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A B S T R A C T

One of the main tasks in nuclear safeguards is regular inspections of Spent Nuclear Fuel (SNF) assemblies to
detect possible diversions of special nuclear material such as 235U and 239Pu. In these inspections, characteristic
signatures of SNF such as emissions of neutrons and gamma rays from the radioactive decay, are measured
and their consistency with the declared assemblies is verified to ensure that no fuel pins have been removed.
Research in this field is focused on both the development of detection equipment and methods for the analysis
of the acquired measurement data. In this paper, the use of the neutron flux gradient, which is not considered
in regular SNF verification, is investigated in combination with the scalar neutron flux as input to artificial
neural network models for the quantification of fuel pins in SNF assemblies. The training and testing of these
ANN models rely on a synthetic dataset that is generated from Monte Carlo simulations of a typical intact
pressurized water reactor assembly and with different patterns of fuel pins replaced by dummy pins. The
dataset consists of unique scenarios so that the ANN can be assessed over ‘‘unknown’’ cases that are not
part of the learning phase. Results show that the neutron flux gradient is advantageous for a more accurate
reconstruction of diversions within SNF assemblies.
1. Introduction

During the operation of a nuclear power plant, the fuel assemblies
in the core are depleted of their fissile content and accumulate fission
products. Therefore, their effectiveness to sustain fission reactions in
the core decreases over time until they must be replaced by fresh ones.
The Spent Nuclear Fuel (SNF) assemblies discharged from the core
are stored in a water pool where their decay heat is dissipated and
their radiation emissions are shielded. This is a temporary condition,
before the transfer to a final repository or a reprocessing facility.
Since the assemblies in the pool have a residual fissile content of
235U and 239Pu, regular safeguards inspections are conducted by the
International Atomic Energy Agency (IAEA) to detect any illicit removal
of SNF and minimize proliferation risks.

Safeguards inspections of SNF use Non-Destructive Assay (NDA)
techniques to verify that fuel pins are not diverted from the assemblies.
The majority of NDA techniques are based on the passive measurement
of characteristic signatures of SNF such as the emissions of neutrons,
gamma rays, or Cherenkov light (Branger et al., 2020; Rinard and
Bosler, 1988; Mayorov et al., 2017).

Previous work investigated the potential of Artificial Neural Net-
work (ANN) models for the inversion problem of reconstructing the
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configuration of the fuel pins in a SNF assembly and characterizing
possible diversions from the scalar neutron flux and the gamma rays
detected inside the assembly, see Al-dbissi et al. (2023). In the current
paper, a novel aspect is explored, i.e., the use of the neutron flux gra-
dient as further input feature to these types of algorithms. The neutron
flux gradient, which provides the direction in which the neutron flux
increases and the rate of such an increase, has richer information than
only the neutron flux, and thus is expected to enhance the predictions.
This was already demonstrated, via simulations, for the similar task
of localizing neutron sources, see Pázsit (1997), Lindén et al. (1999),
Avdic et al. (2001). In addition, progress with miniaturized neutron
detectors that consist of neutron scintillators connected to light-guiding
fibers, have enabled the possibility of measuring the neutron flux
gradient inside the fuel assemblies, see Watanabe et al. (2020), Vitullo
et al. (2020), Aldbissi et al. (2022a).

For the purpose of the study, ANN models are developed to process
measurements of only the neutron flux or the neutron flux combined
with its gradient, and their performances are compared. The work relies
on a synthetic dataset generated from Monte-Carlo simulations of a
typical intact PWR fuel assembly and assemblies with different patterns
of fuel pins replaced by dummy pins.
vailable online 15 April 2024
306-4549/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.anucene.2024.110536
Received 27 December 2023; Received in revised form 21 March 2024; Accepted 8
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

April 2024

https://www.elsevier.com/locate/anucene
https://www.elsevier.com/locate/anucene
mailto:moad.al-dbissi@chalmers.se
https://doi.org/10.1016/j.anucene.2024.110536
https://doi.org/10.1016/j.anucene.2024.110536
http://crossmark.crossref.org/dialog/?doi=10.1016/j.anucene.2024.110536&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Annals of Nuclear Energy 204 (2024) 110536M. Al-dbissi et al.
Fig. 1. Monte Carlo model of a PWR fuel assembly; inside each guide tube, the neutron flux is estimated at four locations and used to estimate the gradient.
The paper is structured as follows. The overall methodology and a
description of the training dataset are introduced in Section 2. Results
and example cases are discussed in Section 3. Conclusions are drawn
in Section 4.

