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Abstract
We present a cut finite element method for the heat equation on two overlapping
meshes: a stationary background mesh and an overlapping mesh that moves around
inside/“on top” of it. Here the overlapping mesh is prescribed by a simple continuous
motion, meaning that its location as a function of time is continuous and piecewise
linear. For the discrete function space, we use continuous Galerkin in space and
discontinuous Galerkin in time, with the addition of a discontinuity on the boundary
between the two meshes. The finite element formulation is based on Nitsche’s method
and also includes an integral term over the space-time boundary between the two
meshes that mimics the standard discontinuous Galerkin time-jump term. The simple
continuous mesh motion results in a space-time discretization for which standard
analysis methodologies either fail or are unsuitable. We therefore employ what seems
to be a relatively uncommon energy analysis framework for finite element methods for
parabolic problems that is general and robust enough to be applicable to the current
setting. The energy analysis consists of a stability estimate that is slightly stronger
than the standard basic one and an a priori error estimate that is of optimal order
with respect to both time step and mesh size. We also present numerical results for a
problem in one spatial dimension that verify the analytic error convergence orders.

Mathematics Subject Classification 65M12 · 65M15 · 65M60 · 65M85

1 Introduction

Issue—Cost of mesh generation: Generating computational meshes for numerically
solving differential equations can be a computationally costly procedure. In practical
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Fig. 1 Computed streamlines around a propeller. Image by Anders Logg is licensed under CC BY 4.0

applications the mesh generation can often represent a substantial amount of the total
computation time. This is especially true for problems where the solution domain
changes during the solution process, e.g., evolving geometry and shape optimization.
With standard methods the mesh then has to be constantly checked for degeneracy and
updated if needed, meaning a persisting meshing cost for the entire solution process.

Remedy—CutFEM: Cut finite element methods (CutFEMs) provide a way of
decoupling the computational mesh from the problem geometry. This means that the
same discretization can be used for a changing solution domain. CutFEMs can thus
make remeshing redundant for problems with changing geometry but also for other
applications involving meshing such as adaptive mesh refinement. The cost of Cut-
FEMs is treating the mesh cells that are arbitrarily cut by the independent problem
geometry.

CutFEM on overlapping meshes: A common type of problem with changing
geometry is one where there is a moving object in the solution domain, e.g., see Fig. 1.
A straightforward CutFEM-approach to this problem would be to consider CutFEM
for the interface problem, i.e., to use a background mesh of the empty solution domain
together with an interface that represents the object. However, a more advantageous
and sophisticated approach is to consider CutFEM on overlapping meshes, mean-
ing two or more meshes ordered in a mesh hierarchy. This is also called composite
grids/meshes and multimesh in the literature. The idea is to use a background mesh of
the empty solution domain, just as for the interface problem, but instead to encapsulate
the object in a second mesh. The mesh containing the object is then placed “on top”
of the background mesh, creating a mesh hierarchy. The motion of the object will
thus also cause its encapsulating mesh to move. There are some advantages of using
a second overlapping mesh instead of an interface. Firstly, an overlapping mesh can
incorporate boundary layers close to the object. Something an interface cannot. Sec-
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Fig. 2 Overlapping meshes for a problemwith a rotating propeller. Image by Anders Logg is licensed under
CC BY 4.0

ondly, if the object has a complicated geometry, representing it with an interface can
lead to tricky cut situations and thus a higher computational cost. By instead using an
object-encapsulating mesh with a simply-shaped exterior boundary, the cut situations
can be made less tricky, see Fig. 2. A way to further sophisticate this is to allow the
moving object to deform the interior of the overlapping mesh while initially keeping
its exterior boundary fixed. Only when the deformations have become too large is the
overlapping mesh “snapped” into place to avoid degeneracy. Such a snapping feature
provides a choice between computing cut situations or computing deformations, thus
allowing the cheapest option for the situation at hand to be chosen. A drawback of
using a second overlapping mesh instead of an interface is that overlapping meshes
require collision computations between the cells of the meshes, something that can be
computationally expensive.

CutFEM on overlapping meshes can also be used as an alternative to adaptive mesh
refinement by keeping a smaller finer mesh in regions requiring higher accuracy. Yet
another application example is to use a composition of simpler structured meshes to
represent a complicated domain.

Literary background: Over the past two decades, a theoretical foundation for
the formulation of stabilized CutFEM has been developed by extending the ideas of
Nitsche, presented in [1], to a general weak formulation of the interface conditions,
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thereby removing the need for domain-fitted meshes. The foundations of CutFEM
were presented in [2] and then extended to overlapping meshes in [3]. The CutFEM
methodology has since been developed and applied to a number of important multi-
physics problems [4–7]. For overlapping meshes in particular, see for example [8–11].
As already touchedupon,CutFEMis especially relevant for applicationswith changing
geometry such as time-dependent problems and the methodology has been employed
partially or fully in several works on unfitted FEM for such problems. These include
moving interfaces [12, 13], moving domains [14–18], and evolving surfaces for which
the methodology can take the form of TraceFEM [19–22]. However, when it comes
to CutFEM on overlapping meshes, only methods for stationary problems have been
developed and analysed to a satisfactory degree, thus leaving analogous work for
time-dependent problems to be desired.

This work: The work presented here is together with [23–25] intended to be an
initial part of developing and analysing CutFEMs on overlapping meshes for time-
dependent problems. We consider a CutFEM for the heat equation on two overlapping
meshes: one stationary background mesh and one moving overlapping mesh with no
object. Depending on how the mesh motion is represented discretely, quite differ-
ent space-time discretizations may arise, allowing for different types of analyses to be
applied. Generally the mesh motion may either be continuous or discontinuous, which
might also affect the suitability for different applications. For instance, the information
in a prismatic space-time method flows along the space-time trajectories of the under-
lying spatial mesh. This means that the flow of information of the overlapping mesh
is more well-connected in the continuous case, whereas in the discontinuous one, the
information “leaks” out of the overlapping mesh. This could suggest that continuous
mesh motion is more suitable when the overlapping mesh represents something phys-
ical, and that discontinuous mesh motion is more suitable when it is a computational
feature that should not be “seen”, e.g., alternative to adaptive mesh refinement. More
discussion of a comparison of the two motions can be found in [24]. We have con-
sidered the simplest case of both of these two types of mesh motion, which we refer
to as simple continuous and simple discontinuous mesh motion. Simple continuous
mesh motion means that the location of the overlapping mesh as a function of time is
continuous and piecewise linear, and simple discontinuous mesh motion means that
it is discontinuous and piecewise constant. The first study on this topic, presented
in the MSc thesis [23], considered simple continuous mesh motion together with an
L2-analysis (error in spatial L2-norm at the final time). Partially due to L2-analysis’s
demanding stability requirements, error bounds were unfortunately not obtained and
the analysis was left incomplete. However, the numerical results indicate that the
superconvergence with respect to the time step is lost with continuous mesh motion,
but that the other error convergence orders are preserved. After the first study, simpli-
fications were made in two directions: less demanding analysis and less complicated
mesh motion. This resulted in two new studies with complete analyses: energy anal-
ysis for continuous mesh motion and L2-analysis for discontinuous. The former is
presented in this work and the latter in [25]. They are also part of the Phd thesis [24]
as long and technical manuscripts, referred to as Paper I and Paper II, respectively.
There, detailed discussions and comparisons of all three studies are also presented.
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Analysis: The simple continuous mesh motion results in a space-time discretiza-
tion with skewed space-time nodal trajectories and cut prismatic space-time cells.
This discretization lacks a slabwise product structure between space and time. Stan-
dard analysis methodology relying on such a structure therefore either fail or require
too restrictive assumptions here. The reason for this is that standard analysismethodol-
ogy typically use spatial operators that map to the momentaneous finite element space,
such as the discrete Laplacian (used in the aforementioned L2-analysis) and the solu-
tion operator used to define the H−1-norm on L2 (used in standard energy analysis).
If the spatial discretization changes within slabs these operators get an intrinsic time
dependence that standardmethodologies fail to incorporate.We therefore employwhat
seems to be a relatively uncommon analysis framework for finite element methods for
parabolic problems that avoids the use of operators of the aforementioned type which
thus makes it general and robust enough to be applicable to the current discretiza-
tion. The framework has its roots in analysis of the streamline diffusion method, first
presented in [26] and first analyzed in [27], where certain analytic components later
were used to obtain improved and optimal order error bounds for the discontinuous
Galerkin method in [28]. The full abstract formulation of the analysis framework can
be found in [29]. For time-dependent problems it has been applied, e.g., in [30] for
general polytopic spatial meshes and in [15] for an unfitted FEM for moving domains.
The analysis framework is of an energy type, where space-time energy norms are used
to derive and obtain a stability estimate that is slightly stronger than the standard basic
one and an a priori error estimate that is of optimal order with respect to both time
step and mesh size. The main steps of the energy analysis are:

0. Handling of the time derivative: This is the initial step that characterizes and sets
the course for the whole analysis. Instead of the H−1-norm, the L2-norm scaled
with the time step is used to include the time-derivative term in a space-time energy
norm. This may intuitively be viewed as treating the time derivative as temporal
advection. An alternative intuition for the handling is as a discrete version of the
H−1-norm.

1. Analytic preliminaries: A “perturbed coercivity” is proved which is used to show
an inf-sup condition. These results become slightly different compared with cor-
responding standard ones due to the handling of the time derivative.

2. Stability analysis: The “perturbed coercivity” is used to derive a stability estimate
that is somewhat stronger than the standard basic one obtained by testing with the
discrete solution.

3. Error analysis: Just as in a standard energy analysis, a Cea’s lemma type argument
is followed by using the inf-sup condition, Galerkin orthogonality, and continu-
ity. A difference here is that the continuity comes with a twist, namely temporal
integration by parts, which is needed because of the slightly different inf-sup con-
dition. Finally, together with an interpolation estimate, an optimal order a priori
error estimate may be proved.

Paper overview:The rest of the paper is organized as follows.We start by formulating
the model problem in Section 2, followed by a corresponding CutFEM in Section 3.
Then we present and prove analytic tools in Section 4 and a discrete stability estimate
in Section 5. In Section 6, the main analytic result which is an optimal order a priori
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Fig. 3 Partition of �0 into �1
(blue) and �2 (red) for d = 2
with G moving with velocity μ

error estimate is presented and proved. Numerical results for a problem in one spatial
dimension that verify the analytic convergence orders are presented in Section 7. The
last part of the paper is an appendix that contains technical estimates and interpolation
results used in the analysis.

