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Abstract
New Kaczmarz algorithms with rank two gain update, extended orthogonality property and forgetting mechanism which
includes both exponential and instantaneous forgetting (implemented via a proper choice of the forgetting factor and the
window size) are introduced and systematically associated in this paper with well-known Kaczmarz algorithms with rank one
update. The parameter convergence was proved using Lyapunov method and convergence of the inverse of the information
matrix can be used for further performance improvement. The performance of new algorithms is examined in the problem of
estimation of the grid events in the presence of significant harmonic emissions.

Keywords Kaczmarz algorithms in weighted moving window · Exponential & instantaneous forgetting · Updating &
downdating · Rank two update versus rank one update · Estimation of the inverse of the information matrix · Extended
orthogonality property · Lyapunov method for convergence analysis · Wave form distortion monitoring in smart grids

1 Previous & RelatedWork

Kaczmarz projection method, [1, 2] is robust and computa-
tionally efficient algorithm (alternative to the least squares
approach) for estimation of the frequency contents of the
oscillating signals in a number of signal processing and sys-
tem identification applications. In the Kaczmarz algorithm

θk = θk−1 − ϕk

ϕT
k ϕk

[ϕT
k θk−1 − yk] the output of the model

ϕT
k θk matches exactly the measured signal yk = ϕT

k θk in
each discrete step k, which can be obtained by multiplying
the parameter vector θk by the regressor ϕT

k . The algorithm
has the remarkable orthogonality property ϕT

k θ̃k = 0, where
the vector of the parametermismatch θ̃k = θk−θ∗ (difference
between adjustable and true parameters θ∗) is orthogonal to
the regressor vector. The square of the length of the harmonic
regressor (which consists of the trigonometric functions at
different frequencies), ϕT

k ϕk is constant and depends on the
number of frequencies only. The Kaczmarz algorithms were
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successfully tested in different estimation problems in auto-
motive applications, [3].

Aiming for convergence rate improvement of the
Kaczmarz projection method the gain update algorithm was
introduced in [4]. Further development was associated with
introduction of the forgetting factor which has significant
impact on the estimation performance, discounts exponen-
tially old measurements in the gain update and creates a
virtual moving window, [5].

The choice of the forgetting factor is associated with the
trade-off between rapidity and accuracy of estimation. The
gain matrix with forgetting factor is associated in this paper
with thewindowwhich ismoving in time for further improve-
ments. Introduction of the forgetting factor in the sliding
window, [6, 7] creates extended forgetting mechanism that
includes both exponential and instantaneous forgetting and
provides new opportunities for achievement of the trade-off
between rapidity and accuracy.

The movement of the window is associated with data
updating and downdating that results in recursive updates
of the information matrix, which can occur sequentially, [3,
8] or simultaneously, [9]. Sequential updating and downdat-
ing results in computationally complex algorithms. The gain
update in known Kaczmarz algorithms, [4, 5] is associated
with recursive rank one update, (similar to recursive least
squares algorithms, [10, 11]) whereas simultaneous updat-
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Table 1 Comparison of Kaczmarz Algorithms with Rank Two and Rank One Updates

Quantity Kaczmarz Algorithm with Rank Two Update Kaczmarz Algorithm with Rank One Update

Gain Update �k = 1

λ
[ �k−1 − �k−1 Qk S−1 QT

k �k−1 ] �k = 1

λ
[ �k−1 − �k−1 ϕk ϕT

k �k−1

λ + ϕT
k �k−1ϕk

]

Law S = λ D + QT
k �k−1 Qk

Parameter Update θk = θk−1 θk = θk−1 − �k−1 ϕk

ϕT
k �k−1ϕk

[ϕT
k θk−1 − yk ]

Law − �k−1 Qk [QT
k �k−1Qk ]−1 [QT

k θk−1 − ỹk ]

Inversion Error Ek = (I − �k−1 Qk S−1 QT
k ) Ek−1 Ek = (I − �k−1 ϕk ϕT

k

λ + ϕT
k �k−1ϕk

) Ek−1

Ek = I − �k Ak

Parameter Error θ̃k = (I − �k−1 Qk [QT
k �k−1Qk ]−1 QT

k ) θ̃k−1 θ̃k = (I − �k−1 ϕk ϕT
k

ϕT
k �k−1ϕk

) θ̃k−1

θ̃k = θk − θ∗
Orthogonality Property QT

k θ̃k = 0 ϕT
k θ̃k = 0

ing/downdating is associated with computationally efficient
rank two update, [12].

