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1. Introduction

Let G be a locally compact group. The Fourier algebra A(G), introduced by Eymard in 
[5], is a subalgebra of C0(G) consisting of the coefficients of the left regular representation 
λ of G, i.e.

A(G) = {u ∈ C0(G) | u(s) = 〈λ(s)ξ, η〉, ξ, η ∈ L2(G)}.

The natural norm on A(G) that makes it a Banach algebra is given by

‖u‖A(G) = inf{‖ξ‖2‖η‖2 | u(s) = 〈λ(s)ξ, η〉},

where the infimum is taken over all possible representations u(s) = 〈λ(s)ξ, η〉. Moreover, 
A(G) is the unique predual of the group von Neumann algebra V N(G).

The Gelfand spectrum of the algebra is known to be topologically isomorphic to G, 
giving a non-trivial link between topological groups and Banach algebras. We note that 
the spectral theory has been an important tool in understanding commutative Banach 
algebras.

Several authors, including the second author, have been investigating in [18,20,23,12,
19,11] a weighted version of the Fourier algebra, by imposing a weight that changes the 
norm structure. Weighted Fourier algebras for compact quantum groups were studied 
in [8]. Recall that if G is abelian with the dual group Ĝ, the Fourier algebra A(G) is 
isometrically isomorphic via the Fourier transform to L1(Ĝ). If w : Ĝ → [1, +∞) is a 
Borel measurable and sub-multiplicative function, i.e.

w(st) ≤ w(s)w(t), s, t ∈ Ĝ,

(such w is called a weight function) then L1(Ĝ, w) := {f ∈ L1(G) | fw ∈ L1(Ĝ)} is a 
subalgebra of L1(G) and is a Banach algebra with respect to the norm ‖f‖w := ‖fw‖1, 
f ∈ L1(Ĝ, w). Its image under inverse Fourier transform gives a weighted version A(G, w)
of A(G). We note that for a weight function w on Ĝ the (unbounded) operator

w̃ =
⊕∫

Ĝ

w(s)ds

defines a closed positive operator affiliated with L∞(Ĝ) 	 V N(G) which satisfies Γ(w̃) ≤
w̃ ⊗ w̃, where Γ is the comultiplication on V N(G). This model has been taken in [18]
and [11] to generalize the notion of weight to general locally compact groups. Accordingly, 
a weight, called a weight on the dual of G, is a certain unbounded positive operator w̃
affiliated with V N(G), which, if in addition w̃ is bounded below, i.e. ω := w̃−1 ∈ V N(G), 
satisfies
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ω ⊗ ω = Γ(ω)Ω

for a contractive 2-cocycle Ω ∈ V N(G ×G) (see [11]). One can find numerous examples of 
non-trivial weights for general compact groups in [20] and certain connected Lie groups 
in [11].

In this paper, we will work with such weight inverse ω omitting the condition of its 
positivity. To each ω we will associate a subspace A(G, ω) of A(G) which becomes a 
commutative Banach algebra with respect to a new weighted norm and the pointwise 
multiplication and so it is natural to study its Gelfand spectrum, spec A(G, ω). When G
is compact and ω is a positive central weight, this question was studied in [20]; specific 
connected Lie groups, namely SU(N), the Heisenberg group, the reduced Heisenberg 
group, the Euclidean motion group E(2) and its simply connected cover, were treated 
in the long paper [11]. It has been proved that spec A(G, ω) is closely related to an 
(abstract) complexification of G. To establish this fact the strategy in [11] was to find a 
simpler dense subalgebra A so that one could easily identify its spectrum, spec A, and 
get spec A(G, ω) ⊂ spec A. If G is compact a natural choice is A= Trig G, the algebra of 
matrix coefficients of finite-dimensional representations of G; spec A is then an abstract 
complexification of G, introduced by McKennon in [21], which coincides in the case of 
compact connected Lie groups with the universal complexification of G. For non-compact 
groups, it seems there is no such natural choice of the subalgebra. In [11] the construction 
of A is rather technical and each G treated in the paper required an individual approach, 
which heavily involved in particular the theory of group representations and technique 
of analytic extensions; the technicalities were an obstacle to develop a general theory 
applicable to any connected Lie group.

In this paper, we propose a different approach to the problem of identifying the 
spectrum of A(G, ω) that allows us to realise spec A(G, ω) as a subset of an abstract 
complexification of G for a wide class of groups and weights.

The key idea is the observation that, identifying the dual of A(G, ω) with V N(G), any 
multiplicative linear functional corresponds to σ ∈ V N(G) satisfying the same equation 
as the weight inverse ω, i.e. σ⊗σ = Γ(σ)Ω for the contractive 2-cocycle Ω ∈ V N(G ×G)
associated with ω. A simple formal calculation, which we could make to be rigorous under 
certain conditions, gives the equality S(σ)σ = S(ω)ω, where S is the antipode on V N(G). 
That allows us to define a closed operator Tσ, affiliated with V N(G) and satisfying 
Γ(Tσ) = Tσ ⊗ Tσ (Theorem 4.5). It is known that the set of all non-zero T ∈ V N(G)
with Γ(T ) = T ⊗ T coincides with λ(G) = {λ(s) | s ∈ G}, providing the embedding of 
G into the spectrum of A(G, ω) through the evaluation u �→ u(s) = (λ(s), u), s ∈ G; the 
set G+

C,λ of all positive solutions T ∈ V N(G) of Γ(T ) = T ⊗ T is the image of the Lie 
algebra Λ of derivations

Λ = {α ∈ V N(G) | α∗ = −α, Γ(α) = α⊗ 1 + 1 ⊗ α}
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under the exponential map α �→ exp (iα); GC,λ := λ(G) ·G+
C,λ is then the space of all solu-

tions to Γ(T ) = T ⊗T in V N(G) (Proposition 3.3). Here V N(G) is the set of unbounded 

operators affiliated with V N(G). In many cases including connected compact and some 

nilpotent Lie groups G, GC,λ = λC(Gu
C), where Gu

C is the universal complexification of 
G and λC is the extension of the left regular representation to Gu

C.
The paper is organised as follows. In Section 2, we introduce the notion of a weight 

inverse ω on the dual of G and use this to define the Beurling-Fourier algebra A(G, ω) as 
a subalgebra of A(G) with a modified norm and identify its dual with V N(G). As V N(G)
has the unique predual, we show that A(G, ω) is isometrically isomorphic to A(G) with 

a modified product ·Ω, depending on the 2-cocycle Ω associated with ω and not the 

particular weight ω. In Proposition 2.6 we give a necessary and sufficient condition for 
the inclusion A(G, ω1) ⊂ A(G, ω2).

In Section 3, we review some basic concepts on unbounded operators and operators 
affiliated with a von Neumann algebra, and define the λ-complexification GC,λ of G as 
the set of non-zero (unbounded) closed operators T which are affiliated with V N(G) and 

satisfy the equation Γ(T ) = T ⊗ T .
In Section 4 we investigate the relation that the λ-complexification has to the Gelfand 

spectrum of A(G, ω). We prove the embedding of spec A(G, ω) into the complexification 

GC,λ for a wide class of groups and weights; this comes down to verifying that S(σ)σ =
S(ω)ω holds for the points σ in spec A(G, ω), considered as a subset of V N(G). We also 

give a heuristic reason why we conjecture that this holds in general. These arguments give 

immediately the equality for any virtually abelian group and any weight considered on it. 
The other cases of G and ω, for which the embedding of spec A(G, ω) into GC,λ holds, 
include, for example, compact, discrete and more general [SIN]-groups with arbitrary 

weights and general locally compact groups with weights extended from weights on the 

dual of abelian or compact subgroups. Even though we could not establish the inclusion 

result in full generality our approach allows us to generalise most of the previous results 
and avoid the main technicalities in [11] to find a dense subalgebra which plays the role 

of Trig G for the compact case. Moreover, as the main available source of weights on 

the dual of non-commutative groups are the weights induced from abelian or compact 
subgroups, Theorem 4.20 and Theorem 4.22 cover most of the known Beurling-Fourier 
algebras. For discrete group G we show that the spectrum of the corresponding Beurling-
Fourier algebra is homeomorphic to G.

Finally, in Section 5, we discuss some of the questions that arose during our investi-
gation, as well as some examples that show the necessity of certain conditions.

Acknowledgment: O. Giselsson was supported by the RCN (Research Council of Nor-
way), grant 300837. The authors would like to thank the anonymous referee for the 

reference [26] and numerous suggestions which led to the improvement of the paper.
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2. Beurling-Fourier algebras

For a locally compact group G, we let λ : G → B(L2(G)) be the left regular 
representations on L2(G). Let V N(G) ⊆ B(L2(G)) be the group von Neumann alge-
bra, C∗

r (G) ⊆ V N(G) the reduced group C∗-algebra and W ∈ V N(G)⊗̄B(L2(G)) the 
fundamental multiplicative unitary, implementing the co-multiplication Γ : V N(G) →
V N(G)⊗̄V N(G) as

Γ(x) = W ∗(I ⊗ x)W. (1)

Recall that Γ is the unique normal ∗-homomorphism satisfying Γ(λ(s)) = λ(s) ⊗ λ(s), 
s ∈ G, and W ∈ B(L2(G ×G)) is given by the action

(Wξ)(s, t) = ξ(ts, t), for ξ ∈ L2(G×G).

The coproduct Γ is co-commutative and satisfies the co-associative law:

(ι⊗ Γ) ◦ Γ = (Γ ⊗ ι) ◦ Γ, (2)

where ι is the identity map.

Definition (Weight inverse). A ω ∈ V N(G) will be called a weight inverse on the dual of 
G (we usually abbreviate this to a weight inverse) if

ωω∗ ⊗ ωω∗ ≤ Γ(ωω∗) (3)

and

kerω = kerω∗ = {0}. (4)

We note that if ω ∈ V N(G) is a weight inverse, then ker Γ(ω) = ker Γ(ω∗) = {0}
which follows easily from (1) and (4).

Lemma 2.1. Let ω ∈ V N(G) be a weight inverse. Then there exists an injective Ω ∈
V N(G)⊗̄V N(G) 	 V N(G ×G) of norm ||Ω|| ≤ 1, such that

ω ⊗ ω = Γ(ω)Ω (5)

and Ω satisfies the 2-cocycle relation

(ι⊗ Γ)(Ω)(I ⊗ Ω) = (Γ ⊗ ι)(Ω)(Ω ⊗ I), (6)
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Proof. ker Γ(ω∗) = {0} and the inequality (3) give a well-defined linear map

Ω∗ : Γ(ω∗)x �→ (ω∗ ⊗ ω∗)x, for x ∈ L2(G) ⊗ L2(G),

that satisfies ||Ω∗(Γ(ω∗)x)||2 = ||(ω∗ ⊗ ω∗)x||2 ≤ ||Γ(ω∗)x||2. As the range Ran(Γ(ω∗))
is dense in L2(G × G), we can extend Ω∗ to a bounded linear operator on the whole 
Hilbert space. Let Ω be its adjoint. Clearly ||Ω|| ≤ 1 and (5) holds.

It is easy to see from (4) and (5) that Ω must commute with any element in the 
commutant (V N(G)⊗̄V N(G))′ and thus Ω ∈ V N(G)⊗̄V N(G). By (5), it follows that 
ker Ω ⊂ ker (ω ⊗ ω) = {0} and therefore Ω is injective. Using (5), we get

(ι⊗ Γ)(Γ(ω))(ι⊗ Γ)(Ω)(I ⊗ Ω) = ω ⊗ ω ⊗ ω = (Γ ⊗ ι)(Γ(ω))(Γ ⊗ ι)(Ω)(Ω ⊗ I).

Finally the co-associativity of Γ and (4) imply (6). �
Remark.

(i) If ω ∈ V N(G) satisfies (5) then it satisfies (3):

ωω∗ ⊗ ωω∗ = Γ(ω)ΩΩ∗Γ(ω)∗ ≤ Γ(ωω∗).

Therefore a weight inverse could be also defined as ω ∈ V N(G) satisfying (4) and 
(5) instead.

(ii) It follows from (3) that

||ω||4 = ||ωω∗ ⊗ ωω∗|| ≤ ||Γ(ωω∗)|| = ||ω||2,

so that ||ω||2 ≤ 1 and hence a weight inverse is always a contraction.
(iii) In [11] a (bounded below) weight on the dual of G was defined as an (unbounded) 

positive operator w which is affiliated with V N(G) and admits an inverse w−1 ∈
V N(G) such that Γ(w)(w−1⊗w−1) is defined and contractive on a dense subspace, 
i.e. w−1 is a positive weight inverse, in our terminology.

(iv) A weight inverse was considered in [23] as an element in the multiplier algebra 
M(C∗

r (G)) of C∗
r (G) satisfying some additional density conditions. If G is compact, 

M(C∗
r (G)) = V N(G) and our definition coincides with the one in [23].

(v) The notion of unitary dual 2-cocycle on a compact group was introduced by Land-
stad [17] and Wassermann [27] in the study of ergodic actions. In the context of 
quantum groups it was defined by Drinfeld [3]. Their 2-cocycle condition is similar 
and defined as follows:

(I ⊗ Ω)(ι⊗ Γ)(Ω) = (Ω ⊗ I)(Γ ⊗ ι)(Ω). (7)

The cocycle of the form (u ⊗ u)Γ(u)−1 is called a coboundary. The inverse of our 
2-cocycle satisfies (7).
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Example 2.2. Let w be a bounded below weight function on G = R or Z given by 
w(x) = eiγx(1 + |x|)α or w(x) = eiγx+β|x|, α, β > 0, γ ∈ R. It is easy to check that

|w(x + y)| ≤ |w(x)||w(y)|, for all x, y ∈ R,

and moreover that w(x)−1 is bounded. As V N(R) 	 L∞(R) and V N(T ) 	 �∞(Z) via 
the Fourier transform, the image ω of w−1 is a weight inverse on the dual of G.

