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Network automation & programmability
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Streaming

telemetry Open APIs

Data plane

*Achim Autenrieth, “Carrier Grade Al/ML for Network Automation”, invited talk, OFC 2022, 9 March 2022
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Fixed networks

Network automation and programmability
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Wireless networks

Network automation and programmability
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Current level of network autonomy

CHALMERS
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Motivation: The journey of automation and connectivity

+ Telefonica has been transforming its Transport Networks
* OpenFusion: Disaggregating horizontal and vertically
« jFusion: Introducing SDN across layers

* We are embarked in the “Autonomous Network Journey”
* We are at level 2/3 in all Telefonica operations

Evolution of Network autonomy
Technology levels defined by TMForum

e We want to reaCh Ievel 4 by 2025 MANUAL ASSISTEID PARTIAL CONDITIONAL

MIGH

FULL AUTONOMY

Humans must
remain alert
theoughout and is

Humans do most of
the work and are

+ There is an increased demand of tailored MnRi——
connectivity vs “one size fits all” o

Slicing: providing advanced connections

Today, we’ll see our vision of the

Assisted Operation
by humans on some

3|0y y40MmIaN

Why are we still experiencing a low level of autonomy?

* Oscar Gonzales de Dios, “Al-based automation of multi-layer multi-domain
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Trustworthy Al

1 Human agency and oversight
* Including fundamental rights, human agency and human oversight

2 Technical robustness and safety
* Including resilience to attack and security, fall back plan and general safety, accuracy, reliability and
reproducibility
3 Privacy and data governance
* Including respect for privacy, quality and integrity of data, and access to data

4 Transparency
* Including traceability, explainability and communication

|
|

5 Diversity, non-discrimination and fairness
* Including the avoidance of unfair bias, accessibility and universal design, and stakeholder participation

6 Societal and environmental wellbeing
+ Including sustainability and environmental friendliness, social impact, society and democracy

7 Accountability
* Including auditability, minimisation and reporting of negative impact, trade-offs and redress.

Ethics guidelines for trustworthy Al, EU, April 2019.
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The reinforcement learning loop

RL framework

Self-adjust to _
changing Goal-oriented
i through the reward
conditions

state reward Intelligent entity action
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Discounter reward

RL framework

» Long-term value of each state/action pair
» Term y regulates the value of future rewards to the current action

* Number of interactions depends on the episode length

(0¢]

R, = Z VkXRt+k+1
k=0

Rt = Rey1 + YXRipy + V2XRpsz + -
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RL vs. DRL

RL framework
™N ~
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RL vs. DRL

RL framework

State

State

Reinforcement learning

Deep reinforcement learning
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Inference

RL framework

State
*Source Logit action 01
*Destination Logit action 1 m—————

*Bit rate RL model Logit action 2|
Logit action 3 n—
Logit action 4 m—

*Block spectrum information
* Path spectrum information
*Etc.
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uonoe s|dweg

0 0.5 1

Carlos Natalino ¢ Explainable Reinforcement Learning ¢ TX4Nets 2024-06-04



How does RL learn?

RL framework

No control over

’\r the policy
learned

action

A
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Probabilistic
action selection

state reward
S, R,

.
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Use cases for reinforcement learning

Suitable use cases Unsuitable use cases
« Complex problems « Simple problems
» Scenario-specific behavior Heuristics are sufficient
* Need for context-specific thresholds * Known sequence of steps
« Unknown future . Concurrenft opt_imization (e_.g., linear
programming) is a better fit

« Random arrivals
 External events

Carlos Natalino ¢ Explainable Reinforcement Learning ¢ TX4Nets
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Problem statement

Routing, modulation, core, and spectrum allocation
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Teng et al., JOCN, 2024
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RL modeling

Routing, modulation, core, and spectrum allocation
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Representative results

Routing, modulation, core, and spectrum allocation
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How does RL learn?

RL framework
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Research questions

RL framework

State

*Source

* Destination
*Bit rate > RL model
*Block spectrum information
* Path spectrum information

*Etc.
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Q1: How do features impact the RL decision?

Q2: How does the impact of features change for different RL scenarios?

Q3: Can we identify unwanted behavior?

Ayoub et al.,, OFC’24, p. W4l.6
Carlos Natalino ¢ Explainable Reinforcement Learning ¢ TX4Nets 2024-06-04



24

Proposed approach

Train RL Learn classifier

Carlos Natalino ¢ Explainable Reinforcement Learning ¢ TX4Nets

Assess feature

impact

Ayoub et al., OFC’24, p. W4l.6
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Proposed approach

Assess feature
impact

Train RL Learn classifier

* DeepRMSA* « ~ to imitation learning « Use Shapley Additive

* Maximize acceptance / * Choose the most exPlanations (SHAP)

minimize blocking accurate model

» Accuracy assessed as
classification

*Chen et al., JLT 37 (16), 2019.
Ayoub et al., OFC’24, p. W4l.6
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RF classifier performance

Results

m [ {-F-E] o] [ Infeasible

allowed penalized
F1-score 0.75-0.85 0.74-0.84
Accuracy 0.84-0.94 0.77-0.91
Precision (class 5) 0.75-1.00 0.67-0.90

Infeasible
masked

0.77-0.84
0.84-0.94
0.75-1.00

\_ Fairly uniform accuracy across scenarios

J
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Feature importance

Results
Features:
. 101 mmm |nfeasible Allowed
RequeSt' Infeasible Penalized
0. Bit rate Infeasible Masked
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4. Number of free slots .
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5. Number of requested slots
6. Total free slots in the path
7. Average free block length

Ayoub et al.,, OFC’24, p. W4l.6
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Feature importance

Results
Features:
. B |nfeasible Allowed//
RequeSt' Infeasible Penaﬂfed
0. Bit rate Infeasible Masked |

1. Source node
2. Destination node
Path/block option:
Block:
3. Initial index
4. Number of free slots
Path:
5. Number of requested slots S~
6. Total free slots in the path ~< S
7. Average free block length
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Feature influence/impact on rejection

Results

Low values in path 0

influence rejection

Infeasible-Allowed
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free_sl path 3 e
free_sl_block_4 :t-
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+_.
src_node  <fp=—--
+_.
+
0

High values in paths
2 and 3 also
influence rejection

free_sl path 4
avg_sl_path_1

Low Feature Value High

005 0.1 015 0.2
SHAP Value

Ayoub et al.,, OFC’24, p. W4l.6
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Feature influence/impact on rejection

Results
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Infeasible-Penalized
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Infeasible-Masked
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Challenges and opportunities

1 Human agency and oversight
* Including fundamental rights, human agency and human oversight

2 Technical robustness and safety
* Including resilience to attack and security, fall back plan and general safety, accuracy, reliability and
reproducibility

3 Privacy and data governance
* Including respect for privacy, quality and integrity of data, and access to data

4 Transparency
* Including traceability, explainability and communication

5 Diversity, non-discrimination and fairness
* Including the avoidance of unfair bias, accessibility and universal design, and stakeholder participation

6 Societal and environmental wellbeing
* Including sustainability and environmental friendliness, social impact, society and democracy

7 Accountability
* Including auditability, minimisation and reporting of negative impact, trade-offs and redress.

Ethics guidelines for trustworthy Al, EU, April 2019.
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