New gain update which is explicitly associated with the
movement of the sliding window of the size w with expo-
nential forgetting is introduced in Kaczmarz algorithms. The
parameter update law extends the property of orthogonal-
ity where the output of the model matches measured data in
two end points of the weighted window. The development is
performed and systematically associated with well-known
Kaczmarz algorithms with rank one update, see Table 1
and [5].

It is shown that the gain update�k converges to the inverse
of the information matrix and the parameters converge to
their true values, which is a new property of Kaczmarz algo-
rithms with rank two update discovered in this paper, see
Section 4.

The response timeof the estimation algorithms is restricted
by the choice of the window size. Short window (which is
associated with fast response) implies ill-conditioning of the
information matrix which results in sensitivity to numeri-
cal calculations and error accumulation. New convergence
properties discovered in this paper allow initialization to
the approximate inverse with subsequent convergence of the
inverse of information matrix, see Section 4. This property
opens new opportunities for performance improvement in
the ill-conditioned case where the difficulties are associated
with the matrix inversion. In addition, Newton-Schulz and
Richardson algorithms can be applied for improvements of
the transient performance, [12, 13].

The performance of new algorithms is examined in the
problem of estimation of the grid events in the presence of
significant harmonic emissions, see Fig. 3 and [12–14].

The paper is organized as follows. New Kaczmarz algo-
rithms with rank two update are introduced in the next

Section 2. New algorithms are systematically associatedwith
algorithms with rank one update in Section 3 and Table 1.
Convergence properties of new algorithms, which is themain
contribution of this paper are presented in Section 4. Simu-
lation results which show the advantages of the proposed
algorithms are presented in Section 5 and finally Section 6
outlines brief conclusions and directions for further research.

2 MovingWindowwith Exponential
Forgetting

Suppose that the measured oscillating signal is presented in
the following form yk = ϕT

k θ∗, where ϕk is the harmonic
regressor, ϕT

k = [cos(q0k) sin(q0k) ... cos(qhk) sin(qhk)],
q0, ...qh are the frequencies and θ∗ is the vector of unknown
parameters, k = 1, 2, ....

The window of the size w which is moving in time can
be presented as rank two update of the information matrix
(which is defined as the sum of the outer products of the
regressor vectors)where newobservation is added (updating)
and old observation is deleted (downdating). The estimation
performance is highly influenced by the forgetting factor,
0 < λ ≤ 1 which discounts exponentially old measurements
and creates a virtual window inside of the moving window.
In other words, the new data ϕk (with the largest forgetting
factor which is equal to one) enter the window and the data
with the lowest priority ϕ̃k−w = √

λw ϕk−w leave thewindow
in step k as follows, [12]:

Ak =
j=k∑

j=k−(w−1)

λk− jϕ j ϕT
j

= λ Ak−1 + Qk D QT
k

(1)
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where Qk = [ϕk ϕ̃k−w], D = diag[1,−1], k ≥ w + 1.
The gain matrix (as inverse of Ak) which is derived by

application of the matrix inversion lemma, [15] to the iden-
tity (1) and the parameter update law can be written in the
following form, [12]:

�k = 1

λ
[ �k−1 − �k−1 Qk S−1 QT

k �k−1 ] (2)

θk = θk−1

− �k−1 Qk [QT
k �k−1 Qk]−1 [QT

k θk−1 − ỹk]
(3)

where S = λ D + QT
k �k−1 Qk , ỹTk = [yk

√
λw yk−w] is

the synthetic output, provided that the matrix QT
k �k−1 Qk

is invertible. The vector of adjustable parameters θk in (3) is
constructed so that the output of the model matches exactly
the measured signal QT

k θk = ỹk (see Sections 1 and 3 ) and
the following extended orthogonality property QT

k θ̃k = 0 is
valid for the parameter mismatch θ̃k = θk − θ∗.

