); then s̃ is a state on SX ⊗c SY for which p = ps̃.

(ii’)⇒(i’) Let s : SX ⊗c SY → C be such that p = ps, and let βX : TX → SX (resp. 
βY : TY → SY ) be the quotient map, as defined in the proof of Proposition 4.3. We have 
that

s̃ := s ◦ (βX ⊗ βY ) : TX ⊗c TY → C

is a state. By Theorem 5.5, the map Γs̃ : MXY → MXY , corresponding to s̃ via (32), is 
a quantum commuting QNS bicorrelation. Since Γs̃ = Γp, we have that p ∈ Cbi

qc.
(i”)⇔(ii”) follows in a similar way as the equivalence (i’)⇔(ii’), using Theorem 5.6 in 

the place of Theorem 5.5. �
6. Concurrent bicorrelations

Throughout the section, let X be a finite set and Y = A = B = X. Let JX =
1

|X|
∑

x,y∈X εx,y⊗εx,y be the canonical maximally entangled state in MXX . We specialise 
the definition of a concurrent QNS correlation from [10]:

Definition 6.1. A QNS bicorrelation Γ : MXX → MAA is called concurrent if Γ(JX) = JA.

For t ∈ {loc, q, qa, qc, ns}, we let Qbic
t be the set of all concurrent bicorrelations that 

belong to Qbi
t .

Remark 6.2. Note that if Γ ∈ Qbic
ns , then Γ∗ ∈ Qbic

ns as well. Indeed, since Γ is unital, its 
dual map Γ∗ : MAA → MXX is trace-preserving; thus, Tr(Γ∗(JA)) = 1. Therefore

1 = 〈Γ(JX), JA〉 = 〈JX ,Γ∗(JA)〉 = |〈JX ,Γ∗(JA)〉|

≤ ‖JX‖2‖Γ∗(JA)‖2 ≤ ‖Γ∗(JA)‖1 = 1.
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The equality clause in the Cauchy-Schwarz inequality now implies that Γ∗(JA) is a 
multiple of JX . If Γ∗(JA) = αJX for some α ∈ C, then α〈JX , JX〉 = 〈Γ∗(JA), JX〉 =
〈JA, Γ(JX)〉 = 〈JA, JA〉, giving α = 1.

The universal C*-algebra generated by the entries of a unitary matrix (ũa,x)a,x∈X

(known as the Brown algebra) was first studied by L. G. Brown [11]. We will introduce 
a subquotient of the Brown algebra, whose traces will be shown to represent concurrent 
bicorrelations of different types. First, set

ũx,x′,a,a′ = ũ∗
a,xũa′,x′ , x, x′, a, a′ ∈ X,

and let UX,A be the C∗-subalgebra of the Brown algebra, generated by the set {ũx,x′,a,a′ :
x, x′, a, a′ ∈ X}.

Lemma 6.3. If π : UX,A → B(H) is a unital *-representation then there exists a block 
operator unitary U = (Ua,x)a,x such that π(ũx,x′,a,a′) = U∗

a,xUa′,x′ , x, x′, a, a′ ∈ X.

Proof. Let VX,A be the universal TRO of an isometry (va,x)a,x, as defined in [50, Section 
5]. In the sequel, we will consider products vε1a1,x1

vε2a2,x2
· · · vεkak,xk

, where εi is either the 
empty symbol or ∗, and εi �= εi+1 for all i, as elements of either VX,A, V∗

X,A, CX,A or 
the left C*-algebra corresponding to the TRO VX,A. Let J be the closed ideal of CX,A, 
generated by the elements

∑
x∈X

ẽy,x,b,aẽx,y,a,b − ẽy,y,b,b, y, a, b ∈ X.

By [10, Lemma 4.2], the map ρ : ẽx,x′,a,a′ �→ ũx,x′,a,a′ , x, x′, a, a′ ∈ X extends to a 
surjective *-homomorphism ρ : CX,A → UX,A with ker ρ = J . Let π : UX,A → B(H) be a 
*-representation. Then π ◦ ρ : CX,A → B(H) is a *-representation that annihilates J . By 
[50, Lemma 5.1], there exists a block operator isometry U = (Ua,x)a,x∈X , where Ua,x ∈
B(H, K) for some Hilbert space K, x, a ∈ X, such that (π ◦ ρ)(ẽx,x′,a,a′) = U∗

a,xUa′,x′ , 
x, x′, a, a′ ∈ X.

By the definition of VX,A, the operator matrix U gives rise to a canonical ternary 
representation θU : VX,A → B(H, K). Without loss of generality, we can assume that 
K = span(θU (VX,A)H). The fact that (π ◦ ρ)(J ) = {0} now implies that

U∗
b,y

(
I −

∑
x∈X

Ua,xU
∗
a,x

)
Ub,y = 0, y, a, b ∈ X. (36)

Since UU∗ ≤ I, we have that I −
∑

x∈X Ua,xU
∗
a,x ≥ 0, and hence (36) reads

(
I −

∑
Ua,xU

∗
a,x

)1/2

Ub,y = 0, y, a, b ∈ X,

x∈X
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showing further that
〈(

I −
∑
x∈X

Ua,xU
∗
a,x

)
Tξ, T ξ

〉
= 0, a ∈ X, ξ ∈ H,T ∈ θU (VX,A).

By polarisation, we have 
∑

x∈X Ua,xU
∗
a,x = I, a ∈ X. As I − UU∗ is a positive block-

diagonal operator with the zero diagonal, I − UU∗ = 0; thus, U is unitary. Since 
U∗
a,xUb,y = π(ũx,y,a,b), x, y, a, b ∈ X, the proof is complete. �
Recall that ẽx,x′,a,a′ are the canonical generators of the C*-algebra CX,A (so that the 

matrix (ẽx,x′,a,a′)x,x′,a,a′ is a universal stochastic operator matrix). Let

g̃x,x
′

y,z,b,c = δx,x′ ẽy,z,b,c −
∑
a∈X

ẽy,x,b,aẽx′,z,a,c

and

h̃a,a′

y,z,b,c = δa,a′ ẽy,z,b,c −
∑
x∈X

ẽy,x,b,aẽx,z,a′,c,

and J̃1 (resp. J̃2) be the closed ideal of CX,A, generated by g̃x,x
′

y,z,b,c (resp. h̃a,a′

y,z,b,c), 
y, z, b, c, x, x′ ∈ X (resp. y, z, b, c, a, a′ ∈ X).

Lemma 6.4. Up to a canonical *-isomorphism, CX,A/J̃2 � UX,A.

Proof. Denote by J̃ 0
2 the closed ideal of CX,A, generated by the elements h̃a,a

y,y,b,b, where 
a, b, y ∈ X. It was shown in [10, Lemma 4.2] that

CX,A/J̃ 0
2 � UX,A.

Let ρ : CX,A → B(K) be a unital *-representation that annihilates J̃ 0
2 , with the property 

that the corresponding induced representation of CX,A/J̃ 0
2 is faithful. By Lemma 6.3, 

there exists a unitary Ũ = (Ũa,x)a,x∈X such that, if Ũx,x′,a,a′ = Ũ∗
a,xŨa′,x′ , then

ρ(ẽx,x′,a,a′) = Ũx,x′,a,a′ , x, x′, a, a′ ∈ X.

But then, since Ũ is unitary,

ρ
(
h̃a,a′

y,z,b,c

)
= δa,a′Ũy,z,b,c −

∑
x∈X

Ũy,x,b,aŨx,z,a′,c

= δa,a′Ũy,z,b,c −
∑
x∈X

Ũ∗
b,yŨa,xŨ

∗
a′,xŨc,z

= δa,a′Ũy,z,b,c − δa,a′Ũ∗
b,yŨc,z = 0.
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Thus, ρ automatically annihilates J̃2. The proof is complete. �
We say that a block operator matrix U = (ua,x)a,x ∈ MX(B(H)) is a bi-unitary if 

both U and U t are unitary. Let C(U+
X) be the universal C*-algebra, generated by the 

entries of a bi-unitary (ua,x)a,x∈X , and C(PU+
X) be the subalgebra of C(U+

X) generated 
by the length two words of the form

ux,x′,a,a′ := u∗
a,xua′,x′ , x, x′, a, a′ ∈ X.

Further, recall that ex,x′,a,a′ , x, x′, a, a′ ∈ X, denote the canonical generators of the 
C*-algebra CX (so that (ex,x′,a,a′)x,x′,a,a′ is a universal bistochastic operator matrix), 
set

gx,x
′

y,z,b,c = δx,x′ey,z,b,c −
∑
a∈X

ey,x,b,aex′,z,a,c (37)

and

ha,a′

y,z,b,c = δa,a′ey,z,b,c −
∑
x∈X

ey,x,b,aex,z,a′,c, (38)

and let J1 (resp. J2) be the closed ideal of CX , generated by the elements gx,x
′

y,z,b,c (resp. 
ha,a′

y,z,b,c), where y, z, b, c, x, x′ ∈ X (resp. y, z, b, c, a, a′ ∈ X).
We note that the universal C∗-algebra C(U+

X) and its subalgebra C(PU+
X) have been 

well-studied in the compact quantum group literature. The C∗-algebra C(U+
X) was intro-

duced by Wang in [52], where it was shown to have the structure of a C∗-algebraic com-
pact quantum group. In particular, C(U+

X) comes equipped with a co-associative comul-
tiplication making it into a non-commutative analogue of the C∗-algebra of continuous 
functions of the unitary group UX . The structure of the quantum group C(U+

X) was later 
studied in detail by Banica in [2]. On the other hand, the subalgebra C(PU+

X) ⊆ C(U+
X)

can be naturally interpreted as a non-commutative version of the space of continuous 
functions on the projective unitary group PUX/T . In the classical setting, the conju-
gation action of U+

X on MX induces a group isomorphism PUX
∼= Aut(MX), where 

Aut(MX) is the group of ∗-automorpohisms of MX .
In the quantum setting, it is natural to expect that a similar identification between 

PU+
X and quantum automorphisms of MX should hold, and indeed this is the case: In [53], 

the quantum automorphism group Aut+(MX) was introduced by Wang (via an abstract 
universal C∗-algebra C(Aut+(MX)) with generators and relations), and later Banica 
showed in [3] that the natural quantum group C∗-algebra morphism C(Aut+(MX)) →
C(PU+

X) is actually an isomorphism. In Lemma 6.5 below, we extend Banica’s result 
by showing that in fact any “concrete” quantum automorphism of MX (that is, a ∗-
homomorphism π : C(Aut+(MX)) ∼= C(PU+

X) → B(H)) is implemented by a “concrete” 
conjugation of MX by a bi-unitary (that is, π is the restriction of a representation 
C(U+

X) → B(H)).
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Lemma 6.5.

(i) We have CX/J1 + J2 � C(PU+
X).

(ii) If π : C(PU+
X) → B(H) is a unital *-representation then there exists a bi-unitary 

(Ua,x)a,x ∈ MX(B(H)) such that π(ux,x′,a,a′) = U∗
a,xUa′,x′ .

Proof. (i) Set J = J1 + J2, recall that J̃X is the closed ideal of CX,A generated by the 
elements

∑
y∈X

ẽy,y,a,a′ − δa,a′1, a, a′ ∈ X

(see the paragraph containing equation (21)) and, recalling the ideals J̃1 and J̃2 of CX,A

defined before Lemma 6.4, let

J̃ = J̃X + J̃1 + J̃2. (39)

According to Proposition 3.8, CX,A/J̃X � CX ; thus, CX,A/J̃ � CX/J .
Recall that UX,A is the universal C∗-algebra with generators ũx,x′,a,a′ := ũ∗

a,xũa′,x′ , 
x, x′, a, a′ ∈ X, where the matrix (ũa,x)a,x is unitary. By Lemma 6.4, we have the canon-
ical *-isomorphism CX,A/J̃2 � UX,A.

We have that CX,A/J̃ � (CX,A/J̃2)/(J̃ /J̃2). Using the identification in Lemma 6.4, 
we have that J̃ /J̃2 is generated by the elements

∑
y∈X

ũy,y,a,a′ − δa,a′1, a, a′ ∈ X,

and

∑
a∈X

ũy,x,b,aũx′,z,a,c − δx,x′ ũy,z,b,c, y, z, b, c, x, x′ ∈ X.

Let ρ : UX,A � CX,A/J̃2 → B(K) be a unital *-representation that annihilates J̃ /J̃2. 
By Lemma 6.3, there exists a unitary Ũ = (Ũa,x)a,x such that ρ(ũx,x′,a,a′) = Ũ∗

a,xŨa′,x′ , 
x, x′, a, a′ ∈ X,

∑
y∈X

Ũ∗
a,yŨa′,y = δa,a′I, a, a′ ∈ X, (40)

and

Ũ∗
b,y

(∑
Ũa,xŨ

∗
a,x′ − δx,x′I

)
Ũc,z = 0, x, x′, y, z, b, c ∈ X. (41)
a∈X
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By (40), Ũ t = (Ũy,a)a,y is an isometry. But then Ũ t(Ũ t)∗ ≤ I, implying, by comparing 
the (x, x)-entries of the matrices, that 

∑
a∈X Ũa,xŨ

∗
a,x ≤ I, x ∈ X. On the other hand, 

(41) implies Ũ∗
b,y

(∑
a∈X Ũa,xŨ

∗
a,x − I

)
Ũb,y = 0. Thus,

(
I −

∑
a∈X

Ũa,xŨ
∗
a,x

)1/2

Ũb,y = 0

and hence 
(∑

a∈X Ũa,xŨ
∗
a,x − I

)
Ũb,y = 0. Since Ũ is unitary, this implies

0 =
(∑

a∈X

Ũa,xŨ
∗
a,x − I

)∑
y∈X

Ũb,yŨ
∗
b,y =

∑
a∈X

Ũa,xŨ
∗
a,x − I.

Now,
(
Ũ∗
b,y ⊗ I

) (
I − Ũ tŨ t∗) (Ũb,y ⊗ I

)
(42)

is a positive block matrix in MX(B(H)) and has zeros on its main diagonal. It follows 
that the matrix (42) is zero and hence

(
I − Ũ tŨ t∗)1/2 (Ũb,y ⊗ I

)
= 0, b, y ∈ X. (43)

Multiplying (43) by Ũ∗
b,y ⊗ I on the right and adding up along the variable y, we obtain 

Ũ tŨ t∗ = I; thus, U t is unitary. Therefore, U gives rise to a unital *-representation of 
C(U+

X) and, after restriction, to a unital *-representation of C(PU+
X). We have thus 

shown that every unital ∗-representation ρ : CX,A/J̃2 → B(K) that annihilates J̃ /J̃2
induces a unital ∗-homomorphism from C(PU+

X) to B(K).
By [50, Theorem 5.2], there exists a ∗-homomorphism ϕ : CX,A → C(PU+

X), such 
that ϕ(ẽx,x′,a,a′) = ux,x′,a,a′ , x, x′, a, a′ ∈ X. A straightforward verification shows that 
ϕ annihilates J̃2 and hence gives rise to a ∗-homomorphism ϕ̃ : CX,A/J̃2 → C(PU+

X), 
ẽx,x′,a,a′ + J̃2 �→ ux,x′,a,a′ . It is easy to see that J̃ /J̃2 ⊆ ker ϕ̃. The previous paragraph 
shows that if T ∈ CX,A/J̃2 then

‖T + J̃ /J̃2‖ = sup{‖ρ(T )‖ : ρ a *-rep. of CX,A/J̃2 with ρ(J̃ /J̃2) = 0}
≤ ‖ϕ̃(T )‖,

giving the inclusion ker(ϕ̃) ⊆ J̃ /J̃2 and hence the equality ker(ϕ̃) = J̃ /J̃2. As ϕ̃ is 
surjective we obtain the statement.