2. Methodology

The general strategy for the verification of spent fuel is to deter-
mine whether the measurements of the characteristic signatures of an
assembly with unknown configuration are consistent with the declared
data provided by the power utility. If a discrepancy is detected, an
unfolding procedure can be applied to estimate the diversion that might
be consistent with the measurement results.

For the unfolding task, ANN models that can process the scalar
neutron flux and its gradient measured inside the assembly, are studied.
The ANN is trained to ‘‘learn’’ the relationship between sets of measure-
ments and the relative configurations, which might be intact or with
patterns of fuel pins replaced by dummy pins. Both the training and
the testing of these models make use of synthetic data generated from
Monte Carlo simulations.

2.1. The gradient of the neutron flux

In the SNF assembly under inspection, each fuel pin is assumed
to be either intact or fully replaced by a dummy pin (which is made
of appropriate surrogate materials, e.g., stainless steel), so only the
radial position of the pins in the horizontal plane is of interest and
the problem is two-dimensional. The neutron flux gradient can be
evaluated at some fixed axial elevation, from the neutron flux measured
in four points inside each of the available empty guide tubes, as shown
in Fig. 1 (Aldbissi et al., 2022b). The two Cartesian components (X and
Y) of the gradient can be derived from each pair of points along the
same diagonal and can be used to determine eventually the magnitude
(absolute value) and the direction of the gradient vector. The feasibility
of measuring the neutron flux gradient using a miniaturized detector
with four neutron scintillators that can fit into a guide tube of a PWR
SNF assembly, was evaluated via Monte-Carlo simulations. The results
of this study together with the description of the detector design are
discussed in Aldbissi et al. (2022a).

2.2. Training dataset

The dataset for the training and testing of the ANN algorithm relies
on Monte Carlo simulations of a standard 17 × 17 PWR fuel assembly,
see Fig. 1. The assembly consists of 264 fuel pins (0.475 cm in radius),
each with a helium gap (0.008 cm in thickness) and Zircaloy cladding
(0.064 cm in thickness), 24 empty guide tubes (0.602 cm in radius),
and a central instrumentation channel (0.602 cm in radius). Although
assemblies stored in a water pool may have significant differences in
2

their history, only one case is considered in the current study where
the fuel has an initial enrichment of 3.5 w%, a final burn-up of 40
MWd/kgU, and a cooling time of 5 years. In addition, an ideal case
scenario is taken in which all guide tubes and the instrumentation
channel are accessible locations where detectors can be placed.

A model of the fuel assembly is developed using the Monte Carlo
code Serpent (Leppänen, 2015) and simulations were performed in
two-steps. The first step is a burn-up simulation of the declared fresh
fuel assembly, assuming a spatially uniform depletion. The irradiation
cycle consists of four burn-up steps until a final burn-up value of 40
MWd/kgU is reached. The total length of the irradiation cycle is 1000
days. The irradiation is then followed by a decay cycle equivalent to
a cooling time of 5 years in the spent nuclear fuel pool. For the burn-
up simulation, the criticality source mode in Serpent is selected, and
500 active generations and 10000 neutron histories per generation
are used. The second step is a fixed-source simulation, where the
fuel composition obtained from the burn-up simulation is distributed
consistently with the diversion patterns of interest and the thermal
neutron flux (which typical neutron detectors are mainly sensitive to)
and its gradient are estimated in the guide tubes of the assembly. The
fixed-source simulation is performed using 5 × 109 neutron histories to
balance accuracy and computational time. The statistical error of the
Monte Carlo calculation of the thermal neutron flux estimated at the
measurement points inside the guide tubes of the assembly is 0.1% on
average.