The above weight inverses can be extended to V N(Rk × Tn−k) by tensoring: ω =
ω1 ⊗ . . .⊗ ωn.

If a group G contains a closed subgroup H isomorphic to Rk ×Tn−k then any weight 
inverse ω on the dual of Rk ×Tn−k can be lifted to V N(G) by considering ωG = ιH(ω), 
where ιH : V N(H) → V N(G) is the injective homomorphism λH(s) �→ λG(s), here λG

and λH are the left regular representations of G and H respectively; the existence of ιH
is due to Herz’s restriction theorem, see for example [14].

For other examples of weights and weight inverses, we refer the reader to [11].
Let A(G) be the unique pre-dual of V N(G). Recall that it can be identified with the 

space of functions on G:

A(G) = {g ∗ ȟ | g, h ∈ L2(G)} ⊂ C0(G),

where ȟ(s) = h(s−1), s ∈ G, and

g ∗ ȟ =
∫

g(t)h(s−1t)dt = 〈λ(s)h, ḡ〉;

A(G) becomes a commutative Banach algebra, usually called the Fourier algebra of G, 
with respect to the pointwise multiplication and the norm given by

‖f‖A(G) = inf ‖g‖2‖h‖2,

where the infimum is taken over all possible decomposition f = g ∗ ȟ, see for example 
[5,16]. The duality between V N(G) and A(G) is given by

(T, u) = 〈Tξ, η〉

for T ∈ V N(G) and u(s) = 〈λ(s)ξ, η〉 = (η̄ ∗ ξ̌)(s) ∈ A(G); here and through the rest 
of the paper we use 〈·, ·〉 to denote the inner product on a Hilbert space and we keep 
notation (·, ·) for duality pairing between M and M∗ when M is a von Neumann algebra.

For T ∈ V N(G) and f ∈ A(G), we let Tf ∈ A(G) be given by

(R, Tf) := (RT, f), for R ∈ V N(G).

The assignment T, f �→ Tf turns A(G) into a left V N(G)-module.
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If ω is a weight inverse, we define

A(G,ω) := ωA(G) = {ωf | f ∈ A(G)} ⊂ A(G)

and call it the Beurling-Fourier algebra of G associated to ω.

Proposition 2.3. A(G, ω) is a Banach algebra with respect to the pointwise multiplication 
and the norm

||ωf ||ω := ||f ||A(G).

Moreover, A(G, ω) is a predual of V N(G) with the pairing given by

(·, ·)ω : V N(G) ×A(G,ω) → C, (8)

(T, ωf)ω = (T, f).

Proof. To see that || · ||ω is a norm, we should only see that it is well defined. In fact, if 
f = η̄ ∗ ξ̌ then

(λ(s), ωf) = 〈λ(s)ωξ, η〉 = 〈ωξ, λ(s−1)η〉, for s ∈ G.

Let U= [λ(s)η | s ∈ G], the closed linear span of λ(s)η, s ∈ G, and let P be the projec-
tion onto U. As U is invariant with respect to V N(G), we have Pω = ωP . Assuming 
now that ωf = 0, we obtain 〈ωξ, λ(s−1)η〉 = 0 for any s ∈ G, and hence ωPξ = Pωξ = 0. 
By (4), Pξ = 0 and hence f(s) = 〈ξ, λ(s−1)η〉 = 0 for any s ∈ G. From (5) it follows 
that A(G, ω) is a commutative Banach algebra; in fact, we have

(ωu)(ωv) = ω(Γ∗(Ω(u⊗ v))), for u, v ∈ A(G),

and

‖(ωu)(ωv)‖ω = ‖Γ∗(Ω(u⊗ v)))‖A(G) ≤ ‖u‖A(G)‖v‖A(G) = ‖ωu‖ω‖ωv‖ω, (9)

where Γ∗ : A(G)⊗̂A(G) → A(G) is the predual of the co-multiplication Γ defined on 
the operator space projective product of A(G)⊗̂A(G) (see [4]). The associativity of the 
product is clear. The completeness of A(G, ω), as well as that it is a predual of V N(G), 
is obvious from it being linearly isometrically isomorphic to A(G). �

We note that the previous proposition was proved in [11] for positive weight inverses. 
Similar arguments can be applied to prove the general case. For the reader’s convenience, 
we have chosen to give its full proof.

The next statement shows that we can restrict ourselves to positive weight inverses.
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Proposition 2.4. If ω is a weight inverse and ω∗ = U |ω∗| is the polar decomposition of 
ω∗, then |ω∗| is a weight inverse and the identity map ωu �→ ωu = |ω∗|(U∗u), u ∈ A(G), 
defines an isometric isomorphism A(G, ω) → A(G, |ω∗|).

Proof. Note that U ∈ V N(G) is unitary by (4). From (5) it is immediate that |ω∗| is 
again a weight inverse. Clearly A(G, ω) = A(G, |ω∗|) as subsets of A(G), and the identity 
is an algebra homomorphism. Moreover

‖ωu‖|ω∗| = ‖|ω∗|(U∗u)‖|ω∗| = ‖U∗u‖A(G) = ‖u‖A(G) = ‖ωu‖ω. �
We will use the following lemma:

Lemma 2.5. If M⊆ B(H) is a von Neumann algebra and a1, a2 ∈ M satisfy

a1M∗ ⊆ a2M∗,

then there is c ∈ M such that a1 = a2c. Moreover, we can assume that ker c = ker a1, 
and ker a2 ⊆ ker c∗, and under these assumptions, c is uniquely determined.

Proof. Let ai = Si|ai|, for i = 1, 2, be the polar decompositions, and let Pi = S∗
i Si, so 

that aiPi = ai. For i = 1, 2, the maps PiM∗ → aiM∗, defined as f �→ aif , are bijective 
linear maps. As a1M∗ ⊆ a2M∗, there is for every f ∈ P1M∗ a unique h(f) ∈ P2M∗ such 
that a1f = a2h(f). Let R(f) = h(f). Clearly R is a linear injective map and moreover 
for b ∈ M, we have R(fb) = R(f)b. Note that PiM∗, i = 1, 2, are closed subspaces of M∗, 
thus Banach spaces. We claim that R is closed: let fn be a sequence such that fn → f

and R(fn) → h as n → ∞. Then

a1f = lim
n→∞

a1fn = lim
n→∞

a2R(fn) = a2h,

so that R(f) = h. As R is defined on the whole P1M∗, it is thus bounded. Extend R to all 
of M∗ ∼= (I − P1)M∗ ⊕ P1M∗ by the formula R(f) = R(P1f). Clearly, for this extension 
we still have a2R(f) = a1f , as well as R(fb) = R(f)b for all b ∈ M. Let R′ : M→ M be 
the dual of R. Then as

(mR′(b), f) = (R′(b), fm) = (b,R(fm)) = (b,R(f)m) = (mb,R(f)) = (R′(mb), f)

for all b, m ∈ M and f ∈ M∗, it follows R′(mb) = mR′(b). Thus with c = R′(I) ∈ M, we 
have R′(b) = bc. We get

(b,R(f)) = (R′(b), f) = (bc, f) = (b, cf), for all b ∈ M and f ∈ M∗,

so that R(f) = cf . It gives a1f = a2R(f) = a2cf , and thus a1 = a2c. Clearly, ker c =
ker a1, ker c∗ ⊇ ker I − P2 = (ker a2)⊥ and that c is the unique element such that 
a1 = a2c with these properties. �
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Proposition 2.6. Let ω1, ω2 be two weight inverses on the dual of G. The inclusion 
A(G, ω1) ⊆ A(G, ω2) implies that there is a ∈ V N(G) such that ω1 = ω2a. Further-
more, we have A(G, ω1) = A(G, ω2) if and only if ω1 = ω2a for an invertible element 
a ∈ V N(G).

Proof. It follows from Lemma 2.5 that if A(G, ω1) ⊆ A(G, ω2), then there is an a ∈
V N(G) such that ω1 = ω2a. Moreover, if actually A(G, ω1) = A(G, ω2), then we get 
a, b ∈ V N(G) such that ω1 = ω2a and ω2 = ω1b. It then follows that ω1(I − ba) = 0
and ω2(I − ab) = 0 and as ker ωi = {0} for i = 1, 2, we get ba = ab = I, so that a is 
invertible. �

Another equivalent model of the Beurling-Fourier algebra, which was given in [11]
for positive weights, is defined as follows. For a weight inverse ω and the corresponding 
2-cocycle Ω define a new multiplication on A(G) by

u ·Ω v = Γ∗(Ω(u⊗ v)), for u, v ∈ A(G). (10)

It follows from (9) that (A(G), ·Ω) is a commutative contractive Banach algebra which 
is isomorphic to A(G, ω), showing that A(G, ω) can be determined by the 2-cocycle Ω
rather than the weight inverse ω. Assume A(G, ω1) = A(G, ω2) and let a ∈ V N(G) be 
the invertible operator such that ω1 = ω2a which exists due to Proposition 2.6. If Ω1
and Ω2 are the corresponding 2-cocycles, then

Γ(a)Ω1 = Ω2(a⊗ a) (11)

and (A(G), ·Ω1) 	 (A(G), ·Ω2). The converse also holds: if Ω1, Ω2 ∈ V N(G × G) are 
2-cocycles that satisfy (11) and correspond to weight inverses ω1 and ω2 respectively, 
then u �→ au, u ∈ A(G), gives the isometric isomorphism (A(G), ·Ω1) 	 (A(G), ·Ω2). To 
see this let u, v ∈ A(G) and x ∈ V N(G). Then

(x, a(u ·Ω1 v)) = (xa, u ·Ω1 v) = (Γ(xa),Ω1(u⊗ v)) = (Γ(x)Γ(a)Ω1, u⊗ v)

= (Γ(x)Ω2(a⊗ a), u⊗ v) = (Γ(x),Ω2(au⊗ av)) = (x, au ·Ω2 av).

If a is not assumed to be invertible, the map u �→ au gives a homomorphism from 
(A(G), ·Ω1) to (A(G), ·Ω2). We note that any 2-cocycle associated with a weight in-
verse is symmetric, that is invariant under the ‘flip’ automorphism a ⊗ b �→ b ⊗ a of 
V N(G)⊗̄V N(G).

We finish this section by defining a representation of (A(G), ·Ω).
Recall the fundamental unitary W ∈ V N(G)⊗̄B(L2(G)) and let f ∈ A(G), f(·) =

〈λ(·)ξ, η〉. Then for x, y ∈ L2(G) we have

〈(f ⊗ ι)(W )x, y〉 = 〈W (ξ ⊗ x), η ⊗ y〉 =
∫

ξ(ts)x(t)η(s)y(t)dtds =

G×G
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=
∫
G

(
∫
G

ξ(ts)η(s)ds)x(t)y(t)dt =
∫
G

〈λ(t)−1ξ, η〉x(t)y(t)dt = 〈Mf̌x, y〉,

where f̌(t) = f(t−1) and Mf̌ is the multiplication operator by f̌ .
For X ∈ B(L2(G) ⊗ L2(G)) write X12 = X ⊗ I and X23 = I ⊗ X for operators 

on L2(G) ⊗ L2(G) ⊗ L2(G) and define X13 similarly. Then W satisfies the pentagonal 
relation

W23W12 = W12W13W23. (12)

For f ∈ A(G) define λΩ(f) = (f ⊗ ι)(WΩ).

Lemma 2.7. The map f �→ λΩ(f) is a representation of (A(G), ·Ω) on B(L2(G)), i.e.

λΩ(f ·Ω g) = λΩ(f)λΩ(g) for all f, g ∈ A(G).

Moreover,

ωλΩ(f) = Mω̌fω, f ∈ A(G). (13)

Proof. Let f , g ∈ A(G) and ξ, η ∈ L2(G). Write ψξ,η for the vector functional given by 
ψξ,η(T ) = 〈Tξ, η〉, T ∈ B(L2(G)). Then

〈λΩ(f ·Ω g)ξ, η〉 = (((f ·Ω g) ⊗ ι)(WΩ), ψξ,η) = ((Γ ⊗ ι)(WΩ),Ω(f ⊗ g) ⊗ ψξ,η)

= ((Γ ⊗ ι)(W )(Γ ⊗ ι)(Ω)(Ω ⊗ I), f ⊗ g ⊗ ψξ,η)
(6)= ((Γ ⊗ ι)(W )(ι⊗ Γ)(Ω)(I ⊗ Ω), f ⊗ g ⊗ ψξ,η)

= (W ∗
12W23W12(ι⊗ Γ)(Ω)(I ⊗ Ω), f ⊗ g ⊗ ψξ,η)

(12)= (W13W23(ι⊗ Γ)(Ω)(I ⊗ Ω), f ⊗ g ⊗ ψξ,η)

= (W13W23W
∗
23Ω13W23Ω23, f ⊗ g ⊗ ψξ,η)

= (W13Ω13W23Ω23, f ⊗ g ⊗ ψξ,η)

= 〈(f ⊗ ι)(WΩ)(g ⊗ ι)(WΩ), ξ, η〉 = 〈λΩ(f)λΩ(g)ξ, η〉,

where the first equality in the last line can be seen on elementary tensors and using then 
linearity and density arguments. In fact, if X = a ⊗ b, Y = c ⊗d, f(s) = 〈λ(s)ξ1, η1〉 and 
g(s) = 〈λ(s)ξ2, η2〉, then

(X13Y23, f ⊗ g ⊗ ψξ,η) = 〈(a⊗ I ⊗ b)(I ⊗ c⊗ d)ξ1 ⊗ ξ2 ⊗ ξ, η1 ⊗ η2 ⊗ η〉
= 〈aξ1, η1〉〈cξ2, η2〉〈bdξ, η〉 = 〈(f ⊗ ι)(X)(g ⊗ ι)(Y )ξ, η〉.