(ii) Let π : C(PU+
X) → B(H) be a unital *-representation. Letting ρ : CX,A → CX,A/J̃

be the quotient map, the proof of (i) allows us to consider ρ as a *-epimorphism from CX,A

onto C(PU+
X). It further exhibits a bi-unitary Ũ = (Ũa,x)a,x such that (π◦ρ)(ẽx,x′,a,a′) =

Ũ∗
a,xŨa′,x′ , x, x′, a, a′ ∈ X. We now see that π(ux,x′,a,a′) = Ũ∗

a,xŨa′,x′ , x, x′, a, a′ ∈ X, 
and the proof is complete. �
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We recall that the opposite C*-algebra Aop of a C*-algebra A has the same set, linear 
structure and involution as A, and multiplication given by uopvop = (vu)op, where uop

denotes the element u ∈ A when viewed as an element of Aop. Given a Hilbert space H, 
let Hd denote its dual Banach space and, for an operator T ∈ B(H), let T d : Hd → Hd

be its dual. We note the identity

(T ∗d)∗ = T d. (44)

If π : A → B(H) is a faithful *-representation, then the map πop : Aop → B(Hd), given 
by πop(uop) = π(u)d, is a faithful *-representation.

The following result can be proved using the existence of the antipode for compact 
quantum groups together with the fact that PU+

X , the antipode is known to be a ∗-
anti-automorphism of C(PU+

X) (see e.g., [40, Proposition 1.7.9]). For the sake of those 
unacquainted with quantum group technicalities, we supply a self-contained proof.

Lemma 6.6. Let X be a finite set. The map

∂(ux,x′,a,a′) = uop
x′,x,a′,a, x, x′, a, a′ ∈ X,

extends to a *-isomorphism ∂ : C(PU+
X) → C(PU+

X)op.

Proof. Let π : C(PU+
X) → B(H) be a faithful *-representation and U = (Ua,x)a,x ∈

MX(B(H)) be a bi-unitary such that π(ux,x′,a,a′) = U∗
a,xUa′,x′ , x, x′, a, a′ ∈ X.

Set Va,x = U∗d
a,x, x, a ∈ X. We observe that V := (Va,x)a,x is a bi-unitary. Indeed, 

using (44), we have

∑
a∈X

V ∗
a,xVa,x′ =

∑
a∈X

Ud
a,xU

∗d
a,x′ =

(∑
a∈X

U∗
a,x′Ua,x

)d

= δx,x′IHd

and

∑
x∈X

V ∗
a,xVa′,x =

∑
x∈X

Ud
a,xU

∗d
a′,x =

(∑
x∈X

U∗
a′,xUa,x

)d

= δa,a′IHd ,

that is, V ∗V = I and V t∗V t = I; the relations V V ∗ = I and V tV t∗ = I fol-
low analogously. It follows that there exists a *-representation ρ : C(PU+

X) → B(Hd)
such that ρ(ux′,x,a′,a) = πop(uop

x,x′,a,a′), x, x′, a, a′ ∈ X; note that ρ is a (well-defined) 
*-homomorphism from C(PU+

X) into C(PU+
X)op. By symmetry considerations, ρ is a 

*-isomorphism. �
Before formulating the next theorem, we introduce some notation and terminology. 

If Φ : MX → MX is a quantum channel, we write Φ� : MX → MX for the quantum 
channel given by
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Φ�(ω) = Φ(ωt)t, ω ∈ MX .

We call a channel Φ : MX → MX a unitary channel if there exists a unitary U =
(λa,x)a,x∈X ∈ MX , such that Φ(ω) = U∗ωU , ω ∈ MX . Finally, a trace τ : B → C of a 
C*-algebra B is called abelian if there exists an abelian C*-algebra A, a *-homomorphism 
π : B → A and a state φ : A → C such that τ = φ ◦ π.

Theorem 6.7. Let X be a finite set and Γ : MXX → MXX be a QNS bicorrelation. Then

(i) Γ ∈ Qbic
qc if and only if there exists a trace τ : C(PU+

X) → C such that

Γ(εx,x′ ⊗ εy,y′) = (τ(ux,x′,a,a′uy′,y,b′,b))a,a′,b,b′ , x, x′, y, y′ ∈ X; (45)

(ii) Γ ∈ Qbic
q if and only if (45) holds for a trace of C(PU+

X) that factors through a 
finite dimensional C*-algebra;

(iii) Γ ∈ Qbic
loc if and only if (45) holds for an abelian trace of C(PU+

X), if and only if 
there exist unitary channels Φi, i = 1, . . . , k, such that Γ =

∑k
i=1 λiΦi ⊗ Φ�

i as a 
convex combination.

Proof. (i) Let U := (ua,x)a,x be the universal bi-unitary and Γ : MXX → MXX be given 
via (45). There exists a state ν : C(PU+

X) ⊗max C(PU+
X)op → C, given by

ν(u⊗ vop) = τ(uv), u, v ∈ C(PU+
X) (46)

(see [12, p. 219]). Let s = ν ◦ (id⊗∂); thus, s is a state on C(PU+
X) ⊗max C(PU+

X). We 
have

s(ux,x′,a,a′ ⊗ uy,y′,b,b′) = ν(ux,x′,a,a′ ⊗ uop
y′,y,b′,b) = τ(ux,x′,a,a′uy′,y,b′,b),

implying that Γ = Γs. By Lemma 6.5 (i) and Theorem 5.5, Γ ∈ Qbi
qc. Since U is unitary, 

by the proof of [10, Theorem 4.3], Γ is concurrent.
Conversely, let Γ ∈ Qbic

qc . By Theorem 5.5, there exists a state s : CX ⊗max CX → C

such that Γ = Γs. Let V = (va,x)a,x be a universal bi-isometry (see Subsection 3.2) 
and denote by fy,y′,b,b′ the canonical generators of the second copy of CX in the tensor 
product. The concurrency of Γ implies the validity of the condition

∑
x′,y′∈X

s (ex′,y′,a,b ⊗ fx′,y′,a,b) = 1, a, b ∈ X. (47)

Let τ : CX → C be the functional, given by τ(u) = s(u ⊗ 1), u ∈ CX . By [10, Lemma 
4.2], there exists a canonical *-epimorphism π : CX,A → CX ; let τ̃ = τ ◦ π. Letting 
s̃ : CX,A ⊗max CX,A → C be given by s̃(w) = (s ◦ (π ⊗ π))(w), we have that



42 M. Brannan et al. / Advances in Mathematics 449 (2024) 109732
∑
x′,y′∈X

s̃
(
ẽx′,y′,a,b ⊗ f̃x′,y′,a,b

)
= 1,

and now, by the proof of [10, Theorem 4.1], that

s̃
(
ẽx,y,a,b ⊗ f̃x,y,a,b

)
= s̃ (ẽx,y,a,bẽy,x,b,a ⊗ 1) , x, y, a, b ∈ X,

and that τ̃ is a tracial state. After passing to quotients, we conclude that

s (ex,y,a,b ⊗ fx,y,a,b) = s (ex,y,a,bey,x,b,a ⊗ 1) , x, y, a, b ∈ X, (48)

and that τ is a tracial state.
Recalling notation (37) and (38), set

Gy,z,b,c =
(
gx,x

′

y,z,b,c

)
x,x′

and Hy,z,b,c =
(
ha,a′

y,z,b,c

)
a,a′

.

We claim that

G̃y,z,b,c :=
[
Gy,y,b,b Gy,z,b,c

Gz,y,c,b Gz,z,c,c

]
∈ M2 (MX(CX))+ . (49)

Indeed, set Zy,z,b,c :=
[
vb,y ⊗ IX 0

0 vc,z ⊗ IX

]
. After applying the canonical shuffle 

M2(MX(CX)) � MX(M2(CX)), we obtain

G̃y,z,b,c =
[
gx,x

′

y,y,b,b gx,x
′

y,z,b,c

gx,x
′

z,y,c,b gx,x
′

z,z,c,c

]
x,x′

=
[
δx,x′ey,y,b,b −

∑
a ey,x,b,aex′,y,a,b δx,x′ey,z,b,c −

∑
a ey,x,b,aex′,z,a,c

δx,x′ez,y,c,b −
∑

a ez,x,c,aex′,y,a,b δx,x′ez,z,c,c −
∑

a ez,x,c,aex′,z,a,c

]
x,x′

= Z∗
y,z,b,c

[
δx,x′1 −

∑
a va,xv

∗
a,x′ δx,x′1 −

∑
a va,xv

∗
a,x′

δx,x′1 −
∑

a va,xv
∗
a,x′ δx,x′1 −

∑
a va,xv

∗
a,x′

]
x,x′

Zy,z,b,c.

Since V t is an isometry, V tV t∗ ≤ I and hence 
(
δx,x′1 −

∑
a va,xv

∗
a,x′

)
x,x′ ≥ 0, implying 

(49), along with the relations 
∑

a∈X va,xv
∗
a,x ≤ 1, x ∈ X. Identity (49) now shows that 

Gy,y,b,b ∈ MX(CX)+, and hence

τ (X) (Gy,y,b,b) ∈ M+
X . (50)

We have that
∑
a∈X

ey,x,b,aex,y,a,b =
∑
a∈X

v∗b,yva,xv
∗
a,xvb,y ≤ ey,y,b,b (51)

and hence
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∑
x,y∈X

∑
a,b∈X

ey,x,b,aex,y,a,b ≤
∑

x,y∈X

∑
b∈A

ey,y,b,b = |X|21; (52)

similarly,
∑

x,y∈X

∑
a,b∈X

fx,y,a,bfy,x,b,a ≤ |X|21. (53)

By (47), (52) and (53),

0 ≤
∑

x,y,a,b

s
(
(ex,y,a,b ⊗ 1 − 1 ⊗ fy,x,b,a)∗ (ex,y,a,b ⊗ 1 − 1 ⊗ fy,x,b,a)

)

=
∑

x,y,a,b

s ((ey,x,b,a ⊗ 1 − 1 ⊗ fx,y,a,b) (ex,y,a,b ⊗ 1 − 1 ⊗ fy,x,b,a))

=
∑

x,y,a,b

s (ey,x,b,aex,y,a,b ⊗ 1 + 1 ⊗ fx,y,a,bfy,x,b,a)

−
∑

x,y,a,b

s (ey,x,b,a ⊗ fy,x,b,a + ex,y,a,b ⊗ fx,y,a,b) ≤ 2|X|2 − 2|X|2 = 0.

Applying τ to (52), we have
∑

x,y∈X

∑
a,b∈X

τ(ey,x,b,aex,y,a,b) ≤
∑

x,y∈X

∑
b∈A

τ(ey,y,b,b) = |X|2.

On the other hand, by (48),
∑

x,y∈X

∑
a,b∈X

τ(ey,x,b,aex,y,a,b) = |X|2.

Using (51), we now have that

τ

(
ey,y,b,b −

∑
a∈X

ey,x,b,aex,y,a,b

)
= 0 for all x, y, b ∈ X.

Thus the diagonal entries of τ (X) (Gy,y,b,b) are zero; the positivity condition (50) implies 
that the off-diagonal entries of τ (X) (Gy,y,b,b) are also zero. Now the positivity condition 
(49) implies that

τ (2X) (G̃y,z,b,c

)
= 0, y, z, b, c ∈ X.

Condition (49) and the Cauchy-Schwarz inequality imply τ (2X)
(
QG̃

1/2
y,z,b,c

)
= 0, for 

all Q ∈ M2(MX(CX)), and hence τ (2X) annihilates the closed ideal of M2(MX(CX))
generated by G̃1/2

y,z,b,c. In particular, τ (2X) annihilates the closed ideal of M2(MX(CX))
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generated by G̃y,z,b,c; since CX is unital, this implies that τ annihilates the closed ideal 
of CX generated by the elements gx,x

′

y,z,b,c, x, x′, y, z, b, c ∈ X, that is, J1.
Similarly, observe that

∑
x∈X

ey,x,b,aex,y,a,b =
∑
x∈X

v∗b,yva,xv
∗
a,xvb,y ≤ ey,y,b,b, y, a, b ∈ X.

By Remark 6.2,

∑
a′,b′∈X

s (ex,y,a′,b′ ⊗ fx,y,a′,b′) = 1, x, y ∈ X.

Using (48) yields similarly

τ

(
ey,y,b,b −

∑
x∈X

ey,x,b,aex,y,a,b

)
= 0 x, y, b ∈ X,

leading to the relations

τ (2X) (H̃y,z,b,c

)
= 0, y, z, b, c ∈ X.

It follows that τ annihilates the ideal J2, generated by ha,a′

y,z,b,c, where a, a′, y, z, b, c ∈ X, 
and hence it annihilates J1 + J2. Hence τ induces a tracial state (denoted in the same 
fashion) on the quotient CX/J . An application of Lemma 6.5 (i) completes the proof.

(ii) Suppose that Γ : MXX → MXX is a quantum concurrent QNS bicorrelation. By 
[10, Theorem 4.3], there exists a finite dimensional C*-algebra A, a trace t on A, and a 
*-homomorphism α : UX,A → A, such that Γ = Γt◦α. After taking a quotient, we may 
assume that t is faithful. Let ρ : CX,A → UX,A be the canonical quotient map, whose 
existence is guaranteed by [10, Lemma 4.2]. Let τ̃ : CX,A → C be the functional, given by 
τ̃(u) = (t ◦ α ◦ ρ)(u), u ∈ CX,A; clearly, τ̃ is a trace on CX,A. Note, further, that Γ = Γτ̃

(for brevity here, and in the sequel, Γτ̃ is used to denote Γsτ̃ , where sτ̃ is the state, 
canonically associated with the trace τ̃). By the proof of (i), τ̃ annihilates the ideal J̃
defined in (39); thus, as t is faithful, (α◦ρ)(J̃ ) = 0 and hence we get a ∗-homomorphism 
ρ̃ : C(PU+

X) → A and the trace τ = t ◦ ρ̃ on C(PU+
X) which factors through A.

Conversely, suppose that B is a finite dimensional C*-algebra. Let π : C(PU+
X) → B be 

a unital *-homomorphism and τ̃ : B → C be a trace such that, if τ = τ̃ ◦π, then Γ = Γτ . 
By Lemma 6.5 (ii), there exists a finite dimensional Hilbert space K and a bi-unitary 
matrix U = (Ua,x)a,x ∈ MX(B(K)), such that π(ux,x′,a,a′) = U∗

a,xUa′,x′ , x, x′, a, a′ ∈ X. 
Now a straightforward verification shows that Γ ∈ Qbic

q .
(iii) Suppose that Γ ∈ Qbic

loc. By [10, Theorem 4.3 (iii)], there exists an abelian C*-
algebra A, a *-homomorphism π̃ : UX,A → A and a state φ : A → C such that, 
if τ̃ = φ ◦ π̃ then (τ̃ is a trace on UX,A such that) Γ = Γτ̃ . Realise A = C(Ω) for 
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some compact Hausdorff space Ω and let μ be a regular Borel measure on Ω such that 
φ(h) =

∫
Ω hdμ. Writing Ũx,x′,a,a′ = π̃(ũx,x′a,a′), x, x′a, a′ ∈ X, we have

φ(Ũx,x′,a,a′Ũy′,y,b′,b) =
∫
Ω

Ũx,x′,a,a′(t)Ũy′,y,b′,b(t)dμ(t), x, x′, a, a′ ∈ X.