2 Problem

For d = 1, 2, or 3, let�0 ⊂ R
d be a bounded convex domainwith polygonal boundary

∂�0. Let T > 0 be a given final time. Let G ⊂ �0 ⊂ R
d be another bounded

domain with polygonal boundary ∂G. We let the location of G be time-dependent
by prescribing for G a velocity μ : [0, T ] → R

d . We point out that this makes the
size and shape of G remain the same for all times. That μ does not depend on space
slightly simplifies some analytic technicalities, especially the proofs of Lemma A.8
and Lemma A.10. Using �0 and G, we define the following two domains:

�1 := �0 \ (G ∪ ∂G) (2.1)

�2 := �0 ∩ G (2.2)

with boundaries ∂�1 and ∂�2, respectively. Let their common boundary be

� := ∂�1 ∩ ∂�2 (2.3)

For t ∈ [0, T ], we have the partition

�0 = �1(t) ∪ �(t) ∪ �2(t) (2.4)

See Fig. 3 for an illustration. We consider the heat equation in�0 × (0, T ]with source
f ∈ L2((0, T ],�0), homogeneous Dirichlet boundary conditions, and initial data
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Fig. 4 Left: Space-time slabs with simple continuous mesh motion. Right: Space-time discretization for
S0,n for d = 1 when μ > 0. At time t = tn , the nodes of the blue background mesh T0 are marked with
circles and the nodes of the red moving mesh TG with crosses. The blue vertical lines are thus the nodal
trajectories of T0 and the red skewed vertical lines those of TG

u0 ∈ H2(�0) ∩ H1
0 (�0):

⎧
⎪⎨

⎪⎩

∂t u − �u = f in �0 × (0, T ]
u = 0 on ∂�0 × (0, T ]
u = u0 in �0 × {0}

(2.5)

We stress that although we have the partition (2.4), the problem (2.5) is itself a one-
domain problem for ease of analysis.

3 Method

3.1 Preliminaries

Let T0 and TG be quasi-uniform simplicial meshes of �0 and G, respectively. We
denote by hK the diameter of a simplex K . We partition the time interval (0, T ]
quasi-uniformly into N subintervals In = (tn−1, tn] of length kn = tn − tn−1, where
0 = t0 < t1 < . . . < tN = T and n = 1, . . . , N .We assume the following space-time
quasi-uniformity: For h = maxK∈T0∪TG {hK }, and k = max1≤n≤N {kn},

h2 � kmin k � hmin (3.1)

where kmin = min1≤n≤N {kn}, and hmin = minK∈T0∪TG {hK }. We next define the
following slabwise space-time domains:

S0,n := �0 × In (3.2)

Si,n := {(x, t) ∈ S0,n : x ∈ �i (t)} (3.3)

�̄n := {(s, t) ∈ S0,n : s ∈ �(t)} (3.4)

In general we will use bar, i.e., ·̄, to denote something related to space-time, such as
domains and variables. In addition to the domains �1(t) and �2(t), we also consider
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the “covered” overlap domain �O(t). To define it we will use the set of simplices
T0,�̄n

:= {K ∈ T0 : ∃t ∈ In such that K ∩ �(t) 	= ∅}, i.e., all simplices in T0 that are
cut by �̄n . We define the overlap domain �O(t) for a time t ∈ In by

�O(t) :=
⋃

K∈T0,�̄n
K ∩ �2(t) (3.5)

As a discrete counterpart to the motion of the domain G, we prescribe a simple con-
tinuous motion for the overlapping mesh TG . By this we mean that the location of
the overlapping mesh TG is a function with respect to time that is continuous on
[0, T ] and linear on each In . This means that the discrete velocity we prescribe for
TG is constant on each In . Henceforth, we let μ denote this discrete velocity. Let-
ting μcont denote the velocity prescribed for G, we take the discrete velocity to be
μ|In = k−1

n

∫

In
μcont(t) dt , for n = 1, . . . , N , i.e., the slabwise average. An illustra-

tion of the slabwise space-time domains Si,n defined by (3.3) is shown in Fig. 4 (Left).
Figure4 (Right) shows a slabwise space-time discretization that has both straight and
skewed space-time trajectories as a result of the simple continuous mesh motion. In a
standard setting with only straight space-time trajectories, the time-derivative opera-
tor ∂t is naturally also a derivative operator in the direction of the trajectories. This is
convenient and we would like have an analogous operator for our setting. We start by
defining the domain-dependent velocity μi = μi (t) by

μi (t) :=
{

0 i = 1

μ(t) i = 2
(3.6)

We use this velocity to define the domain-dependent differential operator Dt = Dt,i

by

Dt,i {·} := ∂t {·} + μi · ∇{·} (3.7)

The operator Dt is a scaled derivative operator in the direction of the space-time
trajectories. To see this, consider the space-time vector μ̄i = (μi , 1) and the space-
time gradient ∇̄ = (∇, ∂t ). The unscaled derivative operator in the direction of the
space-time trajectories is

Ds,i = μ̄i

|μ̄i | · ∇̄ = 1

|μ̄i |
(
μi · ∇ + ∂t

) = 1

|μ̄i |Dt,i (3.8)

We thus have Dt,i = |μ̄i |Ds,i . Let τ̄ = τ̄ (t) denote a space-time trajectory that is
uncut on the time interval (ta, tb), and v be a function of sufficient regularity. The
intrinsic scaling of Dt gives the convenient integral identity

∫ τ̄ (tb)

τ̄ (ta)
Dsv ds =

∫ tb

ta
Dtv dt (3.9)
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Fig. 5 Space-time normal vector n̄2 to �̄n (red) in relation to the spatial normal vector n2 to ∂�2

Next we introduce some normal vectors. Let the spatial vector n = ni denote the
outward pointing unit normal vector to ∂�i . Let the space-time vector n̄ = n̄i =
(n̄xi , n̄

t
i ) denote the outward pointing unit normal vector to ∂Si,n , where n̄xi and n̄ti

denote the spatial and temporal component(s), respectively. On a purely spatial subset,
the space-time unit normal vector is purely temporal, i.e., n̄i = (0,±1), and vice versa,
i.e., n̄i = (ni , 0). The remaining case is a mixed space-time subset and the only such
set is �̄n . See Fig. 5 for an illustration. We define the space-time unit normal vector to
�̄n by

n̄i |�̄n
= (n̄xi , n̄

t
i )|�̄n

:= 1
√

(ni · μ)2 + 1
(ni ,−(ni · μ)) (3.10)

3.2 Finite element spaces

We define the discrete spatial finite element spaces Vh,0 and Vh,G as the spaces of
continuous piecewise polynomials of degree ≤ p on T0 and TG , respectively. We also
let the functions in Vh,0 be zero on ∂�0. For t ∈ [0, T ], we use these two spaces to
define the broken finite element space Vh(t) by

Vh(t) := {v : v|�1(t) = v0|�1(t) for some v0 ∈ Vh,0 and

v|�2(t) = vG |�2(t) for some vG ∈ Vh,G} (3.11)

See Fig. 6 for an illustration of a function v ∈ Vh(t). For n = 1, . . . , N , we define the
discrete space-time finite element spaces V n

h,0 and V
n
h,G as the spaces of functions that

for a t ∈ In lie in Vh,0 and Vh,G , respectively, and in time are polynomials of degree
≤ q along the trajectories of T0 and TG for t ∈ In , respectively. For n = 1, . . . , N ,
we use these two spaces to define the broken finite element space V n

h by:

V n
h := {v : v|S1,n = vn0 |S1,n for some vn0 ∈ V n

h,0 and

v|S2,n = vnG |S2,n for some vnG ∈ V n
h,G} (3.12)
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Fig. 6 Example of v(·, t) ∈ Vh(t) for d = 1 and p = 1, where T0 is blue, TG red, and the overlap parts
are dotted

We define the global space-time finite element space Vh by:

Vh := {v : v|S0,n ∈ V n
h , n = 1, . . . , N } (3.13)

3.3 Finite element formulation

We may now formulate the space-time cut finite element formulation for the problem
described in Sect. 2 as follows: Find uh ∈ Vh such that

Bh(uh, v) =
∫ T

0
( f , v)�0 dt + (u0, v

+
0 )�0 ∀v ∈ Vh (3.14)

The non-symmetric bilinear form Bh is defined by

Bh(w, v) :=
2∑

i=1

N∑

n=1

∫

In
(∂tw, v)�i (t) dt +

N∑

n=1

∫

In
Ah,t (w, v) dt

+
N−1∑

n=1

([w]n, v+
n )�0 + (w+

0 , v+
0 )�0 +

N∑

n=1

∫

�̄n

−n̄t [w]vσ ds̄

(3.15)

where (·, ·)� is the L2(�)-inner product, [v]n is the jump in v at time tn , i.e., [v]n =
v+
n −v−

n , v
±
n = limε→0+ v(x, tn±ε). The last term in Bh mimics the standard dG-time-

jump term, but over �̄n . Here, n̄ is the space-time normal vector to �̄n defined by (3.10),
[v] is the jump in v over �̄n , i.e., [v] = v1 − v2, vi = limε→0+ v(s̄ − εn̄i ), s̄ = (s, t).
If n̄ = n̄1, we take σ = 1

2 (3 + sgn(n̄t )) and if n̄ = n̄2, we take σ = 1
2 (3 − sgn(n̄t )),

where sgn is the sign function. These choices make it so that σ always picks the limit
on the positive (in time) side of �̄n . The symmetric bilinear form Ah,t is defined by
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Ah,t (w, v) :=
2∑

i=1

(∇w,∇v)�i (t)−|μ̄|(〈∂n̄xw〉, [v])�(t)−|μ̄|(〈∂n̄x v〉, [w])�(t)

+|μ̄|(γ h−1
K [w], [v])�(t) + ([∇w], [∇v])�O (t) (3.16)

where |μ̄| = √|μ|2 + 1, 〈v〉 is a convex-weighted average of v on �, i.e., 〈v〉 =
ω1v1 + ω2v2, where ω1, ω2 ∈ [0, 1] and ω1 + ω2 = 1, ∂n̄x v = n̄x · ∇v, γ ≥ 0 is a
stabilization parameter, hK = hK (x) = hK0 for x ∈ K0, where hK0 is the diameter of
simplex K0 ∈ T0, and �O(t) is the overlap domain defined by (3.5). The reason for
including the factor |μ̄| in the �(t) terms is that when considering spacetime, these
terms should be on �̄n . Since |μ̄| is the skewed temporal scaling, we have that

∫

In
|μ̄|(w, v)�(t) dt =

∫

�̄n

wv ds̄ (3.17)

Remark Themethod presented here is formulated with a discrete space Vh of arbitrary
polynomial degree q in time. However, the main analytic results Lemma 5.1 and
Theorem 6.1 are only presented for the cases q = 0, 1. This is because in the proofs
of the underlying technical estimates Lemma A.10 and Lemma A.11, terms involving
D2
t v for v ∈ Vh show up which we make vanish by simply assuming q ≤ 1. To handle

these terms for q > 1 requires adding stabilization to the mass form. Here we choose
not to do that in order to keep things simple for this first study and since we think that
the method for q ≤ 1 is relevant and provides value.

4 Analytic preliminaries

4.1 The bilinear form Ah,t

The space of Ah,t is H3/2+ε(∪i�i (t)) where ε > 0 may be arbitrarily small. Let
�K (t) := K ∩ �(t). We define the following two mesh-dependent norms:

‖w‖21/2,h,�(t) :=
∑

K∈T0,�(t)

h−1
K ‖w‖2�K (t) ‖w‖2−1/2,h,�(t) :=

∑

K∈T0,�(t)

hK ‖w‖2�K (t)

(4.1)

Note that

‖w‖2�(t) ≤ h‖w‖21/2,h,�(t) (w, v)�(t) ≤ ‖w‖−1/2,h,�(t)‖v‖1/2,h,�(t) (4.2)

We define the time-dependent spatial energy norm |||·|||Ah,t
by

|||w|||2Ah,t
:=

2∑

i=1

‖∇w‖2�i (t) + |μ̄|‖〈∂n̄xw〉‖2−1/2,h,�(t)
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1026 M. G. Larson et al.