3 Kaczmarz Algorithms with Rank
One Update

Introduction of the forgetting factor allows to establish rela-
tionship between Kaczmarz algorithms with rank two and
rank one updates. Notice that Qk gets the following form
Qk = [ϕk 0] without downdating when λw → 0. Straight-
forward substitution of Qk defined above in (2) yields to
following well-known Kaczmarz algorithms, [4, 5]:

�k = 1

λ
[ �k−1 − �k−1 ϕk ϕT

k �k−1

λ + ϕT
k �k−1ϕk

] (4)

θk = θk−1 − �k−1 ϕk

ϕT
k �k−1ϕk

[ϕT
k θk−1 − yk] (5)

with the orthogonality property ϕT
k (θk − θ∗) = 0. Compari-

son of the algorithms (2), (3) and (4), (5) and the errormodels
is presented in Table 1.

The performance of estimation can be further improved
using remarkable convergence properties of the algorithms
described in the next Section.

4 Convergence of Matrix Inversion
and Parameter Errors

Error Models For system (1)–(3) the following error models
are valid:

Ek = (I − �k−1 Qk S−1 QT
k ) Ek−1 (6)

θ̃k = (I − �k−1 Qk [QT
k �k−1 Qk]−1 QT

k ) θ̃k−1 (7)

where Ek = I −�k Ak and θ̃k = θk −θ∗ are matrix inversion
and parameter estimation errors (the same matrix inversion
error is used in Newton-Schulz algorithms, [13]) and I is the
identity matrix.

Convergence ofMatrix Inversion The matrices I −�k−1 Qk

S−1 QT
k can be associated with generalized Householder

matrices and explicit solution of Ek can be associated with
aggregated Householder transformation (products of House-
holder matrices). Therefore the convergence of the matrix
inversion error for system with harmonic regressor can be
established using the arguments similar to [16–18].

Notice that Qk gets the following form Qk = [ϕk 0]
for sufficiently small forgetting factor and large window
size, i.e. if λw → 0. Kaczmarz algorithm with rank two
update becomes Kaczmarz algorithm with rank one update
and the inversion error, (6) gets the form: Ek = (I

− �k−1ϕkϕ
T
k

λ + ϕT
k �k−1ϕk

)Ek−1, see Table 1. Multiplying this iden-

tity by ϕkϕ
T
k and taking the sum (under the assumption that

Ek ≈ Ek−1) yields
r+w∑

k=r

ϕkϕ
T
k Ek =

r+w∑

k=r

λ

λ + ϕT
k �k−1ϕk

ϕk

ϕT
k Ek−1. Thus the convergence of the matrix inversion error

can be established for systems with harmonic regressor, [19].
Comparison of thematrix inversion and parameter conver-

gence rates as a function of the forgetting factors for rank one
and rank two updates is presented in Fig. 1. Figure1(a) shows
thatKaczmarz algorithmwith rankoneupdate provides faster
convergence of the inversion error for larger forgetting fac-
tors and Fig. 1(b) shows faster convergence of the parameter
error for Kaczmarz algorithm with rank two update.

Parameter Convergence The convergence of the parame-
ter vector can be proved using Lyapunov function candidate
Vk = θ̃Tk Ak θ̃k for symmetric and positive definite matrix
Ak . Taking into account orthogonality property QT

k θ̃k = 0
evaluation of the first difference Vk − Vk−1 yields:

Vk − Vk−1 = λ θ̃Tk Ak−1 θ̃k−1 − Vk−1

+ λ θ̃Tk (I − Ak−1�k−1)Qk [QT
k �k−1Qk ]−1QT

k θ̃k−1

= − λ θ̃Tk−1 Qk [QT
k �k−1 Qk ]−1 QT

k θ̃k−1

− (1 − λ)Vk−1 + λ (θ̃k + θ̃k−1)
T (I − Ak−1�k−1)

Qk [QT
k �k−1 Qk ]−1 QT

k θ̃k−1

(8)

Notice that the matrix inversion error (I − Ak−1�k−1) is
vanishing, see Fig. 1(a) and there exist positive constants c
and λ∗, ρ < 1 such that the following holds Vk ≤ λ∗Vk−1

+ c ρk and the bounds

123



Journal of Signal Processing Systems

(a) (b)

Figure 1 The spectral radius of the matrix inversion error Ek =
I −�k Ak is plotted in (a) for Kaczmarz algorithmwith rank two update
and window size w = 30 with solid yellow line for λ = 0.96 and red
dashed line for λ = 0.9. The spectral radius for Kaczmarz algorithm

with rank one update is plotted with dashdot cyan line for λ = 0.96 and
with dotted blue line for λ = 0.9. The norms of the parameter errors,
‖θk − θ∗‖ are plotted with the same lines and forgetting factors in (b).