As μ can be approximated by convex combinations of point mass evaluations, Γ can be 
approximated by convex combinations 

∑k
i=1 λiΓi, where

Γi(εx,x′ ⊗ εy,y′) =
(
μ

(i)
x,x′,a,a′μ

(i)
y′,y,b′,b

)
a,a′,b,b′

, x, x′, y, y′ ∈ X,

for some scalar matrices Mi =
(
μ

(i)
x,x′,a,a′

)
x,x′,b,b′

. Since the matrices Mi give rise to 

(one-dimensional) *-representations of UX,A, by Lemma 6.3, they admit factorisations 
of the form μ(i)

x,x′,a,a′ = λ̄
(i)
a,xλ

(i)
a′,x′ , x, x′, a, a′ ∈ X, for a unitary matrix Ui = (λ(i)

a,x)a,x, 
i = 1, . . . , k. Note that Γi = Φi ⊗ Φ�

i , where Φi is the (unital) quantum channel with 

Choi matrix 
(
μ

(i)
x,x′,a,a′

)
x,x′,a,a′

. By the Carathéodory Theorem and compactness, we 

have that Γ is itself a convex combination of this form. We further have that

Φi(ω) = U t∗
i ωU t

i , ω ∈ MX , i = 1, . . . , k,

and in particular Φi is a unitary channel, i = 1, . . . , k.
Suppose that Φ : MX → MX is a unitary channel. Let U = (λa,x)a,x ∈ MX be a 

unitary (and hence a bi-unitary) such that Φ(ω) = U∗ωU , ω ∈ MX . We have that

(
Φ ⊗ Φ�

)
(JX) = 1

|X|
∑

x,y∈X

Φ(εx,y) ⊗ Φ(εy,x)t

= 1
|X|

∑
x,y∈X

(U∗ex)(U∗ey)∗ ⊗ ((U∗ey)(U∗ex)∗)t

= 1
|X|

∑
x,y∈X

∑
a,b∈X

∑
a′,b′∈X

λy,bλx,aλx,a′λy,b′(εa,b ⊗ εa′,b′)

= 1
|X|

∑
a,b∈X

∑
a′,b′∈X

δa,a′δb,b′(εa,b ⊗ εa′,b′) = JX .

Thus, Φ ⊗Φ� is a concurrent correlation and, since Φ is unital, it is a concurrent bicorre-
lation. Since Qbic

loc is convex, we have that all convex combinations of elementary tensors 
of the form Φ ⊗ Φ� belong to Qbic

loc.
Now assume that Γ =

∑k
i=1 λiΦi⊗Φ�

i as a convex combination, where Φi is a unitary 
channel, i = 1, . . . , k. Assume that Φi(ω) = U∗

i ωUi, ω ∈ MX , where Ui ∈ MX is a 
unitary. Since Ui has scalar entries, it is automatically a bi-unitary, and hence gives 
rise to a canonical (one-dimensional) unital *-representation of C(PU+

X). A standard 
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argument now shows that Γ = Γτ for a trace on the (finite dimensional) abelian C*-
algebra Dk.

Finally, if Γ = Γτ , where τ factors through an abelian C*-algebra then the argument 
in the first paragraph of (iii) shows that Γ ∈ Qbic

loc. �
Remark 6.8. Assume that τ is an amenable trace of C(PU+

X). By [12, Theorem 6.2.7], 
the functional μ : C(PU+

X) ⊗min C(PU+
X)op → C, given by μ(u ⊗ vop) = τ(uv), is a 

well-defined state. Letting s = μ ◦ (id⊗∂) (a state on C(PU+
X) ⊗min C(PU+

X)op), one can 
proceed similarly to the first paragraph of the proof of Theorem 6.7 to conclude that 
Γ ∈ Qbic

qa . We do not know if, conversely, every Γ ∈ Qbic
qa arises from an amenable trace 

on C(PU+
X).

Recall [45] that an NS correlation p over (X, X, X, X) is called bisynchronous if

p(a, b|x, x) �= 0 =⇒ a = b and p(a, a|x, y) �= 0 =⇒ x = y.

It was shown in [45, Remark 2.1] that bisynchronous correlations of type t �= ns are (clas-
sical) bicorrelations. The next statement describes the relation between bisynchronicity 
and concurrency.

Proposition 6.9. Let t ∈ {loc, q, qc}. If p ∈ Ct is a bisynchronous NS correlation over the 
quadruple (X, X, X, X) then there exists Γ ∈ Qbic

t such that

Ep = Δ ◦ Γ|DXX
. (54)

Proof. We consider first the case t = qc. Let p ∈ Cqc be a bisynchronous correlation. By 
[45, Theorem 2.2], there exists a tracial state τ : C(S+

X) → C such that

p(a, b|x, y) = τ(pa,xpb,y), x, y, a, b ∈ X. (55)

Let

px,x′a,a′ := p∗a,xpa′,x′ = pa,xpa′,x′ , x, x′, a, a′ ∈ X,

and let C(PS+
X) be the subalgebra of C(S+

X), generated by the elements of the form 
px,x′,a,a′ , x, x′, a, a′ ∈ X. Since every quantum permutation is a bi-unitary, there exists 
a unital *-homomorphism π : C(PU+

X) → C(PS+
X) with

π(ex,x′,a,a′) = px,x′,a,a′ , x, x′, a, a′ ∈ X.

Let τ̃ = τ ◦ π; thus, τ̃ is a tracial state on C(PU+
X) and hence, by Theorem 6.7, Γτ̃ is a 

quantum commuting concurrent QNS bicorrelation. Moreover, if x, y ∈ X then
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(Δ ◦ Γτ̃ )(εx,x ⊗ εy,y) =
∑

a,b∈X

τ̃(ex,x,a,aey,y,b,b)εa,a ⊗ εb,b

=
∑

a,b∈X

τ(px,x,a,apy,y,b,b)εa,a ⊗ εb,b

=
∑

a,b∈X

τ(p∗a,xpa,xp∗b,ypb,y)εa,a ⊗ εb,b

=
∑

a,b∈X

τ(pa,xpb,y)εa,a ⊗ εb,b = Ep(εx,x ⊗ εy,y),

and (54) follows.
The cases t = q and t = loc are similar. �

7. The quantum graph isomorphism game

In this section, we view the concurrent bicorrelations studied in Section 6 as strategies 
for the non-commutative graph isomorphism game. This allows us to define quantum 
information versions of quantum isomorphisms of non-commutative graphs of different 
types, which we characterise in terms of relations arising from the underlying graphs.

7.1. Quantum commuting isomorphisms

Several related concepts of quantum graphs have been studied in the literature (see 
[9,14,18]). Here we work with the notion that is used in [50], [49] and [10]. Let X be a 
finite set, H = CX , and recall that Hd stands for the dual (Banach) space of H. Note 
that, as an additive group, Hd can be identified with H; we write ζ̄ for the element of 
Hd, corresponding to the vector ζ in H (so that ζ̄ : H → C is given by ζ̄(ξ) = 〈ξ, ζ〉). 
Let θ : H ⊗H → L(Hd, H) be the linear map given by

θ(ξ ⊗ η)(ζ̄) = 〈ξ, ζ〉η, ζ ∈ H.

We have

θ((S ⊗ T )ζ) = Tθ(ζ)Sd, ζ ∈ H ⊗H, S, T ∈ L(H). (56)

For a subspace U ⊆ CX ⊗CX , set

SU = {θ(ζ) : ζ ∈ U}.

We let ∂X : (CX)d → CX be the linear mapping given by ∂X(ēx) = ex, x ∈ X, and we 
set S̃U := SU∂

−1
X ; thus, S̃U ⊆ L(CX).
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We denote by m : CX ⊗CX → C the map, given by

m(ζ) =
〈
ζ,
∑
x∈X

ex ⊗ ex

〉
, ζ ∈ CX ⊗CX .

Let also f : CX ⊗CX → CX ⊗CX be the flip operator, given by f(ξ ⊗ η) = η ⊗ ξ.

Definition 7.1. A quantum graph with vertex set X is a linear subspace U ⊆ CX ⊗ CX

that is skew in that m(U) = {0} and symmetric in that f(U) = U .

In the sequel, for a subspace U ⊆ CX⊗CX , we denote by PU the orthogonal projection 
from CX ⊗ CX onto U ; thus, PU ∈ MXX . For a classical (simple, undirected) graph 
G with vertex set X, we use ∼ (or ∼G when a clarification is needed) to denote the 
adjacency relation of G. The graph G gives rise to the quantum graph

UG = span{ex ⊗ ey : x ∼ y},

and we write PG = PUG
; note that PG ∈ DXX , and that

S̃UG
= span{εx,y : x ∼ y}

is a traceless self-adjoint subspace of MX . More generally, S̃U ⊆ MX is always a traceless 
transpose-invariant subspace for any quantum graph U ; this is the suitable version arising 
in our setting of Stahlke’s quantum graphs [49], where tracelessness and self-adjointness 
are assumed as part of the definition.

To motivate Definition 7.2 below, we first recall the graph isomorphism game [1] for 
graphs G and H, both with vertex set X. For elements x, y ∈ X, we denote by relG(x, y)
the element of the set {=, ∼, ��}, which describes the adjacency relation in the pair 
(x, y), in the graph G. A correlation p ∈ Ct is said to be a perfect t-strategy for the 
(G, H)-isomorphism game, provided p is bisynchronous and

p(a, b|x, y) = 0, if relG(x, y) �= relH(a, b) or relH(x, y) �= relG(a, b). (57)

We note that, for a given correlation type t, two graphs G and H with vertex set X are 
t-isomorphic [1] if and only if there exists a bisynchronous bicorrelation p of type t over 
the quadruple (X, X, X, X), such that

ω ∈ D+
XX and ω = PGωPG =⇒ Γ(ω) = PHΓ(ω)PH (58)

and

σ ∈ D+
XX and σ = PHσPH =⇒ Γ∗(σ) = PGΓ∗(σ)PG. (59)
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Indeed, condition (58) is equivalent to requiring that p(a, b|x, y) = 0 if x ∼G y but 
a �∼H b, while (59) is equivalent to requiring that p(a, b|x, y) = 0 if a ∼H b but x �∼G y, 
in conjunction, these two conditions are equivalent to (57).

Recall [50,10] that, if U ⊆ CX ⊗ CX and V ⊆ CX ⊗ CX are quantum graphs, and 
P = PU and Q = PV , then the perfect strategies for the quantum homomorphism game
U → V are the QNS correlations Γ : MXX → MXX such that

ω ∈ M+
XX and ω = PωP =⇒ Γ(ω) = QΓ(ω)Q.

Definition 7.2. Let t ∈ {loc, q, qa, qc, ns}. We say that U and V are t-isomorphic, and 
write U ∼=t V, if there exists Γ ∈ Qbic

t such that

(i) Γ is a perfect strategy for U → V, and
(ii) Γ∗ is a perfect strategy for V → U .

Remark 7.3. Although our main interest in this section lies in quantum graphs, it is 
important to note, for the development in Section 8, that Definition 7.2 can be stated in 
a greater generality, involving subspaces U and V of CX ⊗ CX that are not necessarily 
quantum graphs.

In the next theorem, we give an operator algebraic characterisation of the relation 
U ∼=qc V. We recall the leg numbering notation: if F : MXX ⊗ B(H) → MXX ⊗ B(H) is 
the (unitarily implemented) isomorphism, given by

F(S ⊗ T ⊗R) = T ⊗ S ⊗R, S, T ∈ MX , R ∈ B(H),

for U = (Ua,x)a,x ∈ MX ⊗ B(H), we write U2,3 = IX ⊗ U , and U1,3 = F(IX ⊗ U). Note 
that U2,3, U1,3 ∈ MXX ⊗ B(H) and

U t
1,3U

∗
2,3 =

∑
x,y,a,b∈X

εx,a ⊗ εy,b ⊗ Ua,xU
∗
b,y. (60)

For the formulation of the next theorem, we set Ā = At∗, and call a von Neumann 
algebra tracial if it admits a tracial state. If H is a Hilbert space and N ⊆ B(H) is a 
von Neumann algebra, an operator matrix U = (Ua,x)a,x∈X will be called N -aligned if 
U∗
a,xUb,y ∈ N for all x, y, a, b ∈ X.

Theorem 7.4. Let U and V be quantum graphs in CX⊗CX , and set P = PU and Q = PV .
The following are equivalent:

(i) U ∼=qc V;
(ii) there exists a tracial von Neumann algebra N ⊆ B(H) and an N -aligned bi-unitary 

U = (Ua,x)a,x ∈ MX(B(H)) such that
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(P ⊗ I)U t
1,3U

∗
2,3(Q⊥ ⊗ I) = 0 and (P̄⊥ ⊗ I)U t

1,3U
∗
2,3(Q̄⊗ I) = 0;

(iii) there exists a tracial von Neumann algebra N ⊆ B(H) and an N -aligned bi-unitary 
U = (Ua,x)a,x ∈ MX(B(H)) such that

U(S̃U ⊗ 1)U∗ ⊆ S̃V ⊗ B(H) and U t(S̃V ⊗ 1)U t∗ ⊆ S̃U ⊗ B(H).

Proof. (i)⇒(ii) For a vector ξ =
∑

x,y∈X αx,yex⊗ey ∈ CX⊗CX , let ξ =
∑

x,y∈X αx,yex⊗
ey and set

Yξ =
∑

x,y∈X

αx,yεx,y;

note that Yξ ∈ MX (and that the use of the notation ξ agrees, up to a canonical identi-
fication, with the definition in the beginning of Subsection 7.1). Let Γ : MXX → MXX

be a concurrent quantum commuting bicorrelation satisfying conditions (i) and (ii) in 
Definition 7.2.

By Theorem 6.7, there exists a tracial state τ : C(PU+
X) → C such that

Γ(ex,x′ ⊗ ey,y′) = (τ(ux,x′,a,a′uy′,y,b′,b))a,a′,b,b′ , x, x′, y, y′ ∈ X.

Let πτ be the *-representation, associated with τ via the GNS construction, and let ζ
be the corresponding cyclic vector. Then N = πτ (C(PU+

X))′′ is a finite von Neumann 
algebra, on which the vector state corresponding to ζ is faithful and tracial.

Let E = (πτ (ux,x′,a,a′))x,x′,a,a′ . As in the proof of [10, Theorem 5.5], we have that

〈Γ(ξξ∗)η, η〉 = (Tr⊗τ)
(
E(Yξ̄ ⊗ Yη ⊗ 1A)E(Y ∗

ξ̄
⊗ Y ∗

η ⊗ 1N )
)
,

implying, by the faithfulness of τ , that

E
(
Yξ̄ ⊗ Yη ⊗ I

)
E = 0, ξ ∈ U , η ∈ V⊥.

By Lemma 6.5 (ii), there exists a bi-unitary U = (Ua,x)a,x, such that E =
(U∗

a,xUa′,x′)x,x′,a,a′ . Writing ξ =
∑

x,y∈X αx,yex ⊗ ey and η =
∑

a,b∈X βa,bea ⊗ eb, we 
calculate

E
(
Yξ̄ ⊗ Yη ⊗ I

)
E =

⎛
⎝ ∑

x′,y′,a′,b′∈X

αx′,y′βa′,b′U
∗
a,xUa′,x′U∗

b′,y′Ub,y

⎞
⎠

x,y,a,b

.

Hence 
∑

x′,y′,a′,b′ αx′,y′βa′,b′U
∗
a,xUa′,x′U∗

b′,y′Ub,y = 0 for any x, y, a, b. Letting Rξ,η =∑
x′,y′,a′,b′ αx′,y′βa′,b′Ua′,x′U∗

b′,y′ , we have

U∗
a,xRξ,ηUb,y = 0, x, y, a, b ∈ X.
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It follows that

Rξ,η =
∑

x,y∈X

Ua,xU
∗
a,xRξ,ηUb,yU

∗
b,y = 0. (61)

Let F := U t
1,3U

∗
2,3; thus, F ∈ MXX ⊗ B(H). By (61), the operator F satisfies the 

conditions

〈F (η ⊗ h), ξ ⊗ g〉 = 0, h, g ∈ H,

which imply (P ⊗ I)F (Q⊥ ⊗ I) = 0.
Let Ẽ := (U∗

a,xUa′,x′)a,a′,x,x′ . By symmetry,

Ẽ(Yξ̄′ ⊗ Yη′ ⊗ I)Ẽ = 0, ξ′ ∈ V, η′ ∈ U⊥.