+|μ̄|‖[w]‖21/2,h,�(t) + ‖[∇w]‖2�O (t) (4.3)

Continuity of Ah,t follows from using (4.2) in (3.16). Next we consider the coercivity:

Lemma 4.1 [Discrete coercivity of Ah,t ] Let the bilinear form Ah,t and the energy
norm |||·|||Ah,t

be defined by (3.16) and (4.3), respectively. Then, for t ∈ [0, T ] and γ

sufficiently large,

Ah,t (v, v) � |||v|||2Ah,t
∀v ∈ Vh(t) (4.4)

Proof Following the proof of the coercivity in [2], we consider

2|μ̄|(〈∂n̄x v〉, [v])�(t) ≤ |μ̄|
ε

‖〈∂n̄x v〉‖2−1/2,h,�(t) + ε|μ̄|‖[v]‖21/2,h,�(t)

≤ 2|μ̄|
ε

CI

( 2∑

i=1

‖∇v‖2�i (t) + ‖[∇v]‖2�O (t)

)

− |μ̄|
ε

‖〈∂n̄x v〉‖2−1/2,h,�(t) + ε|μ̄|‖[v]‖21/2,h,�(t)

(4.5)

where we have used Lemma A.5 and denoted its constant by CI . We use (4.5) in

Ah,t (v, v) =
2∑

i=1

‖∇v‖2�i (t) − 2|μ̄|(〈∂n̄x v〉, [v])�(t)

+ γ |μ̄|‖[v]‖21/2,h,�(t) + ‖[∇v]‖2�O (t)

≥
(

1 − 2|μ̄|CI

ε

) 2∑

i=1

‖∇v‖2�i (t) + |μ̄|
ε

‖〈∂n̄x v〉‖2−1/2,h,�(t)

+ (γ − ε)|μ̄|‖[v]‖21/2,h,�(t) +
(

1 − 2|μ̄|CI

ε

)

‖[∇v]‖2�O (t)

(4.6)

By taking ε > 2|μ̄|CI , and γ > ε we may obtain (4.4) from (4.6). ��

4.2 The bilinear form Bh

The bilinear form Bh can be expressed differently, as noted in the following lemma:

Lemma 4.2 [Alternative form of Bh] Let ζ = 1
2 (3 − sgn(n̄t )). The bilinear form Bh,

defined by (3.15), can be written as

Bh(w, v) =
2∑

i=1

N∑

n=1

∫

In
(w,−∂tv)�i (t) dt +

N∑

n=1

∫

In
Ah,t (w, v) dt

+
N−1∑

n=1

(w−
n ,−[v]n)�0 + (w−

N , v−
N )�0 +

N∑

n=1

∫

�̄n

n̄twζ [v] ds̄
(4.7)
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Proof The proof is analogous to the standard case. The first term in (3.15) is integrated
by parts in time via

∫

Si,n
(∇, ∂t ) · (0, wv) dx̄ and the result is combined with the last

three terms in (3.15). The combination of purely time-jump-related terms is exactly
as in the standard case. For the �̄n-integral terms, we let ζ = 1

2 (3 − sgn(n̄t )), if
σ = 1

2 (3 + sgn(n̄t )) and n̄ = n̄1. This makes ζ, σ ∈ {1, 2} and ζ 	= σ . ��
An important result for the analysis is obtained by first taking the same function as
both arguments of Bh . We present this result as a coercivity of Bh with the following
space-time energy norm:

|||v|||2Bh :=
N∑

n=1

∫

In
|||v|||2Ah,t

dt

+
N−1∑

n=1

‖[v]n‖2�0
+ ‖v−

N‖2�0
+ ‖v+

0 ‖2�0
+

N∑

n=1

‖|n̄t |1/2[v]‖2
�̄n

(4.8)

Lemma 4.3 [Discrete coercivity of Bh] Let the bilinear form Bh and the energy norm
|||·|||Bh be defined by (3.15) and (4.8), respectively. Then, for γ sufficiently large, we
have that

Bh(v, v) � |||v|||2Bh ∀v ∈ Vh (4.9)

Proof The proof is analogous to the standard case. First the same function v is taken
as both arguments of Bh . Then the first term in (3.15) is integrated in time via∫

Si,n
(∇, ∂t ) · (0, v2) dx̄ and the result is combined with the last three terms in (3.15).

The combination of purely time-jump-related terms is exactly as in the standard case.
For the �̄n-integral terms, we note from the interdependence of σ and n̄ that the com-
bined integrand may be written as n̄t sgn(n̄t )[v]2. Also using Lemma 4.1 then shows
the desired estimate. ��
For the continued analysis, we define three space-time energy norms by

|||v|||2X :=
2∑

i=1

N∑

n=1

∫

In
kn‖Dtv‖2�i (t) dt + |||v|||2Bh (4.10)

|||v|||2Y+ :=
N∑

n=1

(∫

In

1

kn
‖v‖2�0

dt +
∫

In
|||v|||2Ah,t

dt + ‖v+
n−1‖2�0

)

(4.11)

|||v|||2Y− :=
N∑

n=1

(∫

In

1

kn
‖v‖2�0

dt +
∫

In
|||v|||2Ah,t

dt + ‖v−
n ‖2�0

)

(4.12)

The X -norm is themain norm,meaning that it is in this norm thatweobtain stability and
error estimates. The Y -norms are auxiliary norms.We use the X -norm and Y -norms to
obtain continuity of Bh which comes in two variants depending on the starting point,
i.e., the standard form of Bh (3.15) or the alternative (4.7).
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Lemma 4.4 (Continuity of Bh) Let the bilinear form Bh be defined by (3.15) and the
norms |||·|||X , |||·|||Y+ , and |||·|||Y− by (4.10), (4.11), and (4.12), respectively. Then for
any functions w and v with sufficient spatial and temporal regularity we have that

Bh(w, v) � |||w|||X |||v|||Y+ (4.13)

Bh(w, v) � |||w|||Y− |||v|||X (4.14)

Proof The proofs of (4.13) and (4.14) are analogous so we only consider the latter
since it gives the continuity result needed in the error analysis. The starting point is the
alternative form of Bh (4.7). Applying the Cauchy–Schwarz inequality to all the terms
(several times and different versions for some), (3.7) to split the first term followed
by Corollary A.1 for the w-factor in the resulting μi · ∇-part, the continuity of Ah,t

in the treatment of the second term, and Lemma A.3 in the treatment of the fifth, we
get product terms, where one factor may be estimated by |||w|||Y− and the other by
|||v|||X . ��
Next, we present an estimate involving the bilinear form Bh and the X -norm that may
be viewed as a counterpart to such a coercivity. Due to the appearance of the estimate,
we call it “perturbed coercivity”. The estimate is a cornerstone of the energy analysis.
It is fundamental to the stability analysis and also the starting point for deriving an
inf-sup condition that in turn is essential for the error analysis. Key technical results
used in the proof of the perturbed coercivity are Lemma A.8 and Lemma A.10.

Lemma 4.5 [Discrete perturbed coercivity of Bh] Let the bilinear form Bh and the
norm |||·|||X be defined by (3.15) and (4.10), respectively. Then, for q = 0, 1, and γ

sufficiently large, there exists a constant δ > 0 such that

Bh(v, v + δknDtv) � |||v|||2X ∀v ∈ Vh (4.15)

Proof Using Lemma 4.3 with constant β > 0, the left-hand side of (4.15) is

Bh(v, v + δknDtv) ≥ β |||v|||2Bh + Bh(v, δknDtv) (4.16)

The second term on the right-hand side is

Bh(v, δknDtv) =
2∑

i=1

N∑

n=1

∫

In
(∂tv, δknDtv)�i (t) +

N∑

n=1

∫

In
Ah,t (v, δknDtv) dt

+
2∑

i=1

N−1∑

n=1

([v]n, (δknDtv)+n )�i,n +
2∑

i=1

(v+
0 , (δknDtv)+0 )�i,0

+
N∑

n=1

∫

�̄n

−n̄t [v](δknDtv)σ ds̄ (4.17)

The treatment of most of the terms involve the Cauchy–Schwarz inequality and for
some also an ε-weighted Young’s inequality. The first term in (4.17) is split using
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(3.7), where the Dt -part is good, and we use standard estimates for the μi · ∇-part.
For the second term in (4.17), we use the continuity of Ah,t followed by Lemma A.8.
The third and fourth term in (4.17) are estimated by Lemma A.10. For the fifth and
final term in (4.17), we use Lemma A.3 and Lemma A.8. Collecting all the estimates
and using the result in (4.16), we may obtain

Bh(v, v + δknDtv) ≥ δ

(

1 − δ

ε
C

) 2∑

i=1

N∑

n=1

∫

In
kn‖Dtv‖2�i (t) dt

+
(

β −
(

ε + δ + δ2

ε

)

C

)

|||v|||2Bh
(4.18)

where C > 0 denote various constants. First taking ε > 0 sufficiently small and then
taking δ > 0 sufficiently small gives the desired estimate. ��
Using Lemma 4.5 and Lemma A.11, we may obtain the discrete inf-sup condition:

Corollary 4.1 (A discrete inf-sup condition for Bh) Let the bilinear form Bh and the
norm |||·|||X be defined by (3.15) and (4.10), respectively. Then, for q = 0, 1, and γ

sufficiently large, we have that

|||w|||X � sup
v∈Vh\{0}

Bh(w, v)

|||v|||X ∀w ∈ Vh (4.19)

To show Galerkin orthogonality, we need the following lemma on consistency:

Lemma 4.6 (Consistency) The solution u to problem (2.5) also solves (3.14).

Proof First insert u in place of uh on the left-hand side of (3.14) and use the regularity
of u. Then integrate by parts in space via

∫

Si,n
(∇, ∂t ) · (∇uv, 0) dx̄ to get interior

and boundary terms. The exterior boundary terms vanish because of the boundary
conditions imposed on v thus leaving the �-terms which are combined. Applying
Lemma A.1 and the regularity of u only leaves terms which from (2.5) equals the
right-hand side of (3.14). ��
From Lemma 4.6, we may obtain the Galerkin orthogonality:

Corollary 4.2 (Galerkin orthogonality) Let the bilinear form Bh be defined by (3.15),
and let u and uh be the solutions of (2.5) and (3.14), respectively. Then

Bh(u − uh, v) = 0 ∀v ∈ Vh (4.20)

5 Stability analysis

In this section we present and prove a stability estimate for the solution uh to (3.14).
The key component in the proof is Lemma 4.5, i.e., the perturbed coercivity of Bh on
Vh .
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Lemma 5.1 (A stability estimate in |||·|||X ) Let uh be the solution of (3.14). Let u0
and f be the initial data and source in (2.5), respectively. Then, for q = 0, 1, and γ

sufficiently large, we have that

|||uh |||X � ‖u0‖�0 + ‖ f ‖L2((0,T ];L2(�0))
(5.1)

Proof By taking v = uh ∈ Vh in Lemma 4.5 and v = uh + δknDtuh ∈ Vh in (3.14),
we have

|||uh |||2X � Bh(uh, uh + δknDtuh)

= (u0, u
+
h,0)�0 + (u0, δk1(Dtuh)

+
0 )�0

+
N∑

n=1

∫

In
( f , uh)�0 dt +

N∑

n=1

∫

In
( f , δknDtuh)�0 dt

(5.2)

Applying the Cauchy–Schwarz inequality to all the terms (several times and different
versions for some), LemmaA.10 in the treatment of the second term, andCorollaryA.1
in the treatment of the third, we get product terms, where one factor is ‖u0‖�0 or
‖ f ‖L2((0,T ];L2(�0))

and the other may be estimated by |||uh |||X . Dividing both sides
by |||uh |||X thus gives (5.1). ��

6 A priori error analysis

Theorem 6.1 (An optimal order a priori error estimate in |||·|||X ) Let |||·|||X be defined
by (4.10), let u be the solution of (2.5) and let uh be the finite element solution defined
by (3.14). Then, for q = 0, 1, and γ sufficiently large, we have that

|||u − uh |||2X � k2q+1F2
k (u) + h2p

(

F2
h (u) + E2

h,1(u)

)

(6.1)

where Fk, Fh, and Eh,1 are defined by (B.25), (B.26), and (B.23), respectively.