The dataset contains the case of an intact fuel assembly (without
defects) and 109 cases with diversion patterns, which are symmetrical
or asymmetrical and have a minimum of 4 up to a maximum of 180
fuel pins replaced by stainless steel pins, see examples in Fig. 2. Since
the arrangement of a 17 × 17 PWR fuel assembly has 25 guide tubes,
the calculated system responses for each configuration are 75, i.e., 25
values of thermal neutron flux, 25 values of the magnitude of the
gradient (absolute value), and 25 values of the angle of the gradient
vector (direction). A second dataset is also created, in which the two
(X and Y) components of the gradient vector are used instead of the
magnitude and the direction.

2.3. Artificial neural networks

Artificial Neural Networks (ANNs) are an advanced machine learn-
ing algorithm. They can model non-linear relationships and thus learn
and identify complex patterns between inputs and outputs. In the
current application the network is tasked with the identification of the
locations where the fuel pins have been replaced with dummy pins
inside the assembly (if any). Accordingly, the network processes the
simulated responses of the neutron flux and/or the gradient for a fuel
assembly as input and gives as output a probability of being replaced

to each of the fuel pins.
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Fig. 2. Examples of SNF diversion patterns included in the dataset.

The ANN model is built using the Tensorflow (Abadi et al., 2015)
and the Keras (Chollet et al., 2015) open-source software libraries.
Its structure consists of an input layer, a hidden layer and an output
layer. The neurons that belong to the input and hidden layers are
activated with the Rectified Linear Unit (ReLU) function, which allows
for back-propagation with an efficient convergence rate. The neurons
that belong to the output layer are activated with the Sigmoid function
which is a typical choice for outputs that are non-mutually exclusive,
where each pin is treated independently and can be either present or
replaced. The model provides as an output, a probability between 0
and 1 for each fuel pin in the assembly. If the probability of a fuel
pin is between 0.5 and 1, the fuel pin is labeled as missing (1). If the
probability is less than 0.5, the fuel pin is labeled as present (0). The
task can then be considered a multi-label binary classification.

The performance of the network is evaluated with the Binary Cross-
Entropy loss function. The loss function provides a measure of how
closely the distribution of the predictions matches the distribution of
the target variables in the training data. In the iterations of the training,
the weights and the biases associated with the neurons of the network
are optimized by minimizing the value of the loss function via the
Adaptive Moment Estimation (ADAM) optimizer.

The number of neurons in the input layer is fixed to the number
of input features used for training, and the number of neurons in the
output layer is equal to the number of outputs, i.e., one for each of the
264 fuel pins in the assembly. A grid search optimization is performed
to determine the number of neurons for the hidden layer and the
number of epochs and the batch size in the training process.

The training and testing is performed via a 10-fold cross-validation
method. Accordingly, the whole dataset is shuffled and divided into 10
random batches. Nine of these batches are used to train the ANN, while
the remaining one is used for the testing. The procedure is repeated 10
times so that each of the 10 batches serves as testing sample one time,
and then the results are aggregated. In the current study, the dataset
has a small size and the cross-validation method has the advantage of
allowing the use of all the cases to test the trained model. In addition,
the cross-validation is repeated 5 times with a different initial shuffling
of the dataset to reduce the bias in the assessment of the performance.

As mentioned above, the dataset contains 110 fuel assemblies, each
of them with a unique configuration. Therefore, the model is always
tested over scenarios that are not seen in the training phase and thus its
ability to generalize its predictions with respect to unknown data can be
investigated. This aspect is relevant because a training dataset with all
the possible diversion patterns would require unfeasible computational
resources.
3

Table 1
General form of the confusion matrix.

2.4. Performance metrics

After the cross-validation process is completed, the model is scored
with respect to the number of fuel pins that have been identified
correctly in all the fuel assemblies available from the dataset. The
predictions of the model fall into 4 categories, see Table 1. The ’True
Negatives’ are the correctly predicted intact fuel pins, the ’True Pos-
itives’ are all the correctly predicted missing fuel pins, the ’False
Positives’ are the intact fuel pins that are wrongly predicted as missing,
and the ’False Negatives’ are the missing fuel pins wrongly predicted as
intact. The sum of True Negatives and False Positives equals the total
number of intact fuel pins in the dataset, and the sum of True Positives
and False Negatives equals the total number of missing pins.