Setting

F̃ := U1,3Ū2,3 =
∑

x,y,a,b∈X

εa,x ⊗ εb,y ⊗ Ua,xU
∗
b,y,

we similarly obtain that

〈F̃ (η′ ⊗ h), ξ′ ⊗ g〉 = 0, ξ′ ∈ V, η′ ∈ U⊥, h, g ∈ H,

and hence

(Q⊗ I)F̃ (P⊥ ⊗ I) = 0. (62)

Let t : MX → MX be the map, given by t(T ) = T t. Since the operators P⊥ and Q
are self-adjoint, (t ⊗ t)(Q) = Q̄ and (t ⊗ t)(P⊥) = P̄⊥. Thus, applying the map t ⊗ t ⊗ id
to the relation (62), we obtain (P̄⊥ ⊗ I)F (Q̄⊗ I) = 0

(ii)⇒(i) Assume that (P ⊗ I)U t
1,3U

∗
2,3(Q⊥ ⊗ I) = 0 and (P̄⊥ ⊗ I)U t

1,3U
∗
2,3(Q̄⊗ I) = 0.

By Theorem 6.7 (i), the linear map Γ, given by Γ(εx,x′ ⊗ εy,y′) =(
τ((U∗

a,xUa′,x′U∗
b′,y′Ub,y)

)
a,a′,b,b′

, is a concurrent quantum commuting bicorrelation. Re-
versing the arguments from the previous paragraphs and using the proof of [10, Theorem 
5.5], we obtain that, if E = (U∗

a,xUa′,x′)x,x′,a,a′ then

〈Γ(ξξ∗), ηη∗〉 = (Tr⊗τ)
(
E(Yξ̄ ⊗ Yη ⊗ I)E(Y ∗

ξ̄
⊗ Y ∗

η ⊗ I)
)

= 0,

for all ξ ∈ U and all η ∈ V⊥. Similarly,

〈Γ∗(ξ′ξ′ ∗), η′η′ ∗〉 = 0 for all ξ′ ∈ V, η′ ∈ U⊥.

It follows that U ∼=qc V via Γ.
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(ii)⇒(iii) For each ξ ∈ U , η ∈ V⊥, h, g ∈ H, we have

〈U t
1,3U

∗
2,3(η ⊗ h), ξ ⊗ g〉 = 〈η ⊗ h, U2,3Ū1,3(ξ ⊗ g)〉 = 0. (63)

Consider U2,3Ū1,3 as a linear operator on CXX ⊗ B(H) by letting

(U2,3Ū1,3)(ξ ⊗ T ) :=
∑

x,y,a,b∈X

(εb,y ⊗ εa,x)ξ ⊗ Ua,xU
∗
b,yT, ξ ∈ CXX , T ∈ B(H).

Fix ξ ∈ CXX . We have

(θ ⊗ id)(U2,3Ū1,3(ξ ⊗ I))

=
∑

x,y,a,b∈X

θ((εb,y ⊗ εa,x)ξ) ⊗ Ua,xU
∗
b,y =

∑
x,y,a,b∈X

εa,xθ(ξ)εdb,y ⊗ Ua,xU
∗
b,y

=

⎛
⎝ ∑

a,x∈X

εa,x ⊗ Ua,x

⎞
⎠ (θ(ξ) ⊗ I)

⎛
⎝ ∑

b,y∈X

εdb,y ⊗ U∗
b,y

⎞
⎠ .

Note that ∂Xεdb,y∂
−1
X = εy,b. Therefore,

(θ ⊗ id)(U2,3Ū1,3(ξ ⊗ I))(∂−1
X ⊗ I)

=

⎛
⎝ ∑

a,x∈X

εa,x ⊗ Ua,x

⎞
⎠(

θ(ξ)∂−1
X ⊗ I

)⎛⎝ ∑
b,y∈X

∂Xεdb,y∂
−1
X ⊗ U∗

b,y

⎞
⎠ (64)

= U(θ(ξ)∂−1
X ⊗ I)U∗.

To see that U(S̃U ⊗ 1)U∗ ⊆ S̃V ⊗ B(H), let ξ ∈ U , and fix orthonormal bases (ηi)i∈I
and (ζj)j∈J of V and V⊥, respectively. Then

U(θ(ξ)∂−1
X ⊗ I)U∗ =

∑
i∈I

θ(ηi)∂−1
X ⊗Ri +

∑
j∈J

θ(ζj)∂−1
X ⊗ Sj

for some Ri, Sj ∈ B(H), i ∈ I, j ∈ J . From the previous arguments we obtain

(θ ⊗ id)(U2,3Ū1,3(ξ ⊗ I)) = (θ ⊗ id)

⎛
⎝∑

i∈I
ηi ⊗Ri +

∑
j∈J

ζj ⊗ Sj

⎞
⎠

and

U2,3Ū1,3(ξ ⊗ I) =
∑

ηi ⊗Ri +
∑

ζj ⊗ Sj .

i∈I j∈J
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Let ωg,h be the vector functional on B(H), given by ωg,h(T ) = 〈Tg, h〉 and, for η ∈ CXX , 
let �η be the linear functional on CXX , given by �η(ξ) = 〈ξ, η〉. Then

(�η ⊗ ωg,h)(U2,3Ū1,3(ξ ⊗ I))) =
∑

x,y,a,b∈X

〈(εx,a ⊗ εy,b)ξ, η〉〈Ua,xU
∗
b,yg, h〉

= 〈U2,3Ū1,3(ξ ⊗ g), η ⊗ h〉,

while

(�η ⊗ ωg,h)

⎛
⎝∑

i∈I
ηi ⊗Ri +

∑
j∈J

ζj ⊗ Sj

⎞
⎠ =

∑
i∈I

〈ηi, η〉〈Rig, h〉 +
∑
j∈J

〈ζj , η〉〈Sjg, h〉.

Taking now η = ζj we obtain from (63) that

(�η ⊗ ωg,h)
(
U2,3Ū1,3(ξ ⊗ I))

)
= 0

and that

(�η ⊗ ωg,h)

⎛
⎝∑

i∈I
ηi ⊗Ri +

∑
j∈J

ζj ⊗ Sj

⎞
⎠ = ‖ζj‖2〈Sjg, h〉;

thus, 〈Sjg, h〉 = 0. As g and h can be chosen arbitrarily, Sj = 0 for all j ∈ J . Therefore

U(θ(ξ)∂−1
X ⊗ I)U∗ =

∑
i∈I

θ(ηi)∂−1
X ⊗Ri ⊆ S̃V ⊗ B(H).

Similar arguments applied to (Q ⊗ I)F̃ (P⊥ ⊗ I) = 0, where F̃ = U1,3Ū2,3, give

U t(S̃V ⊗ 1)(U t)∗ ⊆ S̃U ⊗ B(H).

(iii)⇒(ii) follows, using (64), by reversing the arguments in the implication (ii)⇒(iii). �
Remarks. (i) The arguments in the proof of Theorem 7.4 can be used to conclude that 
U →qc V if and only if there exists a tracial von Neumann algebra N ⊆ B(H) and an 
N -aligned isometry V = (Va,x)a,x, Va,x ∈ B(H), such that

V (S̃U ⊗ 1)V ∗ ⊆ S̃V ⊗ B(H).

This complements the characterisation obtained in [10, Theorem 5.7].
(ii) Similar results to those of Theorem 7.4 hold for U �q V, in which case the space 

H is finite-dimensional. A treatment of the case U �loc V is presented in Subsection 7.2
below.
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Corollary 7.5. Let G and H be graphs with vertex set X. The following are equivalent:

(i) UG
∼=qc UH ;

(ii) there exists a tracial von Neumann algebra N ⊆ B(H) and an N -aligned bi-unitary 
U = (Ua,x)a,x ∈ MX(B(H)) such that Ua,xU

∗
b,y = 0 if either x ∼G y and a �∼H b, 

or x �∼G y and a ∼H b;
(iii) there exists a tracial von Neumann algebra N ⊆ B(H) and an N -aligned bi-unitary 

U = (Ua,x)a,x ∈ MX(B(H)) such that

(PG ⊗ I)U t
1,3U

∗
2,3 = U t

1,3U
∗
2,3(PH ⊗ I);

(iv) there exists a tracial von Neumann algebra N ⊆ B(H) and a bi-unitary U =
(Ua,x)a,x ∈ MX(B(H)) such that U∗

a,xUb,y ∈ N , x, y, a, b ∈ X, and

U(SG ⊗ 1)U∗ ⊆ SH ⊗ B(H) and U t(SH ⊗ 1)U t∗ ⊆ SG ⊗ B(H).

Proof. We have UG = {ex ⊗ ey : x ∼G y} and UH = {ea ⊗ eb : a ∼H b}. As P̄G = PG

and P̄H = PH , the conditions

(PG ⊗ I)U t
1,3U

∗
2,3(P⊥

H ⊗ I) = 0 and (P̄⊥
G ⊗ I)U t

1,3U
∗
2,3(P̄H ⊗ I) = 0 (65)

are equivalent to (PG⊗I)U t
1,3U

∗
2,3 = U t

1,3U
∗
2,3(PH⊗I), and also equivalent to Ua,xU

∗
b,y = 0

if either x ∼G y and a �∼H b or x �∼G y and a ∼H b. The statement now follows from 
Theorem 7.4. �
Remark 7.6. The conditions on the bi-unitary U contained in Corollary 7.5 are equivalent 
to the conditions AHc ∗ U(AG ⊗ I)U∗ = 0 and AGc ∗ U t(AH ⊗ I)Ū = 0, where Gc is 
the complement to G and ∗ denotes the Schur product. We can formulate a similar 
characterisation for types loc and q. In the case when the bi-unitary U is actually a 
quantum permutation (that is, the entries ui,j of U are all orthogonal projections), these 
conditions are equivalent to the condition that U(AG ⊗ I)U∗ = AH ⊗ I. Indeed, if U is 
a quantum permutation satisfying AHc ∗ U(AG ⊗ I)U∗ = 0, then whenever i �= j and 
i �∼H j, we have

0 = (U(AG ⊗ I)U∗)i,j =
∑
k∼G�

ui,kuj,�.

Multiplying on the left by ui,k for any fixed k satisfying k ∼G �, we obtain ui,kuj,� = 0
whenever i �∼H j, i �= j and k ∼G �. Similarly, if i = j and k ∼G �, then k �= �, so that 
ui,kuj,� = 0.

Next, if we interchange the roles of G and H in the above argument and replace U
with the magic unitary U t, the identity AGc ∗ U t(AH ⊗ I)Ū = 0 yields uk,iu�,j = 0
whenever i �∼G j, i �= j and k ∼H � or whenever i = j, and k ∼H �.
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It follows that, if i ∼H j, then (assuming that n = |X|) we have

(U(AG ⊗ I)U∗)i,j =
∑
k∼G�

ui,kuj,�

=
n∑

k=1

ui,kuj,k +
∑
k∼G�

ui,kuj,� +
∑
k �∼G�
k �=l

ui,kuj,�

=
n∑

k,�=1

ui,kuj,� =
(

n∑
k=1

ui,k

)(
n∑

�=1

uj,�

)
= 1 = (AH)i,j .

Similarly, if i �∼H j, then either i = j or i ∼Hc j, and we obtain in either case

(U(AG ⊗ I)U∗)i,j =
∑
k∼G�

ui,kuj,� = 0 = (AH)i,j .

It follows that U(AG ⊗ I)U∗ = AH ⊗ I. The converse is immediate.

7.2. Local isomorphisms

In this subsection, we restrict our attention to quantum graph isomorphisms of local 
type.

Proposition 7.7. Let X be a finite set, and U and V be quantum graphs in CX ⊗ CX . 
The following are equivalent:

(i) U ∼=loc V;
(ii) there exists a unitary U ∈ MX such that (U ⊗ Ū)(U) = V.

Proof. (i)⇒(ii) Let Γ ∈ Qbic
loc be a correlation satisfying the conditions of Definition 7.2

for quantum graphs U and V. By Theorem 6.7 (iv), Γ =
∑k

i=1 λiΦi⊗Φ�
i as a convex com-

bination, where Φi : MX → MX is a unitary quantum channel, i = 1, . . . , k. Conditions 
(i) and (ii) in Definition 7.2 are equivalent to

〈
Γ(PU ), P⊥

V
〉

= 0 and
〈
Γ∗(PV), P⊥

U
〉

= 0. (66)

The monotonicity of the trace functional now implies that Φi⊗Φ�
i satisfies the conditions 

in Definition 7.2 for every i = 1, . . . , k. We may thus assume that Γ = Φ ⊗ Φ�, where 
Φ : MX → MA is a unitary quantum channel. Let U ∈ MX be a unitary such that 
Φ(ω) = U∗ωU , ω ∈ MX . A direct verification shows that

Φ�(ω) = Ū∗ωŪ, ω ∈ MX .

Thus,
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Γ(ω) = (U ⊗ Ū)∗ω(U ⊗ Ū), ω ∈ MXX .

The first condition in (66) now implies that, for every ξ ∈ U , we have

(
(U ⊗ Ū)∗ξ

) (
(U ⊗ Ū)∗ξ

)∗ = (U ⊗ Ū)∗(ξξ∗)(U ⊗ Ū) ≤ PV ,

that is, (U ⊗ Ū)∗(U) ⊆ V. On the other hand,

Γ∗(ω) = (U ⊗ Ū)ω(U ⊗ Ū)∗, ω ∈ MXX ,

and arguing by symmetry implies that (U ⊗ Ū)(V) ⊆ U ; thus, (ii) follows.
(ii)⇒(i) Given a unitary U ∈ MX , let Φ(ω) = U∗ωU , ω ∈ MX , and Γ = Φ ⊗Φ�. Then 

the arguments in the first part of the proof imply that U ∼=loc V via Γ. �
Remark. Proposition 7.7 can equivalently be seen as a consequence of Theorem 7.4. In-
deed, note that, by Theorem 6.7 (iv) and its proof, Γ ∈ Qbic

loc if and only if Γ =
∑k

i=1 λiΓi

as a convex combination, where Γi(ex,x′ ⊗ey,y′) = (πi(ux,x′,a,a′uy′,y,b′,b))a,a′,b,b′ for some 
∗-representation πi : C(PU+

X) → C. Using the fact that all Γi are positive, it can be 
easily seen that one can assume that k = 1. Let U = (ua,x)a,x ∈ MX be the unitary that 
corresponds to π1 as in the proof of the implication (i)⇒(ii); we have that U satisfies the 
corresponding conditions (ii) and (iii). In particular, U S̃UU∗ ⊆ S̃V and U tS̃V(U t)∗ ⊆ S̃U . 
As S̃t

U = S̃U and S̃t
V = S̃V , we obtain that U∗S̃VU ⊆ S̃U , which implies U∗S̃VU = S̃U . 

This gives in particular that (U ⊗ Ū)(U) = V.

Proposition 7.8. Let G and H be graphs with vertex set X. Then UG
∼=loc UH if and only 

if G ∼= H.

Proof. A graph isomorphism ϕ : X → X between G and H gives rise to a permutation 
unitary operator Uϕ : CX → CX ; letting Φ : MX → MA be the conjugation by Uϕ, we 
have that the correlation Φ ⊗ Φ� implements an isomorphism UG

∼=loc UH .
Conversely, suppose that UG

∼=loc UH . By Proposition 7.7, there exists a unitary 
U ∈ MX such that (U ⊗ Ū)(UG) = UH . Letting

SG = span{εx,y : x ∼ y or x = y},

we now have that USGU
∗ = SH . By [41, Proposition 3.1], G ∼= H. �

Corollary 7.9. There exist quantum graphs U and V such that U ∼=q V but U �∼=loc V.