Proof We use the interpolant Īhu ∈ Vh , where Īh is the space-time interpolation
operator defined by (B.19), to split the error e = u − uh into ρ = u − Īhu and
θ = Īhu − uh . Thus

|||e|||X ≤ |||ρ|||X + |||θ |||X (6.2)

where we focus on the θ -part first. From Corollary 4.2, i.e., Galerkin orthogonality,
we have for any v ∈ Vh that

Bh(θ, v) = −Bh(ρ, v) (6.3)

We note that θ ∈ Vh and use Corollary 4.1, i.e., a discrete inf-sup condition for Bh , the
Galerkin orthogonality result (6.3), and Lemma 4.4, i.e., continuity of Bh , to estimate
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the θ -part by

|||θ |||X � sup
v∈Vh\{0}

Bh(θ, v)

|||v|||X = sup
v∈Vh\{0}

−Bh(ρ, v)

|||v|||X
� sup

v∈Vh\{0}
|||ρ|||Y− |||v|||X

|||v|||X = |||ρ|||Y−

(6.4)

Using (6.4) in (6.2), we estimate the approximation error by

|||e|||2X � |||ρ|||2X + |||ρ|||2Y−

�
∑

i,n

(

kn

∫

In
‖Dtρ‖2�i (t) dt + 1

kn

∫

In
‖ρ‖2�i (t) dt

)

+ |||ρ|||2Bh +
N∑

n=1

‖ρ−
n ‖2�0

(6.5)

By applying various interpolation error estimates: Lemma B.4 and using (3.1) for the
first term, Lemma B.5 for the second, and Corollary B.1 for the third, we get results
that may be estimated by the right-hand side of (6.1).

��

7 Numerical results

The implementation used to obtain the numerical results is freely available online at
https://github.com/Carl-Lundholm/STCutFEMOverlapMesh.

Here we present numerical results for a problem in one spatial dimension on the
unit interval with exact solution u(x, t) = sin2(πx)e−t/2. We compute uh for p =
1 and q = 0, 1. For dG(1) in time, some of the left-hand side integrals involving
time have been approximated locally by quadrature. For integrals over cut space-time
prisms, composite three-point Lobatto quadrature has been used in time. By this we
mean one quadrature rule for each temporal part of a cut space-time prism where the
polynomial degree of the integrand is unchanged. For integrals over intraprismatic
segments of the space-time boundary �̄n , three-point Lobatto quadrature has been
used. Both of these choices of quadrature result in a quadrature error = O(k4). The
right-hand side integrals have been approximated locally by quadrature over the space-
time prisms: first composite quadrature in time, then quadrature in space. In space,
the trapezoidal rule has been used, thus resulting in a quadrature error = O(h2). For
dG(0) in time, the compositemidpoint rule has been used, thus resulting in a quadrature
error = O(k2). For dG(1) in time, composite three-point Lobatto quadrature has been
used, thus resulting in a quadrature error = O(k4). For simplicity, the velocity μ of
the overlapping mesh is set to be constant at the value μ(tn) on every subinterval
In = (tn−1, tn]. The stabilization parameter γ = 10.

For the error convergence study, both T0 and TG are uniform meshes, with mesh
sizes h0 and hG , respectively. The temporal discretization is also uniform with time
step k for each instance. The final time is set to T = 1, the length of TG is 0.25, and
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Fig. 7 Error convergence for dG(0) with μ = 0.6

Fig. 8 Error convergence for dG(1) with μ = 0.6

the initial position of TG is the spatial interval [0.125, 0.125 + 0.25]. The error is
|||e|||X = |||u − uh |||X . All time, space, and space-time integrals involving u in the X -
norm have been approximated locally by three-point Gauss-Legendre quadrature: first
compositequadrature in time, then quadrature in spacewhere applicable. This results in
a quadrature error= O((k6+h6)1/2). In the k-convergence study, the mesh sizes have
been fixed at h = 1.5 ·10−1, 7 ·10−2, 10−3 for dG(0) and h = 5 ·10−3, 7 ·10−4, 10−4

for dG(1). Analogously, in the h-convergence study, the time step has been fixed at
k = 10−2, 10−3, 10−4 for dG(0) and k = 1.5·10−1, 6·10−2, 10−2 for dG(1). Figures7
and 8 display error convergence plots for dG(0) and dG(1) in time with μ = 0.6. The
left plots show the error versus k and the right plots versus h = h0 ≥ hG . Besides the
computed error for different fixed values of h or k, each plot contains a line segment
that has been computed with the linear least squares method to fit the error data for
the smallest fixed value of h or k. This line segment is referred to as the LLS of the
error . Reference slopes are also included. In Table 1 we summarize the slope of the
LLS of the error for different values of μ.

The numerical solutions presented in Fig. 9 have been computed for an equidistant
space-time discretization: 22 nodes for T0, 7 nodes for TG for all times, and 10 time
steps on the interval (0, 3]. The length of TG has again been 0.25 and the velocity μ

has for simplicity been slabwise constant at μ|In = 1
2 sin(

2π tn
3 ).
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Table 1 The slope of the LLS of the error versus k and h for different values of μ

dG(0) in time dG(1) in time

μ Versus k (points) Versus h (points) Versus k (points) Versus h (points)

0 0.5058 (4–12) 1.0190 (1–9) 1.4506 (1–5) 1.0137 (1–15)

0.1 0.5026 (4–12) 1.0205 (1–9) 1.4893 (1–7) 1.0155 (1–15)

0.2 0.4985 (4–12) 1.0221 (1–9) 1.4947 (1–8) 1.0162 (1–15)

0.4 0.5163 (4–12) 1.0179 (1–9) 1.5031 (1–11) 1.0147 (1–15)

0.6 0.5179 (4–12) 1.0047 (1–9) 1.5151 (1–13) 1.0091 (1–15)

Fig. 9 Space-time discretization (left) with resulting dG(0)cG(1)-solution (middle) and dG(1)cG(1)-
solution (right)

8 Conclusions

We have presented a cut finite element method for a parabolic model problem on
an overlapping mesh situation: one stationary background mesh and one continu-
ously moving overlapping mesh. We have applied what we believe to be a relatively
uncommon analysis framework for finite element methods for parabolic problems.
This analysis framework may arguably be considered more robust and natural than
standard ones, since it is the only one that we have been able to successfully apply to
our overlapping mesh situation. The analysis is of an energy type and the main results
are a basic stability estimate and an optimal order a priori error estimate. We have
also presented numerical results for a parabolic problem in one spatial dimension that
verify the analytic error convergence orders.

A Analytic tools

Lemma A.1 (A jump identity) Letω+, ω− ∈ Randω++ω− = 1, let [A] := A+−A−,
and 〈A〉 := ω+A+ + ω−A−. We then have

[AB] = [A]〈B〉 + 〈A〉[B] + (ω− − ω+)[A][B] (A.1)

Proof Using the definitions and evaluating both sides shows the identity. ��
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A.1 Spatial estimates

Lemma A.2 [A Poincaré inequality for H1
0 (∪i�i (t))] For t ∈ [0, T ] we have that

‖v‖�0 � ‖∇v‖�1(t)∪�2(t) + ‖[v]‖�(t) ∀v ∈ H1
0 (∪i�i (t)) (A.2)

Proof To lighten the notation we omit the time dependence, which has no importance
here anyways. For v ∈ H1

0 (�1 ∪ �2), we consider the dual problem: Find φ ∈
H2(�0) ∩ H1

0 (�0) such that −�φ = v in �0. By using the dual problem, partial
integration, that v|∂�0 = 0, Lemma A.1, and the regularity of φ ([∂nφ]|� = 0 in
L2(�)), we have

‖v‖2�0
=

2∑

i=1

(−�φ, v)�i =
2∑

i=1

(∇φ,∇v)�i − (〈∂nφ〉, [v])� (A.3)

Using a standard trace inequality for∇φ|�i ∈ H1(�i ), elliptic regularity on H2(�0)∩
H1
0 (�0) for φ, and the dual problem, the first argument to the last inner product may

be estimated by

‖〈∂nφ〉‖� ≤
2∑

i=1

‖∇φi‖∂�i �
2∑

i=1

‖∇φ‖1,�i � ‖φ‖2,�0 � ‖�φ‖�0 = ‖v‖�0

(A.4)

We note that this also gives an estimate for the first argument to the penultimate inner
product. Thus using (A.4) in (A.3) followed by cancellation of a factor ‖v‖�0 on both
sides gives (A.2). ��
By squaring both sides of (A.2), using Young’s inequality, and (4.2), we may estimate
the resulting right-hand side by |||·|||Ah,t

:

Corollary A.1 (An energy Poincaré inequality for H3/2+ε(∪i�i (t)) ∩ H1
0 (∪i�i (t)))

Let the time-dependent spatial energy norm |||·|||Ah,t
be defined by (4.3). Then, for

t ∈ [0, T ], we have that

‖v‖�0 � |||v|||Ah,t
∀v ∈ H3/2+ε(∪i�i (t)) ∩ H1

0 (∪i�i (t)) (A.5)

Lemma A.3 (A spatial continuity result for �(t)) Let the space-time vector n̄ =
(n̄x , n̄t ) and the time-dependent spatial energy norm |||·|||Ah,t

be defined by (3.10) and
(4.3), respectively. Let σ change arbitrarily along �(t) between the values 1 and 2
and let |μ|[0,T ] = maxt∈[0,T ]{|μ|}. Then, for t ∈ [0, T ], we have that

(n̄t [w], vσ )�(t) � |μ|[0,T ]h1/2 |||w|||Ah,t
|||v|||Ah,t

∀w, v ∈ H3/2+ε(∪i�i (t)) ∩ H1
0 (∪i�i (t))

(A.6)
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Proof To lighten the notation we omit the time dependence, which has no importance
here anyways. Using |n̄t | ≤ |μ|, which follows from (3.10), the left-hand side of (A.6)
is

(n̄t [w], vσ )� ≤ |μ|[0,T ]‖[w]‖�‖vσ ‖� (A.7)

