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A B S T R A C T

We investigate how to set the inlet temperature, and arrange a set of vehicle parts inside a paint curing oven,
so as to maximize a non-convex, non-linear objective function. Standard methods for solving this kind of
problem require a large number of objective function evaluations, each of which depends on a computationally
expensive (minutes/hours) CFD simulation.

We replace the CFD solver with machine learning surrogates that can approximate the data required
for an objective function evaluation extremely quickly (sub-second). We develop i) simulation surrogates
that produce simulations that are structurally identical to their CFD-generated counterparts, and ii) objective
function surrogates that learn an objective function directly.

We consider elementary learners (simple neural networks, non-linear regressions, Gaussian processes) and
develop various techniques to use and combine them to solve single- and multi-criteria optimization problems.

We combine our surrogates in a configuration resembling a stack ensemble, and use it to solve the
optimization problem at greatly reduced computational cost. We are thus able to explore multiple local
maxima, and obtain solutions with higher objective function values than with traditional methods. Finally, we
propose an approach that allows practitioners to throttle the computational effort until a satisfactory solution
quality is achieved.
1. Introduction

We study the problem of how best to set the inlet temperature and
arrange a set of vehicle parts inside a paint curing oven. Problems
of this sort are typically solved as follows (see Nowak et al., 2021):
(i) a suitable objective function is defined that encodes something
to be optimized (minimum energy, maximum throughput, etc.), and
(ii) an appropriate optimization algorithm is selected and applied to
find configurations that optimize the objective function. Such algo-
rithms (Johnson, 2007) evaluate the objective function repeatedly as
they iterate towards a solution.

The objective functions for this particular optimization problem
have two remarkable properties: (i) they lead to continuous, non-
convex optimization problems, and (ii) they depend on the conditions
inside the oven throughout the curing process. As such, each objective
function evaluation performed during the optimization requires a com-
plete and computationally expensive computational fluid dynamics
(CFD) simulation (and it is easy for a single optimization to require tens
to hundreds of such evaluations). Solving such problems can therefore
be prohibitively time consuming. Moreover, it is generally impossible

∗ Corresponding author.
E-mail address: dimitri.nowak@itwm.fraunhofer.de (D. Nowak).

to determine whether the resulting solutions are global optima, and it
may be impractical to find and compare multiple (local) solutions.

Our plan is to replace expensive, but accurate, CFD simulations
in the optimization process, with cheaper, but approximate, machine
learning (ML) surrogate approximations. We have two main goals: (i)
to solve these problems at lower computational cost, and (ii) to use
these capabilities to find multiple local (i.e. better) solutions.

1.1. Literature

Surrogate modelling, also known as response surface modelling or
metamodelling, is a technique used to approximate the behaviour of
a complex system or process. It is used when direct evaluation of the
system is computationally intensive or infeasible, or when the system
is stochastic or otherwise difficult to model accurately. The technique
is used in a wide range of applications in various fields, including engi-
neering, computer science and data science. In engineering (Forrester
et al., 2008), surrogate models can be used to optimize the design of
products or processes by predicting the performance of different design
vailable online 9 April 2024
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configurations. In computer science, surrogate models can be used to
speed up the optimization of computer programs using evolutionary
algorithms. Tong et al. (2021) presents a taxonomy of surrogate models,
and evaluates their performance on various optimization tasks. In data
science (Dawson-Elli et al., 2018), surrogate models can be used to
model the relationship between input and output variables in a data set.
Surrogate modelling techniques include Kriging, artificial neural net-
works (NNs), and polynomial regression (Koziel and Leifsson, 2013).
Of particular relevance to this work are efforts to use surrogates in
physical simulations (Heese et al., 2019; Ludl et al., 2022; Forte et al.,
2019). Similar attempts to solve multi-criteria optimization (MCO)
problems encountered in engineering can be found in Bortz et al.
(2014), Asprion and Bortz (2018). Alternative heuristic approaches are
proposed in Huang et al. (2023), Sharma et al. (2022), Mir et al. (2020).

1.2. Overview and approach

This work is an extension of Nowak et al. (2021). The goal of that
paper was to find accurate, physically realistic solutions to an MCO
problem, using fine-grid simulations generated by the IPS IBOFlow (Im-
mersed Boundary Octree Flow Solver) CFD solver (Fraunhofer Chalmers
Research Centre for Industrial Mathematics, 0000; Mark et al., 2013;
Andersson et al., 2018). We replace IBOFlow in the optimization
process with various ML surrogates. We focus on problem solving
techniques, and are less interested in specific solutions. As such, we
work with coarse-grid simulations that are significantly computation-
ally cheaper,1 but less physically accurate than those in Nowak et al.
(2021). We can thus create much larger training sets, and conduct much
larger optimization experiments involving many more simulations than
would otherwise be practical.

We develop two types of surrogate: (i) Simulation surrogates are
trained on exact/IBOFlow simulations, and produce ‘synthetic’ simula-
tions that are structurally indistinguishable from IBOFlow simulations.
Objective functions can be evaluated on these synthetic simulations
in the same way as on their IBOFlow counterparts. We consider fully
connected feed-forward NNs and nonlinear regression simulation sur-
rogates. (ii) Objective function surrogates learn an objective function
directly. We use Gaussian processes.

We use bespoke, but simple ML surrogates (Bishop, 2006) trained
on small to modest training sets to reduce the computational cost of
solving optimization problems. Rather than learning the entire CFD
solution (fluid velocity, temperature, pressure, etc.) as in Thuerey et al.
(2020), Beck et al. (2018), Farimani et al. (2017), Wiewel et al. (2019),
our simulation surrogates learn only those aspects of the simulation that
are inputs to the objective functions of interest, namely the minimum,
average, and maximum temperatures of each part in the oven during
the curing process.

1.3. Summary and novelty of our contribution

Our contribution comprises three main parts: (i) we develop a com-
prehensive framework for evaluating and comparing our surrogates; (ii)
we propose methods for using and combining them to solve challenging
optimization problems; (iii) we conduct numerical experiments and
propose a practical approach to solving MCO problems that gives the
practitioner control over the computational effort.

The novelty of this case study is twofold. First, we believe that
our approach to solving this particular class of oven curing problem
is new. Second, we propose an approach in which all of our learners
are combined to solve an MCO problem in a configuration resembling
a stack ensemble. We are not aware of this approach ever having been
applied to an MCO problem before.

1 At least 10× cheaper than those in Nowak et al. (2021).
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The remainder of this work is organized as follows: in Section 2, we
introduce the optimization problems and our notation. In Section 3, we
discuss objective functions and our approach to solving the correspond-
ing optimization problems. We describe our ML surrogates in Section 4.
We review our data sets (train/validate/test) in Section 4.1. We discuss
NN surrogates in Section 4.2, and a nonlinear regression surrogate in
Section 4.3. In Section 4.4 we evaluate the accuracy of the simulations
produced by our simulation surrogates. In Section 4.5, we develop an
objective function surrogate. In Section 4.6 we evaluate how well our
surrogates capture the objective functions of interest. In Section 5,
we use our surrogates to solve a series of optimization problems of
increasing complexity. In Section 5.1, we review our approach to
selecting initial guesses (IGs), and propose several solution approaches
in Section 5.2. We solve a single objective problem in Section 5.3, and
an MCO problem in Section 5.4. We conclude in Section 6. This paper
has an extensive appendix; the main text includes summaries and highlights
of our experimental results.

2. Context, notation

An oven configuration (OC) is a set of part centre coordinates, 𝑿 =
(𝑥, 𝑦, 𝑧), and the oven inlet temperature, 𝛩inlet .2 We constrain each part
o the mid-plane of the oven, i.e. we fix (and suppress) 𝑥 in 𝑿. We iden-

tify each OC of 𝑛 parts with a vector 𝒙 ∶=
[

(𝑦1, 𝑧1),… , (𝑦𝑛, 𝑧𝑛), 𝛩inlet] ∈
R2𝑛+1, comprising 𝑛 coordinate pairs (𝑦, 𝑧) for the positions of the part
centres, and an oven inlet temperature. In a valid OC the parts are
inside the oven, and well separated (they do not overlap or touch), and
𝛩inlet ∈

[

𝛩inlet
min , 𝛩

inlet
max

]

. 𝑽 ⊂ R2𝑛+1 is the set of valid OCs. The simulation
time horizon 𝑇 is the amount of time that the parts are inside the oven.

IBOFlow admits a pair of non-negative integer refinement levels, 𝒓 =
(

𝑟𝑔 , 𝑟𝑜
)

: 𝑟𝑔 is the grid refinement level, for discretizing the background
fluid, and 𝑟𝑜 is the object refinement level, for the vehicle parts inside
the fluid. Higher refinement levels correspond to finer spatial meshes,
and smaller time steps.