Proof. By [1, Theorem 6.4], there exists graphs G and H such that G ∼=q H but G �∼=loc
H. By Proposition 7.8, UG �∼=loc UH ; to complete the proof, we show that UG

∼=q UH . 
By [34, Theorem 2.1], there exists a quantum permutation matrix (Px,a)x,a, acting on a 
finite dimensional Hilbert space H, such that
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Px,aPy,b = 0 if x ∼G y & a �∼H b, or x �∼G y & a ∼H b.

By Remark 7.6, UG
∼=q UH �

7.3. The quantum isomorphism algebra

Let X be a finite set, and U ⊆ CXX and V ⊆ CXX be quantum graphs. We will 
introduce a C*-algebra whose tracial properties reflect the properties of the isomorphism 
game U ∼= V. Let P (resp. Q) be the projection from CXX onto U (resp. from CXX onto 
V). For matrices S, T ∈ MXX , define a linear map

γS,T : MXX ⊗ C(PU+
X) ⊗MXX ⊗ C(PU+

X)op → C(PU+
X)

by letting

γS,T (ω ⊗ u⊗ vop) = Tr(ω(S ⊗ T ))uv, ω ∈ MXX ⊗MXX , u, v ∈ C(PU+
X).

Set W = (ux,x′,a,a′)x,x′,a,a′ ∈ MXX ⊗ C(PU+
X), and let

IP,Q =
〈
γP,Q⊥ (W ⊗W op) , γP⊥,Q (W ⊗W op)

〉
be the closed ideal in C(PU+

X), generated by the elements γP,Q⊥(W ⊗ W op) and 
γP⊥,Q(W ⊗W op). Set AP,Q = C(PU+

X)/IP,Q. We write u̇ for the image of an element 
u ∈ C(PU+

X) in AP,Q under the quotient map.

Theorem 7.10. Let X be a finite set, U ⊆ CXX (resp. V ⊆ CXX) be a quantum graph 
and P ∈ MXX (resp. Q ∈ MXX) be the projection onto U (resp. V). The following are 
equivalent for a QNS bicorrelation Γ : MXX → MXX :

(i) Γ is a perfect quantum commuting (resp. quantum/local) strategy for the isomor-
phism game U ∼= V;

(ii) there exists a trace τ (resp. a trace τ that factors through a finite dimensional/abelian 
*-representation) of AP,Q such that

Γ(εx,x′ ⊗ εy,y′) = (τ(u̇x,x′,a,a′ u̇y′,y,b′,b))a,a′,b,b′ , x, x′, y, y′ ∈ X. (67)

Proof. (i)⇒(ii) We consider first the quantum commuting case. By Theorem 6.7, there 
exists a tracial state τ : C(PU+

X) → C such that Γ = Γτ . Writing

W̃ = (ux,x′,a,a′uy′,y,b′,b) ∈ MXXXX ⊗ C(PU+
X),

we thus have
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〈Γ(εx,x′ ⊗ εy,y′), εa,a′ ⊗ εb,b′〉 = τ(ux,x′,a,a′uy′,y,b′,b)

= Tr(((εx,x′ ⊗ εy,y′) ⊗ (εa,a′ ⊗ εb,b′))τ (XXXX)(W̃ ))

= τ(γεx,x′⊗εy,y′ ,εa,a′⊗εb,b′ (W ⊗W op)).

By linearity,

〈Γ(S), T 〉 = τ (γS,T (W ⊗W op)) , S, T ∈ MXX . (68)

Since Γ is a perfect strategy for the game U ∼= V, equation (68) implies that

τ
(
γP,Q⊥(W ⊗W op)

)
= τ

(
γP⊥,Q(W ⊗W op)

)
= 0.

Set g = γP,Q⊥(W ⊗W op); we claim that g ∈ C(PU+
X)+. To see this, let

m : MXX(C(PU+
X)) ⊗max MXX(C(PU+

X))op → MXX(C(PU+
X))

be the multiplication map, and note that, if u ∈ MXX(C(PU+
X))+ and vop ∈

MXX(C(PU+
X))op+ then

m(u⊗ vop) ∈ MXX(C(PU+
X))+

(this can be seen by realising MXX(C(PU+
X)) and MXX(C(PU+

X))op as mutually 
commuting C*-algebras acting on the same Hilbert space). We have that W ∈
MXX(C(PU+

X))+ and, by Lemma 6.6, that W op ∈ MXX(C(PU+
X))op+. It follows that

W̃ ∈ MXXXX(C(PU+
X))+.

Taking partial trace against the positive matrix P ⊗Q⊥ yields a positive operator; the 
claim is now proved after noticing that the latter operator coincides with g.

Similarly,

h := γP⊥,Q(W ⊗W op) ∈ C(PU+
X)+.

We have that

τ(g) = τ(h) = 0;

by a straightforward application of the Cauchy-Schwartz inequality, τ annihilated IP,Q

and hence induces a trace (denoted in the same way) τ : AP,Q → C. The validity of 
equation (67) persists on AP,Q.

Now consider the case where Γ is a quantum correlation. By Theorem 6.7, there exists 
a trace τ : C(PU+

X) → C that factors through a finite dimensional C*-algebra, such that 
Γ = Γτ . By the previous paragraphs, τ annihilates JP,Q. Thus τ induces a trace (denoted 
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in the same way) τ : AP,Q → C that factors through a finite dimensional C*-algebra 
and, as before, Γ = Γτ . The case where Γ is of local type is similar.

(ii)⇒(i) follows in a straightforward way from relation (68). �
Remark 7.11. It follows from identity (68) and the proof of Theorem 7.4 that AP,Q is the 
universal C∗-algebra generated by elements u∗

a,xua′,x′ , where U = (ua,x)a,x is a bi-unitary 
matrix, subject to the relations

(P ⊗ I)U t
1,3U

∗
2,3(Q⊥ ⊗ I) = 0 & (P̄⊥ ⊗ I)U t

1,3U
∗
2,3(Q̄⊗ I) = 0. (69)

Remark 7.12. Let us consider the special case P = Q; this is the case of quantum 
automorphisms U → U . We would like to interpret AP,P as a quantum group of auto-
morphisms of the quantum graph U ⊆ CX ⊗CX . This intuition can be made precise by 
equipping AP,P with a natural co-associative comultiplication ΔP : AP,P → AP,P⊗AP,P , 
which turns it into a C∗-algebraic compact quantum group.

To construct such a comultiplication ΔP on AP,P , we first consider C(U+
X), the uni-

versal C∗-algebra generated by the entries of a bi-unitary U = (ux,a) ∈ MX(C(U+
X)). 

The C*-algebra C(U+
X) is well-known to be a compact matrix quantum group when 

equipped with the comultiplication Δ : C(U+
X) → C(U+

X) ⊗ C(U+
X), given by Δ(ux,a) =∑

c∈X ux,c ⊗ uc,a on C(U+
X) [52]. Define a new C∗-algebra B obtained from C(U+

X) by 
quotienting by the relations given in (69). Denote the canonical matrix of generators of 
B by V = (vx,a) ∈ MX(B). (Note that, by definition, V is the universal X×X bi-unitary 
satisfying the relations (69).) We claim that the assignment ΔB(vx,a) :=

∑
c vx,c ⊗ vc,a, 

(x, a ∈ X), determines a co-associative co-multiplication ΔB : B → B ⊗ B, turning 
(B, ΔB) into a compact matrix quantum group. To see this, it suffices to check that 
matrix Ṽ ∈ MX ⊗ B ⊗ B, given by

Ṽ =
(∑

c∈X

vx,c ⊗ vc,a

)
x,a∈X

= V1,2V1,3,

satisfies the defining relations for V (that is, Ṽ is bi-unitary and satisfies the equations 
(69) in MX ⊗MX ⊗ B ⊗ B). Indeed, if the above is verified, then the co-multiplication 
Δ on C(U+

X) will have been shown to factor the quotient C(U+
X) → B, proving that ΔB

is well defined and induces a quantum group structure on B.
First note that fact that Ṽ is bi-unitary follows immediately from the formula for Ṽ

and the bi-unitarity of V . To check (69), we first note that in MX ⊗MX ⊗ (B ⊗ B) we 
have

Ṽ t
1,3Ṽ

∗
2,3 = (V1,3V1,4)t(V2,3V2,4)∗ = V t

1,4V
t
1,3V

∗
2,4V

∗
2,3 = V t

1,4V
∗
2,4V

t
1,3V

∗
2,3,

and hence
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(P ⊗ I)Ṽ t
1,3Ṽ

∗
2,3(P⊥ ⊗ I) = (P ⊗ I ⊗ I)V t

1,4V
∗
2,4V

t
1,3V

∗
2,3(P⊥ ⊗ I ⊗ I)

= (P ⊗ I ⊗ I)V t
1,4V

∗
2,4(P ⊗ I ⊗ I)V t

1,3V
∗
2,3(P⊥ ⊗ I ⊗ I) = 0,

where in the last line we have used relation (69) for V to insert the extra copy of (P⊗I⊗I)
in the middle. This shows that the first relation in (69) holds for Ṽ . The second relation 
in (69) is verified similarly.

Finally, we note that AP,P is, by construction, the C∗-subalgebra of B generated by or-
der two elements of B of the form v∗x,avx′,a′ , x, x′, a, a′ ∈ X. The natural co-multiplication 
ΔP on AP,P is then the restriction of ΔB to AP,P (note that ΔB(AP,P ) ⊆ AP,P ⊗AP,P ).

Remark 7.13. Note that, by Proposition 7.7, any character on AP,P corresponds to a 
unitary U ∈ UX such that (U ⊗ Ū)U = U . In other words, the abelianisation of AP,P

corresponds via Gelfand duality to the classical compact group of unitary matrices

G = {U ⊗ Ū : U ∈ UX and (U ⊗ Ū)U = U} ⊆ MX ⊗MX .

The pair (AP,P , ΔP ) is therefore the quantisation of this very natural matrix group of 
automorphisms of U .

8. Connection with algebraic quantum isomorphisms

The purpose of this section is to clarify the connection between the notion of a quan-
tum graph isomorphism defined and characterised in Section 7 and the notion, defined 
and studied in [9]. Our main reference for the latter concept will be [14], and we follow 
its notation as closely as possible.

8.1. Algebraic isomorphism as a tighter equivalence

We fix throughout the section a finite set X and let n = |X|. We denote by tr the 
normalised trace on MX ; thus, tr = 1

|X|Tr. In order to simplify the notation, we will 
write 1 in the place of IX .

Denote by L2(MX) the Hilbert space with underlying linear space MX and inner 
product arising from the GNS construction applied to the pair (MX , tr). More specifically, 
if Λ : MX → L2(MX) is the GNS map, we set 〈Λ(a), Λ(b)〉 = tr(a∗b) (note that the inner 
product is linear in the second variable). In what follows, we view MX as a subalgebra of 
B(L2(MX)), where an element a ∈ MX gives rise to the operator (denoted in the same 
way and given by)

aΛ(b) = Λ(ab), a, b ∈ MX .

Note that Λ(a) = aΛ(1), a ∈ MX .
Let m : L2(MX) ⊗ L2(MX) → L2(MX) be the multiplication map, that is, the map, 

defined by letting m(Λ(a) ⊗ Λ(b)) = Λ(ab), and m∗ : L2(MX) → L2(MX) ⊗ L2(MX)
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be its Hilbert space adjoint. For notational simplicity, we will often suppress the use 
of Λ, and consider m (resp. m∗) as a map from MX ⊗ MX to MX (resp. from MX to 
MX ⊗MX). We note that

m∗(εi,j) = n

n∑
k=1

εi,k ⊗ εk,j . (70)

Indeed, for p, q, s, t = 1, . . . , n, we have

〈m∗(εi,j), εp,q ⊗ εs,t〉 = 〈εi,j , εp,qεs,t〉 = tr(εj,iεp,qεs,t), (71)

while
〈
n

n∑
k=1

εi,k ⊗ εk,j , εp,q ⊗ εs,t

〉
= n

n∑
k=1

tr(εk,iεp,q) tr(εj,kεs,t) (72)

= n tr(εs,iεp,q) tr(εj,t).

The right hand sides of (71) and (72) are thus equal, establishing (70) which, further, 
implies that

m∗(1) = n
n∑

i,j=1
εi,j ⊗ εj,i. (73)

Let η : C → L2(MX) be the map, given by η(λ) = λΛ(1). Recall [14, Definition 2.4]
that a selfadjoint linear map A : L2(MX) → L2(MX) is called a quantum adjacency 
matrix if it has the following properties:

(1) m(A ⊗A)m∗ = A;
(2) (id ⊗ η∗m)(1 ⊗A ⊗ 1)(m∗η ⊗ id) = A;
(3) m(A ⊗ 1)m∗ = 0.

We stress that condition (3) reflects the fact that we work with a quantum version of 
graphs without loops (graphs with loops are quantised in this context by requiring the 
condition m(A ⊗1)m∗ = 1 instead of (3) [14, p. 6]). A triple G = (MX , tr, A), where A is 
a quantum adjacency matrix, is called in [9,14] a quantum graph. In order to distinguish 
this notion from the one used in the present paper, we will hereafter refer to it as an 
algebraic quantum graph.

We fix an algebraic quantum graph G = (MX , tr, A). We associate with G the MX -
bimodule S′ in B(L2(MX)) generated by A (its dependence on G is suppressed for 
notational simplicity); thus, recalling that the elements of MX are viewed as operators 
on L2(MX), we have that
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S′ = span {aAb : a, b ∈ MX} . (74)

If x, y ∈ MX , we write ΘΛ(x),Λ(y) for the rank one operator, given by

ΘΛ(x),Λ(y)(ξ) = 〈Λ(x), ξ〉Λ(y), ξ ∈ L2(MX).

Let Ψ : B(L2(MX)) → MX ⊗MX be the linear map, given by

Ψ
(
ΘΛ(x),Λ(y)

)
= x∗ ⊗ y, x, y ∈ MX ;

by finite dimensionality, Ψ is bijective. Set e = (1 ⊗ A)(m∗(1)); recalling (73), we have 
that

e = n
n∑

i,j=1
εi,j ⊗A(εj,i). (75)

Lemma 8.1. Let G = (MX , tr, A) be an algebraic quantum graph. Then

(i) Ψ(A) = e,
(ii) e = e∗, and
(iii) Ψ(S′) = span{(1 ⊗ a)e(b ⊗ 1) : a, b ∈ MX} ⊆ MX ⊗MX .