The formula (13) follows from the following calculations



12 O. Giselsson, L. Turowska / Advances in Mathematics 445 (2024) 109671
ωλΩ(f) = (f ⊗ ι)((I ⊗ ω)WΩ) = (f ⊗ ι)(WΓ(ω)Ω)

= (f ⊗ ι)(Wω ⊗ ω) = (ωf ⊗ ι)(W )ω = Mω̌fω. �
3. Complexification of G

3.1. Preliminaries on unbounded operators

We start with some basic material on unbounded operators which will be used in the 
paper. Our main reference is [24].

Let H be a Hilbert space with the inner product 〈·, ·〉. Recall that a linear operator 
T defined on a subspace D(T ) ⊂ H, called a domain of T , is said to be closed if the 
graph of T , {(ξ, Tξ) | ξ ∈ H}, is closed in H⊕ H. Given linear operators T and S, we 
write T ⊂ S if D(T ) ⊂ D(S) and S|D(T ) = T ; we say that S is an extension of T . We 
have T = S if T ⊂ S and S ⊂ T . A linear operator T is called closable if it has a closed 
extension. Clearly, T is closable if and only if the conditions (ξn)n ∈ D(T ), η ∈ H, 
‖ξn‖ → 0 and ‖Tξn − η‖ → 0 imply η = 0. The minimal closed extension of a closable 
T exists and will be denoted by T̄ . We say that a subspace U ⊆ D(T ) is a core for T
if for any ξ ∈ D(T ), there is a sequence (ξn)n ⊂ U, such that ξn → ξ and Tξn → Tξ. 
Equivalently, the subspace {(ξ, Tξ) | ξ ∈ U} ⊆ H⊕ H is dense in the graph of T .

If T is an operator with a dense domain it has a well-defined adjoint operator T ∗ :
D(T ∗) → H, which is always a closed operator. An operator T is called selfadjoint if 
T = T ∗; a selfadjoint operator is positive if it has a nonnegative spectrum. T is essentially 
selfadjoint if T̄ is selfadjoint.

Any selfadjoint T has a spectral measure ET on the σ- algebra B(R) of Borel subsets 
of R, and

T =
∫

specT

tdET (t);

if f is a Borel measurable function, we write f(T ) for the operator

f(T ) =
∫

specT

f(t) dET (t), D(f(A)) = {ξ ∈ H |
∫

specT

|f(t)|2 d(E(t)ξ, ξ) < ∞}.

If T is a closed operator with dense domain, then T ∗T is positive and T has the polar 
decomposition T = U |T |, where |T | = (T ∗T )1/2 and U is a partial isometry; |T |, T and 
U have the identical initial projections.

We say that a closed operator T defined on a dense domain D(T ) ⊆ H is affiliated
with a von Neumann algebra M of B(H) if UT ⊂ TU for any unitary operator U ∈ M′, 
where M′ as usually stands for the commutant of M. Note that if T = U |T | is the polar 
decomposition of T then T is affiliated with M if and only if U ∈ M and |T | is affiliated 
with M, the latter is equivalent that the spectral projections E|T |(Δ), Δ ∈ B(R), of |T |
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belong to V N(G). We denote by V N(G) the set of all affiliated with V N(G) elements. 
We write V N(G)

+
for the set of positive operators in V N(G). If T = T ∗ is affiliated 

with V N(G), i.e. ET (Δ) ∈ V N(G) for any Δ ∈ B(R), then f(T ) ∈ V N(G) for any 
Borel function f on R.

Let A be a linear operator on H. A vector ϕ in H is called analytic for A if ϕ ∈ D(An)
for all n ∈ N and if there exists a constant M (depending on ϕ) such that

‖Anϕ‖ ≤ Mnn! for all n ∈ N.

We write Dω(A) for the set of all analytic vectors of A. If A is selfadjoint with EA(·)
being the spectral measure of A, then EA(Δ)ϕ is analytic for A for any ϕ ∈ H and any 
bounded Δ ∈ B(R), as

‖AnEA(Δ)ϕ‖ ≤ Mn‖ϕ‖,

if Δ ⊂ [−M, M ].
It is known (see e.g. [24, Proposition 10.3.4]) that if T is a symmetric operator, i.e. 

T ⊂ T ∗, with a dense set of analytic vectors, then T is essentially selfadjoint.
If U and V are subspace of H we write U� V for the algebraic tensor product of 

the subspaces; H1 ⊗ H2 is the usual Hillbertian tensor product of two Hilbert spaces H1
and H2.

If T1, T2 are closed densely defined operator with the domains D(T1) and D(T2) ⊂ H

respectively, then the operator T1⊗T2 with domain D(T1) �D(T2) is closable. In fact, if 
ξn → 0, where ξn ∈ D(T1) �D(T2), and (T1⊗T2)ξn → η then for any f ∈ D(T ∗

1 ) �D(T ∗
2 ), 

we have 〈(T1 ⊗ T2)ξn, f〉 = 〈ξn, (T ∗
1 ⊗ T ∗

2 )f〉 → 0, giving 〈η, f〉 = 0. As each Ti is closed, 
D(T ∗

i ) is dense in H and hence D(T ∗
1 ) � D(T ∗

2 ) is dense in H⊗ H, showing that η = 0
and that T1 ⊗ T2 is closable. Unless otherwise stated we will write T1 ⊗ T2 for the 
corresponding closure.

We say that two selfadjoint operators T1, T2 strongly commute, if

ET1(Δ1)ET2(Δ2) = ET2(Δ2)ET1(Δ1), for all Δ1,Δ2 ∈ B(R),

where ETi
(·) is the spectral measure of Ti. We define a product spectral measure ET1 ×

ET2 : B(R2) → B(H) by letting ET1 × ET2(Δ1 × Δ2) = ET1(Δ1)ET2(Δ2) for Borel 
measurable rectangle Δ1 × Δ2. If f : R2 → C is Borel measurable we set

f(T1, T2) =
∫
R2

f(x1, x2) dET1 × ET2(x1, x2).

It is a selfadjoint operator if f is real-valued.
Let Ti be selfadjoint operators, i = 1, 2. Then T1⊗1 and 1 ⊗T2 are selfadjoint operators 

that commute strongly. Then T1 ⊗ T2 is selfadjoint and



14 O. Giselsson, L. Turowska / Advances in Mathematics 445 (2024) 109671
T1 ⊗ T2 = f(T1 ⊗ 1, 1 ⊗ T2),

where f(x1, x2) = x1x2. Observe that T1⊗T2 is essentially selfadjoint on D(T1) �D(T2), 
as Dω(T1) � Dω(T2) is a dense subset of H1 ⊗ H2 and consists of analytic vectors for 
T1 ⊗ T2.

For closed densely defined operators S1, S2 with polar decomposition Si = Ui|Si|, 
i = 1, 2, we have S1⊗S2 = (U1⊗U2)(|S1| ⊗|S2|) is the polar decomposition of the closed 
operator S1 ⊗ S2.

3.2. λ-complexification of a locally compact group

Let G be a locally compact group and let W be the fundamental multiplicative unitary 
on L2(G × G) implementing the coproduct Γ on V N(G). We can extend Γ to V N(G)
by defining

Γ(T ) = W ∗(1 ⊗ T )W, for T ∈ V N(G).

Clearly, the unbounded operator Γ(T ) is closed. If T ∗ = T and ET (·) is the spectral 
measure of T , then both operators 1 ⊗ T and Γ(T ) are selfadjoint with 1 ⊗ ET (·) and 
Γ ◦ ET (·) being the corresponding spectral measures. In particular,

Γ(T ) =
∫
R

t d(Γ ◦ ET (t)).

If T = U |T | is the polar decomposition of T , Γ(T ) = Γ(U)Γ(|T |) is the polar decompo-
sition of Γ(T ).

Definition. By the λ-complexification GC,λ of G we shall mean the set of all non-zero 
(unbounded) operators T ∈ V N(G) such that

Γ(T ) = T ⊗ T. (14)

We note that GC,λ ∩ V N(G) = {T ∈ V N(G)| Γ(T ) = T ⊗ T, T �= 0} = λ(G), see e.g. 
[25, Chapter 11, Theorem 16] giving an embedding of G into GC,λ.

Let

Λ = {α ∈ V N(G) | α∗ = −α, α⊗ 1 + 1 ⊗ α = Γ(α)}. (15)

As for α ∈ Λ, the operators iα⊗ 1 and 1 ⊗ iα are selfadjoint and strongly commute, the 
sum iα⊗ 1 + 1 ⊗ iα, defined via the functional calculus, gives a selfadjoint operator; in 
(15) we require it to be equal to the selfadjoint operator Γ(iα).
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If α ∈ Λ, we will define exp zα, z ∈ C, through functional calculus, i.e.

exp zα = exp (−iz(iα)) =
∫
R

exp (−izt) dEiα(t).

Proposition 3.1. For α ∈ Λ and z ∈ C, exp zα ∈ GC,λ.

Proof. It follows from the functional calculus and definition of Γ that

Γ(exp zα) = W ∗(1 ⊗ exp zα)W = W ∗
∫
R

exp (−izt) dE1⊗iα(t)W

=
∫
R

exp (−izt) dEW∗(1⊗iα)W (t) = exp zΓ(α)

= exp z(α⊗ 1 + 1 ⊗ α)

= exp (zα⊗ 1) exp (1 ⊗ zα) = (exp zα⊗ 1)(1 ⊗ exp zα)

= exp zα⊗ exp zα. �
Proposition 3.2. The map α ∈ Λ �→ exp iα is a bijection onto GC,λ ∩ V N(G)

+
.

Proof. That exp iα is positive and affiliated with V N(G) follows from the functional 
calculus.

Let T ∈ GC,λ ∩ V N(G)
+

. Let P be the projection onto the closure of the range of T . 
Then Γ(P ) = P ⊗ P and hence, as noted above, P ∈ λ(G). Therefore, as T �= 0, P = I

and hence the range of T is dense and T it, t ∈ R, is a well-defined unitary operator. 
Using arguments similar to those in the proof of the previous proposition we obtain

Γ(T it) = W ∗(1 ⊗ T it)W = Γ(T )it = (T ⊗ T )it = T it ⊗ T it, for t ∈ R.

Let A =
∫
R+ ln t dET (t). Then T it = exp itA and

exp itΓ(A) = Γ(exp itA) = exp itA⊗ exp itA = exp it(A⊗ 1 + 1 ⊗A), for t ∈ R.

By Stone’s theorem about infinitesimal generator of a strongly continuous unitary group, 
we obtain Γ(A) = A ⊗ 1 + 1 ⊗A. Set α = −iA. Then T = exp iα. �
Proposition 3.3.

GC,λ = {λ(s) exp iα | α ∈ Λ, s ∈ G}.

Proof. As it was noticed before, if T = U |T | is the polar decomposition of T ∈ GC,λ then 
Γ(T ) = Γ(U)Γ(|T |) and T ⊗ T = (U ⊗U)|T | ⊗ |T | are the polar decompositions of Γ(T )
and T ⊗ T respectively. Hence, by uniqueness of the polar decomposition, the equality 
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Γ(T ) = T ⊗T implies Γ(U) = U ⊗U and Γ(|T |) = |T | ⊗|T |. As λ(G) = {λ(s) | s ∈ G} is 
precisely the family of non-zero bounded operators in GC,λ, it gives U = λ(s) for some 
s ∈ G. The statement now follows from Proposition 3.2. �

Let G be a connected Lie group and g its Lie algebra with the exponential map 
expG : g → G. Let π : G → B(Hπ) be a unitary representation of G. A vector ϕ ∈ Hπ

is called a C∞-vectors for π if the map s → π(s)ϕ from the C∞-manifold G to Hπ is 
a C∞-mapping. We write D∞(π) for the set of C∞-vectors for π. For X ∈ g we define 
the operator dπ(X) with domain D∞(π) by

dπ(X)ϕ = d
dtπ(expG (tX))ϕ|t=0, for ϕ ∈ D∞(π).

It is known that idπ(X) is essentially self-adjoint. We denote its self-adjoint closure by 
i∂π(X) which is the infinitesimal generator of the strongly continuous one-parameter 
unitary group t �→ π(expG(tX)), i.e.

π(expG (tX)) = exp (t∂π(X)).

Proposition 3.4. Let G be a connected Lie group with Lie algebra g. Then Λ =
{∂λ(X) | X ∈ g} and GC,λ = {λ(s) exp (i∂λ(X)) | s ∈ G, X ∈ g}.

Proof. If α ∈ Λ then {exp (tα)| t ∈ R} is a strongly continuous one parameter group in 
λ(G) ⊂ V N(G). Moreover,

〈exp (tα), η̄ ∗ ξ̌〉 = 〈exp (tα)ξ, η〉, for ξ, η ∈ L2(G),

and {exp (tα)| t ∈ R} is continuous in the weak∗ topology on V N(G) with the weak∗-
limit w∗− limt→0 exp (tα) = 1. Since λ : G → λ(G) ⊂ V N(G) is a homeomorphism when 
V N(G) carries weak∗ topology it follows that λ−1(exp tα) is a continuous one-parameter 
subgroup of G. Therefore there exists X ∈ g such that λ−1(exp (tα)) = exp (tX) and 
λ(exp (tX)) = exp (tα), t ∈ R, giving ∂λ(X) = α and

Λ ⊂ {∂λ(X) | X ∈ g}.