The performance of the ANN model is then quantified using 4
metrics, i.e., the pin-accuracy, the precision, the recall and the F1 score.

The pin-accuracy 𝐴𝑝 is the percentage of the correctly predicted fuel
pins (the sum of the true positives and true negatives) out of the total
number of fuel pins, considering all the fuel assemblies in the dataset,
i.e.:

𝐴𝑝 =
𝑇𝑁 + 𝑇𝑃

𝑁𝑡𝑜𝑡
(1)

where 𝑇𝑁 is the number of true negatives, 𝑇𝑃 is the number of true
positives, and 𝑁𝑡𝑜𝑡 is the total number of fuel pins, both intact and
missing, in the dataset.

The precision 𝑃 is defined as the fraction of correctly predicted
missing pins (the true positives) over all the pins predicted as missing
(the sum of true and false positives):

𝑃 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(2)

where 𝐹𝑃 is the number of false positives.
The recall 𝑅 is equal to the fraction of correctly predicted missing

pins (true positives) over the total number of missing pins in the dataset
(equivalent to the sum of true positives and false negatives):

𝑅 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(3)

where 𝐹𝑁 is the number of false negatives.
The 𝐹1 score is the harmonic mean of the precision and recall

values, which reads as follows:

𝐹1 = 2 × 𝑃 × 𝑅
𝑃 + 𝑅

(4)

3. Results

The ANN was trained with three different options: (a) using only the
thermal neutron flux (model N); (b) the neutron flux and the magnitude
and direction of the gradient (model N+G𝑚+G𝑑); and (c) the neutron
flux and the two components of the gradient (model N+C𝑥+C𝑦). A
model that processes only the gradient of the neutron flux is not
included in the study, but a previous work showed that it has a similar
performance to model N+G𝑚+G𝑑 (Aldbissi et al., 2023). However, since
the scalar neutron flux is needed to derive the gradient, it is available
to be used as input to the algorithm at no additional cost.
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Table 2
Confusion matrix of the model N (a), confusion matrix of the model N+G𝑚+G𝑑 (b), and the confusion matrix of the model N+C𝑥+C𝑦 (c).
Table 3
Performance metrics for the three ANN models.

Metric N N+G𝑚+G𝑑 N+C𝑥+C𝑦

Mean value Std. (±) Mean value Std. (±) Mean value Std. (±)

Pin accuracy 0.80 0.01 0.80 0.01 0.85 0.01
Precision 0.66 0.01 0.63 0.02 0.72 0.02
Recall 0.43 0.01 0.55 0.02 0.70 0.01
F1 0.52 0.01 0.58 0.02 0.70 0.01
As mentioned in Section 2.3 a grid search optimization was per-
formed to determine the hyperparameters associated with each model.
The grid for the optimization was defined using the following values:
(10, 50, 75, 100, 150, 200, 250, 300, 350, 500) for the number of
neurons, (250, 500, 750, 1000, 2000) for the number of epochs, and
(1, 2, 3, 5, 10) for the batch size. The three models performed best
with 200 neurons in the hidden layer, 1000 epochs, and a batch size of
3.

A comparison between the results obtained from the testing of the
three models is carried out to highlight the effects of the gradient of
the neutron flux on the identification of replaced fuel pins in SNF
assemblies. The performance of the three models is investigated in
terms of the overall number of intact and replaced fuel pins that are
predicted correctly and the results are averaged over the 5 repetitions
of the cross-validation process, see Section 3.1. The ability of the ANN
models to reconstruct the full configuration of the fuel assemblies is
discussed along with example cases taken from the best repetition of
the cross-validation process out of the 5, see Section 3.2.

3.1. Performance at pin level

The results of each ANN model are summarized in the confusion ma-
trices shown in Table 2 and the performances are quantified using the
4 metrics discussed in Section 2.4, i.e., the pin-accuracy, the precision,
the recall and the F1 score, see Table 3. The values of the performance
metrics are averaged over the five repetitions of the cross-validation
process and their relatively low standard deviations reflect that the
initial random shuffling of the dataset prior to the cross-validation has
a minor effect on the performance of the network.