Proof. (i) Note that {√nΛ(εi,j)}1≤i,j≤n is an orthonormal basis for L2(MX); thus,

A =
n∑

i,j=1
Θ√

nΛ(εi,j),
√
nΛ(A(εi,j)),

and the claim now follows from (75).
(ii) Let R = ΘΛ(a),Λ(b), a, b ∈ MX , and T := (id ⊗ η∗m)(1 ⊗ R ⊗ 1)(m∗η ⊗ id). For 

notational simplicity write m∗η(1) = m∗(1) =
∑m

i=1 ξi ⊗ ηi. If x, y ∈ MX , then

〈Λ(x), TΛ(y)〉

=
m∑
i=1

〈Λ(x) ⊗ Λ(1), (1 ⊗m)(1 ⊗ θΛ(a),Λ(b) ⊗ 1)(ξi ⊗ ηi ⊗ Λ(y)〉

=
m∑
i=1

〈Λ(x) ⊗ Λ(1), (1 ⊗m)(ξi ⊗ 〈Λ(a), ηi〉Λ(b) ⊗ Λ(y)〉

=
m∑
i=1

〈Λ(x) ⊗ Λ(1), ξi ⊗ Λ(by)〉〈Λ(a), ηi〉

=
m∑

〈Λ(x), ξi〉〈Λ(a), ηi〉〈Λ(1),Λ(by)〉

i=1
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= 〈Λ(x) ⊗ Λ(a),m∗(1)〉〈Λ(b∗),Λ(y)〉 = 〈Λ(xa),Λ(1)〉〈Λ(b∗),Λ(y)〉
= 〈Λ(x),Λ(a∗)〉〈Λ(b∗),Λ(y)〉,

showing that T = ΘΛ(b∗),Λ(a∗), and hence that Ψ(T ) = b ⊗ a∗ = f(Ψ(R)), where f is the 
flip map. By linearity, we obtain

Ψ(id ⊗ η∗m)(1 ⊗A⊗ 1)(m∗η ⊗ id)) = f(Ψ(A))

and therefore by (i) and condition (2), e = f(e).
Furthermore,

A∗ =

⎛
⎝ n∑

i,j=1
Θ√

nΛ(εi,j),
√
nΛ(A(ei,j))

⎞
⎠

∗

=
n∑

i,j=1
Θ√

nΛ(A(ei,j)),
√
nΛ(εi,j),

and therefore

e = Ψ(A) = Ψ(A∗) = n

n∑
i,j=1

A(εi,j)∗ ⊗ εi,j = f(e∗),

giving e = e∗ = f(e).
(iii) The claim follows from the fact that

Ψ
(
aΘΛ(x),Λ(y)b

)
= Ψ

(
ΘΛ(b∗x),Λ(ay)

)
= x∗b⊗ ay, a, b, x, y ∈ MX . � (76)

We set Λ⊗2 = Λ ⊗ Λ and write UG = Λ⊗2(Ψ(S′)); thus, UG ⊆ L2(MX) ⊗ L2(MX)
(we note that, in the case G is classical, the space UG is closely related to, although not 
identical, to the space denoted in the same way in Section 7). Throughout this section, 
we fix an orthonormal basis {Λ(fj)}n

2

j=1 of L2(MX); we note that {Λ(f∗
i )}n2

i=1 is also an 
orthonormal basis. Let ∂ : L2(MX) → L2(MX) be the linear operator with

∂
(
Λ(f∗

j )
)

= Λ(fj), j = 1, . . . , n2, (77)

and set ŨG = (∂ ⊗ 1)(UG). We next record the properties of the spaces of the form ŨG, 
akin to the properties of quantum graphs in the sense of Definition 7.1. We write d for 
the conjugate-linear map on L2(MX) ⊗ L2(MX), given by

d

⎛
⎝ n2∑

i,j=1
αi,jΛ(fi) ⊗ Λ(fj)

⎞
⎠ =

n2∑
i,j=1

ᾱi,jΛ(fi) ⊗ Λ(fj)

and recall that f is the flip map on L2(MX) ⊗ L2(MX). We note that the definitions of 
the maps ∂ and d depend on the basis, but the concrete basis we are working with will 
be fixed or clear from the context. The same comment applies for the notion we define 
next.
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Definition 8.2. A subspace W ⊆ L2(MX) ⊗L2(MX) is called a quantum pseudo-graph if 
W is skew and (d ◦ f)(W) = W.

Let J0 : L2(MX) ⊗ L2(MX) → L2(MX) ⊗ L2(MX) be the anti-linear map given by 
J0(Λ(x) ⊗ Λ(y)) = Λ(y∗) ⊗ Λ(x∗).

Lemma 8.3. Let W ⊆ L2(MX) ⊗ L2(MX) and U = (∂−1 ⊗ 1)(W). The following are 
equivalent:

(i) (d ◦ f)(W) = W;
(ii) J0(U) = U ;
(iii) Ψ−1(U) is selfadjoint.

Proof. Let x, y ∈ MX . Then

(J0 ◦ (∂−1 ⊗ 1))(Λ(x) ⊗ Λ(y))

= (J0 ◦ (∂−1 ⊗ 1))

⎛
⎝ n2∑

i=1
〈Λ(fi),Λ(x)〉Λ(fi) ⊗ Λ(y)

⎞
⎠

= J0

⎛
⎝ n2∑

i=1
〈Λ(fi),Λ(x)〉Λ(f∗

i ) ⊗ Λ(y)

⎞
⎠ =

n2∑
i=1

〈Λ(fi),Λ(x)〉Λ(y∗) ⊗ Λ(fi)

=
n2∑

i,j=1
〈Λ(fi),Λ(x)〉〈Λ(f∗

j ),Λ(y∗)〉Λ(f∗
j ) ⊗ Λ(fi).

Therefore,

((∂ ⊗ 1) ◦ J0 ◦ (∂−1 ⊗ 1))(Λ(x) ⊗ Λ(y))

=
n2∑

i,j=1
〈Λ(fi),Λ(x)〉〈Λ(fj),Λ(y)〉Λ(fj) ⊗ Λ(fi)

= (d ◦ f)

⎛
⎝ n2∑

i,j=1
〈Λ(fi),Λ(x)〉〈Λ(fj),Λ(y)〉Λ(fi) ⊗ Λ(fj)

⎞
⎠

= (d ◦ f)(Λ(x) ⊗ Λ(y)),

giving the equivalence (i)⇔(ii). As

Ψ(Θ∗
Λ(x),Λ(y)) = Ψ(ΘΛ(y),Λ(x)) = Λ(y∗) ⊗ Λ(x)

= J0(Λ(x∗) ⊗ Λ(y)) = J0(Ψ(ΘΛ(x),Λ(y)),

we obtain the equivalence (ii)⇔(iii). �
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Proposition 8.4. Let G = (MX , tr, A) be an algebraic quantum graph. Then ŨG is a 
quantum pseudo-graph.

Proof. As A is selfadjoint, there exist xi ∈ MX and λi ∈ R such that A =∑n2

i=1 λiΘΛ(xi),Λ(xi). Using (76), we have

(∂ ⊗ 1)((Λ⊗2 ◦ Ψ)(aAb)) =
n2∑
i=1

λi(∂ ⊗ 1)(Λ(x∗
i b) ⊗ Λ(axi))

=
n2∑
i=1

λi(∂ ⊗ 1)

⎛
⎝ n2∑

j,k=1

〈Λ(f∗
k ),Λ(x∗

i b)〉〈Λ(fj),Λ(axi)〉Λ(f∗
k ) ⊗ Λ(fj)

⎞
⎠

=
n2∑
i=1

λi

n2∑
j,k=1

〈Λ(fk),Λ(b∗xi)〉〈Λ(fj),Λ(axi)〉Λ(fk) ⊗ Λ(fj).

Hence

(d ◦ f)((∂ ⊗ 1)((Λ⊗2 ◦ Ψ)(aAb))) = (∂ ⊗ 1)(((Λ⊗2 ◦ Ψ)(b∗Aa∗)),

implying the condition (d ◦ f)(ŨG) = ŨG.
Using (73), we have

0 = m(A⊗ 1)m∗(εi,i) = n

n∑
k=1

A((εi,k))εk,i = n

n∑
j,k=1

λj tr(x∗
j εi,k)xjεk,i,

and hence, for all y ∈ MX , we have

0 = n
n2∑

i,k,j=1

λj tr(x∗
j εi,k) tr(xjεk,iy)

= n
n2∑

i,k,j=1

λj tr(x∗
j εi,k) tr(ε∗i,kyxj) = n

n2∑
i,k,j=1

λj〈xj , εi,k〉〈εi,k, yxj〉

=
n2∑
j=1

λj〈xj , yxj〉 =
n2∑
j=1

λj tr(yxjx
∗
j ) = tr

⎛
⎝y

n2∑
j=1

λjxjx
∗
j

⎞
⎠ .

Therefore, 
∑n2

j=1 λjxjx
∗
j = 0. By the previous paragraph, we have

〈
(∂ ⊗ 1)(((Λ⊗2 ◦ Ψ)(aAb)),

n2∑
Λ(fk) ⊗ Λ(fk)

〉

k=1
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=
n2∑
i=1

λi

n2∑
k=1

〈Λ(fk),Λ(b∗xi)〉〈Λ(fk),Λ(axi)〉

=
n2∑
i=1

λi〈Λ(b∗xi),Λ(axi)〉 = tr

⎛
⎝ n2∑

i=1
λiaxix

∗
i b

⎞
⎠ = 0,

showing that ŨG is skew. �
Remark 8.5. Proposition 8.4 shows that an algebraic quantum graph G = (MX , tr, A)
gives rise to a canonical quantum pseudo-graph ŨG ⊆ L2(MX) ⊗L2(MX). The reason we 
are led to work with quantum pseudo-graphs instead of quantum graphs in the sense of 
our Definition 7.1 lies in the setup of QNS correlations, which is borrowed from [18]. In 
defining QNS correlations, instead of no-signalling quantum channels Γ : MX ⊗MY →
MA ⊗ MB , one could start with no-signalling quantum channels Γ′ : MX ⊗ Mop

Y →
MA ⊗Mop

B . For the class of quantum commuting no-signalling correlations, this would 
lead to Choi matrices of the form (τ(ex,x′,a,a′ey,y′,b,b′)), as opposed to the matrices 
(τ(ex,x′,a′,aey′,y,b′,b)) that arise through the current setup. As we will shortly see, in 
order to obtain a neat connection between the two types of quantum isomorphisms, one 
also needs to work with a slightly different concept of quantum isomorphism than the 
one employed in Section 7. We make this discussion rigorous in Theorem 8.9.

Let Gr = (MX , tr, Ar) be an algebraic quantum graph, r = 1, 2. Let O(G1, G2) be 
the universal (unital) C∗-algebra with generators pi,j, i, j = 1, . . . , n2, and relations that 
turn the map ρ : MX → MX ⊗O(G1, G2), given by

ρ(fi) =
n2∑
j=1

fj ⊗ pj,i, i = 1, . . . , n2, (78)

into a unital ∗-homomorphism such that

(A2 ⊗ id) ◦ ρ = ρ ◦A1, (79)

and

(tr⊗id) ◦ ρ = tr(·)1 (80)

Remark 8.6. It follows from the proof of [16, Theorem 4.7] that the matrix P =
(pi,j)n

2

i,j=1 ∈ Mn2(O(G1, G2)) is automatically unitary. Identifying Ai with its corre-
sponding matrix in Mn2 with respect to the basis {fj}n

2

j=1, one can further check that 
equation (79) is equivalent to

(A2 ⊗ 1O(G1,G2))P = P (A1 ⊗ 1O(G1,G2)). (81)



M. Brannan et al. / Advances in Mathematics 449 (2024) 109732 67
Indeed, we have that

(ρ ◦A1)(fi) =
n2∑

k,j=1

(A1)k,ifj ⊗ pj,k =
n2∑
j=1

fj ⊗ (P (A1 ⊗ IH))j,i

and

(A2 ⊗ 1O(G1,G2))ρ(fi) =
n2∑
k=1

A2(fk) ⊗ pk,i

=
n2∑

k,j=1

(A2)j,kfj ⊗ pk,i =
n2∑
j=1

fj ⊗ ((A2 ⊗ IH)P )j,i.

Identity (81) now follows by comparing the corresponding coefficients. We note that 
reversing these arguments shows that relations (81) and (79) are equivalent.

Note that if {Λ(gj)}n
2

j=1 ⊂ L2(MX) is another orthonormal basis and U ∈ Mn2 is 
unitary such that UΛ(gj) = Λ(fj), j = 1, . . . , n2, then

ρ(gi) =
n2∑
j=1

gj ⊗ ((U∗ ⊗ 1)P (U ⊗ 1))j,i.

For the remainder of this section, we make the underlying assumption that the C∗-
algebra O(G1, G2) is non-trivial.

Proposition 8.7. Let Gr = (MX , tr, Ar) be an algebraic quantum graph, r = 1, 2. Then 
the matrix P ∈ Mn2 ⊗O(G1, G2) is bi-unitary.

Proof. We verify that P t = (pj,i)n
2

i,j=1 is unitary. By the previous remark we may assume 

that {Λ(fi)}n
2

i=1 is {√nΛ(εi,j)}ni,j=1. Following the proof of [14, Lemma 9.4], let W ∈ Mn2

be the matrix with entries

W(i,j),(k,l) := n
〈
Λ(εi,j),Λ(ε∗k,l)

〉
= Tr(εj,iεl,k) = δi,lδj,k.

Then

(W ∗W )(i,j),(k,l) =
n∑

p,q=1
W(p,q),(i,j)W(p,q),(k,l) = 1

if (i, j) = (k, l) and zero otherwise; thus, W ∗W = In2 . As ρ is ∗-preserving, we obtain

n2∑
fl ⊗ 〈Λ(fj),Λ(f∗

i )〉 pl,j =
n2∑

〈Λ(fj),Λ(f∗
i )〉 ρ(fj)
j,l=1 j=1
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= ρ(f∗
i ) = ρ(fi)∗ =

n2∑
j=1

f∗
j ⊗ p∗j,i =

n2∑
j,l=1

fl ⊗
〈
Λ(fl),Λ(f∗

j )
〉
p∗j,i.

Thus

n2∑
j=1

pl,jWj,i = n
n2∑
j=1

〈Λ(fj),Λ(f∗
i )〉 pl,j

= n

n2∑
j=1

〈
Λ(fl),Λ(f∗

j )
〉
p∗j,i =

n2∑
j=1

Wl,jp
∗
j,i

for all i, l = 1, . . . , n2; equivalently, P (W ⊗ 1) = (W ⊗ 1)P t∗. It follows that P t∗ =
(W−1 ⊗ 1)P (W ⊗ 1), and hence

P t∗P t = (W−1 ⊗ 1)P (W ⊗ 1)(W ∗ ⊗ 1)P ∗((W ∗)−1 ⊗ 1)

= (W−1 ⊗ 1)PP ∗((W ∗)−1 ⊗ 1) = 1

and

P tP t∗ = (W ∗ ⊗ 1)P ∗((W ∗)−1 ⊗ 1)(W−1 ⊗ 1)P (W ⊗ 1)

= (W ∗ ⊗ 1)P ∗P (W ⊗ 1) = 1. �
Let Gr = (MX , tr, Ar) be an algebraic quantum graph, r = 1, 2. We will write S′

r

for the space corresponding to Gr via (74), r = 1, 2. We say [9, Definition 4.4] that 
G1 and G2 are quantum commuting isomorphic, denoted G1 �qc G2, if the C∗-algebra 
O(G1, G2) admits a tracial state, say τ . We note that by [9, Corollary 4.8], this is 
equivalent to (the seemingly weaker) assumption that O(G1, G2) �= 0. We assume, unless 
specified otherwise, that G1 �qc G2. Let H be the Hilbert space, arising from the GNS 
construction applied to τ and, by abuse of notation, continue to write pi,j for the image 
of the corresponding canonical generator of O(G1, G2) under the ∗-representation arising 
from τ . By (81), we have

A2 ⊗ IH = P (A1 ⊗ IH)P ∗. (82)

We view P = (pi,j)n
2

i,j=1 as an operator on L2(MX) ⊗H and note that, by (78), we have

P (Λ(b) ⊗ ξ) = ρ(b)(Λ(1) ⊗ ξ), b ∈ MX , ξ ∈ H. (83)

Moreover, for a, d ∈ MX and ξ ∈ H we have

P (a⊗ 1)P ∗P (Λ(d) ⊗ ξ) = P (a⊗ 1)(Λ(d) ⊗ ξ) = P (Λ(ad) ⊗ ξ)

= ρ(ad)(Λ(1) ⊗ ξ) = ρ(a)(ρ(d)(Λ(1) ⊗ ξ) = ρ(a)P (Λ(d) ⊗ ξ),
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and hence

P (a⊗ 1)P ∗ = ρ(a), a ∈ MX , (84)

as maps on L2(MX) ⊗ B(H).
We define P̃ ∈ B(L2(MX) ⊗H) by letting

P̃ (Λ(f∗
j ) ⊗ η) =

n2∑
k=1

Λ(f∗
k ) ⊗ p∗k,jη, η ∈ H.

Using leg-notation, we write P2,3 and P1,3 for the corresponding operators on L2(MX) ⊗
L2(MX) ⊗H, arising from P .