To see the reverse inclusion, we note that ∂λ(X) ∈ V N(G), Γ(exp (t∂λ(X))) =
exp (tΓ(∂λ(X))) and

exp (tΓ(∂λ(X))) = exp (t∂λ(X)) ⊗ exp (t∂λ(X)), for t ∈ R.

Since limt→0 t
−1[exp (tV )ϕ − ϕ] = V ϕ for any closed skew adjoint operator V and ϕ ∈

D(V ), we can easily obtain that ∂λ(X) ∈ Λ. �
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Remark. Our definition is motivated by the work of McKennon [21] and Cartwright 
and McMullen [1], where they developed an abstract Lie theory for general, not nec-
essarily Lie, compact groups. If we choose representatives πj : G → B(Hj) of the 
isomorphism classes of irreducible (finite-dimensional) unitary representations of G and 
identify V N(G) with the �∞-sum of B(Hj), then V N(G) =

∏
j B(Hj) 	 Trig(G)†, where 

Trig(G)† is the linear dual of the span of coefficients of irreducible unitary representa-
tions of G. In this case we have that GC,λ coincides with the complexification GC from 
[1,21]. We have that GC is a group and as G 	 {X ∈ V N(G) | Γ(X) = X ⊗X, X �= 0}
([25]), one has a Cartan decomposition GC 	 G · exp iΛ. If G is a compact connected 
Lie group then GC = GC,λ coincides with the well-known construction of the universal 
complexification of G due to Chevalley and the Lie algebra of GC is the complexification 
gC of the Lie algebra g 	 Λ of G, where the usual Lie bracket [X, Y ] = XY − Y X is 
considered in Λ. For instance TC 	 C∗ and (SU(n))C 	 SL(n, C).

The concept of complexification was later generalised from compact to general locally 
compact groups in [22] by McKennon, where the group W ∗-algebra W ∗(G) was used 
instead of V N(G). Our construction is an adaptation of McKennon’s idea to the group 
von Neumann algebra setting. We have chosen this approach as it fits better our purpose 
to describe the spectrum of Beurling-Fourier algebras. As for the compact group case 
McKennon’s complexification GC admits a factorisation GC = Gγ · G+

C, where Gγ is 
the image of G under the canonical monomorphism γ from G to the group of unitary 
elements of W ∗(G) (compare this to the factorisation in Proposition 3.4). However unlike 

the compact case, the unboundedness of elements in G+
C and also GC,λ∩V N(G)

+
causes 

a problem in considering GC and GC,λ as groups, see [22, section 4]. A relation to 
the universal complexification of G, when G is a Lie group, is also unclear in general. 
However, in many interesting examples considered in [11] we have GC,λ = λC(Gu

C), 
where Gu

C is the universal complexification of G and λC is the extension of the left 
regular representation to Gu

C; the equality means that for any ϕ ∈ GC,λ there exists 
g ∈ Gu

C such that ϕ = λC(g), see the discussion in [11, section 2.3]; in those cases one 
also has the Cartan decomposition

Gu
C 	 G · expC(ig),

where expC is the extension of the exponential map to the complexification gC of the 
Lie algebra g of G. It seems an interesting question to investigate the group structure 
of GC,λ but it diverges from the main purpose of this paper.

4. The spectrum of Beurling-Fourier algebra and complexification

In this section we establish sufficient conditions in terms of groups and weight inverses 
for the inclusion of the Gelfand spectrum of A(G, ω) into the λ-complexification GC,λ of 
G, generalising some earlier results from [20] and [11].
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4.1. Point-spectrum correspondence

Let φ : A(G, ω) → C be a character of A(G, ω). By the duality (8), there is a unique 
σ ∈ V N(G) such that for any ωu ∈ A(G, ω) we have φ(ωu) = (σ, ωu)ω = (σ, u). The 
multiplicativity of φ gives

σ ⊗ σ = Γ(σ)Ω, (16)

and moreover, every σ ∈ V N(G) satisfying (16) gives rise to a unique point in the 
spectrum spec A(G, ω). In fact, for u, v ∈ A(G),

φ((ωu)(ωv)) = (σ, (ωu)(ωv))ω = (σ, ωΓ∗(Ω(u⊗ v)))ω

= (σ,Γ∗(Ω(u⊗ v))) = (Γ(σ)Ω, u⊗ v);

on the other hand

φ(ωu)φ(ωv) = (σ, ωu)ω(σ, ωv)ω = (σ, u)(σ, v) = (σ ⊗ σ, u⊗ v),

giving (16).
We can thus identify spec A(G, ω) as the set of all non-zero elements σ ∈ V N(G)

satisfying (16), i.e.

spec A(G,ω) = {σ ∈ V N(G) | Γ(σ)Ω = σ ⊗ σ, σ �= 0}.

Note that spec A(G, ω) depends on the 2-cocycle Ω rather than the weight inverse ω. 
Moreover, by (16), for any σ ∈ A(G, ω)

σσ∗ ⊗ σσ∗ = Γ(σ)ΩΩ∗Γ(σ)∗ ≤ Γ(σσ∗),

thus satisfying condition (3) in the definition of a weight inverse. It is a question whether 
σ also satisfies (4). We will see in this section that in many cases (though we conjecture 
all) the elements in spec A(G, ω) are again weight inverses.

We let S be the antipode of V N(G); this is an anti-isomorphism of V N(G) given by 
S(λ(s)) = λ(s−1), s ∈ G. If W is the multiplicative unitary and w ∈ B(L2(G))∗, then

S((ι⊗ w)(W ∗)) = (ι⊗ w)(W ). (17)

We refer to [6] for background on the theory of Hopf-von-Neumann algebras but warn 
that our notations may differ from those in [6].

Throughout the rest of this section, we use H for L2(G) and write ψξ,η to denote the 
normal functional on B(H) given by ψξ,η(x) = 〈xξ, η〉, x ∈ B(H).
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Lemma 4.1. Let σ ∈ spec A(G, ω). Then

ψξ,ξ̃(S(ι⊗ ψσ∗η,η̃(Ω∗W ∗))) = 〈(1 ⊗ σ∗)W (S(σ∗) ⊗ 1)ξ ⊗ η, ξ̃ ⊗ η̃〉,

for any ξ, η, ξ̃, η̃ ∈ H.

Proof. From (17) and Ω∗Γ(σ∗) = σ∗ ⊗ σ∗, we have

ψξ,ξ̃(S(ι⊗ ψσ∗η,η̃(Ω∗W ∗))) = ψξ,ξ̃(S(ι⊗ ψη,η̃(Ω∗W ∗(1 ⊗ σ∗))))

= ψξ,ξ̃(S(ι⊗ ψη,η̃(Ω∗Γ(σ∗)W ∗))) = ψξ,ξ̃(S(ι⊗ ψη,η̃(σ∗ ⊗ σ∗W ∗)))

= ψξ,ξ̃(S(σ∗(ι⊗ ψη,η̃((1 ⊗ σ∗)W ∗)))) = ψξ,ξ̃(S(σ∗(ι⊗ ψη,ση̃(W ∗))))

= ψξ,ξ̃(S(ι⊗ ψη,ση̃(W ∗))S(σ∗)) = ψξ,ξ̃((ι⊗ ψη,ση̃(W ))S(σ∗))

= ψξ,ξ̃ ⊗ ψη,ση̃(W (S(σ∗) ⊗ 1)) = ψξ,ξ̃ ⊗ ψη,η̃((1 ⊗ σ∗)W (S(σ∗) ⊗ 1))

= 〈(1 ⊗ σ∗)W (S(σ∗) ⊗ 1)ξ ⊗ η, ξ̃ ⊗ η̃〉. �
Proposition 4.2. Let G be a locally compact group and let σ ∈ spec A(G, ω). Assume that 
σ∗(H) ∩ ω∗(H) �= {0}. Then

S(ω)ω = S(σ)σ.

Remark. It has been known for compact groups ([20]) and some Lie groups with certain 
weights ([11]) that the operators σω−1, σ ∈ spec A(G, ω), are “points” of the complex-
ification GC. From this, the claim of the proposition becomes intuitively quite clear. 
Formally, if there is an element T ∈ GC such that σ = Tω then, as S(T ) = T−1 (the 
antipode “inverts” the elements of G and GC), we would have S(σ)σ = S(Tω)Tω =
S(ω)T−1Tω = S(ω)ω.

Proof. Let η and ζ in H be such that σ∗ζ = ω∗η �= 0. By Lemma 4.1, we have

(1 ⊗ ω∗)W (S(ω∗) ⊗ 1)ξ ⊗ ζ = (1 ⊗ σ∗)W (S(σ∗) ⊗ 1)ξ ⊗ η

for any ξ ∈ H.
Multiplying both hand sides of the equality from the left by Ω∗W ∗ and using the 

equality Ω∗Γ(σ)∗ = σ∗ ⊗ σ∗ which holds for all σ ∈ spec A(G, ω) and in particular for 
ω, we conclude that

ω∗S(ω∗)ξ ⊗ ω∗η = σ∗S(σ∗)ξ ⊗ σ∗ζ, for all ξ ∈ H,

and hence ω∗S(ω)∗ = σ∗S(σ)∗. �
Remark. The following formal calculations support the idea that the above proposition 
might be true for any σ ∈ spec A(G, ω).
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Consider M = (S ⊗ ι)(WΩ)WΩ. From (5) it follows that (I ⊗ ω)WΩ = W (ω ⊗ ω), 
and hence (I ⊗ ω)(S ⊗ ι)(WΩ) = (S(ω) ⊗ I)W ∗(I ⊗ ω). We then calculate

(I ⊗ ω)M = (S(ω) ⊗ I)W ∗(I ⊗ ω)WΩ = (S(ω) ⊗ I)W ∗W (ω ⊗ ω)

= (S(ω)ω) ⊗ ω = (I ⊗ ω)(S(ω)ω ⊗ I).

As kerω = {0} we get M = (S(ω)ω) ⊗ I. Let now σ ∈ spec A(G, ω) be arbitrary. 
Similarly,

(I ⊗ σ)M = (S(σ)σ) ⊗ σ

and hence (S(σ)σ) ⊗ σ = (S(ω)ω) ⊗ σ. Therefore, S(σ)σ = S(ω)ω.
The calculations are only formal as S is not a completely bounded map in general 

and hence S ⊗ ι is not defined on the whole V N(G)⊗̄B(H). By [7, Proposition 1.5], S
is completely bounded if and only if G is virtually abelian, i.e. has an abelian subgroup 
of finite index. Consequently, for such G, S(σ)σ = S(ω)ω for any σ ∈ spec A(G, ω).

Corollary 4.3. Let σ ∈ spec A(G, ω). If σ∗(H) ∩ ω∗(H) �= {0} then kerσ = {0}.

Proof. This follows from Proposition 4.2, as kerσ ⊆ kerS(σ)σ = kerS(ω)ω = {0}. �
A natural question is when σ ∈ spec A(G, ω) is again a weight inverse. Clearly,

σσ∗ ⊗ σσ∗ = Γ(σ)ΩΩ∗Γ(σ∗) ≤ Γ(σσ∗)

and hence the first condition (3) of being a weight inverse is fulfilled. The same arguments 
as in Corollary 4.3 show that if S(ω)ω = S(σ)σ then kerσ = {0}. An issue is to obtain 
kerσ∗ = {0}. We will adopt the extra condition ker Ω∗ = {0} as a way to guarantee it.

Lemma 4.4. If ker Ω∗ = {0}, then kerσ∗ = {0} for every σ ∈ spec A(G, ω).

Proof. Let σ ∈ spec A(G, ω). As ker Ω∗ = 0, we have

ker σ∗ ⊗ σ∗ = ker Ω∗Γ(σ∗) = ker Γ(σ∗).

Thus, if we let P denote the projection onto the closure of the range of σ, then P ∈
V N(G) and P satisfies

P ⊗ P = Γ(P ). (18)

As P is a projection, [25, Chapter 11, Theorem 16] gives either P = λ(e) = I or P = 0. 
Having σ ∈ spec A(G, ω) and hence non-zero, we obtain P = I and therefore kerσ∗ =
{0}. �
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Here comes the main result of this section that establishes a connection between (a 
part of) the spectrum spec A(G, ω) and GC,λ.

Theorem 4.5. Let ω ∈ V N(G) be a weight inverse on the dual of G and let σ ∈
spec A(G, ω) be such that σ∗(H) ∩ ω∗(H) �= {0}. Assume ker Ω∗ = {0}. Then

(i) σ is a weight inverse,
(ii) S(σ)σ = S(ω)ω,

(iii) the linear operator

Tσ : ωξ �→ σξ, for ξ ∈ H,

is closable with the closure in GC,λ.

Proof. (i) follows from Corollary 4.3 and Lemma 4.4, together with the earlier observa-
tion that σσ∗ ⊗ σσ∗ ≤ Γ(σσ∗).

(ii) follows from Proposition 4.2.
(iii) The operator Tσ is well-defined as kerω = {0}. Let ξn ∈ Hbe such that ωξn → 0

and σξn → y. Then for any ξ ∈ H,

〈y, S(σ∗)ξ〉 = lim
n→∞

〈S(σ)σξn, ξ〉 = lim
n→∞

〈S(ω)ωξn, ξ〉 = 0.

Therefore y ⊥ S(σ∗)(H). By Lemma 4.4, kerσ∗ = {0}. This yields kerS(σ) = {0} (since 
if P is the range projection for A ∈ V N(G), then S(P ) is the range projection for S(A∗)). 
Therefore S(σ∗) H is dense in H and hence y = 0. Consequently, Tσ is closable.