Using (4.2) and (4.3), the w-factor may be estimated by h1/2 |||w|||Ah,t
. Applying the

standard trace inequality for H1(�i ), Corollary A.1, and (4.3), the v-factor may be
estimated by |||v|||Ah,t

. This shows (A.6). ��
Lemma A.4 (A scaled trace inequality for domain-partitioning manifolds of codimen-
sion 1) For d = 1, 2, or 3, let � ⊂ R

d be a bounded domain with diameter L,
i.e., L = diam(�) = supx,y∈� |x − y|. Let � ⊂ � be a continuous manifold of
codimension 1 that partitions � into N subdomains. Then

‖v‖2� � L−1‖v‖2� + L‖∇v‖2� ∀v ∈ H1(�) (A.8)

Proof If (A.8) holds for the case N = 2, then that result may be applied repeatedly to
show (A.8) for N > 2. We thus assume that � partitions � into two subdomains
denoted �1 and �2 with diameters L1 and L2, respectively. From the regularity
assumptions on v, we have for i = 1, 2, that v ∈ H1(�i ) and thus

‖v‖2� ≤ ‖v‖2∂�i
� L−1

i ‖v‖2�i
+ Li‖∇v‖2�i

(A.9)

where we have used a standard scaled trace inequality. Using the triangle type inequal-
ity L ≤ L1 + L2 and (A.9), the left-hand side of (A.8) is

‖v‖2� ≤
2∑

i=1

Li

L
‖v‖2� �

2∑

i=1

(

L−1‖v‖2�i
+ L‖∇v‖2�i

)

� L−1‖v‖2� + L‖∇v‖2�
(A.10)

which shows (A.8). ��
Let �K = �K (t) = K ∩ �(t). For t ∈ [0, T ], j ∈ {0,G}, a simplex K ∈ T j,�(t) =
{K ∈ T j : K ∩ �(t) 	= ∅}, and v ∈ H1(K ), we have from Lemma A.4 that

‖v‖2�K
� h−1

K ‖v‖2K + hK ‖∇v‖2K (A.11)

where hK is the diameter of K . For v ∈ P(K ), we have the standard inverse estimate

‖Dk
xv‖2K � h−2

K ‖Dk−1
x v‖2K for k ≥ 1 (A.12)

Using (A.12) in (A.11), we get the following corollary:
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Corollary A.2 (A discrete spatial local inverse inequality for �K (t)) For t ∈ [0, T ],
j ∈ {0,G}, K ∈ T j,�(t) with diameter hK , let �K (t) = K ∩ �(t). Then, for k ≥ 0,
we have that

‖Dk
xv‖2�K (t) � h−1

K ‖Dk
xv‖2K ∀v ∈ Vh(t) (A.13)

Lemma A.5 (A discrete spatial inverse inequality for �(t) ) Let the mesh-dependent
norm ‖ · ‖−1/2,h,�(t) be defined by (4.1). Then, for t ∈ [0, T ], we have that

‖〈∂n̄x v〉‖2−1/2,h,�(t) �
2∑

i=1

‖∇v‖2�i (t) + ‖[∇v]‖2�O (t) ∀v ∈ Vh(t) (A.14)

Proof To lighten the notation we omit the time dependence, which has no importance
here anyways. We follow the proof of the corresponding inequality in [2] with some
modifications. We use index j ∈ {0,G}, such that, if j = 0, then i = 1 and if j = G,
then i = 2, and let �K j = K j ∩ � and T j,� = {K j ∈ T j : K j ∩ � 	= ∅}. Note that for
i = 1, 2,

∑

K0∈T0,�
hK0‖vi‖2�K0

�
∑

KG∈TG,�

hKG‖vi‖2�KG
(A.15)

which follows from ∪K0∈T0,��K0 = � = ∪KG∈TG,�
�KG and the inter-quasi-

uniformity of the meshes. Since ∂n̄x v = n̄x · ∇v and |ωi ||n̄x | ≤ 1, we have
‖ωi (∂n̄x v)i‖2�K j

≤ ‖(∇v)i‖2�K j
. Using this after (A.15), and followed by Corol-

lary A.2, the left-hand side of (A.14) is

‖〈∂n̄x v〉‖2−1/2,h,� �
2∑

i=1

∑

K j∈T j,�

hK j ‖(∇v)i‖2�K j
�

2∑

i=1

∑

K j∈T j,�

‖(∇v)i‖2K j

=
∑

K0∈T0,�

(

‖∇v‖2K0∩�1
+ ‖(∇v)1‖2K0∩�2

)

+
∑

KG∈TG,�

‖∇v‖2KG

(A.16)

The resulting terms may be estimated by the right-hand side of (A.14). ��

A.2 Temporal estimates

Recall the domain-dependent velocity μi , defined by (3.6). For a time t∗ ∈ In , a point
x ∈ �i (t∗) and a point s ∈ �(t∗), approached from �i (t∗), we define the spatial
components x̂(t) and ŝi (t) of the slabwise space-time trajectory through x and that
through s, respectively, by

x̂(t) := x +
∫ t

t∗
μi (τ ) dτ ∀t ∈ In (A.17)
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Fig. 10 Slabwise space-time trajectories through a point s̄ ∈ �̄n for d = 1

ŝi (t) := s +
∫ t

t∗
μi (τ ) dτ ∀t ∈ In (A.18)

For i = 1,we get a straight space-time trajectory parallel to the time axis. For i = 2,we
simply follow a point along the space-time surface �̄n . See Fig. 10 for an illustration.
To lighten the notation, we omit the index i and the time dependence when there is
no risk of confusion. Thus (ŝ, t) = (ŝi (t), t) and ŝk = ŝi,k = ŝi (tk), if not explicitly
stated otherwise.

Lemma A.6 (Discrete temporal inverse estimates in ‖ · ‖�(t) ) Let kn be the length of
interval In and the scaled differential operator Dt be defined by (3.7). For v ∈ V n

h , let
w = wr = Dr

xv, where 0 ≤ r ≤ p. Then, for any v ∈ V n
h , we have that

∫

In
k2n‖Dtw‖2�1(t)∪�O (t) dt �

∫

In
‖w‖2�1(t)∪�O (t) dt (A.19)

∫

In
k2n‖Dtw‖2�2(t) dt �

∫

In
‖w‖2�2(t) dt (A.20)

Proof The estimates follow from applying a standard one-dimensional inverse esti-
mate for polynomials along the space-time trajectories. The presence of Dt in the
In-integrals gives the correct scaling for going to the space-time trajectories and back.

��
Lemma A.7 (An inequality for W 1,1((a, b))) For an open interval (a, b), a point c ∈
(a, b), and for any function w ∈ W 1,1((a, b)) it holds that

(b − a)w(c) ≤
∫ b

a
w(x) dx + (b − a)

∫ b

a
|w′(x)| dx (A.21)

Proof Consider an open interval (α, β) ⊂ (a, b). For an arbitrary point y ∈ (α, β),
we use integration by parts to get

(β − y)w(β−) + (y − α)w(α+) ≤
∫ β

α

w(x) dx + (β − α)

∫ β

α

|w′(x)| dx
(A.22)
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The left-hand side of (A.21) is

(b − a)w(c) = (b − c)w(c) + (c − a)w(c)

≤
∫ b

c
w(x) dx + (b − c)

∫ b

c
|w′(x)| dx

+
∫ c

a
w(x) dx + (c − a)

∫ c

a
|w′(x)| dx

≤
∫ b

a
w(x) dx + (b − a)

∫ b

a
|w′(x)| dx

(A.23)

where we have used (A.22) with y = β− = β = b and α = c, and (A.22) with β = c
and y = α+ = α = a to obtain the first inequality. This concludes the proof. ��
Lemma A.8 (A discrete temporal inverse estimate in |||·|||Ah,t

) Let |||·|||Ah,t
be defined

by (4.3), kn be the length of interval In, and the scaled differential operator Dt be
defined by (3.7). Then we have that

∫

In
|||knDtv|||2Ah,t

dt �
∫

In
|||v|||2Ah,t

dt ∀v ∈ V n
h (A.24)

Proof We expand the left-hand side of (A.24) by using (4.3)

∫

In
|||kn Dtv|||2Ah,t

dt =
2∑

i=1

∫

In
k2n‖∇Dtv‖2�i (t)

dt

︸ ︷︷ ︸
= I

+
∫

In
k2n |μ̄|‖〈∂n̄x Dtv〉‖2−1/2,h,�(t) dt

︸ ︷︷ ︸
= II

+
∫

In
k2n |μ̄|‖[Dtv]‖21/2,h,�(t) dt

︸ ︷︷ ︸
= III

+
∫

In
k2n‖[∇Dtv]‖2�O (t) dt

︸ ︷︷ ︸
= IV

(A.25)

We treat the terms separately, starting with the first. Using that ∇Dtv = Dt∇v and
Lemma A.6, the first term in (A.25) is

I =
2∑

i=1

∫

In
k2n‖Dt∇v‖2�i (t) dt �

∫

In

2∑

i=1

‖∇v‖2�i (t) + ‖[∇v]‖2�O (t) dt

≤
∫

In
|||v|||2Ah,t

dt

(A.26)

The second term in (A.25) receives the same treatment after first using Lemma A.5,
thus

II �
∫

In
k2n |μ̄|

( 2∑

i=1

‖∇Dtv‖2�i (t) + ‖[∇Dtv]‖2�O (t)

)

dt �
∫

In
|||v|||2Ah,t

dt

(A.27)
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The third term in (A.25) requires some more work than the others. Recall the slabwise
space-time trajectories through a point s̄ ∈ �̄n , whose spatial components ŝ = ŝi (t)
are defined by (A.18). Let Sqn denote the set of points in In corresponding to temporal
degrees of freedom for V n

h . Thus S
0
n = {tn} and S1n = {tn, t+n−1}. For q > 1, interior

points of In are also included in Sqn . We consider the temporal basis functions λk ∈
Pq(In), where every λk corresponds to a point tk ∈ Sqn . Writing x̂k = x̂(tk), where
x̂ is defined by (A.17), and using a somewhat relaxed notation, any v ∈ V n

h may
be represented as v(x, t) = ∑

tk∈Sqn v(x̂k, tk)λk(t). With simple continuous mesh
motion, μ is constant along every slabwise space-time trajectory, which means that
Dtv(x̂k, tk) = 0. Using this together with the somewhat relaxed representation, we
have that

Dtv(x, t) =
∑

tk∈Sqn
v(x̂k, tk)Dtλk(t) =

∑

tk∈Sqn
v(x̂k, tk)λ

′
k(t) (A.28)

With (A.28), the third term in (A.25) is

III ≤ k2n
hmin

∫

In
|μ̄|

∫

�(t)
|(Dtv(s, t))1 − (Dtv(s, t))2|2 ds dt

≤ k2n
hmin

∫

In
|μ̄|

∫

�(t)

( ∑

tk∈Sqn
|v1(ŝ1,k, tk) − v2(ŝ2,k, tk)| |λ′

k(t)|︸ ︷︷ ︸
≤C(q)/kn

)2

ds dt

� h−1
min

∑

tk∈Sqn

∫

In
|μ̄|

∫

�(t)
|v1(ŝ1,k, tk) − v2(ŝ2,k, tk)|2 ds dt

︸ ︷︷ ︸
=III.k

(A.29)