A simulation, 𝑆 (𝒙, 𝒓, 𝑇 ), is a function that maps a valid OC, 𝒙,
a refinement level specification, 𝒓, and a time horizon, 𝑇 , to a set
of temperature functions, 𝛩⋅

𝑖, that describe the minimum, mean and
maximum temperatures of each part in the oven. Each temperature
function is represented as a set of temperatures over a set of time steps3

𝑡1 < ⋯ < 𝑇 ≤ 𝑡𝑚 =∶
{

𝑡𝑗
}𝑚
𝑗=1 .

We write

𝑆 (𝒙, 𝒓, 𝑇 ) =
{

𝒙,
(

𝛩min
𝑖

(

𝒙, 𝑡𝑗
)𝑚
𝑗=1 , 𝛩

mean
𝑖

(

𝒙, 𝑡𝑗
)𝑚
𝑗=1 , 𝛩

max
𝑖

(

𝒙, 𝑡𝑗
)𝑚
𝑗=1

)𝑛

𝑖=1

}

.

(1)

Vehicle parts do not move during curing (𝒙 is fixed). Likewise, 𝛩inlet is
set and fixed for each simulation.

We refer to simulations generated by IBOFlow as IBOFlow simula-
tions, and denote them by 𝑆IBF (𝒙, 𝒓, 𝑇 ). Simulations generated by ML
surrogates are called synthetic simulations, and denoted by 𝑆surr. (𝒙, 𝒓, 𝑇 ).
We study two types of surrogate:

Simulation surrogates : emulate IBOFlow. For a given 𝒙 and a set of
time steps

{

𝑡𝑖
}𝑚
𝑖=1, these objects output a complete (synthetic)

simulation.

Simulation surrogates are trained on pairs of the form
{(

𝒙𝑖, 𝑆IBF
(

𝒙𝑖
))}

(each target is an IBOFlow simulation), for a
varying set of OCs, and a common 𝒓 and 𝑇 . Even though 𝒓 and
𝑇 are not explicit features, each surrogate encapsulates an (𝒓, 𝑇 )

2 We fix and ignore the rotation vector, 𝑹.
3 IBOFlow excludes 𝑡0 from its output, i.e. the simulations start at 𝑡1 > 0.

he temporal discretization 𝑡𝑗+1 − 𝑡𝑗 (and consequently 𝑡1 > 0) is calculated by
BOFlow, and varies within and across simulations.
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pair. A synthetic simulation is an approximation of an IBOFlow
simulation.

We cannot a priori fix the time steps
{

𝑡𝑖
}𝑚
𝑖=1 for which IBOFlow

calculates temperatures; they are usually not equally spaced.
However, we can specify the time steps in a synthetic simula-
tion.4

Objective function surrogates : learn an objective function. For a
given OC 𝒙, these objects estimate the value of an objective
function, without generating a simulation. Objective function
surrogates are trained on pairs

{(

𝒙𝑖, 𝑓
(

𝒙𝑖, 𝑆IBF
(

𝒙𝑖
)))}

, for an
objective function 𝑓 that takes a simulation as input (which in
turn depends on an OC, 𝒙). As with simulation surrogates, 𝒓 and
𝑇 are implicit.

We set 𝒓 = (0, 0) (no grid or object refinements). As in Nowak et al.
(2021), we set 𝑇 ∶= 2000 (s) so that the temperatures of the parts are
stationary at the end of the simulation. We can thus suppress 𝒓 and 𝑇
in our notation, regard each simulation as a function of 𝒙 only, and
maximize scalar objective functions of the form 𝑓 (𝒙) = 𝑓 (𝒙, 𝑆 (𝒙)).
Clearly, the value of 𝑓 (𝒙) depends on whether 𝑆 (𝒙) is an IBOFlow
simulation or a synthetic, and whether 𝑓 is an exact objective function,
or a surrogate. Consequently, we define

𝑓exact (𝒙) ∶= 𝑓
(

𝒙, 𝑆IBF (𝒙)
)

and 𝑓synth. (𝒙) ∶= 𝑓
(

𝒙, 𝑆surr. (𝒙)
)

(2)

for an objective function, 𝑓 . We use 𝑓surr. (𝒙) for the value of the
surrogate objective function 𝑓surr. (of 𝑓 ) at 𝒙.5 We consider problems
of the form

(𝐏exact ) Find 𝒙 ∈ 𝑽 s.t. 𝑓exact (𝒙) → max, (3a)

(𝐏synth.) Find 𝒙 ∈ 𝑽 s.t. 𝑓synth. (𝒙) → max, (3b)

(𝐏surr.) Find 𝒙 ∈ 𝑽 s.t. 𝑓surr. (𝒙) → max, (3c)

subject to additional constraints. 𝑽 is the decision space of the problem.
A major difficulty in solving such problems is that function evaluations
𝑓 (𝒙) may require a full simulation 𝑆 (𝒙), and high-precision IBOFlow
simulations are extraordinarily computationally expensive (wall time
minutes to hours). Conversely, we expect trained ML surrogates to
be able to generate simulations or estimate objective function values
essentially for free (wall time ≪ 1 second). Consequently, we have good
reason to replace IBOFlow with a surrogate that can solve (3b) or (3c)
inexpensively, and thus find an OC 𝒙 that is a (potentially approximate)
solution of (3a).

2.1. Oven properties

Fig. 1 depicts three vehicle parts inside the oven. They are the cab
corner (CC), the large pc pet (LPP) and the small pc pet (SPP). The
parts have a small extent in the 𝑥-direction (out of the page), and a
much larger 𝑦- and 𝑧-extent. The oven has dimensions 𝛥𝑥 × 𝛥𝑦 × 𝛥𝑧 =
1 × 2 × 1.6. The centres of the parts are in the 𝑥 mid-plane.6

The oven has operational parameters

𝛩inlet
min ∶= 355K ≤ 𝛩inlet ≤ 380K =∶ 𝛩inlet

max . (4)

The initial temperature (of all parts) is 293.15K (room temperature of
20 ◦C).

4 Surrogates are trained on (discrete) sets of 𝑡𝑖 values (from IBOFlow), but
can predict temperatures for any 𝑡 ∈ (0, 𝑇 ].

5 We never consider evaluations of the form 𝑓surr. (𝑆 (𝒙)), i.e. surrogate
objective functions of simulations. Surrogate objective functions are defined
exclusively on OCs.

6 Fig. 1 assumes an origin at the bottom left, but IBOFlow places the origin
in the middle of the oven. Depending on this choice, the parts are restricted
to 𝑥 = 0.5 or 𝑥 = 0.
3

Fig. 1. The three parts inside the oven: CC (largest part), LPP (medium-sized part)
and SPP (smallest part).

2.2. Scaling

It is clear that the inputs of the problem span several orders of
magnitude. We therefore linearly re-scale the part coordinates (𝑦, 𝑧),
𝛩inlet , and 𝑇 , to the unit hypercube. As a result, all of the inputs to
our objective functions are in [0, 1]. The outputs (the temperatures of
the parts) are not scaled. We use the same notation for scaled inputs
(e.g. 𝛩inlet) as their un-scaled counterparts.

3. Optimization problems

Constraints
Given the complexity of the shapes of the parts of interest

(cf. Fig. 1), it is hopeless to define 𝑽 explicitly as a set of functions of 𝒙.
We proceed implicitly by penalizing invalid OCs: in our maximization
problems, we set 𝑓 (𝒙) ∶= 𝑓min if 𝒙 ∉ 𝑽 . We will also encounter valid
OCs (𝒙 ∈ 𝑽 ) with invalid objective function values, e.g. a zero curing
time (see below). For these, we set 𝑓 (𝒙) ∶= 𝑓min, and regard these OCs
as invalid for the objective.

3.1. Objective functions

Inlet temperature
We use the inlet temperature as a proxy for the energy needed for

curing, which we seek to minimize. We use the symbol 𝛩inlet for both
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the inlet temperature, and the associated objective function, and define

𝛩inlet (𝒙) ∶=

{

𝛩inlet (𝒙) , 𝒙 ∈ 𝑽
1, otherwise.

