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Network automation & programmability
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*Achim Autenrieth, “Carrier Grade AI/ML for Network Automation”, invited talk, OFC 2022, 9 March 2022
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Fixed networks
Network automation and programmability

4

Monitoring

Context

ZTP

Inter-
domain

OSS/BSS
End-to-End 

Orchestrator
Auto Scaling, Load 

Balancing, Self-Healing
Centralized

Attack Detector

Service DLT

NBI

TE

SBIBGP-LS 
Speaker

PathComp

Forecaster

Attack 
Mitigator

Slice
Attack 

inference

IPM

Web
UI

Distributed 
Attack 

Detector

Optical 
Controller

Policy

Source: ETSI SDG TFS



2024-06-04Carlos Natalino w Explainable Reinforcement Learning w TX4Nets

Wireless networks
Network automation and programmability
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Source: O-RAN Alliance
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Current level of network autonomy
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* Oscar Gonzáles de Dios, “AI-based automation of multi-layer multi-domain
 transport networks,” OFC, pp. W4I.2, March 2024.

Why are we still experiencing a low level of autonomy?
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Trustworthy AI

1 Human agency and oversight
• Including fundamental rights, human agency and human oversight

2 Technical robustness and safety
• Including resilience to attack and security, fall back plan and general safety, accuracy, reliability and 

reproducibility
3 Privacy and data governance

• Including respect for privacy, quality and integrity of data, and access to data
4 Transparency

• Including traceability, explainability and communication
5 Diversity, non-discrimination and fairness

• Including the avoidance of unfair bias, accessibility and universal design, and stakeholder participation
6 Societal and environmental wellbeing

• Including sustainability and environmental friendliness, social impact, society and democracy
7 Accountability

• Including auditability, minimisation and reporting of negative impact, trade-offs and redress.

8
Ethics guidelines for trustworthy AI, EU, April 2019.
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The reinforcement learning loop
RL framework
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Discounter reward
RL framework
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• Long-term value of each state/action pair

• Term 𝛾 regulates the value of future rewards to the current action

• Number of interactions depends on the episode length

𝑅! =	%
"#$

%

𝛾"×𝑅!&"&'

𝑅! = 𝑅!&' + 𝛾×𝑅!&( + 𝛾(×𝑅!&) +⋯



2024-06-04Carlos Natalino w Explainable Reinforcement Learning w TX4Nets

RL vs. DRL
RL framework
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Reinforcement learning

State
Discounted reward

(value)

State Action 1 Action 2 … Action |A|

(0, 0, …, 0) 10 5 … 1

(0, 0, …, 1) 3 8 … 4

… … … … …

(1, 1, …, 1) 6 2 … 11
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RL vs. DRL
RL framework
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Reinforcement learning

Deep reinforcement learning
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Inference
RL framework
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How does RL learn?
RL framework

15

No control over 
the policy 
learned

Probabilistic 
action selection
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Use cases for reinforcement learning

Suitable use cases
• Complex problems

• Scenario-specific behavior
• Need for context-specific thresholds

• Unknown future
• Random arrivals
• External events

Unsuitable use cases
• Simple problems

• Heuristics are sufficient
• Known sequence of steps

• Concurrent optimization (e.g., linear 
programming) is a better fit

17
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Problem statement
Routing, modulation, core, and spectrum allocation
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RL modeling
Routing, modulation, core, and spectrum allocation
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Teng et al., JOCN, 2024
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Representative results
Routing, modulation, core, and spectrum allocation

20
Teng et al., JOCN, 2024
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How does RL learn?
RL framework
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No control over 
the policy 
learned

Probabilistic 
action selection
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Research questions
RL framework
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Q1: How do features impact the RL decision?
Q2: How does the impact of features change for different RL scenarios?

Q3: Can we identify unwanted behavior?

Ayoub et al., OFC’24, p. W4I.6
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Proposed approach

Train RL Learn classifier Assess feature 
impact

24

Ayoub et al., OFC’24, p. W4I.6
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Proposed approach

Train RL Learn classifier Assess feature 
impact
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• ~ to imitation learning

• Choose the most 
accurate model

• Accuracy assessed as 
classification

• Use Shapley Additive 
exPlanations (SHAP)

• DeepRMSA*

• Maximize acceptance / 
minimize blocking

* Chen et al., JLT 37 (16), 2019.
Ayoub et al., OFC’24, p. W4I.6
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RF classifier performance
Results

Model Infeasible 
allowed

Infeasible 
penalized

Infeasible 
masked

F1-score 0.75-0.85 0.74-0.84 0.77-0.84
Accuracy 0.84-0.94 0.77-0.91 0.84-0.94
Precision (class 5) 0.75-1.00 0.67-0.90 0.75-1.00

26

Fairly uniform accuracy across scenarios

Ayoub et al., OFC’24, p. W4I.6
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Feature importance
Results
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Features:
Request:
0. Bit rate
1. Source node
2. Destination node
Path/block option:

Block:
3. Initial index
4. Number of free slots
Path:
5. Number of requested slots
6. Total free slots in the path
7. Average free block length

Req. Path 1 Path 2 Path 3 Path 4 Path 5

Ayoub et al., OFC’24, p. W4I.6
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Feature influence/impact on rejection
Results
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Challenges and opportunities

1 Human agency and oversight
• Including fundamental rights, human agency and human oversight

2 Technical robustness and safety
• Including resilience to attack and security, fall back plan and general safety, accuracy, reliability and 

reproducibility
3 Privacy and data governance

• Including respect for privacy, quality and integrity of data, and access to data

4 Transparency
• Including traceability, explainability and communication

5 Diversity, non-discrimination and fairness
• Including the avoidance of unfair bias, accessibility and universal design, and stakeholder participation

6 Societal and environmental wellbeing
• Including sustainability and environmental friendliness, social impact, society and democracy

7 Accountability
• Including auditability, minimisation and reporting of negative impact, trade-offs and redress.

32
Ethics guidelines for trustworthy AI, EU, April 2019.
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Thank you! J

Chalmers profile GitHub page
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