We split III.k by

III.k �
∫

In
|μ̄|

∫

�(t)
|v1(ŝ1,k, tk) − v1(ŝ2,k, tk)|2 ds dt

︸ ︷︷ ︸
=III.k.1

+
∫

In
|μ̄|

∫

�(t)
|v1(ŝ2,k, tk) − v2(ŝ2,k, tk)|2 ds dt

︸ ︷︷ ︸
=III.k.2

(A.30)

For the first term in (A.30), we consider the spatial plane curve resulting from pro-
jecting s(τ ) ∈ �(τ), for all τ between tk and t , onto the spatial plane at time tk . By
applying the fundamental theorem of calculus for line integrals to this curve, we have

123



1040 M. G. Larson et al.

that

III.k.1 =
∫

In
|μ̄|

∫

�(t)
|v1(s(t), tk) − v1(s(tk), tk)|2 ds dt

=
∫

In
|μ̄|

∫

�(t)

∣
∣
∣
∣

∫ t

tk
μ(τ) · ∇v1(s(τ ), tk) dτ

∣
∣
∣
∣

2

ds dt

≤ |μ|2In kn
∫

In
|μ̄|

∫

�(t)

∫

In
|∇v1(s(τ ), tk)|2 dτ ds dt

= |μ|2In k2n |μ̄|
∫

�(tk )

∫

In
|∇v1(s(τ ), tk)|2 dτ ds

� |μ|2In k2n |μ̄|
∫

�1(tk)∪�O (tk)
|∇v1(x, tk)|2 dx

� |μ|2In kn
∫

In
‖∇v1‖2�1(t)∪�O (t) dt

� |μ|2In kn
∫

In
|||v|||2Ah,t

dt

(A.31)

where, in the fifth step, we have taken possible multiples of the same line integrals
into account and expanded the domain of integration. In the sixth step, we have used
a standard inverse inequality for polynomials. For the second term in (A.30), we use
Lemma A.7, thus

III.k.2 = kn|μ̄|
∫

�(tk )
|v1(s, tk) − v2(s, tk)|2 ds =

∫

�(tk )

(

kn|μ̄|[v]2(s, tk)
)

ds

�
∫

�(tk )

(∫

In
|μ̄|[v]2(ŝ2, t) dt + kn|μ̄|

∫

In

∣
∣
∣
∣Dt,2[v]2(ŝ2, t)

∣
∣
∣
∣ dt

)

ds

�
∫

�̄n

|[v]|2 ds̄ + kn

∫

�̄n

|[v]||Dt,2[v]| ds̄

≤ ‖[v]‖2
�̄n

+ kn‖[v]‖�̄n
‖Dt,2[v]‖�̄n

≤
(

1 + 1

ε

)

‖[v]‖2
�̄n

︸ ︷︷ ︸
=III.k.2.1

+ εk2n‖Dt,2[v]‖2
�̄n︸ ︷︷ ︸

=III.k.2.2

(A.32)

Using (4.2), the first term is

III.k.2.1 =
(

1 + 1

ε

)∫

In
|μ̄|‖[v]‖2�(t) dt � h

∫

In
|μ̄|‖[v]‖21/2,h,�(t) dt

≤ h
∫

In
|||v|||2Ah,t

dt
(A.33)
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Using again (4.2), the second term is

III.k.2.2 = εk2n‖Dt,2v1 − Dt,2v2‖2�̄n
= εk2n‖Dtv1 + μ · ∇v1 − Dtv2‖2�̄n

� εk2n‖[Dtv]‖2
�̄n

+ εk2n‖μ · ∇v1‖2�̄n

≤ εk2n

∫

In
|μ̄|‖[Dtv]‖2�(t) dt + |μ|2In k2n‖∇v1‖2�̄n

≤ εh
∫

In
k2n |μ̄|‖[Dtv]‖21/2,h,�(t) dt

︸ ︷︷ ︸
=III

+ |μ|2In k2n‖∇v1‖2�̄n︸ ︷︷ ︸
=III.k.2.2.2

(A.34)

where the first term is done. For the second term, we use Corollary A.2, thus

III.k.2.2.2 = |μ|2In k2n
∫

In
|μ̄|

∑

K∈T0,�(t)

‖∇v1‖2�K
dt

�
|μ|2In k2n
hmin

∫

In

∑

K∈T0,�(t)

‖∇v1‖2K dt

≤ |μ|2In k2n
hmin

∫

In
‖∇v1‖2�1(t)∪�O (t) dt �

|μ|2In k2n
hmin

∫

In
|||v|||2Ah,t

dt

(A.35)

This concludes the separate treatment of all the terms unfolding in the estimation of
the third term in (A.25). Collecting all the estimates and using (3.1) gives us

III � h−1
min

∑

tk∈Sqn

(

|μ|2In kn
∫

In
|||v|||2Ah,t

dt + h
∫

In
|||v|||2Ah,t

dt + III.k.2.2

)

� h−1
min

((

|μ|2In kn + h + |μ|2In k2n
hmin

) ∫

In
|||v|||2Ah,t

dt + εh(III)

)

�
∫

In
|||v|||2Ah,t

dt + ε(III)

(A.36)

By kicking back the ε-term and taking ε sufficiently small, we may estimate the third
term in (A.25) by the first term on the right-hand side of A.36. The fourth term in
(A.25) receives the same treatment as the first, thus

IV �
∫

In
k2n

(

‖Dt∇v‖2�1(t)∪�O (t) + ‖Dt∇v‖2�2(t)

)

dt �
∫

In
|||v|||2Ah,t

dt

(A.37)

The treatment of all the terms in (A.25) is done. This shows (A.24). ��
Lemma A.9 (An inverse inequality for P((a, c), (c, b))) For an open interval (a, b),
a point c ∈ (a, b), and for w ∈ P((a, c), (c, b)), i.e., w is a polynomial on (a, c),
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possibly another polynomial on (c, b), and possibly discontinuous at c, there exists a
positive constant depending on the polynomial degree such that

(b − a)|w(a+)|2 �
∫ c

a
|w(x)|2 dx +

∫ b

c
|w(x)|2 dx + (b − c)|[w](c)|2

+ (b − c)(c − a)

∫ c

a
|w′(x)|2 dx

(A.38)

Proof Using a standard inverse inequality for polynomials with a positive constant
that depends on the polynomial degree, the left-hand side of (A.38) is

(b − a)|w(a+)|2 �
∫ c

a
|w(x)|2 dx + (b − c)|w(a+)|2 (A.39)

Adding and subtractingw(c−) andw(c+)within the absolute value, followed by using
standard estimates, the second term is

(b − c)|w(a+)|2 = (b − c)

∣
∣
∣
∣ −

∫ c

a
w′(x) dx − [w](c) + w(c+)

∣
∣
∣
∣

2

� (b − c)(c − a)

∫ c

a
|w′(x)|2 dx

+ (b − c)|[w](c)|2 +
∫ b

c
|w(x)|2 dx

(A.40)

��
Lemma A.10 (Discrete temporal inverse inequalities for V n

h ) Let kn be the length
of interval In, the scaled differential operator Dt be defined by (3.7), |μ|In =
maxt∈In {|μ(t)|}, and |||·|||Ah,t

be defined by (4.3). Then, for q = 0, 1, we have that

2∑

i=1

k2n‖(Dtv)+n−1‖2�i,n−1
�

2∑

i=1

∫

In
kn‖Dtv‖2�i (t) dt

+ |μ|In
∫

In
|||v|||2Ah,t

dt ∀v ∈ V n
h (A.41)

2∑

i=1

k2n‖(Dtv)−n ‖2�i,n
�

2∑

i=1

∫

In
kn‖Dtv‖2�i (t) dt

+ |μ|In
∫

In
|||v|||2Ah,t

dt ∀v ∈ V n
h (A.42)

Proof We only prove (A.41), since the proof of (A.42) is analogous. Recall x̂(t)
defined by (A.17). We denote by ¯̂xni the slabwise space-time trajectory through a point
xi,n−1 ∈ �i,n−1. We define the set of points in �1,n−1 with cut and uncut space-time
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trajectories by

��
1,n−1 := {x ∈ �1,n−1 : ¯̂xn1 ∩ �̄n 	= ∅} (A.43)

�n
1,n−1 := {x ∈ �1,n−1 : ¯̂xn1 ∩ �̄n = ∅} (A.44)

The idea to prove (A.41) is that if a point’s space-time trajectory is uncut, we use a
standard inverse inequality, and if it is cut, we use Lemma A.9. Using that ��

1,n−1 and
�n

1,n−1 form a partition of �1,n−1, the left-hand side of (A.41) is

2∑

i=1

k2n‖(Dtv)+n−1‖2�i,n−1
= k2n‖(Dtv)+n−1‖2�n

1,n−1
︸ ︷︷ ︸

=I

+ k2n‖(Dtv)+n−1‖2�2,n−1
︸ ︷︷ ︸

=II

+ k2n‖(Dtv)+n−1‖2��
1,n−1

︸ ︷︷ ︸
=III

(A.45)

We treat the terms separately. See Fig. 11 for an illustration of the proof idea.
Using a standard inverse inequality, the first and second term in (A.45) are

I �
∫

In
kn‖Dtv‖2�1(t) dt II �

∫

In
kn‖Dtv‖2�2(t) dt (A.46)

For the third term in (A.45), we recall ŝ defined by (A.18). We consider a space-time
curve that starts at x ∈ ��

1,n−1, goes straight up in time until it hits �̄n , which occurs
at time t� , then travels on �̄n along (ŝ(t), t) up to tn . We will apply Lemma A.9 to the
function that is (Dtv)1 up until t� along this space-time curve, and (Dtv)2 afterwards.
Here the corresponding derivative term on the right-hand side of (A.38) vanishes since
D2
t v(x, t) = 0 for q ≤ 1. Thus

III = kn

∫

��
1,n−1

(

kn|Dtv(x, t+n−1)|2 dx
)

� kn

∫

��
1,n−1

(∫ t�

tn−1

|Dtv(x, t)|2 dt +
∫ tn

t�
|μ̄||(Dtv)2(ŝ(t), t)|2 dt

+ (tn − t�)|[Dtv](x, t�)|2 + (tn − t�)(t� − tn−1)

∫ t�

tn−1

|D2
t v(x, t)|2 dt

)

dx

� kn

∫

��
1,n−1

∫ t�

tn−1

|Dtv(x, t)|2 dt dx
︸ ︷︷ ︸

=III.1

+ kn

∫

��
1,n−1

∫ tn

t�
|μ̄||(Dtv)2(ŝ(t), t)|2 dt dx

︸ ︷︷ ︸
=III.2

+ kn

∫

��
1,n−1

(tn − t�)|[Dtv](x, t�)|2 dx
︸ ︷︷ ︸

=III.3

(A.47)

123



1044 M. G. Larson et al.

Simply expanding the domain of integration, the first term is

III.1 �
∫

In
kn‖Dtv‖2�1(t) dt (A.48)

For the second and third term in (A.47), we want to change the domain of integration
from��

1,n−1 to its temporal projection onto �̄n . To do this, we note that dx � |μ|In ds̄,
where dx and ds̄ are the integrationdifferentials for��

1,n−1 and �̄n , respectively.Using
this, a standard trace inequality for H1(�2), that ∇Dtv = Dt∇v, and Lemma A.6,
the second term is