Write Tσ also for the closure. Then Tσ is affiliated with V N(G), and even more, it 
is affiliated with the von Neumann algebra N(ω, σ) generated by ω and σ. In fact, let 
V ∈ N(ω, σ)′ be a unitary. Then for any ξ ∈ H of the form ξ = ωη, we have

V Tσξ = V ση = σV η = TσωV η = TσV ξ

and hence V ∗TσV = Tσ, showing the statement.
The only claim left to prove is that Γ(Tσ) = Tσ ⊗ Tσ. Observe first that

(ω ⊗ ω)(H⊗H) = Γ(ω)Ω(H⊗H) ⊆

⊆ Γ(ω)(H⊗H) ⊆ D(Γ(Tσ)),

and

Γ(Tσ)Γ(ω)Ω(H�H) = Γ(Tσω)Ω(H�H) = Γ(σ)Ω(H�H) =

= (σ ⊗ σ)(H�H) = (Tσ ⊗ Tσ)(ω ⊗ ω)(H�H).
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We have

Tσ ⊗ Tσ|ω(H)	ω(H) = Γ(Tσ)|ω(H)	ω(H).

By convention, Tσ ⊗Tσ is the closure of the operator Tσ �Tσ defined on D(Tσ) � D(Tσ)
or, equivalently, on ω(H) � ω(H), as ω(H) is a core of Tσ. Hence

Γ(Tσ) ⊃ Tσ ⊗ Tσ.

To see the equality, we must prove that Γ(Tσ)|ω(H)	ω(H) = Γ(Tσ). To do this we note 
first that Γ(ω)(H⊗ H) is a core for Γ(Tσ) and hence the linear subspace

{(x, Γ(Tσ)x) | x ∈ Γ(ω)(H⊗H)} (19)

is dense in the graph of Γ(Tσ). Therefore, it is enough to see that the closure of

{(x,Γ(Tσ)x) | x ∈ Γ(ω)Ω(H�H)} = {(x, Γ(Tσ)x) | x ∈ ωH�ωH)}

contains (19).
As Ω(H� H) is dense in H⊗ H, we have that for any Γ(ω)ξ, ξ ∈ H⊗ H, there exists 

(ξn)n ⊂ H� H such that Ωξn → ξ and hence Γ(ω)Ωξn → Γ(ω)ξ. Moreover,

Γ(Tσ)Γ(ω)Ωξn = Γ(σ)Ωξn → Γ(σ)ξ = Γ(Tσ)Γ(ω)ξ,

showing the claim. �
We remark that

σ∗(H) ∩ ω∗(H) �= {0} (20)

for σ ∈ spec A(G, ω) means that the domain D(T ∗
σ ) of the operator T ∗

σ = (σω−1)∗ =
(ω∗)−1σ∗ is not zero. The theorem says that in this case D(T ∗

σ ) is large enough to be 
dense in H, as the latter is equivalent to the closability of Tσ.

In what follows we shall use the notation Tσ for the closed operator T̄σ when there is 
no risk of confusion.

We derive now a number of consequences from the previous theorem. We assume that 
ker Ω∗ = {0}.

Corollary 4.6. For σ ∈ spec A(G, ω) as in Theorem 4.5, there is a natural isometric 
isomorphism

A(G, σ) ∼= A(G,ω),

σf �→ ωf.
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Proof. This is immediate from the definitions of the norm and product on the corre-
sponding spaces:

||ωf ||ω = ||f || = ||σf ||σ, for f ∈ A(G),

(ωg)(ωh) = ωΓ∗(Ω(g ⊗ h)), (σg)(σh) = σΓ∗(Ω(g ⊗ h)), for g, h ∈ A(G). �
We remark that the above corollary is also clear from the discussion after the proof 

of Proposition 2.6.

Corollary 4.7. For σ ∈ spec A(G, ω) we have σ∗(H) ∩ω∗(H) �= {0} if and only if σ = Tω

for T ∈ GC,λ such that ω(H) ⊂ D(T ). Consequently, if σ∗(H) ∩ ω∗(H) �= {0} for any 
σ ∈ spec A(G, ω) then

spec A(G,ω) ⊂ {Tω | T ∈ GC,λ, ω(H) ⊂ D(T )}.

Proof. The “only if” part follows from Theorem 4.5. If σ = Tω for T ∈ GC,λ then 
σ∗ ⊃ ω∗T ∗ giving the “if” part. �
Remark 4.8. In [11] the dual A(G, ω)∗ is identified with the weighted space V N(G, ω)
given by

V N(G,ω) := {Aω−1 | A ∈ V N(G)}

with the norm ‖Aω−1‖V N(G,ω) = ‖A‖ via

(Aω−1, ωu) := (A, u).

Then the spectrum of A(G, ω) is considered as a subset of V N(G, ω) instead of V N(G). 
Clearly we have the isometry Φ : V N(G) → V N(G, ω), A �→ Aω−1. With this identifi-
cation we have that if σ∗(H) ∩ ω∗(H) �= {0} for any σ ∈ spec A(G, ω), then

spec A(G,ω) 	 {T ∈ GC,λ| Tω ∈ V N(G)} ⊂ GC,λ. (21)

Next, we prove a ‘partial converse’ of Theorem 4.5, which shows that every element 
in GC,λ can be seen as coming from a weight inverse.

Proposition 4.9. If T ∈ GC,λ then there exists a weight inverse ω ∈ V N(G) and σ ∈
spec A(G, ω) such that T = Tσ.

Proof. Let T ∈ GC,λ and U |T | be its polar decomposition. Then U = λ(s) for some 
s ∈ G and Γ(|T |) = |T | ⊗ |T |. Hence Γ(|T |it) = |T |it ⊗ |T |it and |T |it determines a 
strongly continuous representation ψ : R → λ(G) ⊆ B(H) by setting ψ(t) = |T |it. By 
the standard theory, the map
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f̂(x) =
∫
R

f(t)eixt dt �→
∫
R

f(t)ψ(t) dt ∈ V N(G), for f ∈ L1(R),

extends to a ∗-homomorphism ϕ : C∗(R) ∼= C0(R) → V N(G); we have ϕ(f) =
f(ln(|T |)). The image of C0(R) is clearly non-degenerate, and hence we can extend 
ϕ in a unique way to a homomorphism ϕ : Cb(R) → V N(G). If we let ϕ⊗ ϕ denote the 
extension of the map ϕ ⊗ ϕ : C0(R) ⊗ C0(R) → V N(G)⊗̄V N(G) to Cb(R ×R), then it 
is easy to see from the uniqueness of the extensions that the diagram

Cb(R×R)
ϕ⊗ϕ

V N(G)⊗̄V N(G)

Cb(R)
ϕ

ΓR

V N(G)

Γ

(22)

is commutative; here we write ΓR for the restriction of the coproduct to Cb(R).
Now if we let ω = ϕ(e−2|x|), then ω2⊗ω2 ≤ Γ(ω2), and the non-degeneracy of ϕ gives 

ker ω = {0}. Thus ω is a weight inverse in V N(G). Moreover, the 2-cocycle associated 
to ω is given by

Ω = ϕ⊗ ϕ(e2|x+y|−2|x|−2|y|). (23)

If we let σ = λ(s)ϕ(ex−2|x|), then it is easy to see from (23) that Γ(σ)Ω = σ ⊗ σ and 
hence σ ∈ spec A(G, ω). Moreover, the closure of the unbounded operator

ωξ = e−2| ln |T ||ξ �→ σξ = λ(s)eln |T |−2| ln |T ||ξ, for ξ ∈ H,

is given by T . �
Next we derive some further properties of spec A(G, ω) ∩GC,λω.

Lemma 4.10. Let σ ∈ spec A(G, ω) ∩GC,λω. Then there exists a unique s ∈ G such that 
β = λ(s)∗σ ∈ spec A(G, ω) ∩GC,λω and

|Tσ| = Tβ .

Proof. Taking the polar decomposition Tσ = U |Tσ|, we conclude, as in the proof of 
Proposition 3.3, that U = λ(s) for a unique s ∈ G. Clearly we have, β = λ(s)∗σ ∈
spec A(G, ω), and β∗(H) ∩ω∗(H) = σ∗(H) ∩ω∗(H) �= {0}. It follows from Theorem 4.5
that the closure of

{(ωξ, βξ) | ξ ∈ H} ⊆ H⊕H

is the graph of the positive operator |Tσ|; on the other hand the closure is the graph of 
the closed operator Tβ. �
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Proposition 4.11. Let σ ∈ spec A(G, ω) ∩GC,λω. If σ = λ(s)β is the decomposition from 
Lemma 4.10. Then ψ(t) = λ(s)T t

βω is a continuous function

ψ : [0, 1] → spec A(G,ω) ∩GC,λω, ψ(0) = λ(s)ω, ψ(1) = σ.

Proof. By the functional calculus, we have ω(H) ⊆ D(1 + Tβ) ⊆ D(T t
β) for every 

t ∈ [0, 1]. Moreover, as x2t ≤ 1 + x2 for x ∈ R+, we have

0 ≤ ω∗T 2t
β ω ≤ ω∗ω + ω∗T 2

βω = ω∗ω + β∗β.

It follows that T t
βω is bounded for every t ∈ [0, 1], and hence T t

βω and λ(s)T t
βω belong to 

V N(G), and the function t �→ T t
βω is strongly continuous; to see the latter we observe 

that if Pn = E([0, n]), where E(·) is the spectral measure of Tβ, then t �→ T t
βPnωξ is 

continuous for every ξ ∈ H. Moreover,

‖T t
β(Pnωξ − ωξ)‖2 = 〈T t

β(Pnωξ − ωξ), T t
β(Pnωξ − ωξ)〉

= 〈T 2t
β (Pnωξ − ωξ), (Pnωξ − ωξ〉 ≤ 〈T 2

β (Pnωξ − ωξ), Pnωξ − ωξ〉
= ‖Tβ(Pnωξ − ωξ)‖2 = ‖PnTβωξ − Tβωξ‖2 → 0

as Pn → I strongly. Basic approximation arguments give now that T t
βωξ must depend 

continuously on t ∈ [0, 1] for each ξ ∈ H. From this we conclude that t �→ ψ(t) is 
continuous as the map from [0, 1] to V N(G) 	 A(G, ω)∗ with the weak∗ topology.

It follows from the functional calculus that Γ(T t
β) = T t

β ⊗T t
β for all t ∈ [0, 1], and thus

Γ(T t
βω)Ω = Γ(T t

β)(ω ⊗ ω) = (T t
βω) ⊗ (T t

βω)

so that T t
βω and hence λ(s)T t

βω are in spec A(G, ω).
As the kernel of Tβ is trivial, there is n ∈ N such that the orthogonal projection 

P = E([ 1
n , n]) is non-zero. The restriction of T t

β to the invariant subspace P H is then 
invertible for every t ∈ [0, 1] and as Pλ(s)∗ψ(t) = PT t

βPω, t ∈ [0, 1], we have

ψ(t)∗(λ(s)P H) = ω∗(PT t
βP H) = ω∗(P H),

giving ψ(t)∗(H) ∩ ω∗(H) ⊃ ω∗(P H) �= {0}. By Corollary 4.7, we obtain ψ(t) ∈
spec A(G, ω) ∩GC,λω for all t ∈ [0, 1]. �

The last results concern a deformation retraction of weight inverses.

Lemma 4.12. Assume that a weight inverse ω is positive. For every s ∈ [0, 1], the operator 
ωs is again a weight inverse.

Proof. By the Löwner-Heinz inequality: if 0 ≤ A ≤ B, then also 0 ≤ As ≤ Bs for 
s ∈ [0, 1]. Applying this to the inequality (3), we get
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ω2s ⊗ ω2s ≤ Γ(ω2s), for all s ∈ [0, 1].

The conditions on the kernel(s) are easy to see. �
Proposition 4.13. Let ω be a positive weight inverse. If Ωs is the 2-cocycle associated to 
ωs, s ∈ [0, 1], then for 0 ≤ s ≤ t ≤ 1 the following hold

(i)

Γ(ωs)Ωt = Ωt−s(ωs ⊗ ωs); (24)

(ii) if ker Ω∗
t = {0}, then kerΩ∗

s = {0};
(iii) the map spec A(G, ωs) → spec A(G, ωt), given as σ �→ σωt−s, is injective and 

maps spec A(G, ωs) ∩GC,λω
s to spec A(G, ωt) ∩GC,λω

t.

Proof. (i) The 2-cocycle Ωt−s is the unique operator which satisfies Γ(ωt−s)Ωt−s =
ωt−s ⊗ ωt−s. Hence, since kerωs = {0}, it follows that Ωt−s(ωs ⊗ ωs) is the unique 
operator that satisfies Γ(ωt−s)Ωt−s(ωs ⊗ ωs) = ωt ⊗ ωt. As Γ(ωt−s)Γ(ωs)Ωt = ωt ⊗ ωt, 
we obtain (24).

(ii) This follows now directly from (24).
(iii) If σ ∈ spec A(G, ωs), then by (24)

Γ(σωt−s)Ωt = Γ(σ)Ωs(ωt−s ⊗ ωt−s) = (σωt−s) ⊗ (σωt−s),

i.e. σωt−s ∈ spec A(G, ωt). If σ∗(H) ∩ ωs(H) �= {0} then

(ωt−sσ)∗(H) ∩ (ωt(H) = ωt−s(σ∗(H) ∩ ωs(H)) �= {0},

as the kernel of ωt−s is trivial. The injectivity of σ �→ σωt−s follows from the fact that 
the range of ωt−s is dense in H. �
4.2. Conditions guaranteeing complexification

In this section we will investigate conditions on the group G and the weight inverse ω
for which the inclusion (21) of the spectrum of A(G, ω) into the complexification GC,λ

holds true.
First, we present some sufficient conditions for ker Ω∗ = {0}.
Recall that if H is a closed subgroup of G and λH and λG are the left regular repre-

sentations of H and G respectively, then there is a canonical injective ∗-homomorphism 
ιH : V N(H) → V N(G) given by λH(s) �→ λG(s), for s ∈ H ([14]).