In terms of pin-accuracy, model 𝑁 (only the thermal neutron flux)
and model N+G𝑚+G𝑑 (thermal neutron flux together with the magni-
tude and direction of its gradient) have similar values. The first model
is better to predict the intact pins, see Table 2a. The second model
is better with missing pins, see Table 2b. Model N+C𝑥+C𝑦 (thermal
neutron flux together with the two 𝑥 and 𝑦 components of the gradient)
4

has a higher pin accuracy since it predict correctly a larger number of
missing fuel pins (true positives), see Table 2c.

The precision reflects the general ability of the model to avoid false
predictions of both the intact and replaced fuel pins. Again, Model 𝑁
and model N+G𝑚+G𝑑 have similar precision values. Model 𝑁 predicts
less missing fuel pins correctly (less true positives), but it gives less
errors in terms of intact pins (less false positives). The second model
provides a higher number of correct missing pins (more true positives),
but it over-predicts pins as missing (more false positives). According to
this metric, model N+C𝑥+C𝑦 performs better since it identifies a higher
fraction of true positives (correct missing fuel pins) over false positives
(misclassified intact fuel pins).

The recall is a measure of how well the model predicts missing
fuel pins. The models that use the gradient (either in magnitude and
direction or the two components) have larger recall values and hence
can better detect missing fuel pins in comparison to the model based
only on the thermal neutron flux. Despite the magnitude and direction
of the gradient having a more immediate physical interpretation, the
X and Y components are proven to be more beneficial to the ANN
for the reconstruction of the diversion patterns (see further details in
Section 3.2).

The F1 score is the harmonic mean of the precision and recall
values, and confirms that the use of the neutron flux gradient is
advantageous and that model N+C𝑥+C𝑦 performs better than the other
considered models.

An under-estimation of missing fuel pins in SNF assemblies (higher
number of false negatives) such as the case of the model that re-
lies only on the thermal neutron flux is undesirable from a safe-
guards perspective since it can lead to diverted nuclear material being
undetected.

3.2. Performance at assembly level

The ANN models discussed above, cannot fully reconstruct any of
the diversion patterns. This is expected because the size of the dataset
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Fig. 3. Example A of a diversion case from the dataset and how it was reconstructed by the three ANN models.
Fig. 4. The simulated responses of the thermal neutron flux and the gradient of the neutron flux from an intact fuel assembly and the diversion pattern from example A.
is relatively small. However, the majority of the predictions, especially
from model N+C𝑥+C𝑦, are close to the real diversion patterns.

An example is shown in Fig. 3. The diversion pattern (referred to
as example A) has three fuel pins replaced by dummy pins at each
corner of the fuel assembly. Such a scenario is challenging to detect
because the amount of replaced nuclear material is small, the affected
locations are relatively far from the guide tubes (where detectors could
be placed), and the pattern is symmetrical. The use of only the thermal
neutron flux fails to detect any of the replaced fuel pins and the
assembly is predicted as intact, but the two models trained with the
gradient of the neutron flux can determine the lack of fuel pins at
the correct positions. A comparison between the simulated signatures
of an intact fuel assembly and example A is shown in Fig. 4. The
thermal neutron flux in the guide tubes is affected only negligibly by
the diversion, while the gradient has significant deviations, which are
stronger in the guide tubes closest to the locations of the missing pins.
Therefore, the use of the gradient leads to an improved performance of
the machine learning algorithm.

In line with the results discussed in Section 3.1, the diversion
pattern is better retrieved from the thermal neutron flux and the two
5

Cartesian components of the gradient than from the thermal neutron
flux and the magnitude and direction of the gradient. As reported in
Table 4, if the guide tubes close to the diversion (positions 4, 5, 21 and
22 in Fig. 1) are taken, the magnitude of the gradient has a large change
in comparison with the case of the intact fuel assembly (between
25.65% and 35.31%) but not the direction (the absolute differences
are about 5◦), while the x- and y-component are both affected in
a significant manner (from 14.05% up to 41.57%). Then, the two
Cartesian components of the gradient give more diverse and sensitive
information to the neural network. A similar behavior is observed in
other symmetrical diversion scenarios included in the dataset.