III.2 � kn

∫

��
1,n−1

∫

In
|μ̄||(Dtv)2(ŝ(t), t)|2 dt dx

� kn

∫

�̄n

∫

In
|μ̄||(Dtv)2(s̄)|2 dt |μ|In ds̄ � |μ|In k2n

∫

In
|μ̄|‖(Dtv)2‖2�(t) dt

� |μ|In kn
∫

In
kn‖Dtv‖2�2(t) dt + |μ|In

∫

In
k2n‖Dt∇v‖2�2(t) dt

�
∫

In
kn‖Dtv‖2�2(t) dt + |μ|In

∫

In
|||v|||2Ah,t

dt

(A.49)

Using the relation between the integration differentials, the estimate (4.2), and
Lemma A.8, the third term in (A.47) is

III.3 � k2n

∫

��
1,n−1

|[Dtv](x, t�)|2 dx � k2n

∫

�̄n

|[Dtv](s̄)|2|μ|In ds̄

� |μ|In k2n
∫

In
|μ̄|‖[Dtv]‖2�(t) dt � |μ|In h

∫

In
|||knDtv|||2Ah,t

dt

� |μ|In
∫

In
|||v|||2Ah,t

dt

(A.50)

The treatment of all the terms in (A.45) is done. This shows (A.41). ��

Lemma A.11 (A discrete temporal inverse estimate in |||·|||X ) Let the norm |||·|||X
be defined by (4.10), kn be the length of time interval In, and the scaled differential
operator Dt be defined by (3.7). Then, for q = 0, 1, we have that

|||knDtv|||X � |||v|||X ∀v ∈ Vh (A.51)
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Fig. 11 The starting domains �n
1,n−1, �2,n−1, and ��

1,n−1. The arrows represent the treatment of the
corresponding right-hand side terms

Proof The square of the left-hand side of (A.51) is

|||knDtv|||2X =
2∑

i=1

N∑

n=1

∫

In
kn‖Dt (knDtv)‖2�i (t) dt

+
N∑

n=1

( ∫

In
|||knDtv|||2Ah,t

dt + ‖|n̄t |1/2[knDtv]‖2
�̄n

)

+
2∑

i=1

N−1∑

n=1

‖[knDtv]n‖2�i,n

+
2∑

i=1

(

‖(knDtv)−N‖2�i,N
+ ‖(knDtv)+0 ‖2�i,0

)

(A.52)

The first term vanishes since D2
t v(x, t) = 0 for q ≤ 1. The �̄n-norm term is estimated

by the Ah,t -norm term by using (4.2). Applying Lemma A.8 to the Ah,t -norm term
and Lemma A.10 to all the terms in the last two rows, we get terms which may be
estimated by |||v|||2X . ��

B Interpolation

Let ·◦ denote the interior of a set, e.g., I ◦
n = (tn−1, tn). Also let Cb(∪n I ◦

n ) denote
the space of functions that are continuous and bounded on every I ◦

n . In this section,
the space-time interpolation operator Īh : Cb(∪n I ◦

n ; L1(�0)) → Vh is successively
constructed by first defining spatial interpolation operators, then temporal ones, and
finally combining them. Interpolation error estimates are also presented.
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B.1 Slabwise operators and local estimates

Definition B.1 (Spatial interpolation operators) We define the spatial interpolation
operators πh,0 : L1(�0) → Vh,0 and πh,G : L1(G) → Vh,G to be the Scott-Zhang
interpolation operators for the spaces Vh,0 and Vh,G , respectively, where the defining
integrals are taken over entire simplices.

Note thatπh,G is time-dependent but to lighten the notation we omit this. The temporal
interpolation operatorswill interpolate along the space-time trajectories of the domains
�0 and G. For n = 1, . . . , N , we define the slabwise space-time trajectory for a point
x ∈ �0 and that of a point xn ∈ G(tn) by

¯̂xn0 := {(x̂(t), t) : x̂(t) = x, t ∈ In} (B.1)

¯̂xnG := {(x̂(t), t) : x̂(t) = xn −
∫ tn

t
μ(τ) dτ, t ∈ In} (B.2)

Note that (A.17) can be used to obtain all trajectories defined by (B.2) but not all
defined by (B.1) because some ¯̂xn0 may lie completely in S2,n . Let S

q
n denote the set

of temporal interpolation points for interpolation to Pq(In). We take S0n = {t−n } and
S1n = {t−n , t+n−1}. For q > 1, we include interior points of In in some suitable fashion.

Definition B.2 (Temporal interpolation operators) For each time subinterval In , where
n = 1, . . . , N , we define the temporal interpolation operators πn

0 : Cb( ¯̂xn0
◦
) →

Pq( ¯̂xn0 ) and πn
G : Cb( ¯̂xnG

◦
) → Pq( ¯̂xnG) to be the nodal interpolation operators that use

the points in Sqn as nodal interpolation points.

Note that πn
0 and πn

G are spatially dependent but to lighten the notation we omit this.
We combine the spatial and temporal interpolation operators to define space-time ones.

Definition B.3 (Slabwise space-time interpolation operators) For n = 1, . . . , N , we
define the slabwise space-time interpolation operators Ī nh,0 : Cb(I ◦

n ; L1(�0)) → V n
h,0

and Ī nh,G : Cb(I ◦
n ; L1(G)) → V n

h,G by

Ī nh,0 := πn
0 πh,0 Ī nh,G := πn

Gπh,G (B.3)

Recall the interdependent indices i ∈ {1, 2} and j ∈ {0,G} where j = 0 for i = 1
and j = G for i = 2. Let K̄n := {(x, t) : x ∈ K = K (t), t ∈ In} denote an arbitrary
space-time prism, where K = K j ∈ T j . Let N (K ) denote the neighborhood of a
simplex K , i.e., the set of all adjacent simplices to and including K . We also use the
notation ‖w‖K ,In = maxt∈In {‖w(·, t)‖K (t)}.
Lemma B.1 (Local space-time interpolation error estimates for K̄n) Let Ī nh, j be defined
by (B.3), where j ∈ {0,G}, and let Dt be defined by (3.7). Then, for a function v with
sufficient spatial and temporal regularity, we have for 0 ≤ s ≤ q+1 and 0 ≤ r ≤ p+1
that

‖Ds
t (v − Ī nh, jv)‖K̄n

� kq+1−s
n ‖Dq+1

t v‖K̄n
+ h p+1k1/2n ‖Dp+1

x Ds
t v‖N (K ),In (B.4)
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‖Dr
x (v − Ī nh, jv)‖K̄n

� kq+1
n ‖Dq+1

t Dr
xv‖K̄n

+ h p+1−r k1/2n ‖Dp+1
x v‖N (K ),In

(B.5)

Proof We show the two estimates separately, starting with the first. Using that Ī nh, j =
πn
j πh, j = πh, jπ

n
j , that D

s
t πh, j = πh, j Ds

t , stability of πh, j , and a trivial estimate, the
left-hand side of (B.4) is

‖Ds
t (v − Ī nh, jv)‖K̄n

≤ ‖Ds
t πh, j (1 − πn

j )v‖K̄n
+ ‖Ds

t (v − πh, jv)‖K̄n

� ‖Ds
t (1 − πn

j )v‖K̄n
+ k1/2n ‖Ds

t v − πh, j D
s
t v‖K ,In

(B.6)

Applying standard estimates for πn
j and πh, j shows the first estimate and we move

on to the second. We are going to use the expansion of interpolants of πn
j into a

sum over the temporal interpolation points tk ∈ Sqn with λk ∈ Pq(In) denoting the
corresponding shape function. For a function w of sufficient regularity, we have that

‖πn
j w‖2

K̄n
=

∫

In

∫

K (t)

∣
∣
∣
∣

∑

tk∈Sqn
w(x̂(tk), tk)λk(t)

∣
∣
∣
∣

2

dx dt

≤ (q + 1)
∑

tk∈Sqn

∫

In

∫

K (t)
|w(x̂(tk), tk)|2 dx dt � kn‖w‖2K ,In

(B.7)

Using this after using that Dr
xπ

n
j = πn

j D
r
x , the left-hand side of (B.5) is

‖Dr
x (v − Ī nh, jv)‖K̄n

≤ ‖Dr
x (v − πn

j v)‖K̄n
+ ‖Dr

xπ
n
j (1 − πh, j )v‖K̄n

� ‖Dr
xv − πn

j D
r
xv‖K̄n

+ k1/2n ‖Dr
x (1 − πh, j )v‖K ,In

(B.8)

Applying standard estimates for πn
j and πh, j shows the second estimate. ��

Recall ŝ defined by (A.18). Let T j,D = {K ∈ T j : K ∩ D 	= 0}, where D is a possibly
time-dependent subset of Rd+1.

Lemma B.2 (Slabwise space-time interpolation error estimates for �̄n) Let Ī nh, j be
defined by (B.3), where j ∈ {0,G}, and let Dt be defined by (3.7). Then, for any
function v with sufficient spatial and temporal regularity, we have that

‖(v − Ī nh, jv)i‖2�̄n
� k2q+2

n ‖Dq+1
t v‖2

L2(�̄n ,L∞(In))
+ h2p+1

∑

K∈T j,�̄n

kn‖Dp+1
x v‖2N (K ),In

(B.9)

Proof The general proof idea is the same for all q ≥ 0. What varies is how a temporal
difference is treated. We show how to treat if for q = 1 from which it should be
relatively straightforward how to handle the other cases. Using the shape functions
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λk ∈ Pq(In), corresponding to interpolation points tk ∈ Sqn , the argument of the norm
on the left-hand side of (B.9) is

(v − Ī nh, jv)i |�̄n
= v(s, t) −

∑

tk∈Sqn
πh, jv(ŝk, tk)λk(t)

=
∑

tk∈Sqn

(

v(s, t) − v(ŝk, tk)

)

λk(t)

︸ ︷︷ ︸
=A

+
∑

tk∈Sqn

(

v(ŝk, tk) − πh, jv(ŝk, tk)

)

λk(t)

︸ ︷︷ ︸
=B

(B.10)

The left-hand side of (B.9) may thus be split by ‖(v − Ī nh, jv)i‖2�̄n
� ‖A‖2

�̄n
+ ‖B‖2

�̄n
where we consider the terms separately, starting with the first. We proceed with some
further treatment of A for which we restrict ourselves to the case q = 1. From this
case it should however be relatively straightforward how to treat A for q 	= 1. Using
the mean value theorem along the space-time trajectories, the explicit expressions for
the shape functions λn−1 and λn for q = 1, and the fundamental theorem of calculus,
we have

A =
∑

tk∈Sqn
Dtv(ŝ, ck)(t − tk)λk(t) = (t − tn)(t − tn−1)

kn

∫ cn

cn−1

D2
t v(ŝ, τ ) dτ

(B.11)

Using (B.11), we have that

‖A‖2
�̄n

≤
∫

In
|μ̄|

∫

�(t)
k2n(cn − cn−1)

∫ cn

cn−1

|D2
t v(ŝ, τ )|2 dτ ds dt

≤ k4n‖D2
t v‖2

L2(�̄n ,L∞(In))

(B.12)

Writing Bk = v(ŝk, tk) − πh, jv(ŝk, tk), using (A.11), and standard estimates for πh, j ,
we have that