(5)

The optimization problem can be written as

(𝐏𝛩inlet ) Find 𝒙 ∈ 𝑽 s.t. 𝛩inlet (𝒙) → min . (6)

Equivalently, we could seek 𝒙 such that −𝛩inlet (𝒙) → max.) (5) is
rivially a function of 𝒙, but does not depend on a simulation. Con-
equently, any 𝒙 ∈ 𝑽 with 𝛩inlet = 𝛩inlet

min (which scales to zero) is a
on-unique solution of (6). 𝛩inlet (𝒙) ∈ [0, 1] for any 𝒙, and 𝛩inlet (𝒙) = 1
f 𝒙 ∉ 𝑽 , by virtue of Section 2.2.

uring time
The curing time (CT) of a part is the amount of time its temperature

s between the minimum and maximum curing temperatures, 𝛩curing
min ∶=

50K and 𝛩curing
max ∶= 375K (part of the paint specification). We define

he highest minimum temperature of the 𝑖th part as
max,min
𝑖 (𝒙) ∶= max

𝑡𝑗

{

𝛩min
𝑖

(

𝒙, 𝑡𝑗
)}

, (7a)

nd its highest maximum temperature as
max,max
𝑖 (𝒙) ∶= max

𝑡𝑗

{

𝛩max
𝑖

(

𝒙, 𝑡𝑗
)}

. (7b)

he raw CT of part 𝑖 (in OC 𝒙) is

raw
𝑖 (𝒙) ∶=

⎧

⎪

⎨

⎪

⎩

∫

𝑇

0
1
{

𝑐𝑖 (𝒙, 𝑡)
}

d𝑡 𝒙 ∈ 𝑽 , and𝛩max,max
𝑖 (𝒙) ≤ 𝛩curing

max

0 otherwise,
(8a)

here 1 {⋅} is the indicator function, and

𝑖 (𝒙, 𝑡) ∶=
{

𝛩min
𝑖 (𝒙, 𝑡) ≥ 𝛩curing

min

}

. (8b)

consequence of (8) is that part 𝑖 has zero CT if
max,min
𝑖 (𝒙) < 𝛩curing

min ,

hat is, 𝛩min
𝑖 must reach 𝛩curing

min . Part 𝑖 is burned and 𝐶 raw
𝑖 (𝒙) ∶= 0 if

max,max
𝑖 (𝒙) > 𝛩curing

max ,

hat is, 𝛩max
𝑖 must not exceed 𝛩curing

max . A part is cured if its (raw) CT
xceeds 𝐶min ∶= 1000 (s) (also part of the paint specification, cf. Nowak
t al., 2021), which scales to 𝐶min =

1
2 (cf. Section 2.2). We insist that

𝐶 raw
𝑖 (𝒙) ≥ 𝐶min =

1
2
. (9)

We encode (9) by defining the (net) CT of part 𝑖 (in OC 𝒙) as

𝑖 (𝒙) ∶=

{

𝐶 raw
𝑖 (𝒙) , 𝐶 raw

𝑖 (𝒙) ≥ 𝐶min =
1
2

0, otherwise.
(10)

e define the simulation CT as

(𝒙) ∶= min
1≤𝑖≤𝑛

𝐶𝑖 (𝒙). (11)

or a given 𝑇 , this is the amount of time spent doing useful work,
amely curing parts. We use 𝐶 (𝒙) as a proxy for oven throughput, and
eek to maximize it.

We set 𝐶 (𝒙) = 0 if 𝒙 ∉ 𝑽 , or (9) fails i.e. 𝒙 is invalid for the
bjective, and one or more parts is insufficiently cured/burnt. Hence,
(𝒙) ∈ [0, 1], by virtue of Section 2.2.
For a given 𝒙, the value of 𝐶 (𝒙) will depend on whether it is

valuated on an IBOFlow or synthetic simulation. We therefore pose
he maximization problems (cf. (3)),

𝐏𝐶exact
) Find 𝒙 ∈ 𝑽 s.t. 𝐶exact (𝒙) → max, (12a)
4

𝐏𝐶synth.
) Find 𝒙 ∈ 𝑽 s.t. 𝐶synth. (𝒙) → max . (12b)
e also define a surrogate CT objective function, 𝐶surr. (see Sec-
ion 4.5), and solve problems of the form

𝐏𝐶surr.
) Find 𝒙 ∈ 𝑽 s.t. 𝐶surr. (𝒙) → max . (12c)

We set 𝑓min = 0 for these objective functions.
We can think of (11) as defining a function

(𝒙) ∶= 𝐶
(

{

𝛩max,max
𝑖 (𝒙) , 𝛩max,min

𝑖 (𝒙) , 𝐶 raw
𝑖 (𝒙)

}𝑛

𝑖=1

|

|

|

|

𝛩curing
min , 𝛩curing

max

)

,

(13)

or given 𝛩curing
min and 𝛩curing

max , with each 𝐶 raw
𝑖 as in (8a). The CT thus

as two parts: a regression part (a value) and a classification part
valid/invalid 𝒙). We measure the inputs on the right side of (13) for a
imulation, and inject them into a deterministic function that evaluates
he two parts. This perspective is useful for evaluating our surrogates.

CO objectives
We expect solutions of (6) to have small 𝛩inlet , and solutions of (12)

o have large 𝛩inlet . We combine these objectives in an MCO problem
o maximize the number of cured parts per unit of input energy. To this
nd, we consider the composite weighted sum objective function
(

𝒙 ; 𝜃IN, 𝜃CT
)

∶=

{

𝜃CT𝐶 (𝒙) − 𝜃IN𝛩inlet (𝒙) , 𝒙 ∈ 𝑽 , (9) holds for each 𝑖,
−𝜃IN, otherwise,

(14)

or weights 𝜃IN, 𝜃CT ≥ 0. For 𝜃CT > 0, 𝑀
(

𝒙 ; 𝜃IN, 𝜃CT
)

depends on
he simulation type (IBOFlow, synthetic), because the CT does. We
herefore consider 2-parameter families of constrained maximization
roblems of the form (cf. (12), (6))

𝐏𝑀 )(𝜃IN ,𝜃CT) Find 𝒙 ∈ 𝑽 s.t. 𝑀
(

𝒙 ; 𝜃IN, 𝜃CT
)

→ max . (15)

or MCO objectives, we set 𝑓min = −𝜃IN, i.e. 𝑀
(

𝒙 ; 𝜃IN, 𝜃CT
)

= −𝜃IN if
∉ 𝑽 , or 𝒙 is invalid for the CT objective.

. Surrogates

.1. Data (train/validate/test)

We generate nine quasi-random Sobol sequences (Burkardt, 2020)
f vectors (three sequences in each of R3 (single part coordinates
lus 𝛩inlet), R5 (two part coordinates plus 𝛩inlet), and R7 (three part
oordinates plus 𝛩inlet)), each of which is identified with a set of OCs.
hese are validated by IBOFlow, and simulations executed for each
∈ 𝑽 . Results are organized into our training set 𝑽 train (2 186 1-part

CC, LPP, SPP], 2 199 2-part [CC/LPP, CC/SPP, LPP/SPP], and 3 928
-part simulations), validation set 𝑽 valid. (206 3-part simulations) and
est set 𝑽 test (398 3-part simulations).7 Only ∼2% of the 3-part OCs are
alid.

.2. Simulation surrogate: NNs

For simplicity, we consider only fully connected feed-forward NNs
Géron, 2019, Abadi et al., 2015) that learn the functions
min
𝑖

(

𝒙, 𝑡𝑗
)

, 𝛩mean
𝑖

(

𝒙, 𝑡𝑗
)

, 𝛩max
𝑖

(

𝒙, 𝑡𝑗
)

. We consider two models of the
ven with different input features.

7 In particular, the validation and test sets contain only 3-part simulations.
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Variable-(1,2,3)-part features
In a variable-part NN, we model an oven that contains up to three

parts (CC (𝑖 = 1), LPP (𝑖 = 2) and SPP (𝑖 = 3)). We train such
networks on all of 𝑽 train. For our optimization application, we are
interested in 3-part simulations and hope that the auxiliary learning
task (i.e. for less than three parts) will have a regularizing effect and
improve generalization. Each input has 11 features: simulation time
𝑡, 𝛩inlet , and 3 components for each of the 3 parts: an indicator 1𝑖
indicating whether part 𝑖 is present, and its coordinates (𝑦, 𝑧). If part
𝑖 is not present, 1𝑖 = 0 and

(

𝑦𝑖, 𝑧𝑖
)

= 𝟎.

Fixed-(3)-part features
In a fixed-part NN, we model an oven that contains three parts.

Each input has 8 features: 𝑡, 𝛩inlet and the (𝑦, 𝑧) coordinates of each
part. We train these networks on the 3-part simulations in 𝑽 train.

Outputs, loss function
In both cases, we learn three output temperatures (𝛩min

𝑖 , 𝛩mean
𝑖 , 𝛩max

𝑖 )
for each of three parts 𝑖 = 1, 2, 3, i.e. nine outputs. For parts that are not
present (i.e. 1𝑖 = 0), we set 𝛩min

𝑖 = 𝛩mean
𝑖 = 𝛩max

𝑖 = 0. Our variable-part
NNs learn a function

𝑉 ∶ R3𝑛+2 ∋ (1,𝒙, 𝑡) →
(

𝜣1,𝜣2,𝜣3
)

∈ R3𝑛, (16a)

and our fixed-part networks learn a function

3 ∶ R2𝑛+2 ∋ (𝒙, 𝑡) →
(

𝜣1,𝜣2,𝜣3
)

∈ R3𝑛. (16b)

Our (training) loss function is

MSEtrain ∶=
1
𝑀

∑

𝒙𝑖

∑

𝑡𝑖𝑗

‖

‖

‖


(

𝒙𝑖, 𝑡𝑖𝑗
)

− 𝑆IBF
(

𝑡𝑖𝑗 ,𝒙
)

‖

‖

‖

2

2
, (17)

where 𝒙𝑖 is the 𝑖th OC in 𝑽 train, 𝑡𝑖𝑗 is the 𝑗th time step in the 𝑖th
simulation, and 𝑀 is the total number of temperature measurements
(all simulations, time steps, parts, temperature types [min/mean/max])
in the training set. 𝑆IBF

(

𝑡𝑖𝑗 ,𝒙
)

∈ R3𝑛 is a vector of (exact) temperatures
in a simulation, and 

(

𝒙𝑖, 𝑡𝑖𝑗
)

is the corresponding NN prediction
(cf. (16)).