We say that a weight inverse ω on the dual of G is central if ω is in the centre of 
V N(G).

Proposition 4.14. Let ω be a weight inverse on the dual of G. Then ker Ω∗ = {0} holds 
provided that any of the following is satisfied:
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1. G is compact;
2. ω = ιH(ωH), where ωH is a central weight inverse on the dual of a closed subgroup H

of G.

Proof. (1) It is known that if G is compact then V N(G)⊗̄V N(G) 	 V N(G × G) can 
be identified with the �∞ sum of matrix algebras Mnj

(C). Therefore ker X = {0} ⇔
ker X∗ = {0} for any X ∈ V N(G ×G). This gives ker Ω∗ = {0}, as Ω is injective.

(2) Since ker Ω = {0} it is enough to see that

Ω∗Ω = ΩΩ∗,

as in this case ker Ω = ker Ω∗. Assume first that H = G. Then being central, ω is a 
normal operator and therefore so is Γ(ω). Moreover, as ω ⊗ ω ∈ Z(V N(G × G)) (the 
centre of V N(G ×G)), we have

Γ(ω)ΩΓ(ω) = (ω ⊗ ω)Γ(ω) = Γ(ω)(ω ⊗ ω) = Γ(ω)2Ω.

Hence, as ker Γ(ω) = {0}, we have Γ(ω)Ω = ΩΓ(ω). By the Fuglede-Putnam theorem it 
follows that also Γ(ω)∗Ω = ΩΓ(ω)∗. A calculation now yields

Γ(ω)ΩΩ∗Γ(ω)∗ = ωω∗ ⊗ ωω∗ = ω∗ω ⊗ ω∗ω

= Ω∗Γ(ω)∗Γ(ω)Ω = Ω∗Γ(ω)Γ(ω)∗Ω = Γ(ω)Ω∗ΩΓ(ω)∗,

and we get the claim by using again ker Γ(ω) = {0}.
The proof for general H is similar, if we take into account that Γ ◦ιH = (ιH⊗ιH) ◦ΓH , 

where ΓH is the comultiplication on V N(H). �
The next simple lemma gives a sufficient condition for σ∗(H) ∩ ω∗(H) �= {0} to hold 

for any σ ∈ spec A(G, ω), where H= L2(G). We assume that ker Ω∗ = {0}.

Lemma 4.15. If there is a subspace K ⊂ H such that V N(G)(K) ⊂ K and ω|K is 
invertible, then σ∗(H) ∩ ω∗(H) �= {0} for any σ ∈ spec A(G, ω).

Proof. As K is invariant and ω|K is invertible, ω∗(K) = K. We have

σ∗(H) ∩ ω∗(H) ⊃ σ∗(K) ∩ ω∗(K) = σ∗(K),

where the latter is non-zero by Lemma 4.4. �
Using Lemma 4.15 we can now list groups and weights for which the spectrum of the 

associated Beurling-Fourier algebra is in the complexification GC,λ, meaning that we 
identify A(G, ω)∗ with V N(G, ω) as in Remark 4.8; with a slight abuse of notation we 
write spec A(G, ω) ⊂ GC,λ.
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(1) G is compact and ω is arbitrary. If G is compact then it is known that the left 
regular representation λ on G is a direct sum of irreducible (finite-dimensional) 
representations and hence there exists a finite-dimensional invariant subspace K⊆
H. As kerω = {0}, ω is invertible on K. By Proposition 4.14, ker Ω∗ = {0}. By 
Corollary 4.7, spec A(G, ω) ⊂ GC,λ. In [20] and [11] the result was derived from 
the “abstract Lie” theory developed in [1,21] showing that the multiplicative linear 
functionals on Trig(G), the algebra of coefficient functions with respect to irreducible 
representations, can be identified with the complexification GC,λ. As Trig(G) ⊂
A(G, ω), the statement is clear.

(2) G is an extension of a compact group by abelian group and ω is a weight inverse 
such that ker Ω∗ = {0}. If K is a non-trivial compact normal subgroup, let PK ∈
B(L2(G)) be the projection onto the (non-trivial) subspace of functions which are 
constant on the cosets xK, x ∈ G. As PK commutes with λG(g), g ∈ G, the subspace 
PKL2(G) is invariant with respect to λG, and as G/K is abelian and PKf are 
constant on the cosets, λG(g1g2)PKf = λG(g2g1)PKf , i.e. the von Neumann algebra 
generated by λG(g)PK , g ∈ G, is commutative. As ωK := ω|PKL2(G) belongs to the 
von Neumann algebra, there exists a subspace K (e.g. K = E|ωK |([ε, ∞))PKL2(G)
for some ε > 0) such that V N(G) K⊂ K and ω|K is invertible.

(3) G is a separable Moore group and ω is arbitrary. If G is a Moore group, i.e. any 
irreducible representation of G is finite dimensional, then G is a type I group with 
the unitary dual Ĝ being a standard Borel space. Moreover, there is a standard 
Borel measure μ and a μ-measurable cross section ξ → πξ from Ĝ to concrete 
irreducible unitary representation acting on Hξ such that λ is quasi-equivalent to ∫ ⊕
Ĝ

πξdμ(ξ) so that V N(G) 	 L∞(Ĝ, dμ(ξ); B(Hξ)). With this identification we have 

ω =
∫ ⊕
Ĝ

ωξdμ(ξ). Let for ε > 0

Δε = ∩n{ξ ∈ Ĝ | 〈|ωξ|xn(ξ), xn(ξ)〉 ≥ ε‖xn(ξ)‖2},

where (xn)n is a sequence such that (xn(ξ))n is total in Hξ for any ξ. As kerω =
kerω∗ = {0}, there exists a null set M ⊂ Ĝ such that kerωξ = kerω∗

ξ = {0} for any 

ξ ∈ Ĝ\M . Then, as Hξ is finite-dimensional, for each ξ ∈ Ĝ\M , we have |ωξ| ≥ cξIξ
for some cξ > 0. Hence μ(Δε) > 0 for some ε > 0 and Pε =

∫
Ĝ
χΔε

Iξ dμ(ξ) is a 
non-zero projection onto invariant subspace K such that |ω||K ≥ ε; ω|K is invertible. 
As ker Ω = {0} and G × G is Moore, we can argue as above to conclude that 
ker Ω∗ = {0}. Therefore, by Corollary 4.7, we have the inclusion of the spectrum of 
A(G, ω) into GC,λ as in the previous paragraph.

(4) G is a separable type I unimodular group and ω =
∫ ⊕
Ĝ

ωξ dμ(ξ) with ωξ invertible on 
a set N⊂ Ĝ of positive measure. We define an invariant subspace K such that ω|K
is invertible as above and get the statement of Corollary 4.7 in this case as well if 
ker Ω∗ = {0}. Central weights fall in this class. Any weight on G such that the set 
N= {ξ ∈ Ĝ | dim Hξ < ∞} has positive μ-measure also satisfies that condition.
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Recall that a locally compact group G is called an [IN]-group if it has a compact 
conjugation-invariant neighbourhood of the identity. It is called a [SIN]-group if it has a 
base of conjugate-invariant neighbourhoods of e. We note that any [SIN]-group is [IN]. 
Typical [SIN]-groups are discrete, compact and abelian groups.

The following result is a part of [26, Proposition 4.2].

Proposition 4.16. G is an [IN]-group if and only if V N(G) admits a normal tracial state.

Corollary 4.17. If G is an [IN]-group and ω ∈ V N(G) is a weight inverse such that 
ker Ω∗ = {0}, then spec A(G, ω) ⊂ GC,λ.

Proof. As ker Ω∗ = {0} if follows from Lemma 4.4 that for all σ ∈ spec A(G, ω) we have 
σ(H) is dense in H. Consider the following two inequalities

σ∗σ ≤ σ∗σ + ω∗ω, ω∗ω ≤ σ∗σ + ω∗ω. (25)

Letting R = (σ∗σ+ω∗ω) 1
2 , we can deduce from (25), similar to the proof of Lemma 2.1, 

that there exist U, V ∈ V N(G) such that

UR = σ, V R = ω. (26)

Moreover, we have

R(U∗U + V ∗V )R = σ∗σ + ω∗ω = R2,

so that the density of the range of R (implied by the density of the range of ω) gives

U∗U + V ∗V = I. (27)

In particular, we obtain that U∗U and V ∗V commute.
Assume towards a contradiction that σ∗(H) ∩ ω∗(H) = {0}. Then by (26) and the 

injectivity of R we can deduce that also U∗(H) ∩ V ∗(H) = {0}. Thus

(U∗U)(V ∗V ) = (V ∗V )(U∗U) = 0,

so that (27) implies that U, V are partial isometries. As ker Ω∗ = {0}, it follows from 
Lemma 4.4 that kerσ∗ = kerω∗ = {0}, and by (26), kerU∗ = kerV ∗ = {0}. Thus U∗

and V ∗ are isometries in V N(G) such that (27) holds, i.e. (U, V ) is a representation 
of the Cuntz algebra O2 in V N(G). This contradicts the claim that V N(G) admits a 
tracial state φ:

1 = φ(I) = φ(U∗U + V ∗V ) = φ(U∗U) + φ(V ∗V ) = φ(UU∗) + φ(V V ∗) = 2. �
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Proposition 4.18. If G is a [SIN]-group then spec A(G, ω) ⊂ GC,λ for any weight inverse 
ω.

Proof. By [2, 13.10.5], G is a [SIN]-group if and only if V N(G) is finite. Therefore, 
as ker Ω = {0}, we have ker Ω∗ = {0}, giving, by Lemma 4.4, kerσ∗ = {0} and 
hence by finiteness of V N(G), kerσ = {0} for any σ ∈ specA(G, ω). As both (σ∗)−1

and (ω∗)−1 are densely defined and affiliated with V N(G), and the set of affiliated 
elements is an algebra, we obtain that σ∗(L2(G)) ∩ ω∗(L2(G)) �= {0} as the domain of 
(σ∗)−1 + (ω∗)−1 ∈ V N(G). Therefore, specA(G, ω) ⊂ GC,λ, by Corollary 4.7. �

We remark that V N(G) is finite for all Moore groups G and hence any such G is 
[SIN].

Corollary 4.19. If G is discrete, then spec A(G, ω) = G for any weight inverse ω.

Proof. G clearly does not contain any non-trivial image of a homomorphism R → G, 
and we can deduce that the complexification is trivial, i.e. GC,λ = G. Moreover, as G
is a [SIN]-group, by Proposition 4.18 the spectrum of A(G, ω) is the smallest possible, 
that is G. �

The statement can be extended to totally disconnected [SIN]-groups which are pro-
discrete, i.e. admits arbitrarily small compact open normal subgroups, as it was pointed 
out to us by the referee.

An important class of weights that has been studied in the literature are weights 
extended from closed abelian or compact subgroups, see [11, Proposition 3.25]. The next 
statements show that for all such weights we have the inclusion of the spectrum into 
the complexification. We first recall the construction of a so called central weight on the 
dual of a compact group following [11], see also [20].

If H is compact, we have the quasi-equivalence λ 	 ⊕
π∈Ĥ

π which gives V N(H) 	
⊕

π∈Ĥ
Mdπ

, where dπ is the dimension of the representation space Hπ. We have also the 
Plancherel theorem giving the isomorphism

L2(H) 	 ⊕
2

π∈Ĥ

√
dπS

2
dπ

with 〈ξ, η〉 =
∑

π∈Ĥ
dπtr(ξ̂(π)η̂(π)∗), for ξ, η ∈ L2(H), where S2

n refers to Hilbert-
Schmidt class on �2n and ξ̂(π) =

∫
H
ξ(s)π(s−1)ds. Recall also that for A = (A(π))

π∈Ĥ
∈

V N(H) we have

Γ(A) = ⊕π,π′
[
U∗
π,π′(⊕σ⊆π⊗π′A(σ))Uπ,π′

]
where for σ, π, π′ ∈ Ĥ, the notation σ ⊆ π ⊗ π′ means that σ is a subrepresentation of 
π ⊗ π′, and Uπ,π′ is the unitary appearing in the irreducible decomposition of π ⊗ π′.
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If ωH is a central positive weight inverse then ωH 	 ⊕
π∈Ĥ

ω(π)Iπ for a function 

ω : Ĥ → (0, +∞) which satisfies ω(π)ω(ρ) ≤ ω(σ) for any σ, π, ρ ∈ Ĥ such that 
σ ⊆ π ⊗ ρ, see [11, 3.3.2]. We refer the reader to [20] and [11, section 5] for numerous 
examples of central weight inverses.

Recall the conjugate representation π̄ of π ∈ Ĥ which is defined as follows: we denote 
the linear dual space of Hπ by Hπ̄ and for A ∈ B(Hπ), let At in B(Hπ̄) be its linear 
adjoint; for s ∈ H we define π̄(s) = π(s−1)t; it is a unitary irreducible representation on 
Hπ̄ and ¯̄π = π, as equivalence classes.

For the antipode S and the central weight ωH we have S(ωH) 	 ⊕
π∈Ĥ

ω(π̄)Iπ. Indeed, 
we observe first that

〈S(ωH)ξ, η〉 = 〈ωH η̄, ξ̄〉 =
∑
π∈Ĥ

ω(π)tr(ˆ̄η(π) ˆ̄ξ(π)∗).