On the other hand, there exist a few cases in which the predictions
do not resemble the real diversion pattern at all. Example B shown
in Fig. 5, is representative of these cases. In the assembly, two rows
of fuel pins replaced by dummy pins next to the upper edge cause
a significant disruption in the distribution of the thermal neutron
flux and its gradient within the system, which can be easily seen in
the simulated measurements inside the guide tubes. However, model
N+C𝑥+C𝑦 (which processes the thermal neutron flux together with the
two components of the gradient and provides the best predictions) fails
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Table 4
Gradient in guide tubes 4, 5, 21, and 22, for the intact fuel assembly and Example A.

Guide
tube #

Input
feature

Intact Example A Relative
difference (%)

4

Cx 3.02 4.11 36.09
Cy 2.99 3.41 14.05
Gm 4.25 5.34 25.65
Gd 44.71 39.68 11.25

5

Cx −2.75 −3.85 40
Cy 2.88 3.36 16.67
Gm 3.99 5.11 28.07
Gd 133.68 138.89 3.9

21

Cx 3.31 3.96 19.64
Cy −2.7 −3.73 38.15
Gm 4.27 5.44 27.4
Gd 320.79 316.71 1.27

22

Cx −2.67 −3.78 41.57
Cy −2.82 −3.64 29.08
Gm 3.88 5.25 35.31
Gd 226.56 223.92 1.17

Fig. 5. Example B of a diversion case (left) and its reconstruction via model N+C𝑥+C𝑦
(right).

Fig. 6. Additional diversion patterns for the updated dataset.

to reconstruct the pattern correctly. The reason for these anomalies
is that example B as well as the cases with the same issue have no
common features with the other configurations available in the dataset,
therefore the network is not sufficiently trained to characterize them
well.

To investigate this issue, the dataset is expanded by adding two new
diversion scenarios that resemble example B, see Fig. 6. Then, model
N+C𝑥+C𝑦 is trained with the updated dataset and tested on example B
again, see Fig. 7. The predictions are significantly improved since the
model has learned from two similar cases.

4. Conclusions

When inspecting SNF assemblies, characteristics signatures such as
the neutron and gamma emissions are measured. An artificial neural
network model can be used to process the measured signatures and
reconstruct the specific system configuration in terms of fuel pins and
6

Fig. 7. Example B (left) and its reconstruction via updated model N+C𝑥+C𝑦 (right).

identify whether any fuel pins are replaced or not. In this work, the
use of neutron flux gradient, which is not considered in standard pro-
cedures for SNF verification, is investigated in addition to the neutron
flux for the characterization of possible diversions.

For the purpose of the study, a dataset that includes values of the
neutron flux and its gradient in the guide tubes of an intact assembly
and 109 assemblies with different patterns of replaced fuel pins, is
generated using Monte Carlo simulations. Then, three ANN models are
trained and tested with the dataset, i.e., a model for the analysis of only
neutron flux measurements, a model which combines the neutron flux
and the magnitude and direction of its gradient, and a model for the
neutron flux together with the Cartesian components of its gradient.
The comparison between the results of these model showed that the
information about the neutron flux gradient is advantageous for the
detection of patterns of replaced fuel pins within the assembly, and that
the Cartesian components of the gradient are more effective than the
magnitude and direction of the gradient.

The dataset and the cross-validation procedure are designed so that
the testing of the ANN models is performed over ‘‘unknown’’ cases,
which are not included in the training phase. Although the models
above cannot fully identify any of the scenarios, the two models that
use the neutron flux gradient do provide results close to most of the real
assemblies and thus can generalize to some extent the mapping from
the measured signatures to the patterns of replaced fuel pins. Yet, some
diversion patterns cannot be reconstructed at all because they have no
common features with the rest of the dataset. In order to overcome the
issue, additional configurations are needed for the training. A dataset
that includes all possible scenarios, is however not feasible because
of the limitation of computational resources. Then, future work may
explore sampling techniques that allow for better representations of
the space of diversion scenarios. In the further development of these
models, it will be relevant to consider datasets that also have SNF
assemblies with different irradiation histories and with non-uniform
burn-up profiles.
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