Hyper-parameters, training
We experiment with different network architectures (width: number

of neurons per input feature, and depth: number of layers), activa-
tion functions (ReLU, ELU) and corresponding weight initializations,
learning rate scheduling approaches (piece-wise constant, exponential,
performance, 1-cycle scheduling, etc.). We train hundreds of NNs to
select good values for the hyper-parameters. We use stochastic gradient
descent with Nesterov Momentum, and a batch size of 32 during
training.

We want to understand how the size of the training set affects
accuracy. To this end, we train our variable-part NNs on all 1,2-part
simulations in 𝑽 train, plus a variable number of 3-part simulations,

𝑁3 ∈ {500, 1000, 1 500, 2000, 2 500, 3000, 3 500, 3 928}

in a training programme. For each 𝑁3, we start training with the best NN
(i.e. with the lowest training error) from the previous, smaller training
set. Validation is always done with the (fixed) 𝑽 valid..

The training of fixed-part NNs is the same, except that they are
trained only on 3-part simulations.

Results
Training is surprisingly difficult and time-consuming (days per

training programme). We are forced to use extremely small learning
rates (10−7 to 10−5, as larger rates consistently lead to divergence) over
large numbers of epochs (hundreds per programme). We present sample
learning curves from this process in Fig. 2(a).

We observe the smallest validation error for two NNs, which we
designate NN-3 (3 parts (fixed)) and NN-V (variable parts):
5

Fig. 2. Illustrative/sample NN and RR learning curves. In both cases, we measure
learning performance with the training/validation MAE (all parts/all temperature
components). For NNs, we use the number of training epochs as a proxy for the learning
experience. For RRs, we use 𝑁3: the training set size.

NN-3 ELU activation function, eight (hidden) layers, with three neu-
rons per layer per input feature (fixed width of 24; 4 641 train-
able parameters). Trained on the 3-part simulations in 𝑽 train, its
validation MAE is 1.190K.

NN-V ReLU activation function, eight (hidden) layers, with three neu-
rons per layer per input feature (fixed width of 33; 8 556 train-
able parameters). Trained on all of 𝑽 train, its validation MAE is
1.196K.

4.3. Simulation surrogate: non-linear regressions

Based on our observations of part temperature profiles, we propose
an ansatz for the time evolution of the min/mean/max temperatures of
part 𝑖,

𝛩𝑖 (𝑡) = 𝛩𝑖,0 + 𝛥𝑖

(

1 − exp
(

− 𝑡
𝜏𝑖

))

, 0 ≤ 𝑡 ≤ 𝑇 . (18)

Each of these functions has three parameters: 𝛩𝑖,0, 𝛥𝑖 and 𝜏𝑖. 𝛩𝑖,0 =
293.15 is the initial temperature (at 𝑡 = 0) for each part/temperature
(cf. Section 2.1). 𝛥𝑖 is the temperature increment due to oven heat-
ing, i.e. the steady state temperature is 𝛩𝑖,0 + 𝛥𝑖. We need (3 ×
min∕mean∕max =) nine such functions for each 3-part simulation.
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Two-stage training
Stage 1. We use non-linear regression (Virtanen et al., 20208) to find

the best-fit parameters of (18) for each simulation in a training
set.

The result is nine sets of training data
{(

𝑦𝑖, 𝑧𝑖, 𝛩inlet) ;𝛩𝑖,0, 𝛥𝑖, 𝜏𝑖
}

(three temperatures for each part), in which the best-fit param-
eters are associated with the position

(

𝑦𝑖, 𝑧𝑖
)

of the part, and
𝛩inlet .

tage 2. We use linear regression, as in Pedregosa et al. (2011), to
fit each set of parameters from Stage 1 (for each part), to a
polynomial in 𝑦𝑖, 𝑧𝑖, and 𝛩inlet ,

𝛩𝑖,0 ∶= 293.15, (19a)

𝛥𝑖 = 𝛥𝑖
(

𝑦𝑖, 𝑧𝑖, 𝛩
inlet) =

∑

𝑚,𝑛,𝑜
𝛥𝑚,𝑛,𝑜𝑦

𝑚
𝑖 𝑧

𝑛
𝑖
(

𝛩inlet)𝑜, (19b)

𝜏𝑖 = 𝜏𝑖
(

𝑦𝑖, 𝑧𝑖, 𝛩
inlet) =

∑

𝑚,𝑛,𝑜
𝜏𝑚,𝑛,𝑜𝑦

𝑚
𝑖 𝑧

𝑛
𝑖
(

𝛩inlet)𝑜. (19c)

𝛩𝑖,0 is a constant initial temperature function. The temperature
evolution of part 𝑖 in (19) depends on its position

(

𝑦𝑖, 𝑧𝑖
)

, and
𝛩inlet , but not on the positions of the other parts in the oven.
We characterize our fitted nonlinear regressions by a triple
(

𝑝𝛩 ≡ 0, 𝑝𝛥, 𝑝𝜏
)

of the fitted polynomial orders. We use second
and third order polynomials for 𝛥𝑖 and 𝜏𝑖 based on informal
numerical experiments and visualizations.

We fit functions 𝛥𝑖, 𝜏𝑖 for each part/temperature combination.9
All of the fitted 𝛥 polynomials (all parts/temperatures) have the
same order, as do the 𝜏 polynomials.

hereas we train our NNs on thousands of time-stamped temperature
bservations per simulation, the regression training process extracts
ne set of labelled training data

{(

𝑦𝑖, 𝑧𝑖
)

;𝛩𝑖,0, 𝛥𝑖, 𝜏𝑖
}

from each 3-part
imulation.

Training regressions is significantly less computationally demanding
han training NNs,10 and so we combine the 3-part simulations from
train and 𝑽 valid., and use 𝑘-fold cross-validation (CV) for each training

et size, 𝑁3 ∈ {50, 75, 100, 150, 200, 300, 400, 500, 1000, 1500, 2000, 2500,
3000, 3500, 3900}.

We vary 𝑘 ≥ 6 to accommodate the training set size and our
vailable data.

esults
Training and validation errors appear to plateau above ∼ 1000

imulations (cf. Fig. 2(b)). Adding more training data has no signif-
cant effect on accuracy because of the bias of the ansatz (18). The
𝑝𝛩, 𝑝𝛥, 𝑝𝜏

)

= (0, 3, 2) and
(

𝑝𝛩, 𝑝𝛥, 𝑝𝜏
)

= (0, 3, 3) results are virtually
ndistinguishable. Going forward, we work with a (0, 3, 3) regression
rained on 3 900 simulations (cf. Fig. 2(b)), with a validation MAE of
.58K and a MAPE of 0.45%. We refer to this surrogate as ‘RR’.

.4. Simulation surrogates: accuracy over the test set

We now compare the synthetic simulations to their IBOFlow coun-
erparts in (the unseen) 𝑽 test . Summary results appear in Table 1.

The two NNs are more accurate than RR. The errors for the (smaller)
PP, SPP parts are much higher than for the CC. All of the surrogates
roduce large errors for the LPP 𝛩min function; RR also performs poorly
ith the SPP.

The MAPEs of ∼ 0.3% for NN-3/V are impressive, but histograms
f the errors (see 𝜎MAE in Table 1) suggest a significant spread, which

8 https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.
urve_fit.html

9 We fit 2 functions (𝛥𝑖, 𝜏𝑖) × 3 parts × 3 temperatures = 18 functions.
10
6

Seconds to train a regression; hours for an NN.
Table 1
Summary test-set performance.

Surrogate RMSE MAE 𝜎MAE MAPE

NN-3 1.86 1.16K 1.45K 0.33%
NN-V 1.92 1.23K 1.48K 0.35%
RR 2.36 1.64K 1.71K 0.46%

𝜎MAE is the standard deviation of the MAE. NN-3 is the most accurate
surrogate (by a small margin).

is likely to be a problem for the CT objective. The RR errors have a
particularly large spread, suggesting a high probability of large errors.

Error heat maps of the oven suggest that errors are generally larger
for small 𝑦, suggesting that temperature profiles are harder to learn
when parts are centred in that part of the oven. The effect is most
severe for the LPP and SPP parts under the RR surrogate. Errors in
predictions of the temperatures of the CC part are generally unaffected
by its location.