Lemma 8.8. We have ((Λ⊗2 ◦ Ψ) ⊗ id)(P (S′
1 ⊗ 1)P ∗) = P2,3P̃1,3(UG1 ⊗ 1).

Proof. Let x, y ∈ MX . We have

P
(
ΘΛ(x),Λ(y) ⊗ 1

)
P ∗(Λ(fk) ⊗ η)

= P
(
ΘΛ(x),Λ(y) ⊗ 1

)⎛⎝ n2∑
j=1

Λ(fj) ⊗ p∗k,jη

⎞
⎠

= P

⎛
⎝ n2∑

j=1
〈Λ(x),Λ(fj)〉Λ(y) ⊗ p∗k,jη

⎞
⎠

= P

⎛
⎝ n2∑

i,j=1
〈Λ(x),Λ(fj)〉〈Λ(fi),Λ(y)〉Λ(fi) ⊗ p∗k,jη

⎞
⎠

=
n2∑

m=1
Λ(fm) ⊗

⎛
⎝ n2∑

i=1
〈Λ(fi),Λ(y)〉pm,i

n2∑
j=1

〈Λ(x),Λ(fj)〉p∗k,j

⎞
⎠ (η)

=
n2∑

l,m=1

ΘΛ(fl),Λ(fm) ⊗

⎛
⎝ n2∑

i=1
〈Λ(fi),Λ(y)〉pm,i

n2∑
j=1

〈Λ(x),Λ(fj)〉p∗l,j

⎞
⎠ (Λ(fk) ⊗ η)

and hence

P (ΘΛ(x),Λ(y) ⊗ 1)P ∗

=
n2∑

l,m=1

ΘΛ(fl),Λ(fm) ⊗

⎛
⎝ n2∑

i=1
〈Λ(fi),Λ(y)〉pm,i

⎞
⎠
⎛
⎝ n2∑

j=1
〈Λ(x),Λ(fj)〉p∗l,j

⎞
⎠ .

It follows that
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((Λ⊗2 ◦ Ψ) ⊗ id)
(
P (ΘΛ(x),Λ(y) ⊗ 1)P ∗)

=
n2∑

l,m=1

Λ(f∗
l ) ⊗ Λ(fm) ⊗

⎛
⎝ n2∑

i=1
〈Λ(fi),Λ(y)〉pm,i

⎞
⎠
⎛
⎝ n2∑

j=1
〈Λ(x),Λ(fj)〉p∗l,j

⎞
⎠ .

As P (Λ(y) ⊗ ξ) =
∑n2

i,m=1〈Λ(fi), Λ(y)〉Λ(fm) ⊗ pm,iξ and

P̃ (Λ(x∗) ⊗ η) =
n2∑
j=1

P̃ (〈Λ(f∗
j ),Λ(x∗)〉(Λ(f∗

j ) ⊗ η))

=
n2∑

j,l=1

〈Λ(x),Λ(fj)〉Λ(f∗
l ) ⊗ p∗l,jη,

we obtain

((Λ⊗2 ◦ Ψ) ⊗ id)(P (ΘΛ(x),Λ(y) ⊗ 1)P ∗) = P2,3P̃1,3(Λ(x∗) ⊗ Λ(y) ⊗ 1).

The statements now follow by linearity from the definition of UG1 . �
Let N ⊆ B(H) be a von Neumann algebra, equipped with a faithful trace τ̃ , and let 

U = (ui,j)i,j ∈ Mn2(N ) be a bi-unitary block operator matrix (with entries in N ). Then 
Γ : Mn2 ⊗Mn2 → Mn2 ⊗Mn2 given by

Γ(εi,i′ ⊗ εj,j′) = ΓU (εi,i′ ⊗ εj,j′) = (τ̃(u∗
k,iuk′,i′u

∗
l′,j′ul,j))k,k′,l,l′ . (85)

is a QNS correlation. Note that since U ∈ Mn2(N ) is bi-unitary, it is also bi-unitary 
when N is equipped with its opposite algebra structure. In the following, we denote by 
Uop ∈ Mn2(N op) the corresponding bi-unitary. Using U∗

op, we let Γ̃ : Mn2 ⊗ Mn2 →
Mn2 ⊗Mn2 be the unital completely positive map, given by

Γ̃(εk,k′ ⊗ εl,l′) = ΓU∗
op

(εk,k′ ⊗ εl,l′) = (τ̃(u∗
k′,i′uk,iu

∗
l,jul′,j′))i,i′,j,j′ .

If fk,k′,i,i′ = (U∗
op)∗i,k(U∗

op)i′,k′ = u∗
k′,i′uk,i, then Γ̃ has Choi matrix (τ̃(fk,k′,i,i′fl′,l,j′,j))

and is hence a quantum commuting QNS correlation.
We call two quantum pseudo-graphs W1 and W2 qc-pseudo-isomorphic if there exists 

Γ ∈ Qbic
qc of the form described in the previous paragraph, such that

(i) Γ is a perfect strategy for W1 → W2, and
(ii) Γ̃ is a perfect strategy for W2 → W1.

Theorem 8.9. Let Gr = (MX , tr, Ar), r = 1, 2, be algebraic quantum graphs with G1 �qc
G2. Then the quantum pseudo-graphs ŨG1 and ŨG2 are qc-pseudo-isomorphic.
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Proof. Set Ũr = ŨGr
for brevity, r = 1, 2. By assumption, the C*-algebra O(G1, G2)

has a tracial state, say τ . Let N ⊆ B(H) be the von Neumann algebra associated with 
τ via the GNS construction, and τ̃ be the (faithful) trace on N , corresponding to τ . 
Write ui,j for the images of the canonical generators pi,j under the Gelfand map, and 
let U and Ũ be the matrices, corresponding to P and P̃ , respectively. Let Γ be the QNS 
correlation given by (85). Note that, by (84) P (a ⊗ 1)P ∗ = ρ(a), a ∈ MX , and, by (82), 
P (A1 ⊗ 1)P ∗ = A2 ⊗ 1; thus,

P (aA1b⊗ 1)P ∗ = P (a⊗ 1)(A1 ⊗ 1)(b⊗ 1)P ∗

= P (a⊗ 1)P ∗P (A1 ⊗ 1)P ∗P (b⊗ 1)P ∗

= ρ(a)(A2 ⊗ 1)ρ(b).

It now follows from (78) that U(S′
1 ⊗ 1)U∗ ⊆ S′

2 ⊗ B(H). By Lemma 8.8,

U2,3Ũ1,3(U1 ⊗ 1) ⊆ U2 ⊗ B(H). (86)

Recalling the map ∂ defined in (77), note that

(∂ ⊗ 1)Ũ(∂ ⊗ 1)(Λ(fi) ⊗ η) = (∂ ⊗ 1)

⎛
⎝ n2∑

k=1

Λ(f∗
k ) ⊗ u∗

k,iη

⎞
⎠ =

n2∑
k=1

Λ(fk) ⊗ u∗
k,iη,

that is,

(∂ ⊗ 1)Ũ(∂ ⊗ 1) = U t∗ =: Ū .

Let PŨr
be the projection onto Ũr, r = 1, 2. Then condition (86) implies that

(P⊥
Ũ2

⊗ 1)U2,3Ū1,3(PŨ1
⊗ 1) = 0. (87)

The arguments in the proof of Theorem 7.4 (see also the subsequent Remark) now imply 
that Γ is a perfect strategy for the quantum graph homomorphism game Ũ1 → Ũ2.

Next, we consider the bi-unitaries Pop and Uop over N op associated to P and U
above. It follows from [9, Theorem 4.5] (see also equations (6)-(7) preceding it) that 
the bi-unitary P ∗

op implements the “inverse” of the quantum isomorphism defined by 
P = [pi,j ]. More precisely, there exists a unital ∗-homomorphism

β : MX → MX ⊗N op; β(fi) =
n2∑
j=1

fj ⊗ p∗i,j , i = 1, . . . , n2, (88)

satisfying

(A1 ⊗ id) ◦ β = β ◦A2, (tr ⊗ id) ◦ β = tr(·)1. (89)
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In particular, using (88)-(89), we can repeat our above arguments (with U∗
op in place of 

U and β in place of ρ) to obtain U∗
op(A2⊗1)Uop = A1⊗1, U∗

op(S′
2⊗1)Uop ⊂ S′

1⊗B(H)op, 
and

(P⊥
Ũ1

⊗ 1)(U∗
op)2,3(U∗

op)1,3(PŨ2
⊗ 1) = 0

or equivalently

(P⊥
Ũ1

⊗ 1)U t
1,3U

∗
2,3(PŨ2

⊗ 1) = 0. (90)

It follows from the definition of Γ̃ as ΓU∗
op

and the arguments in the proof of Theorem 
7.4 that Γ̃ is a perfect strategy for Ũ2 → Ũ1. �
Remark 8.10. For a classical graph G with vertex set X, let AG : MX → MX be Schur 
multiplication map against the adjacency matrix of G. Then (MX , tr, AG) is an algebraic 
quantum graph. Let

WG = span{εx,x ⊗ εy,y : x ∼ y in G} ⊆ MX ⊗MX .

Then WG is a quantum pseudo-graph in L2(MX) ⊗ L2(MX).
Let G1, G2 be classical graphs with vertex set X. We have the following three types 

of quantum commuting isomorphism for the graphs G1 and G2:

(a) quantum commuting isomorphism in the sense of classical non-local games [1];
(b) quantum commuting isomorphism of the algebraic quantum graphs (MX , tr, AG1)

and (MX , tr, AG2);
(c) quantum commuting isomorphism in the sense of quantum non-local games (Sec-

tion 7), employing the quantum pseudo-graphs W1 and W2.

We have that (a) implies (b), and that (b) implies (c). We do not know if these implica-
tions are reversible.

8.2. A partial converse

In the remainder of this section, we discuss to what extent the implication established 
in Theorem 8.9 can be reversed. We first note that the quantum pseudo-graphs of the 
form Ũ = ŨG, for an algebraic quantum graph G = (MX , tr, A), automatically have some 
extra structure, and hence a full reversal of Theorem 8.9 cannot be expected. Indeed, let 
U = (∂−1 ⊗ 1)(Ũ), and recall that S′ = Ψ−1(U) ⊆ B(L2(MX)) is an MX -bimodule. We 
first show that any quantum pseudo-graph Ũ , for which Ψ−1(U) is a MX -bimodule, arises 
in this way. In what follows we fix a basis {Λ(fi)}i in L2(MX) when define pseudo-graphs 
Ũ .

Let Mop
X be the opposite algebra to MX . For notational simplicity, we will consider 

Mop
X as having the same underlying vector space as MX , and will denote its product by 
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·op; thus, a ·op b = ba, a, b ∈ MX . Let (L2(Mop
X ), Λop) be the GNS construction applied 

to (Mop
X , tr). As

〈Λop(a),Λop(b)〉 = tr(a∗ ·op b) = tr(ba∗) = 〈Λ(a),Λ(b)〉,

we have that L2(Mop
X ) ⊗ L2(MX) and L2(MX) ⊗ L2(MX) can be identified also as 

Hilbert spaces. Recall that L2(MX)d is the Banach space dual of L2(MX) (equivalently, 
the conjugate Hilbert space to L2(MX)). If A ⊆ B(L2(MX)) is a ∗-subalgebra, then the 
map T op �→ T d, where T dξ = T ∗ξ, ξ ∈ L2(MX), is a ∗-isomorphism. In what follows we 
will often identify T op with T d. For a linear operator T : L2(MX) → L2(MX), we define 
T̄ : L2(MX)d → L2(MX)d, by letting T̄ ξ̄ = Tξ, ξ ∈ L2(MX).

Lemma 8.11. Let G = (MX , tr, A) be an algebraic quantum graph. Then e = (1 ⊗
A)(m∗(1)) is a projection when considered as element in Mop

X ⊗MX .

Proof. By Lemma 8.1, we only have to show that e is an idempotent. Using (75), we 
have

e2 = n2

⎛
⎝ n∑

i,j=1
εi,j ⊗A(εj,i)

⎞
⎠
⎛
⎝ n∑

k,l=1

εk,l ⊗A(εl,k)

⎞
⎠

= n2
n∑

i,j,k,l=1

εi,j ·op εk,l ⊗A(εj,i)A(εl,k)

= n2
n∑

i,j,k=1

εk,j ⊗A(εj,i)A(εi,k) = n
n∑

j,k=1

εk,j ⊗m(A⊗A)m∗(εj,k)

= n
n∑

j,k=1

εk,j ⊗A(εj,k) = e. �

Remark 8.12. We remark that reversing the arguments of Lemmas 8.1 and 8.11, we can 
easily see that any projection e ∈ Mop

X ⊗MX , such that e = f(e), gives rise to selfadjoint 
operator A : L2(MX) → L2(MX) satisfying the conditions (1) and (2) of quantum 
adjacency matrix and linked to e through the identity (75).

Let J : L2(MX) → L2(MX) be the conjugate-linear map, given by J(Λ(a)) = Λ(a∗), 
and the map κ : B(L2(MX)) → B(L2(MX)) be given by κ(x) = Jx∗J . We have that κ
is an anti-∗-homomorphism such that κ2 = id; writing π : L2(MX) → L2(MX) for the 
∗-homomorphism given by π(x)Λ(a) = Λ(xa), we have that κ(π(MX)) = π(MX)′.

Proposition 8.13. Let Ũ be a quantum pseudo-graph such that Ψ−1((∂−1 ⊗ 1)(Ũ)) is an 
MX-bimodule. Then there exists an algebraic quantum graph G = (MX , tr, A) such that 
Ũ = ŨG.
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Proof. Let U = (∂−1 ⊗ 1)(Ũ) and S′ = Ψ−1(U). By assumption, S′ is an MX -
bimodule and hence κ(S′) is a π(MX)′-bimodule. Under the canonical bijection be-
tween B(L2(MX)) and L2(MX)d ⊗ L2(MX), the π(MX)′-bimodule κ(S′) corresponds 
to the (π(MX)′)op ⊗ π(MX)′-invariant subspace U ′. Thus it gives rise to the projection 
e ∈ Mop

X ⊗ MX onto U ′. By Lemma 8.3, S′ is selfadjoint and hence so is κ(S′), which 
implies, again by Lemma 8.3, that e = f(e) and J0(U ′) = U ′.

Let A : L2(MX) → L2(MX) be the linear map corresponding to e as in Remark 8.12. 
We have that κ(S′) is the π(MX)′-bimodule generated by A. It follows that S′ is the 
π(MX)-bimodule generated by A. In fact, since κ(π(MX)′) = π(MX), it suffices to verify 
that JA∗J = A. Write A =

∑m
i=1 λiΘΛ(xi),Λ(xi), λi ∈ R, xi ∈ MX , i = 1, . . . , m. Then 

e = Ψ(A) =
∑m

i=1 λix
∗
i ⊗ xi. On the other hand,

JA∗J = JAJ =
m∑
i=1

λiΘΛ(x∗
i ),Λ(x∗

i ).