‖B‖2
�̄n

�
∫

In
|μ̄|

∫

�(t)

∑

tk∈Sqn
|v(ŝk, tk) − πh, jv(ŝk, tk)|2 ds dt

�
∑

tk∈Sqn

∑

K∈T j,�̄n

kn‖Bk‖2�K
�

∑

tk∈Sqn

∑

K∈T j,�̄n

kn

(

h−1
K ‖Bk‖2K + hK ‖Dx Bk‖2K

)

� h2p+1
∑

K∈T j,�̄n

kn‖Dp+1
x v‖2N (K ),In

(B.13)

��
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Lemma B.3 (Local spatial interpolation error estimates for temporal endpoints) Let
Ī nh, j be defined by (B.3), where j ∈ {0,G}, let tτk ∈ {t+n−1, t

−
n }, and let Dt be defined

by (3.7). Then, for any function v with sufficient spatial and temporal regularity, we
have for q > 0 that

‖(v − Ī nh, jv)τk‖K � h p+1‖Dp+1
x v(·, tτk )‖N (K ) (B.14)

and for q = 0 that

‖(v − Ī nh, jv)−n ‖K � h p+1‖Dp+1
x v(·, t−n )‖N (K ) (B.15)

‖(v − Ī nh, jv)+n−1‖K � k1/2n ‖Dtv‖K̄n
+ h p+1‖Dp+1

x v(·, t−n )‖N (K ) (B.16)

Proof Estimates (B.14) and (B.15) follow from simply using that tτk is an interpolation
point of πn

j and then a standard estimate for πh, j . This does not work for (B.16), since

t+n−1 is not an interpolation point for q = 0. Instead, we integrate along the slabwise
space-time trajectory of an element x ∈ K to obtain

‖v(·, t+n−1) − v(·, t−n )‖2K =
∫

K

∣
∣
∣
∣v(x(t+n−1), t

+
n−1) − v(x(t−n ), t−n )

∣
∣
∣
∣

2

dx

=
∫

K

∣
∣
∣
∣

∫

In
Dtv(x(t), t) dt

∣
∣
∣
∣

2

dx ≤ kn‖Dtv‖2
K̄n

(B.17)

Using the definition of πn
j for q = 0, the left-hand side of (B.16) is

‖(v − Ī nh, jv)+n−1‖K ≤ ‖(v − πn
j v)(·, t+n−1)‖K + ‖(πn

j v − πn
j πh, jv)(·, t+n−1)‖K

= ‖v(·, t+n−1) − v(·, t−n )‖K + ‖(v − πh, jv)(·, t−n )‖K
(B.18)

Applying (B.17) and a standard estimate for πh, j shows (B.16). ��

B.2 Global operator and estimates

Definition B.4 (Main space-time interpolation operator) We define the main space-
time interpolation operator Īh : Cb(∪n I ◦

n ; L1(�0)) → Vh by, for n = 1, . . . , N ,

Īhv|S1,n := Ī nh,0v|S1,n Īhv|S2,n := Ī nh,Gv|S2,n (B.19)

Lemma B.4 (Global space-time interpolation error estimates for �0 × (0, T ]) Let Īh
be defined by (B.19) and Dt by (3.7). Then, for any function v with sufficient spatial
and temporal regularity, we have for 0 ≤ s ≤ q + 1 and 0 ≤ r ≤ p + 1 that

2∑

i=1

N∑

n=1

∫

In
‖Ds

t (v − Īhv)‖2�i (t) dt � k2(q+1−s)E2
k,0(v) + h2(p+1)E2

h,s(v) (B.20)
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2∑

i=1

N∑

n=1

∫

In
‖Dr

x (v − Īhv)‖2�i (t) dt � k2(q+1)E2
k,r (v) + h2(p+1−r)E2

h,0(v) (B.21)

where

E2
k,r (v) =

2∑

i=1

N∑

n=1

∑

K∈T j,Si,n

‖Dq+1
t Dr

xv‖2
K̄n

(B.22)

E2
h,s(v) =

2∑

i=1

N∑

n=1

∑

K∈T j,Si,n

kn‖Dp+1
x Ds

t v‖2N (K ),In
(B.23)

Proof Both estimates follow by applying Lemma B.1. ��

Lemma B.5 (An interpolation error estimate in |||·|||Bh ) Let |||·|||Bh , Īh , and Dt be
defined by (4.8), (B.19), and (3.7), respectively. Then, for any function v with sufficient
spatial and temporal regularity, we have that

∣
∣
∣
∣
∣
∣v − Īhv

∣
∣
∣
∣
∣
∣2
Bh

� k2q+1F2
k (v) + h2pF2

h (v) (B.24)

where

F2
k (v) =

2∑

i=1

N∑

n=1

∑

K∈T j,Si,n

(

‖Dq+1
t v‖2

K̄n
+ ‖Dq+1

t ∇v‖2
K̄n

+ ‖Dq+1
t D2

xv‖2
K̄n

)

+
2∑

i=1

N∑

n=1

‖Dq+1
t v‖2

L2(�̄n ,L∞(In))
(B.25)

F2
h (v) =

2∑

i=1

N∑

n=1

∑

K∈T j,Si,n

kn‖Dp+1
x v‖2N (K ),In

(B.26)

Proof Letting w = v − Īhv, the left-hand side of (B.24) is

|||w|||2Bh =
N∑

n=1

∫

In
|||w|||2Ah,t

dt

︸ ︷︷ ︸
= I

+
N∑

n=1

‖|n̄t |1/2[w]‖2
�̄n︸ ︷︷ ︸

= II

+
2∑

i=1

N−1∑

n=1

‖[w]n‖2�i,n

︸ ︷︷ ︸
= III

+
2∑

i=1

‖w−
N‖2�i,N

︸ ︷︷ ︸
= IV

+
2∑

i=1

‖w+
0 ‖2�i,0

︸ ︷︷ ︸
= V

(B.27)
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We consider the terms separately, starting with first.

I =
2∑

i=1

∫

In
‖∇w‖2�i (t) dt

︸ ︷︷ ︸
= I.i

+
∫

In
|μ̄|‖〈∂n̄xw〉‖2−1/2,h,�(t) dt

︸ ︷︷ ︸
= I.ii

+
∫

In
|μ̄|‖[w]‖21/2,h,�(t) dt

︸ ︷︷ ︸
= I.iii

+
∫

In
‖[∇w]‖2�O (t) dt

︸ ︷︷ ︸
= I.iv

(B.28)

Lettingwn
j = v− Ī nh, jv, we treat each term in (B.28) separately, starting with the first.

I.i ≤
∫

In

∑

K∈T j,�i (t)

‖∇wn
j ‖2K dt ≤

∑

K∈T j,Si,n

‖∇wn
j ‖2K̄n

(B.29)

By using standard estimates, (A.15), and (A.11), the second term is

I.ii �
∫

In

2∑

i=1

∑

K j∈T j,�(t)

hK j ‖(∇w)i‖2�K j
dt

�
2∑

i=1

∑

K∈T j,�̄n

(

‖∇wn
j ‖2K̄n

+ h2K ‖D2
xw

n
j ‖2K̄n

) (B.30)

For the third term we use the same standard estimates and again (A.15), thus

I.iii �
∫

In
|μ̄|

2∑

i=1

∑

K j∈T j,�(t)

h−1
K0

‖wi‖2�K j
dt ≤ h−1

min

2∑

i=1

‖(wn
j )i‖2�̄n

(B.31)

The fourth term is

I.iv �
∫

In

2∑

i=1

‖(∇w)i‖2�O (t) dt ≤
2∑

i=1

∑

K∈T j,�̄n

‖∇wn
j ‖2K̄n

(B.32)

We are done with the separate treatments of all the terms in (B.28) and move on to the
second term in (B.27). For this term, using that |n̄t | ≤ |μ| and (4.2) results in a factor
that is I.iii which may simply be estimated by (B.31), thus

II ≤ |μ|(0,T ]h
∫

In
|μ̄|‖[w]‖21/2,h,�(t) dt � |μ|(0,T ]hh−1

min

2∑

i=1

‖(wn
j )i‖2�̄n

(B.33)
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Combining the third, fourth and fifth term in (B.27), we have

III + IV + V �
N∑

n=1

(

‖w−
n ‖2�i,n

+ ‖w+
n−1‖2�i,n−1

)

≤
N∑

n=1

( ∑

K∈T j,�i,n

‖(wn
j )

−
n ‖2K +

∑

K∈T j,�i,n−1

‖(wn
j )

+
n−1‖2K

) (B.34)

The separate treatments of all the terms in (B.27) are done. The obtained estimates
give

|||w|||2Bh �
N∑

n=1

2∑

i=1

( ∑

K∈T j,Si,n

‖∇wn
j ‖2K̄n︸ ︷︷ ︸

= A

+
∑

K∈T j,�̄n

h2K ‖D2
xw

n
j ‖2K̄n︸ ︷︷ ︸

= B

+ h−1
min‖(wn

j )i‖2�̄n︸ ︷︷ ︸
= C

+
∑

K∈T j,�i,n

‖(wn
j )

−
n ‖2K

︸ ︷︷ ︸
= D

+
∑

K∈T j,�i,n−1

‖(wn
j )

+
n−1‖2K

︸ ︷︷ ︸
= E

)(B.35)

We proceed by considering the five different types of terms separately. For term A we
use Lemma B.1 with r = 1:

A = ‖∇(v − Ī nh, jv)‖2
K̄n

� k2(q+1)
n ‖Dq+1

t ∇v‖2
K̄n

+ h2pkn‖Dp+1
x v‖2N (K ),In

(B.36)

For term B we apply Lemma B.1 with r = 2:

B = h2K ‖D2
x (v − Ī nh, jv)‖2

K̄n
� k2(q+1)

n ‖Dq+1
t D2

xv‖2
K̄n

+ h2pkn‖Dp+1
x v‖2N (K ),In

(B.37)

For term C we use Lemma B.2 and (3.1):

C = h−1
min‖(v − Ī nh, jv)i‖2�̄n

� k2q+1
n ‖Dq+1

t v‖2
L2(�̄n ,L∞(In))

+ h2p
∑

K∈T j,�̄n

kn‖Dp+1
x v‖2N (K ),In

(B.38)

By applying Lemma B.3 to term D and using (3.1), we get

D = ‖(v − Ī nh, jv)−n ‖2K � h2pkn‖Dp+1
x v‖2N (K ),In

(B.39)

Using Lemma B.3 and (3.1) for term E, we get

E = ‖(v − Ī nh, jv)+n−1‖2K � k2q+1
n ‖Dq+1

t v‖2
K̄n

+ h2pkn‖Dp+1
x v‖2N (K ),In

(B.40)

123



Space-time CutFEM on overlapping meshes... 1053

Using these local estimates in (B.35) gives (B.24). ��
By applying Lemma B.3 and using (3.1), we get the estimate:

Corollary B.1 (A global spatial interpolation error estimate for temporal endpoints)
Let Īh and Fh be defined by (B.19) and (B.26), respectively. Then, for any function v

with sufficient spatial and temporal regularity, we have that

N∑

n=1

‖(v − Īhv)−n ‖2�0
� h2pF2

h (v) (B.41)
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