Plots over the simulation horizon show that errors increase for early
times, peak near 𝑡 = 0.2, and then decrease. The problem is that this
peak is near the onset of curing (i.e. when temperatures enter the
[

𝛩curing
min , 𝛩curing

max

]

interval), which could severely affect the accuracy of
CT estimates. NN-3/V errors tend to decay from the peak, but RR errors
increase again as 𝑡 → 1.

All of the surrogates tend to become less accurate as 𝛩inlet increases.
e expect maximizers of the CT objective function to have high 𝛩inlet

alues, which means that our surrogates might perform poorly as we
pproach these maximizers.

.5. A Gaussian process CT objective function surrogate

Instead of learning the CT directly, we train a Gaussian process (Ras-
ussen, 2003) to produce a vector of its inputs, as a function of the OC

cf. (13)). We learn
2𝑛+1 ∋ 𝒙 ↦

{

𝛩max,max
𝑖 (𝒙) , 𝛩max,min

𝑖 (𝒙) , 𝐶 raw
𝑖 (𝒙)

}𝑛

𝑖=1
∈ R3𝑛, (20)

R7 → R9 for us). To estimate the CT, we put the output of (20) into
13).

emark. We have chosen not to learn the scalar CT for several reasons.
irst, this function is extraordinarily complicated, and we estimate that
e could achieve higher accuracy by learning its (simpler) inputs. As
e note in Section 3.1, the CT includes a classification part and a

egression part. It would be difficult to validate an OC for the CT objec-
ive using a single (learned) scalar output. But we can unambiguously
alidate OCs for the CT based on its (learned/surrogate) inputs. We can
hus compare this surrogate with our simulation surrogates.

raining
We train a set of Gaussian process regressions on training sets of

ize 𝑁3 ∈ {100, 200, 500, 1000, 1500, 2000, 2500, 3000, 3500}, using 8-fold
cross-validation for 𝑁3 = 3500, and 6-fold cross-validation for the
others. We experiment with various covariance kernel functions, and
opt for an isotropic Matérn kernel with 𝜈 = 0.5.

Results
Fitting a Gaussian process involves maximizing a log-likelihood

function, which is quite different from the MSE loss function in (17).
Nevertheless, we are able to construct learning curves similar to those
for our simulation surrogates by evaluating a validation version of (17).
Training errors for Gaussian processes are essentially zero as a result
of the fitting process, and are therefore omitted. We show validation
errors (averaged across the CV folds) in Fig. 3. Consistent with our work

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
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Fig. 3. GP learning curves. The GP surrogate does not learn complete time-dependent
part temperature profiles, and so the MAEs relate to inputs to the CT objective function.
Moreover, the GP fitting process yields extremely small (essentially zero) training errors.
Direct comparisons with NNs/RRs (cf. Fig. 2) are therefore not appropriate. For the GP
surrogate, we use the training set size as a proxy for learning experience, and depict
validation errors (MAE) from 𝑘-fold CV, for per-part CT inputs (cf. (20)). Errors for the
CC part are significantly smaller than the others. Errors appear to decline very slowly
as the learning experience is increased.

on simulation surrogates, we present MAE results. We split the errors
for 𝛩max,max, 𝛩max,min and raw CT as they are of different magnitudes.

The errors associated with the smaller parts (LPP, SPP) are much
larger than the errors associated with the large part (CC). The decay
in the errors as a function of training set size is small, i.e. we would
need much more data to improve these results. For further evaluation
and our optimization experiments, we train a new Gaussian process on
𝑽 train ∪ 𝑽 valid., which we refer to as ‘GP’.

4.6. Optimization surrogate performance

We now evaluate how well our surrogates capture the CT objective
function. For our simulation surrogates, we generate synthetic simula-
tions corresponding to each member of 𝑽 test . We calculate and compare
the CT of each synthetic simulation and the corresponding member
of 𝑽 test . For our CT objective function surrogate, we calculate and
compare the surrogate and exact CT function values for each IBOFlow
simulation in 𝑽 test .

Objective function value comparison
We compare the value of the CT objective function of each member

of 𝑽 test with that of the corresponding synthetic. Whereas an IBOFlow
simulation may be valid for the CT objective function (𝐶 (𝒙) ≠ 0), its
synthetic counterpart may not be (𝐶 𝒙 = 0). Similarly, the GP CT
7

( )
surrogate may classify a valid (for CT) member of 𝑽 test as invalid (for
the surrogate CT). We present confusion matrices for our surrogates for
the classification part of CT in Table 2. A summary of the comparative
results for the regression part can be found in Table 3. MAPE figures
(arguably the most informative) are defined only for the true-positive
set of Table 2 (IBOFlow and synthetic simulation valid for CT), as the
CT may be zero elsewhere. Results are in the right half of Table 3.

Our investigation has revealed one of the main difficulties in work-
ing with the CT objective function. One could imagine a synthetic
simulation in which the coldest part has 𝛩max = 𝛩curing

min − 𝜀
2 , with

𝐶 = 0, but the corresponding temperature in the IBOFlow simulation is
𝛩curing
min + 𝜀

2 , and 𝐶 > 1
2 . The corresponding surrogate might be extremely

accurate, and produce synthetics that are very similar to their IBOFlow
counterparts, but they could have very different CT values. This kind
of situation would seriously affect the usefulness of surrogates in an
optimization context, especially for maximizers at/near the boundary
of validity.

Sign-test comparison
We do not expect 𝑓exact (𝒙) = 𝑓synth. (𝒙) or 𝑓exact (𝒙) = 𝑓surr. (𝒙)

(cf. (3)), but this is not a problem per se. To be of use in an optimization
problem, we ideally require

𝑓exact
(

𝒙1
)

< 𝑓exact
(

𝒙2
)

⟺

{

𝑓synth.
(

𝒙1
)

< 𝑓synth.
(

𝒙2
)

,
𝑓surr.

(

𝒙1
)

< 𝑓surr.
(

𝒙2
)

,
(21)

for OCs 𝒙1 and 𝒙2. We are not aware of analytical techniques to
investigate (21), and so we proceed numerically. We compare

sign
(

𝑓synth.
(

𝒙𝑖
)

− 𝑓synth.
(

𝒙𝑗
))

= sign
(

𝑓exact
(

𝒙𝑖
)

− 𝑓exact
(

𝒙𝑗
))

, (22)

and similarly for 𝑓surr., for each pair of OCs 𝒙𝑖 ≠ 𝒙𝑗 in 𝑽 test , for the
CT and an MCO objective function (cf. (14)) with 𝜃IN = 𝜃CT = 1

2 . We
plot the proportion of points for which (22) is true as a function of the
Euclidean distance, 𝑑𝑖𝑗 , between pairs of OCs, 𝒙𝑖 and 𝒙𝑗 , in Fig. 4.

For large 𝑑𝑖𝑗 , the OCs 𝒙𝑖 and 𝒙𝑗 are far apart, and we investigate how
well the surrogate captures the large-scale structure of the objective
function. On the other hand, if 𝑑𝑖𝑗 is small, we measure how well
our surrogates capture the fine structure of the objective function.
This is important because we expect successive OCs generated within
an optimization sequence to get closer together as they approach a

Fig. 4. Sign-test compliance results. As discussed in the main text, we do not expect
or require 𝑓exact (𝒙) = 𝑓synth. (𝒙) or 𝑓exact (𝒙) = 𝑓surr. (𝒙). We are prepared to accept the
condition in (22) i.e. that the signs of differences between pairs of exact/surrogate
objective function values match. Here we depict the proportion of times (22) holds for
each surrogate as a function of the Euclidean distance between pairs of sampled OCs.
Solid lines are for CT, and dashed lines for the MCO objective (with 𝜃IN = 𝜃CT = 1

2
).

For NN-3/V, (22) holds in about 70%–80% of sampled cases for CT, and >80% for
MCO. For GP, compliance is 60%–80% for CT, and 70%–80% for MCO. For RR (worst
performer) compliance is 60%–65% for CT, and ∼70% for MCO. According to these
graphs, all of the surrogates are less accurate at close range, by this measure. Moreover,
compliance is generally better for the MCO objective than for CT.
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Table 2
CT classification part confusion matrices.

Predicted (synthetics)
Valid Invalid

Tr
ue

NN-3 NN-V RR GP NN-3 NN-V RR GP
Val. (0.54) 0.49 0.5 0.5 0.46 0.043 0.035 0.04 0.078
Inv. (0.46) 0.088 0.093 0.18 0.073 0.37 0.37 0.28 0.39

54% of the simulations in 𝑽 test (|𝑽 test | = 398) are valid; 46% are invalid. True-positive proportions
(top left) and true-negative proportions (bottom right) are shaded green; false-negatives (top
right) and false-positives (bottom left) are not shaded. NN-3/NN-V/RR synthetics yield the correct
classification in 86%/87%/78% of cases. For GP (on 𝑽 test ) the figure is 85%.
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Table 3
CT test performance.