Thus Ψ(JA∗J) =
∑m

i=1 λixi⊗x∗
i = f(e). As e = f(e), we get Ψ(JA∗J) = Ψ(A), implying 

that JA∗J = A.
Finally, reversing arguments in Proposition 8.4 we see that skewness of Ũ implies 

that m(A ⊗ 1)m∗ = 0, showing that A is a quantum adjacency matrix. Letting G =
(MX , A, tr), we have that Ũ = ŨG. �

We now fix a quantum pseudo-graph Ũr in L2(MX) ⊗ L2(MX), for which the cor-
responding space S′

r is an MX -bimodule, and let Ur := (∂−1 ⊗ 1)(Ũr), r = 1, 2. We 
assume that Ũ1 and Ũ2 are qc-pseudo-isomorphic, and let N be a von Neumann algebra 
with trace τ , and U = (uk,i)n

2

k,i=1 be a bi-unitary, with uk,i ∈ N , k, i = 1, . . . , n2, such 
that U gives rise, via (85), to a QNS correlation implementing a qc-pseudo-isomorphism 
between ŨG1 and ŨG2 . The proof of Theorem 8.9 implies that

(P⊥
Ũ2

⊗ 1)U2,3Ū1,3(PŨ1
⊗ 1) = 0 and (P⊥

Ũ1
⊗ 1)U t

1,3U
∗
2,3(PŨ2

⊗ 1) = 0; (91)

reversing the arguments in its proof, we obtain the equivalent conditions

U(S′
1 ⊗ 1)U∗ ⊆ S′

2 ⊗N and U∗
op(S′

2 ⊗ 1)Uop ⊆ S′
1 ⊗N op. (92)

Note that the map αU : B(L2(MX)) → B(L2(MX)) ⊗ N , given by αU (x) = U(x ⊗
1)U∗, is trace preserving, that is, satisfies the identities (tr⊗ id)(αU (x)) = tr(x)I, x ∈
B(L2(MX)). Indeed, for i, j ∈ X ×X, we have

(tr⊗ id)(αU (εi,j))) = (tr⊗ id)((uk,iu
∗
l,j)k,l) = 1

n

n∑
k=1

uk,iu
∗
k,j

= 1
δi,jI = tr(εi,j)I.
n
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Assume that there exists a ∗-homomorphism ρ : MX → MX⊗N , such that U(Λ(b) ⊗ξ) =
(π ⊗ id)(ρ(b))(Λ(1) ⊗ ξ). According to [14, Section 9.1] (see also (84)),

αU (π(a)) = (π ⊗ id)(ρ(a)) ⊆ π(MX) ⊗N , a ∈ MX ;

we call U the unitary implementation of ρ. Writing ρ(fi) =
∑

fj ⊗ vj,i, we have

U(Λ(fi) ⊗ ξ) =
n2∑
j=1

Λ(fj) ⊗ vj,iξ, i = 1, 2, . . . , n2,

and hence vi,j = ui,j for all i, j. The elements ui,j satisfy all of the relations of the gener-
ators of O(G1, G2), except for, possibly, relation (79) (equivalently, (81)). The following 
theorem establishes this last relation.

Theorem 8.14. Let Gr = (MX , tr, Ar) be an algebraic quantum graph, r = 1, 2. Let N be 
a tracial von Neumann algebra and U be a bi-unitary with entries in N giving rise, via 
(85), to a QNS correlation Γ that implements a qc-pseudo-isomorphism between ŨG1 and 
ŨG2 . Assume that U is the unitary implementation of a trace-preserving ∗-homomorphism 
ρ : MX → MX ⊗N . Then U(A1 ⊗ I) = (A2 ⊗ I)U and hence G1 �qc G2.

The proof of Theorem 8.14 uses arguments from [14] and some auxiliary statements 
which we now establish. Set H = L2(MX) (equipped with the inner product associated 
with tr). We identify L2(Mop

X ) with L2(MX)d via the unitary map Λop(x) �→ Λ(x∗).
We write Λ̃ : B(H) → L2(B(H)) for the GNS-map corresponding to (non-normalised 

trace) Tr. We have

〈
Λ̃(ΘΛ(x),Λ(y)), Λ̃(ΘΛ(x′),Λ(y′))

〉
= Tr

(
ΘΛ(y),Λ(x)ΘΛ(x′),Λ(y′)

)
= 〈Λ(y),Λ(y′)〉H〈Λ(x′),Λ(x)〉H = 〈Λ(y),Λ(y′)〉H

〈
Λ(x),Λ(x′)

〉
Hd

.

Hence the linear map ω : L2(B(H)) → Hd ⊗H, defined by

ω
(
Λ̃(ΘΛ(x),Λ(y))

)
= Λ(x) ⊗ Λ(y),

is a unitary operator.
We now fix algebraic quantum graphs, Gr = (MX , tr, Ar), r = 1, 2, a von Neumann 

algebra N and a bi-unitary U as in the statement of Theorem 8.14. Assume that N acts 
on a Hilbert space K. Let er ∈ Mop

X ⊗MX be the projection associated with the adjacency 
matrix Ar : MX → MX of Gr via (75), r = 1, 2 (see the paragraph after the proof of 
Theorem 8.9), and let pr be the orthogonal projections from the Hilbert space L2(B(H))
(equipped with the inner product corresponding to Tr) onto its subspace Λ̃(S′

r), r = 1, 2. 
The following lemma specialises [14, Lemma 9.17]; we include a direct proof for the 
convenience of the reader.



76 M. Brannan et al. / Advances in Mathematics 449 (2024) 109732
Lemma 8.15. The following hold:

(i) (ω ◦ Λ̃)(Ar) = (Λop ⊗ Λ)(er);
(ii) ωprω

∗ = (J̄ ⊗ J)er(J̄ ⊗ J);
(iii) prω

∗(Λ(1) ⊗ Λ(1)) = Λ̃(Ar).

Proof. (i) Let T = ΘΛ(x),Λ(y), x, y ∈ MX . Then

ω(Λ̃(T )) = Λ(x) ⊗ Λ(y) = (Λop ⊗ Λ)(x∗ ⊗ y).

As Ar = n 
∑n

i,j=1 ΘΛ(εi,j),Λ(Ar(εi,j)), we have

(ω ◦ Λ̃)(Ar) = n

n∑
i,j=1

(Λop ⊗ Λ)(ε∗i,j ⊗Ar(εi,j))

= n

n∑
i,j=1

(Λop ⊗ Λ)(εj,i ⊗Ar(εi,j)) = (Λop ⊗ Λ)(er).

(ii) Using (76), for a, b ∈ MX we have

ω(Λ̃(aTb)) = ω(Λ̃(ΘΛ(b∗x),Λ(ay)) = Λ(b∗x) ⊗ Λ(ay)

= Λop(x∗b) ⊗ Λ(ay) = (b⊗ a)(Λop(x∗) ⊗ Λ(y)),

where the latter action is that of Mop
X ⊗MX on L2(Mop

X ) ⊗ L2(MX). Thus

ω(Λ̃(S′
r)) = (Mop

X ⊗MX)(Λop ⊗ Λ)(er). (93)

As er ∈ Mop
X ⊗MX , identifying it with its image under the map πop ⊗ π (which acts 

on L2(MX)d ⊗ L2(MX)), for a ⊗ b, x ⊗ y ∈ Mop
X ⊗MX , we obtain that

(J ⊗ J)(x⊗ y)(J ⊗ J)((Λop ⊗ Λ)(a⊗ b)) (94)

= (J ⊗ J)(x⊗ y)(JΛ(a∗) ⊗ Λ(b∗)) = (J ⊗ J)(x⊗ y)(Λop(a∗) ⊗ Λ(b∗))

= (J ⊗ J)(Λop(a∗x) ⊗ Λ(yb∗)) = JΛ(x∗a) ⊗ Λ(by∗)

= Λop(x∗a) ⊗ Λ(by∗) = (a⊗ b)(Λop ⊗ Λ)(x∗ ⊗ y∗)

which, together with the fact that er is selfadjoint (see Lemma 8.11), implies that, for 
any u ∈ Mop

X ⊗MX , we have

(J ⊗ J)er(J ⊗ J)((Λop ⊗ Λ)(u)) = u(Λop ⊗ Λ)(er). (95)

In particular, using (93),
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ran
(
(J ⊗ J)er(J ⊗ J)

)
= (Mop

X ⊗MX)(Λop ⊗ Λ)(er) = (ω ◦ Λ̃)(S′
r).

Statement (ii) now follows.
(iii) Using (i), (ii), (95) and the calculation (94) for a = b = 1, we have

(ωprω∗)(Λ(1) ⊗ Λ(1)) = (J ⊗ J)er(J ⊗ J)((Λ(1) ⊗ Λ(1))

= (Λop ⊗ Λ)(er) = (ω ◦ Λ̃)(Ar). �
Let Ũ : L2(B(H)) ⊗K → L2(B(H)) ⊗K be the operator, given by

Ũ(Λ̃(b) ⊗ ξ) = αU (b)(Λ̃(1) ⊗ ξ), ξ ∈ K.

For a Hilbert space L, let j : L → Ld the anti-linear isomorphism, given by j(g) = g, and 
R : B(L) → B(Ld) be the map, given by R(x) = jx∗j, x ∈ B(L). Note that, if (gi)i is 
an orthonormal basis for L, εi,j ∈ B(L) are the matrix units corresponding to (gi)i, and 
{ε̄j,i} is the matrix unit system for B(Ld) with respect to the orthonormal basis (ḡi)i, 
then

R(εi,j) = j(gig∗j )∗j = j(gjg∗i )j = j(gj)j(gi)∗ = ε̄j,i.

In the following, we let V = (R ⊗ 1)(U∗). Thus, if U = (ui,j)n
2

i,j=1 with respect to the 

orthonormal basis {Λ(fi)}n
2

i=1 of L2(MX), then V is the operator on L2(MX)d⊗K whose 

matrix with respect to the orthonormal basis 
{

Λ(fi)
}n2

i=1
is (vi,j)n

2

i,j=1 := (u∗
i,j)n

2

i,j=1.

Lemma 8.16. We have that (ω ⊗ 1)Ũ(ω∗ ⊗ 1) = U2,3V1,3.

Proof. For 1 ≤ s, t ≤ n2 and ξ ∈ K we have

(ω ⊗ 1)Ũ(ω∗ ⊗ 1)(Λ(ft) ⊗ Λ(fs) ⊗ ξ)

= (ω ⊗ 1)Ũ(Λ̃(ΘΛ(ft),Λ(fs)) ⊗ ξ)

= (ω ⊗ 1)αU (ΘΛ(ft),Λ(fs))(Λ̃(1) ⊗ ξ)

= (ω ⊗ 1)U(ΘΛ(ft),Λ(fs) ⊗ 1)U∗(Λ̃(1) ⊗ ξ)

= (ω ⊗ 1)

⎛
⎝ n2∑

i,j=1
εi,j ⊗ ui,j

⎞
⎠ (ΘΛ(ft),Λ(fs) ⊗ 1)

⎛
⎝ n2∑

k,l=1

εl,k ⊗ u∗
k,l

⎞
⎠ (Λ̃(1) ⊗ ξ)

= (ω ⊗ 1)

⎛
⎝ n2∑

i,j,k,l=1

εi,jΘΛ(ft),Λ(fs)εk,l ⊗ ui,ju
∗
l,k

⎞
⎠ (Λ̃(1) ⊗ ξ)

=
n2∑

Λ(fl) ⊗ Λ(fi) ⊗ ui,su
∗
l,tξ = U2,3V1,3(Λ(ft) ⊗ Λ(fs) ⊗ ξ)
i,l=1
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The statement follows by linearity. �
Proof of Theorem 8.14. We recall that the von Neumann algebra N acts on the Hilbert 
space K, and that pr is the orthogonal projections from the Hilbert space L2(B(H))
(equipped with the inner product coming from Tr) onto Λ̃(S′

r). By (92),

Ũ(Λ̃(b) ⊗ ξ) = αU (b)(Λ̃(1) ⊗ ξ) ∈ Λ̃(S′
2) ⊗N ξ, b ∈ S′

1, (96)

and hence

Ũ(p1 ⊗ 1) = (p2 ⊗ 1)Ũ(p1 ⊗ 1).

Using Lemma 8.16, the latter is equivalent to

U2,3V1,3(ωp1ω
∗ ⊗ 1) = (ωp2ω

∗ ⊗ 1)U2,3V1,3(ωp1ω
∗ ⊗ 1).

Note that if U implements a ∗-homomorphism ρ, U∗
op implements the corresponding 

∗-homomorphism β as defined in (88). Letting now

Ũop(Λ̃(b) ⊗ ξ) = αU∗
op

(b)(Λ̃(1) ⊗ ξ),

we obtain Ũop(Λ̃(b) ⊗ξ) ∈ Λ̃(S′
1) ⊗N opξ, if b ∈ S′

2, so that Ũop(p2⊗1) = (p1⊗1)Ũop(p2⊗1). 
As (ω ⊗ 1)Ũop(ω∗ ⊗ 1) = (U∗

op)2,3(V ∗
op)1,3, we obtain

V ∗
1,3U

∗
2,3(ωp2ω

∗ ⊗ 1) = (ωp1ω
∗ ⊗ 1)V ∗

1,3U
∗
2,3(ωp2ω

∗ ⊗ 1)

from which we get

U2,3V1,3(ωp1ω
∗ ⊗ 1) = (ωp2ω

∗ ⊗ 1)U2,3V1,3

and hence

(p2 ⊗ 1)Ũ = Ũ(p1 ⊗ 1).

Using Lemmas 8.15 and 8.16, for ξ ∈ B(K) we therefore have

αU (A1)(Λ̃(1) ⊗ ξ) = Ũ(Λ̃(A1) ⊗ ξ)

= Ũ(p1ω
∗(Λ(1) ⊗ Λ(1)) ⊗ ξ) = (p2 ⊗ 1)Ũ(ω∗(Λ(1) ⊗ Λ(1)) ⊗ ξ))

= (p2ω
∗ ⊗ 1)U2,3V1,3(Λ(1) ⊗ Λ(1) ⊗ ξ).

From the definition of U , we have

U(Λ(1) ⊗ ξ) = ρ(1)(Λ(1) ⊗ ξ) = Λ(1) ⊗ ξ. (97)

Observe that
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V = (F−1 ⊗ 1)U(F ⊗ 1) (98)

where F : Hd → H is the unitary given by FΛ(x) = Λ(x∗). Indeed, to establish (98), we 
note that F−1 = F ∗ and, for ξ ∈ K and i = 1, . . . , n2, we compute:

(F−1 ⊗ 1)U(F ⊗ 1)(Λ(fi) ⊗ ξ) = (F−1 ⊗ 1)U(Λ(f∗
i ) ⊗ ξ)

= (F−1 ⊗ 1)(π ⊗ id)(ρ(f∗
i ))(Λ(1) ⊗ ξ)

= (F−1 ⊗ 1)(π ⊗ id)
( n2∑

j=1
f∗
j ⊗ u∗

j,i

)
(Λ(1) ⊗ ξ)

= (F−1 ⊗ 1)
( n2∑

j=1
Λ(f∗

j ) ⊗ u∗
j,iξ

)

=
n2∑
j=1

Λ(fj) ⊗ u∗
j,iξ = V (Λ(fi) ⊗ ξ).

By (98), and the identities F (Λ(1)) = Λ(1) and F−1(Λ(1)) = Λ(1), we have

V (Λ(1) ⊗ ξ) = Λ(1) ⊗ ξ. (99)

Using (96), (97), (99), and Lemmas 8.15 and 8.16, we finally obtain

αU (A1)(Λ̃(1) ⊗ ξ) = Ũ(Λ̃(A1) ⊗ ξ)

= (p2ω
∗ ⊗ 1)U2,3V1,3(Λ(1) ⊗ Λ(1) ⊗ ξ)

= (p2ω
∗ ⊗ 1)(Λ(1) ⊗ Λ(1) ⊗ ξ)

= Λ̃(A2) ⊗ ξ = (A2 ⊗ I)(Λ̃(1) ⊗ ξ),

where we consider A2 in the left regular representation of B(L2(MX)), that is, as an 
operator on L2(B(L2(MX))). Thus,

(αU (A1) −A2 ⊗ I)(Λ̃(1) ⊗ ξ) = 0, ξ ∈ K.

This implies that

(id⊗Lξη∗)((αU (A1) −A2 ⊗ I))Λ̃(1) = 0, ξ, η ∈ K;

thus,

(id⊗Lξη∗)((αU (A1) −A2 ⊗ I)) = 0, ξ, η ∈ K.

Hence αU (A1) = A2 ⊗ I which, in turn, means that U(A1 ⊗ I) = (A2 ⊗ I)U . The proof 
is complete. �
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