Figure 2 Rank accumulation
for information matrices with
harmonic regressor (full rank of
information matrix is equal to

16), where
k=19∑
k=1

QkQT
k and

k=19∑
k=1

ϕkϕ
T
k are associated with

Kaczmarz algorithms with rank
two and rank one updates (red
dashed and dotted blue lines
respectively).
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(a) (b)

Figure 3 The amplitudes estimated with Kaczmarz algorithms with
rank two (2), (3) and rank one (4), (5) updates are plottedwith red dashed
and dotted blue lines respectively for small window size, w = 18 and
forgetting factor λ = 0.55 in the presence of the measurement noise.

Actual amplitudes are plotted with the yellow line. Estimated ampli-
tudes at the frequencies 50 Hz and 150 Hz are plotted in (a) and (b)
respectively.

Vk ≤ λk∗ V0 + c ρ
λk∗ − ρk

λ∗ − ρ
(9)

Vk ≤ λk∗ V0 + c k λk∗ (10)

are valid for λ∗ 	= ρ and λ∗ = ρ respectively. Finally, the
following bound is true for the parameter error:

‖θ̃k‖ ≤
√

Vk
λmin (Ak)

.

Orthogonality property θ̃Tk Qk = 0 can also be directly
used to establish the parameter convergence.Multiplying this
identity by QT

k and taking the sum yields
∑r+w

k=r θ̃Tk Qk QT
k= 0. Assuming that the vector of adjustable parameters is

constant (after some transient) the parameter convergence
can be established for persistently exciting regressor. The
summation above is associatedwith rank accumulation using
rank two increment. Figure 2 shows that Kaczmarz algorithm
with rank one update accumulates the rank slower. Using
arguments similar to [19] it can also be shown that the esti-
mates are unbiased in the presence of the noise.

5 Simulations

New algorithmswere tested for estimation of the swell signa-
ture in the electricity network. The swell event is associated
with momentary increase of the voltage that occurs usually

when a large load turns off in a power system.Thevoltage sig-
nal which contains the fundamental frequency of 50 Hz and
seven higher harmonics was simulated. The swell events are
modeled as momentary increase of the amplitude of the first
and the third harmonics, see the yellow lines in Fig. 3. The
transient response of the Kaczmarz algorithm with rank two
update (2), (3) is compared to the response of the Kaczmarz
algorithm with rank one update (4), (5) in the presence of the
measurement noise for the same forgetting factor λ = 0.55
in the short sliding window. The Figure shows that Kaczmarz
algorithm with rank two update provides faster estimates at
the fundamental frequency for the same forgetting factor.

6 Conclusion

The gain matrix with rank two update which allows expo-
nential weighting of the data inside of the moving window,
prioritizes recent measurements and improves estimation
performance for fast varying changes of the signal formed the
basis for new Kaczmarz algorithms. New Kaczmarz adjust-
ment law has extended orthogonality property in the sliding
windowand showed improvement of estimation performance
in the problem of detection of the grid events. The enhance-
ment of the performance was achieved via a proper choice of
two adjustable parameters (small window size and forgetting
factor) associated with fast forgetting.

New Kaczmarz algorithms with rank two update were
systematically associated in this paper with well-known
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Kaczmarz algorithms with rank one update, see Table 1. The
parameter convergence was proved using Lyapunov method
and the convergence of the inverse of information matrix can
be used for further improvement of the performance.

The results are valid under the assumption associated with
invertibility of the matrix QT

k �k−1 Qk which can be seen as
drawback of proposed algorithm. For the sake of robustness
the Kaczmarz algorithms with rank two update can be mod-
ified. The modification can be associated with modification
of well-known Kaczmarz algorithm, [1].
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