All True positives

Surrogate RMSE MAE RMSE MAE MAPE

NN-3 0.227 0.100 0.048 0.040 6.498%
NN-V 0.223 0.098 0.048 0.040 6.449%
RR 0.293 0.157 0.053 0.044 7.018%
GP 0.241 0.111 0.052 0.042 6.858%

Four surrogates on 𝑽 test (|𝑽 test | = 398), and on the true-positive sets of Table 2 (top
left). On the true-negative sets (bottom right in Table 2 ), the simulation surrogates
produce synthetics with objective function values equal to their IBOFlow counterparts.
The GP surrogate function value is also exact (= 𝑓min in Section 3). The NN-V surrogate
seems to be the most accurate. The MAPEs look quite high.

maximizer. According to Fig. 4, all of our surrogates are less accurate at
close range. Compliance for the MCO objective is generally better than
for CT. NN-3/V outperform the RR and GP surrogates (RR is worst).
These results look quite poor, but we will see that we can still use our
surrogates to solve optimization problems.

5. Optimization experiments

We consider two approaches: (i) use a sequence of surrogate simula-
tions/evaluations to get close(r) to a maximizer, followed by a sequence
of IBOFlow simulations to finish the process; (ii) use only surrogates.
The second approach significantly reduces the computational effort, at
the risk of degraded solution quality.

5.1. Initial guesses

We start each optimization from a set of 𝑘 IGs (i.e. OCs) to reduce
the risk of getting stuck in a local maximum. The IG selection process
proceeds as follows: we maximize the objective function over 𝑽 data
≡ 𝑽 train ∪ 𝑽 valid. ∪ 𝑽 test) and call the corresponding OC 𝒙1 ∈ R2𝑛+1. We
se 𝑽 valid

data to denote the subset of 𝑽 data that is valid for the objective
unction. We extract the remaining 𝑘−1 IGs from 𝑽 valid

data ⧵
{

𝒙1
}

, so that
he 𝑘 IGs are as well separated as possible. To do this, we maximize the
inimum Euclidean distance (treating OCs as vectors in R2𝑛+1) between

ny pair of OCs in a set of 𝑘 OCs from 𝑽 valid
data (containing 𝒙1). We seek

𝑘, a set of 𝑘 OCs that includes 𝒙1, and solves

𝐏IC)𝑘 Find 𝐶𝑘 ⊂ 𝑽 valid
data s.t. min

𝒙𝑖 ,𝒙𝑗∈𝐶𝑘

‖

‖

‖

𝒙𝑖 − 𝒙𝑗
‖

‖

‖2
→ max . (23)

ur numerical approach is simple: we draw a large number of sets of 𝑘−
OCs from 𝑽 valid

data ⧵
{

𝒙1
}

, and choose the set for which
in𝒙𝑖 ,𝒙𝑗∈𝐶𝑘

‖

‖

‖

𝒙𝑖 − 𝒙𝑗
‖

‖

‖2
is the highest.

.2. Optimization approaches

We consider nine approaches. For each, we perform one or more
Lopt COBYLA (Constrained Optimization BY Linear Approximations;
8

ee Johnson, 2007, Powell, 1994a, Powell, 1994a, 1998)11 optimization
equences, with relative and absolute 𝑥 tolerances of 10−3. We use
BOFlow or a surrogate to generate simulations or estimate objective
unction values. The computational cost of an IBOFlow simulation
ignificantly exceeds that of using a surrogate.12 We therefore use the
umber of IBOFlow simulations as a proxy for the computational cost
f each method. The first two methods are IBOFlow baselines:

BF(1) (results in black). We use IBOFlow with the exact objective
function. We start a COBYLA sequence from each IG.

BF(2) (results in grey). Two consecutive COBYLA sequences (Stage-
1 and Stage-2) are run with IBOFlow and the exact objective
function. The result of Stage-1 is the IG for Stage-2. We con-
sider IBF(2) as the worst-case cost for the two-stage surrogate
approaches (see below). We expect that it might also represent
a bound on the expected solution quality.

he next four approaches are similar to IBF(2), except that we use a
urrogate in Stage-1. The surrogate is termed successful if Stage-1 yields
n OC with a higher exact objective function value than the IG. For a
iven surrogate (simulation/objective function), any COBYLA sequence
ill increase the (surrogate/synthetic) objective function value. But

he resulting OC may correspond to an (exact) IBOFlow OC/simulation
hat is either invalid for the (exact) objective function, or is valid, but
as a lower (exact) objective function value than the IG. We say that
he surrogate fails in such cases. We make two adjustments to identify
nd deal with these failures. (i) Each surrogate COBYLA sequence is
receded/succeeded by an IBOFlow simulation/function evaluation of
he IG/result. Each such sequences therefore incurs a computational
ost of +2 IBOFlow simulations. (ii) If the post-sequence evaluation
hows that the surrogate has failed, we run an IBF(1) sequence (which
s guaranteed to succeed) from the Stage-1 IG.

N-3 (results in blue). An NN-3 simulation surrogate generates syn-
thetic simulations for each step of Stage-1.

N-V (red). An NN-V surrogate generates the Stage-1 simulations.

R (dark green). An RR surrogate generates the Stage-1 simulations.

P (magenta). A GP surrogate estimates the CT for each OC in Stage-1.
No simulations are generated.

inally, we examine three ensemble-type best-surrogate BS(⋅) ap-
roaches. We use all of the surrogates in a series of Stage-1 maxi-
izations, and then (optionally) perform a second maximization with

BOFlow.

S(1) (pink). We use each surrogate to run Stage-1 from each IG, and
select the result of the successful surrogate with the highest
exact function value. If all of the surrogates fail for an IG, we
discard the IG. If no surrogate succeeds for any IG (all surrogates
fail from every IG13), we run IBF(1) from each IG.

11 We use COBYLA for consistency with Nowak et al. (2021).
12 Our surrogates are unable to validate that an OC is valid viz. that 𝒙 ∈ 𝑽 .

IBOFlow performs all of the OC validations.
13 We never encountered this condition in our experiments
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Fig. 5. Summary of results. The second column contains the highest CT value, and its IG. The horizontal bars show the total number of IBOFlow simulations for each approach,
from ten IGs. IBF(2) yields the highest CT, from IG-9 (second is GP, from IG-10). All of the highest CT values (per approach) are within 1% of the maximum. BS(3) yields the
same maximum as the more expensive BS(2). BS(1) is by far the cheapest approach. *NN-3 is the cheapest standalone surrogate. Its best result comes from IG-1, but NN-3 fails
from this IG, which means that this result comes from an IBF(1) sequence. Its best success result (i.e. not requiring an IBF(1) sequence) is 0.7359, from IG-4.
BS(2) (orange). Using the BS(1) results as IGs, we execute an IBF(1)
sequence from each sequence for which one or more surrogates
was successful.

BS(3) (lime green). A variant of BS(2), in which the Stage-2 IBF(1)
sequence is executed only from the result of the best-performing
sequence/IG (with the highest objective function value) in
Stage-1.

5.3. Single objective optimization: CT

We experiment with the CT objective function (12), with 𝑘 = 10 IGs.
Each synthetic simulation (NN-3, NN-V, RR) has 104 time-steps.

Results
The best results for each approach, and the total number of simu-

lations (all IGs) appear in Fig. 5. Surrogate failures (the number of IGs
where the surrogate failed) are: NN-3: 4, NN-V: 3, RR: 7 and GP: 3, for
an overall failure rate of 43%.

Discussion
Our first observation is that while IG-1 is a good guess, it does not

always lead to the highest CT. Indeed, our best result comes from IG-9,
which provides at least some justification for our (expensive!) multiple
IG approach. IBF(2) is the most expensive method, but does not yield
the highest CT from every IG.

The NN-3/V surrogates yield a small reduction in the total number
of IBOFlow simulations compared to IBF(1) (NN-3 by ∼6%, and NN-V
by <1%). RR and GP are slightly more expensive than IBF(1). BS(1) is
the cheapest method, and is able to produce objective function values
within 1% of the best IBF(2) solution. BS(2) is more expensive than
BS(1), but does not perform better than the less expensive BS(3) (which
finds the same maximum). Interestingly, the best surrogate (GP) was
not the most accurate in Section 4.6 (cf. Fig. 4).

It would be strange to use IBF(2) in practice, and we are pleased that
our surrogates achieve higher objective function values from several
IGs, at substantially lower computational cost. Without IBF(2), IBF(1)
would give the best results from IG-1, IG-2 and IG-3, and NN-V would
be the best approach from IG-9. The best overall method would be GP,
from IG-10.
9

5.4. MCO

We use the Sandwiching algorithm (see Section 5 of Andersson
et al., 2018) to solve MCO problems. This algorithm chooses a set of
weights

{

𝜃IN, 𝜃CT
}

in (15) and solves a set of weighted sum problems to
estimate the Pareto front. We assume a concave Pareto front (cf. Nowak
et al., 2021). Solving an MCO problem therefore involves solving a
maximization problem from multiple IGs (as in the previous section),
for each Pareto point. We choose 𝑝 = 7 Pareto points, and solve each
component problem from 𝑘 = 6 IGs.