Because of the unitary equivalence ˆ̄ξ(π)∗ =
∫
H
ξ(s)π(s)ds ∼

∫
H
ξ(s)π̄(s−1)tds and 

ˆ̄η(π) =
∫
H
η̄(s)π(s−1)ds ∼

∫
H
η̄(s)(π̄(s−1)∗)tds with the same unitary operator, we 

obtain

〈S(ωH)ξ, η〉 =
∑
π∈Ĥ

ω(π)tr(ξ̂(π̄)η̂(π̄)∗) =
∑
π∈Ĥ

ω(π̄)tr(ξ̂(π)η̂(π)∗),

that shows the statement.
If σ ⊆ π ⊗ ρ then ρ ⊆ π̄ ⊗ σ which follows from [15, 2.30, 2.34(b,c)]; this gives 

ω(σ)ω(π̄) ≤ ω(ρ) which together with the expression for the antipode gives the inequality

(S(ωH) ⊗ I)Γ(ωH) ≤ I ⊗ ωH , (28)

the arguments for this are similar to that given in [11, 3.3.2].
If H is abelian, the weight inverse condition for positive weight inverse ωH can be also 

equivalently written as (28) since in this case

ωH(s−1)ωH(st) ≤ ωH(t) for almost all s, t ∈ Ĥ.

Theorem 4.20. Let H ⊆ G be a closed abelian or compact subgroup of G and ιH :
V N(H) → V N(G) be the canonical injective homomorphism. Let ωH ∈ V N(G) be a 
central weight inverse. If ω := ιH(ωH), then every σ ∈ spec A(G, ω) is a weight inverse 
and

S(σ)σ = S(ω)ω. (29)

Moreover, spec A(G, ω) ⊂ GC,λ.

Proof. Let Ω be the 2-cocycle associated to ω. By Proposition 4.14 ker Ω∗ = {0} and 
hence kerσ∗ = {0} for every σ ∈ spec A(G, ω) by Lemma 4.4. To show that σ is a weight 
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inverse, it is enough to see the equality (29), which will imply kerσ = {0}. To prove (29), 
let us without any loss of generality assume that ωH is positive. Then ωH satisfies (28). 
It is clearly preserved by ιH giving

(S(ω) ⊗ I)Γ(ω) ≤ I ⊗ ω.

As in the proof of Lemma 2.1 we can conclude that there is a unique element Φ ∈
V N(G)⊗̄V N(G) such that

(I ⊗ ω)Φ = (S(ω) ⊗ I)Γ(ω).

If W is the fundamental multiplicative unitary, the latter equality gives

(I ⊗ ω)ΦW ∗ = (S(ω) ⊗ I)W ∗(I ⊗ ω). (30)

Let ξ, η, ξ̃, η̃ ∈ H. We retain the notation ψx,y for the normal functional ψx,y(T ) =
〈Tx, y〉, T ∈ B(H). By Lemma 4.1,

ψξ,ξ̃(S(ι⊗ ψσ∗η,η̃(Ω∗W ∗))) = 〈(1 ⊗ σ∗)W (S(σ∗) ⊗ 1)ξ ⊗ η, ξ̃ ⊗ η̃〉, (31)

for any σ ∈ spec A(G, ω). In particular, it holds for ω which combined with (30) gives

ψξ,ξ̃(S(ι⊗ ψω∗η,η̃(Ω∗W ∗))) = 〈WΦ∗ξ ⊗ ω∗η, ξ̃ ⊗ η̃〉. (32)

Fix σ ∈ spec A(G, ω). As the range of ω∗ is dense in H, there exists {ηn}n ⊂ H such 
that ω∗ηn → σ∗η. From (31) and (32) we obtain

〈(1 ⊗ σ∗)W (S(σ∗) ⊗ 1)ξ ⊗ η, ξ̃ ⊗ η̃〉 = ψξ,ξ̃(S(ι⊗ ψσ∗η,η̃(Ω∗W ∗)))

= lim
n→∞

ψξ,ξ̃(S(ι⊗ ψω∗ηn,η̃(Ω∗W ∗))) = lim
n→∞

〈WΦ∗ξ ⊗ ω∗ηn, ξ̃ ⊗ η̃〉

= 〈WΦ∗ξ ⊗ σ∗η, ξ̃ ⊗ η̃〉,

giving

(I ⊗ σ)ΦW ∗ = (S(σ) ⊗ I)W ∗(I ⊗ σ).

Reasoning as in the remark after the proof of Proposition 4.2, we have that the operator

M := (ΦW ∗)WΩ

satisfies

(I ⊗ σ)M = (S(σ) ⊗ I)W ∗(I ⊗ σ)WΩ (33)

= (S(σ) ⊗ I)Γ(σ)Ω = S(σ)σ ⊗ σ,
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for every σ ∈ spec A(G, ω). As ω ∈ spec A(G, ω) and kerω = {0}, it tells that M =
S(ω)ω ⊗ I and (I ⊗ σ)M = (S(ω)ω) ⊗ σ which together with (33) give the equality 
S(ω)ω = S(σ)σ. It now implies σ∗(H) ∩ ω∗(H) �= {0} and hence by Proposition 4.14
and Corollary 4.7, we get the claimed inclusion for the spectrum. �
Theorem 4.21. Let H ⊆ G be a closed subgroup, ωH ∈ V N(H) be a weight inverse and 
ω := ιH(ωH). Assume that specA(G, ω) ⊂ GC,λ. Then every σ ∈ spec A(G, ω) is of the 
form

σ = λG(s)ιH(σ̃),

for some s ∈ G and σ̃ ∈ spec A(H, ωH).

Proof. The condition specA(G, ω) ⊂ GC,λ implies that any σ ∈ specA(G, ω) ad-
mits a factorisation σ = Tω for some T ∈ GC,λ; hence σ∗ ⊃ ω∗T ∗ showing that 
σ∗L2(G) ∩ω∗L2(G) �= {0}. By Proposition 4.2, we get S(σ)σ = S(ω)ω = ιH(S(ωH)ωH) ∈
ιH(V N(H)). Moreover, as T ∗ = (σω−1)∗ = (ω−1)∗σ∗ and kerT ∗ = {0}, kerσ∗ = {0}
showing that σ is a weight inverse. It follows that

Γ(S(σ)σ)Ω = Γ(S(σ))(σ ⊗ σ) ∈ (ιH⊗̄ιH)(V N(H)⊗̄V N(H)), (34)

and is independent of particular σ ∈ spec A(G, ω). Applying a slice map ι ⊗f , f ∈ A(G), 
to (34) and using the fact that the elements of the form fσ form a dense subspace in 
A(G) (as the range of σ is dense) we obtain

(ι⊗ f)(Γ(S(σ)))σ ∈ ιH(V N(H)), for all f ∈ A(G). (35)

Consider the subspace

A= {(ι⊗ f)(Γ(S(σ))) | f ∈ A(G)}w
∗

⊆ V N(G)

(the weak∗ closure). By (35), we have Aσ ⊆ ιH(V N(H)). Let IA ⊆ A(G) be the prean-
nihilator of A, i.e.

IA = A⊥ := {f ∈ A(G) | 〈A, f〉 = 0 ∀A ∈ A}.

We claim that IA is equal to the subspace

{f ∈ A(G) | (ι⊗ f)(Γ(S(σ))) = 0},

and indeed, this follows from the action of A(G) on V N(G) being commutative. More-
over, the same argument shows that IA ⊆ A(G) is a non-trivial closed ideal, as σ �= 0. 
By duality, we have
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A= (A⊥)⊥ = {x ∈ V N(G) | f(x) = 0, ∀f ∈ IA}.

As IA �= A(G), there is at least one s ∈ G such that λG(s)∗ annihilates IA, and hence 
λG(s)∗ ∈ A. It follows that

λG(s)∗σ ∈ ιH(V N(H)),

and moreover that the pre-image σ̃ = ι−1
H (λG(s)∗σ) ∈ spec A(H, ωH). This gives the 

statement of the theorem. �
Combining methods in the proofs of Theorem 4.20 and Theorem 4.21 we obtain a 

generalisation of Theorem 4.20 to weights induced from non-central weights of compact 
subgroups of G.

Theorem 4.22. Let H ⊆ G be a compact subgroup, and ωH ∈ V N(H) be a weight inverse 
on the dual of H. Then with ω = ιH(ωH), we have

spec A(G,ω) ⊆ GC,λ.

Moreover, every σ ∈ spec A(G, ω) is of the form λG(s)ιH(σ̃) for some s ∈ G and σ̃ ∈
spec A(H, ωH).

Proof. Let F ⊂ Ĥ be finite and set P̃F to be the central projection in V N(H) given by 
P̃F = ⊕π∈ĤχF (π)Iπ, where χF is the indicator function of F . Set

CF = {π ∈ Ĥ |π ⊆ π1 ⊗ π2, π1, π2 ∈ F}.

Then using arguments as in [11, 3.3.2], we obtain P̃F ⊗ P̃F ≤ Γ(P̃CF
) and hence (P̃F ⊗

P̃F )Γ(P̃CF
) = P̃F ⊗ P̃F , which gives

(P̃F ⊗ P̃F )W ∗(I ⊗ P̃CF
) = (P̃F ⊗ P̃F )W ∗.

As (P̃F ⊗ P̃F )W ∗ ∈ V N(H) ⊗ (⊕π∈FMdπ
) we can apply S ⊗ ι to the last equality to 

obtain

(I ⊗ P̃F )W (S(P̃F ) ⊗ P̃CF
) = (I ⊗ P̃F )W (S(P̃F ) ⊗ I)

and

Γ(P̃F )(S(P̃F ) ⊗ P̃CF
) = Γ(P̃F )(S(P̃F ) ⊗ I). (36)

In V N(H ×H), we consider the element

Φ̃∗ = Γ(ω∗
H)(S(ω∗

H) ⊗ I)(I ⊗ (ω∗
H)−1).
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Note that for ξ ∈ L2(H), η ∈ D((ω∗
H)−1),

Γ(P̃F )Φ̃∗(S(P̃F )ξ ⊗ η) = Γ(P̃F )Γ(ω∗
H)(S(ω∗

H) ⊗ I)(S(P̃F )ξ ⊗ (ω∗
H)−1η)

= Γ(ω∗
H)Γ(P̃F )(S(P̃F ) ⊗ I)(S(ω̃∗)ξ ⊗ (ω∗

H)−1
η)

= Γ(ω∗
H)Γ(P̃F )(S(P̃F ) ⊗ P̃CF

)(S(ω∗
H)ξ ⊗ (ω∗

H)−1
η)

= Γ(ω∗
H P̃F )(S(ω∗

H P̃F )ξ ⊗ (ω∗
H)−1

P̃CF
η)

from which we conclude that Γ(P̃F )Φ̃∗(S(P̃F ) ⊗ I) extends to a bounded operator in 
V N(H ×H).

Now let PF = ιH(P̃F ), PCF
= ιH(P̃CF

) and Φ∗ = (ιH ⊗ ιH)(U)(ιH ⊗ ιH)(|Φ̃∗|) ∈
V N(G×G), where Φ̃∗ = U |Φ̃∗| is the polar decomposition of Φ̃∗, and (ιH ⊗ ιH)(|Φ̃∗|)
is the extension of ιH ⊗ ιH to the positive operator |Φ̃∗| ∈ V N(H ×H), see [11, Section 
2].

Applying [11, Proposition 2.1] we can conclude that |Φ̃∗|(I ⊗ ω̃∗) ∈ V N(H ×H) and 
ιH ⊗ ιH(|Φ̃∗|)(I ⊗ ω∗) ∈ V N(G ×G), which show that Φ∗(I ⊗ ω∗) is bounded and

Φ∗(I ⊗ ω∗) = Γ(ω∗)(S(ω∗) ⊗ I).

Let Ω be the 2-cocycle associated with ω. As in the proof of Theorem 4.20 we have for 
σ ∈ spec A(G, ω)

ψξ,ξ̃(S(ι⊗ ψσ∗η,η̃(Ω∗W ∗))) = 〈(1 ⊗ σ∗)W (S(σ∗) ⊗ 1)ξ ⊗ η, ξ̃ ⊗ η̃〉, (37)

and

ψξ,ξ̃(S(ι⊗ ψω∗η,η̃(Ω∗W ∗))) = 〈WΦ∗(ξ ⊗ ω∗η), ξ̃ ⊗ η̃〉, (38)

where ξ, η, ξ̃, η̃ ∈ H.
Take ξ ∈ S(PF )L2(G) and η̃ ∈ PFL

2(G). Then the right-hand side of (38) becomes

〈W (Γ(PF )Φ∗(S(PF ) ⊗ I))(ξ ⊗ ω∗η), ξ̃ ⊗ η̃〉.

Fix σ ∈ spec A(G, ω). As the range of ω∗ is dense in H, there exists {ηn}n ⊂ H such 
that ω∗ηn → σ∗η. From (37) and (38) together with Γ(PF )Φ∗(S(PF ) ⊗I) ∈ V N(G ×G), 
we get

〈(1 ⊗ σ∗)W (S(σ∗) ⊗ 1)ξ ⊗ η, ξ̃ ⊗ η̃〉 = ψξ,ξ̃(S(ι⊗ ψσ∗η,η̃(Ω∗W ∗)))

= lim
n→∞

ψξ,ξ̃(S(ι⊗ ψω∗ηn,η̃(Ω∗W ∗)))

= lim
n→∞

〈WΓ(PF )Φ∗(S(PF ) ⊗ I)ξ ⊗ ω∗ηn, ξ̃ ⊗ η̃〉

= 〈WΓ(PF )Φ∗(S(PF ) ⊗ I)ξ ⊗ σ∗η, ξ̃ ⊗ η̃〉
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giving

(Γ(PF )Φ∗(S(PF ) ⊗ I))(I ⊗ σ∗) = Γ(PF )Γ(σ∗)(S(σ)∗S(PF ) ⊗ I). (39)

Let M be in the commutant of ιH(V N(H))⊗̄V N(G). Clearly, M commutes with 
the left-hand side of (39) and as P̃F → I weak∗, we obtain that it commutes with 
Γ(σ∗)(S(σ)∗ ⊗ I). Therefore,

Γ(σ∗)(S(σ)∗ ⊗ I) ∈ ιH(V N(H))⊗̄V N(G). (40)

If we let f ∈ V N(G)∗ be arbitrary, then it follows from (40)

S(σ)(ι⊗ f)(Γ(σ)) ∈ ιH(V N(H)).