We use the approaches described in Section 5.2 for the component
problems, but instead of IBF(2), we maximize (𝐏𝑀 ) over 𝑽 data for each
Pareto point. We call this method ‘Set Max.’, and assign it the colour
cyan.

Set Max. For each
{

𝜃IN, 𝜃CT
}

from the sandwiching algorithm, solve
(cf. (15))

(𝐏𝑀 )(𝜃IN ,𝜃CT) Find 𝒙 ∈ 𝑽 data s.t. 𝑀
(

𝒙 ; 𝜃IN, 𝜃CT
)

→ max .

(24)

To do this, we evaluate each (exact) 𝑀
(

⋅ ; 𝜃IN, 𝜃CT
)

on each 𝒙 ∈ 𝑽 data,
and choose the 𝒙 with the highest MCO objective function value.

We do not use the sandwiching algorithm to solve nine MCO
problems, with different sets of weights. To isolate the effect(s) of our
methods, we:

(i) use Set Max., with sandwiching.
(ii) use IBF(1), with sandwiching. We find a different set of IGs for

each Pareto point (cf. Section 5.1), based on the MCO objectives
𝑀

(

⋅ ; 𝜃IN, 𝜃CT
)

, with weights from the sandwiching algorithm.
(iii) use the remaining methods to solve the same problems (the same

IGs and weights) as were solved by IBF(1).

We can compare the results from IBF(1) with those from NN-3/V, RR,
GP, and BS(⋅), as they solve the same problems.

Results
The MCO weights selected by the sandwiching algorithm are in

Table 4. The MCO objective function values calculated by the vari-
ous methods are in Table 5 and Fig. 6. The computational cost (#
of IBOFlow simulations) of the individual methods is summarized in

Fig. 7.
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Table 4
MCO sandwiching weights.

Weights:
(

𝜃IN , 𝜃CT
)

Point Set Max. IBF(1) Comment
(1)

(

1 − 10−6 , 10−6
)

Very small CT weighting
(2)

(

10−6 , 1 − 10−6
)

See the problem in Section 5.3
(3) (1, 1) Equal weightings
(4) (0.201, 0.980) (0.188, 0.982) Large CT weighting
(5) (0.294, 0.956) (0.273, 0.962) Large CT weighting
(6) (0.0981, 0.995) (0.0940, 0.996) Large CT weighting
(7) (0.334, 0.943) (0.0757, 0.997) Large CT weighting

Set Max. and IBF(1). The Set Max. and IBF(1) weights for points (1)-(3) are
identical. IBF(1) points (6) and (7) have similar weights. The Set Max. and IBF(1)
weights for point (7) are very different.

Discussion
In Fig. 6, the IBF(1) front is higher and to the left of the Set

Max. front, and has a higher solution approximation quality. Pareto
point comparisons between Set Max. and IBF(1) are generally not
possible (different weights for points (4)–(7), cf. the cyan cells in
Tables 4 and 5), but it seems that most of the improvement is due to
points (1) and (3). The improvement in solution quality comes at the
incremental computational cost of using IBF(1), which is one of our
most expensive methods (cf. Fig. 7; recall that we use 𝑽 data to find IGs
for IBF(1)). The IBF(1) results are only slightly better than those from
Set Max.

The standalone surrogates rarely beat IBF(1), and some of the
improvements are small (at the sixth or seventh significant digit). The
more significant improvements are: NN-V and RR perform better for
point (1), and GP performs better for point (3). The reason for this
seems to be that our surrogates often fail from IG-1 (cf. the un-shaded
cells in Table 5), yet this IG led to the best results for the majority of
IBF(1) Pareto points. BS(1) is cheap (cf. Fig. 7) and performs quite well
on points (2) and (6). BS(3) performs quite well on points (1), (3) and
(5). BS(2), the most expensive BS(⋅) method, performs quite well for
most points; for points (4) and (7), it beats BS(3), but not IBF(1).

We are surprised that the results in Fig. 4 have no effect here. In
that graph, we saw improved sign-test compliance for an MCO objective
combining CT and 𝛩inlet . We had hoped that this would lead to greater
computational savings if we increased the 𝛩inlet proportion in MCO
problems, but this is evidently not the case.

Comparing Table 5 and Fig. 7, we see that higher IBOFlow simula-
tion counts generally lead to better/higher (exact) MCO objective func-
tion values. Based on this observation, and our other results, we pro-
pose an approach that allows the practitioner to match computational
effort with the desired solution quality:

(1) Solve the MCO problem with Set Max. with sandwiching. For
sufficiently large 𝑽 data, these solutions might be satisfactory, and
no further effort would be required.

(2) Find a set of IGs for each Pareto point returned by the Set
Max. method, i.e. treat each Set Max. solution as 𝒙1 in a set of
IGs (cf. Section 5.1). Run BS(1) for each point. Keep solutions
with a higher objective function value (compared to the Set
Max. solution).

(3) Run BS(3) for the Pareto points for which step (2) did not result in
an increase. Keep those solutions with higher objective function
values.

(4) Run BS(2) for the Pareto points for which step (3) did not result in
an increase. Keep those solutions with higher objective function
values.

(5) If additional solution quality is required, or there are points
for which every surrogate has failed, run IBF(1) from the Set
Max. Pareto point.
10
Fig. 6.
(

𝛩inlet ,CT
)

Pareto fronts for IBF(1) and Set Max. with sandwiching. We regard
these two solutions as baselines: Set Max. with sandwiching is the cheapest, simplest
technique (by far), and does not use a formal optimization algorithm. IBF(1) is almost
at the other complexity extreme, and depends on a large number of exact simulations
from IBOFlow. In this graph up/left is ‘better’ (higher CT for given 𝛩inlet ). This graph
says that all of the engineering and computational expense of IBF(1) yields the small
difference (additional height) of the dashed black line compared to the blue one. The
objective of this study is to find Pareto fronts that cost less than IBF(1), and are (at
least) above/left of the blue front (if not the black one too). The solution approximation
qualities of Set Max. and IBF(1) are 0.0224 and 0.0162. The Pareto points are labelled
as in Table 4; *IBF(1) point (7) is close to point (6) and far from Set Max. point (7).

Fig. 7. Total number of IBOFlow simulations. NN-V is slightly cheaper than IBF(1).
BS(1) is the cheapest.

(6) If necessary, run further IBF(1) sequences from all remaining
Pareto point/IG combinations for which one or more surrogates
failed.

6. Conclusion

6.1. Summary of our contribution

We studied single objective and MCO problems and proposed vari-
ous solution techniques using ML surrogates. We developed two types
of surrogate: (i) simulation surrogates (two NNs and an RR), and (ii) ob-
jective function surrogates (a GP). While our surrogates were bespoke,
they were not particularly novel, and our contribution lies elsewhere.
First, we developed a framework for assessing, evaluating and compar-
ing surrogates as standalone objects, and in terms of the accuracy of
their approximations of a challenging objective function. Second, we
proposed methods for using surrogates to solve optimization problems,
as standalone objects, and in a stack-ensemble-like combination. A
typical ensemble approach would entail combining multiple learners to
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Table 5
MCO objective function values.

Solution Point
Approach (1) (2) (3) (4) (5) (6) (7)
Set Max. −9.91e−4 0.752 0.581 0.620 0.576 0.680 0.563*
IBF(1) 5.76e−7

(6)
0.753 0.593 0.630 0.586 0.682 0.693

NN-3 – – 0.593 – – 0.682
(5)

–

NN-V 5.93e−7
(3)

0.753 – – – – –

RR 5.96e−7
(2)

– 0.593 – – – –

GP – 0.753 0.595 – – 0.682 –
BS(1) 5.02e−7

(3)
NN-V

0.752
GP

0.581
NN-3

0.597
(5)
NN-3

0.572
(4)
NN-V

0.682
GP

0.684
(2)
NN-V

BS(2) 5.93e−7
(3) NN-V

0.753
GP

0.593
NN-3

0.623
(3)
GP

0.584
(4)
NN-V

0.682
(5)
NN-3

0.688
(5)
NN-V

BS(3) 5.93e−7
(3)
NN-V

0.753
GP

0.593
NN-3

0.597
(5)
NN-3

0.584
(4)
NN-V

0.682
GP

0.687
(2)
NN-V

Solutions from an IG other than IG-1 are shaded yellow (with the IG# in brackets). For the BS(⋅)
methods, we name the best surrogate. Dashes indicate surrogate failures (and a reversion to IBF(1)).
*Comparing the point (7) Set Max. results with the others is inappropriate (cf. point (7) weights in
Table 4).
produce more accurate simulations/objective function approximations:
we applied the idea to the MCO problem itself. We believe that this
technique is novel, and are not aware of it having been applied to an
MCO problem before. It has certainly never been applied to this specific
paint curing problem. Finally, we conducted numerical experiments
and presented evidence that these techniques can be used to reduce
computational cost and improve solution quality. In particular, we
were able to examine and compare more candidate solutions of the
optimizations problems than would otherwise have been practical. We
were unable to pick a clear winner from our set of surrogates. We used
our experimental results to propose a practical, incremental approach
to solving MCO problems using all available surrogates, with some
control over the computational cost.