We now proceed in a similar way as in the proof of Theorem 4.21 and let

A= {(ι⊗ f)(Γ(σ)) | f ∈ A(G)}w
∗

.

We can argue as before that the ideal IA := A⊥ �= A(G) and hence there is s ∈ G

such that f(s) = 0 for all f ∈ IA. As I⊥A = A, λG(s) ∈ A and therefore S(σ)λG(s) ∈
ιH(V N(H)) and λG(s−1)σ ∈ ιH(V N(H)). It follows that there is an σ̃ ∈ spec A(H, ωH)
such that λG(s−1)σ = ιH(σ̃), and hence

σ = λG(s)ιH(σ̃). (41)

As spec A(H, ωH) ⊆ HC,λ, we conclude that spec A(G, ω) ⊆ GC,λ. �
Let G be a connected simply connected Lie group and g its associated Lie algebra. 

We also fix the symbol H and h for a connected closed Lie subgroup of G and its Lie 
algebra respectively. We write λG and λH for the left regular representations of G and 
H respectively. The next statement generalizes [11, Theorem 5.9, Theorem 6.19, Theo-
rem 7.11, Theorem 8.20 and Theorem 9.11], where it was proved for compact connected 
Lie groups with a weight induced from a closed Lie subgroup, the Heisenberg group, the 
reduced Heisenberg group, the Euclidean motion group on R2, and the simply connected 
cover of it with weights induced from abelian connected Lie subgroups. We note that the 
proofs of the latter theorems from [11] required lengthy and specific arguments for each 
particular group. We also answer [11, Question 11.4] as our technique does not require 
the existence and density of entire vectors for the left regular representation which was 
essential to prove the mentioned results in [11].

Theorem 4.23. Let G be a connected simply connected Lie group and let H be either 
abelian or compact connected closed subgroup of G. Suppose ωH is a positive weight 
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inverse on the dual of H and ω = ιH(ωH) is the extended weight inverse on the dual of 
G. Then

spec A(G,ω) 	 {λG(s) exp i∂λG(X) | s ∈ G,X ∈ h, exp i∂λH(X) ∈ spec A(H,ωH)}.

Proof. By Theorem 4.20, Theorem 4.22 and the remark after Lemma 4.15 we have

spec A(G,ω) ⊂ GC,λ,

and hence by Proposition 3.4 for any σ ∈ spec A(G, ω) there is a unique s ∈ G and 
X ∈ g such that Ran(ω) ⊂ D(exp i∂λG(X)), exp i∂λG(X)ω is bounded and

(σ, u) = (λG(s) exp i∂λG(X)ω, u)ω

for all u ∈ A(G, ω). By Theorem 4.21 and Theorem 4.22, we have that

λG(s) exp i∂λG(X)ω = λG(t)ιH(σ̃)

for some σ̃ ∈ spec A(H, ωH) and t ∈ G. By assumption of the theorem, there exist s̃ ∈ H

and X̃ ∈ h such that and σ̃ = λH(s̃) exp i∂λH(X̃). As ιH(exp i∂λH(X̃)) = exp i∂λG(X̃), 
we obtain by applying [11, Proposition 2.1] that ιH(σ̃) = λG(s̃) exp i∂λG(X̃) from which 
we get the inclusion “⊂”.

Conversely, if exp i∂λH(X) ∈ spec A(H, ωH), then exp i∂λG(X)∈ spec A(G, ιH(ωH)), 
which follows from [11, Proposition 2.1]. �
Example 4.24. Consider the “ax + b”-group that can be represented as the group G of 
matrices:

G =
{
g =

(
a b

0 a−1

)
| a > 0, b ∈ R

}
.

It is known to be the semidirect product of the subgroups

A =
{(

a 0
0 a−1

)
| a > 0

}
and B =

{(
1 b

0 1

)
| b ∈ R

}
.

The Lie algebra of G is generated by H and E given by

H =
(

1/2 0
0 −1/2

)
and E =

(
0 1
0 0

)

that satisfy [H, E] = E.
We have the one parameter subgroups A = {exp tH | t ∈ R} and B = {exp sE | s ∈

R}. The unitary dual of G can be described as follows:
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Ĝ = {σ±} ∪ {χr : r ∈ R},

where χr is a one-dimensional representation for r ∈ R and σ± are two infinite-dimen-
sional representations defined on L2(R) given as

σ±(g)f(x) = exp (±isex)f(x + t)

χr(g) = eitr

for g = exp sE exp tH. Moreover, we have that{
∂σ±(H)f = f ′

∂σ±(E)f(x) = ±iexf(x)

We have the following quasi-equivalence of the left regular representation λ:

λ 	 σ+ ⊕ σ−,

and V N(G) 	 B(L2(R)) ⊕B(L2(R)) (see [10, chapter 4.3] and [9, chapter 3.8]).
For a bounded below weight function w : B̂ 	 R → (0, ∞), write Mw−1 for the 

multiplication operator on L2(R) by the function w−1 ∈ L∞(R) and consider ˜Mw−1 =
F−1Mw−1F∈ V N(R) 	 V N(B), where F is the Fourier transform. Let ω = ιB(˜Mw−1)
be the extended weight inverse. Then, by [11, Proposition 3.26], ω ∼ (ω(σ+), ω(σ−)), 
where ω(σ±)ξ(x) = w−1(∓ex)ξ(x). By Theorem 4.23,

spec A(G,ω) 	 {λG(g) exp i∂λG(X) | g ∈ G,X = sE, esx/w(x) ∈ L∞(R)}.

In particular, if w(x) = β|x|, then

spec A(G,ω) 	 {exp (t∂λG(H)) exp (s∂λG(E)) | t ∈ R, |Im s| ≤ ln β}.

Similarly, we can start with a bounded below weight w̃ : Â 	 R → (0, ∞) and consider 
ω̃ = ιA(˜Mw−1). We have ω̃(σ±) = F−1w̃−1(−x)F and if w̃ = β̃|x], then

spec A(G, ω̃) 	 {λG(g) exp i∂λG(sH) | g ∈ G, s ∈ R, |s| ≤ ln β̃}
= {exp (t∂λG(E)) exp (s∂λG(H)) | t ∈ R, |Im s| ≤ ln β̃}.

We note that by [13] the left regular representation does not admit a dense subset 
of entire vectors, the fact that was an obstacle in [11] for the study of the spectrum 
of A(G, ω). The density of the set Hw(λ) of entire vectors was also important for the 
identification of A(G, ω) as a subset of the complexification GC of G: letting λC(expX) =
exp ∂λ(X), X ∈ gC, one obtains a representation of GC on Hw(λ), see [13, Corollary 2.2]; 
in general and in particular for the “ax + b”-group, it seems there is no natural way for 
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λ to be continued to a global representation of the complexified group and hence to see 
GC,λ as a group.

We refer the reader to [11] for other specific examples of weights and precise descrip-
tions of the spectrum of the associated Beurling-Fourier algebras (Examples 6.21, 7.13 
and 8.22).

5. Some remarks and open questions

In this section, we list open questions and make some remarks. The most pressing 
question that we left unanswered is of course whether we can extend the point spectrum 
correspondence to general locally compact groups. Namely,

Question 5.1. Does specA(G, ω) ⊂ GC,λ hold for any locally compact group G and any 
weight inverse ω?

Let Ω be the 2-cocycle, corresponding to ω. Whether we can answer the above question 
positively seems to rely on whether the following statements are true:

(i) ker Ω∗ = {0};
(ii) S(σ)σ = S(ω)ω holds for all σ ∈ spec A(G, ω);

(iii) σ∗(H) ∩ ω∗(H) �= {0} for any σ ∈ spec A(G, ω);
(iv) any σ ∈ spec A(G, ω) is a weight inverse.

We have the implication (ii) ⇒ (iii), as

σ∗S(σ)∗ξ = ω∗S(ω)∗ξ ∈ σ∗(H) ∩ ω∗(H), for all ξ ∈ H, (42)

and as kerω∗ = kerS(ω)∗ = {0}, thus also kerω∗S(ω)∗ = {0}, we obtain that the 
subspace σ∗(H) ∩ω∗(H) is non-trivial. By Corollary 4.7, (i) and (ii) give the embedding 
specA(G, ω) ⊂ GC,λ; Theorem 4.5 shows that (i) and (iii) imply (ii) and (iv).

As it was noticed in Section 2 the definition of the product in A(G, ω) depends on the 
2-cocycle Ω rather than the weight inverse ω, and A(G, ω) 	 A(G, Ω), where A(G, Ω) is 
A(G) (as a Banach space) with the modified product

f ·Ω g = Γ∗(Ω(f ⊗ g)), for f, g ∈ A(G).

We note that the 2-cocycle Ω associated with a weight inverse is always symmetric, i.e. 
invariant with respect to the flip automorphism on V N(G)⊗̄V N(G),

Question 5.2. Can one develop a similar theory for A(G, Ω) with general (symmetric) 2-
cocycle Ω? What are the conditions on Ω that guarantee the existence of a weight inverse 
ω such that Γ(ω)Ω = ω ⊗ ω?
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More specific questions are:

Question 5.3. For which symmetric 2-cocycles Ω is the spectrum of A(G, Ω) non-empty?

It seems that it depends on whether or not Ω∗, or perhaps Ω, has a non-trivial kernel. 
Below we give examples of Ω for which ker Ω∗ �= {0} and spec A(G, Ω) = ∅.

Example. Let G = R, so that V N(R) ∼= L∞(R). Let

Υ(x) =
{

(1 + x)x, for x ≥ 0,
0, for x < 0,

and let Ω : R2 → C be the measurable function given by

Ω(x, y) =
{Υ(x)Υ(y)

Υ(x+y) , for x, y ≥ 0,
0, otherwise.

It is easy to see that Υ(x)Υ(y) ≤ Υ(x + y) for x, y ≥ 0 and hence Ω(x, y) ≤ 1. Thus 
Ω(x, y) ∈ L∞(R)⊗̄L∞(R). Moreover, it is not hard to see that Ω is a symmetric 2-
cocycle. Hence we have a well-defined algebra A(R, Ω). Using that A(R) ∼= L1(R) via 
the Fourier transform, the Ω-modified product between f, g ∈ L1(R) is

f ∗Ω g(x) =
∞∫

−∞

f(x− y)g(y)Ω(x− y, y) dy =
∞∫
0

f(x− y)g(y)Υ(x− y)Υ(y)
Υ(x) dy. (43)

Notice that if x < 0, then Ω(x − y, y) = 0 for all y ∈ R and hence f ∗Ω g = 0 a.e. on 
(−∞, 0); in particular, B := L1(R+) is a subalgebra of (L1(R), ∗Ω).

Next we will see that specB is empty. Let B′ = L1(R+, 1Υ ) with the convolution 
product (f ∗ g)(x) =

∫∞
0 f(x − y)g(y)dy. Then

f(x) ∈ B �→ f(x)Υ(x) ∈ B′

is an isometric isomorphism. Let φ be a linear multiplicative functional on B′. Then 
there is m ∈ L∞(R+) such that m(x)Υ(x) ∈ L∞(R+) and

φ(f) =
∞∫
0

m(x)f(x) dx, for f ∈ L1(R+).

As φ is multiplicative, m(x) = eax for some a ∈ C. As limx→∞ |eaxΥ(x)| =
limx→∞ |eax(1 + x)x| → ∞ for any a ∈ C, the spectrum of B′ and hence of B is empty. 
To see that this carries over to the actual algebra A(R, Ω), we use that f ∗Ω g ∈ B, for 
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all f, g ∈ L1(R), and hence if we would have a multiplicative linear functional φ such 
that φ(f) = 1 for some f ∈ L1(R), then φ(f ∗Ω f) = 1 showing that the restriction 
of φ to B is a non-zero multiplicative functional on B and hence φ ∈ specB, giving a 
contradiction.

We modify the previous example slightly to obtain a continuous 2-cocycle. Consider 
the function

ν(x) =
{
e−

1
x , for x ≥ 0,

0, otherwise.

It is easy to see that ν(x + y) ≥ ν(x)ν(y) for all x, y ∈ R. Now let

L(x) =
{
ν(x)Υ(x), for x ≥ 0,
0, for x < 0,

and

Θ(x, y) =
{

L(x)L(y)
L(x+y) , for x, y ≥ 0,

0, otherwise,

then Θ(x, y) ≤ 1 for all x, y ∈ R. Furthermore, we have Θ(x, y) ∈ Cb(R2). It is not that 
hard to see that also A(R, Θ) has empty spectrum (the argument is more or less the 
same as above). If GC,λ �= G then the homomorphism ϕ̄ : Cb(R) → V N(G) from the 
proof of Proposition 4.9 intertwines the coproducts and the image (ϕ̄ ⊗ ϕ̄)(Θ) is then 
also a 2-cocycle. It seems reasonable to expect that the resulting algebra would also have 
properties similar to the one above (i.e. not very nice spectrum-vice).

Question 5.4. What happens if we remove the condition kerω = kerω∗ = {0} from the 
definition of weight inverse?

We call such ω a partial weight inverse. A classification of partial weight inverses for 
discrete G will be given in a separate paper.
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