6.2. Observations and conclusions

There is a sense in which this entire manuscript is about the gap be-
tween the cyan and black lines in Fig. 6. This gap may have commercial
value, but in practice, it might be difficult to justify the effort and cost
of such a project for such small objective function value improvements.
In any case, care should be taken to ensure that ML projects have a
viable business case.

We should be careful celebrating our IBOFlow simulation count
results. Figs. 5 and 7 suggest that BS(1) is much cheaper than IBF(1).
However, we need to take into account the computational (and other)
costs of creating 𝑽 data (we had |𝑽 data| ∼ 9000 simulations), and of
developing the surrogates used in BS(1). To achieve a net benefit, the
savings from using the surrogates should exceed their development and
training cost, including training data creation.14 We could also use our
surrogates in other ways to extract more value from them. For example,
objective functions are usually defined and derived in an iterative
process, whereby business priorities are translated into abstract math-
ematical objective functions. Typically, candidate objective functions
are evaluated based on the solutions to their optimization problems,
and the best/most appropriate objective function is then used to ‘solve

14 We used 𝑽 data to find IGs for the IBF(⋅) methods. We could have used a
different technique, but that would also have incurred a cost.
11
the problem’. We inherited the CT objective function from Nowak et al.
(2021), but in a new project, we would create a set like 𝑽 data as
early as possible, and use it, together with the Set Max. method, and
one or more easily/cheaply trained simulation surrogates (like our GP
surrogate) to quickly, but comprehensively evaluate different objective
functions.

6.3. Limitations of this case study and future opportunities

There are several opportunities for extending this case study. These
include (i) the application of other ML learners in more sophisticated
ensemble configurations, (ii) different approaches to training the learn-
ers we used, (iii) using fine-grid training data (from IBOFlow), (iv)
the application of alternate optimization (potentially gradient-based)
solvers, (v) a more sophisticated approach to selecting IGs, and (vi)
design, training and application of OC classification surrogates. We
discuss these in the rest of this section.

It is easy to conceive of more sophisticated ML learners, and differ-
ent (potentially better) approaches for designing and training the ones
we considered. Our BS(⋅) methods resemble a simple stack ensemble
(applied to the optimization problem), but more sophisticated ensemble
approaches (e.g. XGBoost, Chen and Guestrin, 2016) could be applied
to the ML learning tasks.

We worked exclusively with coarse, computationally cheap IBOFlow
simulations. This allowed us to investigate the effects of training set
size on surrogate accuracy for moderately large training sets. We were
also able to run optimization experiments involving long optimization
sequences, and a large number of IBOFlow simulations. Physical exper-
iments (cf. Nowak et al., 2021) confirm that these coarse simulations
are not very accurate. We suspect that our training temperature profiles
suffered from various non-physical artefacts (e.g. we observed ‘kinks’ in
many LPP and SPP temperature profiles), which were likely due to the
small number of grid points used to represent these objects in the coarse
discretization. These effects likely made the learning task more difficult
than it otherwise would have been, especially for the RR surrogate.
This raises the question (and risk) as to how much we can extrapolate
these results to problems involving fine-grid IBOFlow simulations. We
are confident that our results are meaningfully representative of what
we would observe if we were to tackle optimization problems involving
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fine-grid (higher 𝑟𝑜 and 𝑟𝑔) simulations. In any case, working with fine-
grid simulations to produce physically realistic results is an important
next step.

We developed a deep, flexible software stack spanning the gen-
eration and management of CFD training data, feature extraction,
training and evaluation of surrogates, and the use of surrogates to
solve single- and multi-objective optimization problems. We used a
Microsoft Windows IBOFlow executable to generate train/test simula-
tions, IBOFlow is based on the method introduced in Mark and van
Wachem (2008). All of the code for this paper was written in Python
on a Microsoft Windows machine. Our NNs were built using Tensor-
Flow (Abadi et al., 2015), we used scipy (https://docs.scipy.org/doc/
scipy/reference/generated/scipy.optimize.curve_fit.html) for the non-
linear regression and scikit-learn (Pedregosa et al., 2011) for the Gaus-
sian processes. Finally, we used the NLopt library for the COBYLA opti-
mization (Johnson, 2007; Powell, 1994a). It should be straightforward
to add new surrogates and solvers (like derivative-based optimization
methods), and to work with different objective functions.

The CT objective function was particularly difficult to work with.
Our surrogate learning curves suggest that we might see improvements
if we had (significantly) more training data.15 However, this approach
would be unlikely to scale for situations involving fine-grid simulations.
We should try to work with the smallest viable training sets, because
one of our goals is to solve these problems as cheaply as possible. In this
respect, it might be possible to pre-train NNs on a large set of (cheap)
coarse-grid simulations and then refine the training on a smaller set
of (expensive) fine-grid simulations. We do not recommend generating
large, expensive data sets specifically so as to use ML methods, if
cheaper (and more precise) methods (cf. Nowak et al., 2021) are
available.

Our use of multiple IGs seemed only marginally beneficial, as we
found maximizers from IGs other than 𝒙1 in Section 5.1. Our approach
to finding IGs was simple, but quite crude. A more sophisticated ap-
proach could lead to IGs that are better separated, which could lead to
higher quality solutions.

Our numerical results are suggestive, but it is difficult to draw
general conclusions from them. It might be beneficial to perform an
exercise using each element of 𝑽 data (or even 𝑽 test) as an IG for opti-
mization. We could then develop metrics to understand how surrogate
failure rates, solution quality and computational effort vary with IG.

We used the number of IBOFlow simulations as a proxy for the com-
putational cost of our techniques. Once we started using our surrogates,
total computational cost was dominated by the cost of the IBOFlow
candidate OC validations. Using classification surrogates to perform
these validations would reduce this runtime computational cost (but
incur an additional training/development cost, and introduce another
approximation error).

Abbreviations and symbols

We list important abbreviations and symbols in Table 6.
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Table 6
Abbreviations and symbols.

Symbol Description

CFD Computational fluid dynamics.
ML Machine Learning.
𝛺 Volume occupied by the oven interior in R3.
𝑛 The number of vehicle parts inside the oven. All

our experiments involve 𝑛 = 3 — see Fig. 1.
𝑿 Vector (in R2𝑛) representing the position of the

vehicle parts in the oven.
𝛩inlet Oven inlet temperature: the setting on a

temperature control dial for the oven. We use the
same symbol for the objective function with the
same name.

OC An oven configuration. A complete OC
encapsulates the position and rotation of each part
in the oven, and 𝛩inlet . We fix and suppress the
rotation vectors and constrain each part to be in
the mid-plane (𝑥 = 0 in each position vector).

𝒙 Vector (in R2𝑛+1) representing an OC. Contains the
positions of the parts (two components per part in
the mid-plane) and 𝛩inlet .

𝑽 ⊂ R2𝑛+1 The set of valid OCs (parts well separated and
inside the oven).

𝑇 Total simulation time horizon.
𝒓 IBOFlow simulation refinement levels. A pair of

the form 𝒓 =
(

𝑟𝑔 , 𝑟𝑜
)

: 𝑟𝑔 is the grid refinement, 𝑟𝑜
the object refinement.

CC Cab corner (the large vehicle part in Fig. 1).
LPP Large pc pet (the medium-sized vehicle part in

Fig. 1).
SPP Small pc pet (the small vehicle part in Fig. 1).
NN Neural network.
NN-3 Fixed-part NN simulation surrogate. Trained on

3-part simulations, only.
NN-V Variable-part NN simulation surrogate. Trained on

1,2,3-part simulations.
RR Non-linear regression simulation surrogate.

Generates temperature evolution profiles according
to the ansatz in (18).

GP Gaussian process objective function surrogate
(learns the inputs of the CT objective function,
cf. (20)).

IG Initial-Guess (for the solution of an optimization
problem).

CT Curing-Time (objective function).
MCO Multi-criteria optimization.
𝑽 train, 𝑽 valid., 𝑽 test ML training, validation and test simulation sets.

We define 𝑽 data ∶= 𝑽 train ∪ 𝑽 valid. ∪ 𝑽 test .
𝑁3 The number of three-part (i.e. having 𝑛 = 3)

simulations in a training set.
MSE Mean squared error.
MAE Mean absolute error.
MAPE Mean absolute percentage error.
𝑘 Number of IGs used to start an optimization

problem.
𝑝 Number of Pareto points required to solve each

MCO problem.
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