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ABSTRACT User-centric (UC) distributed massive multiple-input multiple-output (D-mMIMO), also
known as cell-free mMIMO, is a pivotal technology for enabling future mobile communication systems.
While UC D-mMIMO intrinsically follows a distributed architecture, its processing can be implemented
in a distributed or centralized fashion. This paper proposes a comprehensive cost assessment methodology
for UC D-mMIMO, capturing its total cost of ownership and factoring in the deployment configuration,
processing implementation, computational demands, and fronthaul signaling. The methodology considers
two transmission reception point (TRP) deployment strategies. The first focuses only on supporting user
equipment (UE) demands, while the other fulfills these requirements and also actively strives to provide
a fairer service among UEs. The proposed methodology is then used to perform a techno-economic
assessment of the feasibility of centralized versus distributed processing functional splits while varying
key costs and TRP capabilities, like antenna and served UE count. Results suggest that with the TRP
deployment that only supports the required UE rate, distributed processing is usually the most feasible
option for UE demands of up to 50 Mbps, and centralized processing is more cost-effective in other
cases. Additionally, when considering the actively fairer TRP deployment, centralized processing becomes
cheaper for any UE demands.

INDEX TERMS Cell-free massive MIMO, feasibility analysis, network deployment, functional splits,
techno-economic assessment, total cost of ownership.

I. INTRODUCTION
User-centric (UC) distributed massive multiple-input
multiple-output (D-mMIMO), commonly called cell-free
massive multiple-input multiple-output (mMIMO), emerges
as a promising technology to meet the evolving needs
of future mobile communication systems, like sixth-
generation (6G) [1], [2]. It employs a large number of
transmission-reception points (TRPs) scattered across a
coverage area, each equipped with one or more antennas.

In such a way that distinct TRPs engage in coordinated
communication with different users’ equipment (UEs),
collectively processing the UEs signals by exchanging
information through fronthaul links. To this end, the system
leverages one or more edge cloud central processing
units (CPUs), which facilitate the information exchange,
perform baseband functions, and orchestrate the system’s
overall coordination [3], [4].
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The unique combination of distributed deployment and
joint signal processing culminates in macro-diversity gain,
fostering higher network densification while maintaining
interference at controllable levels. Consequently, these fea-
tures pave the way for superior and more uniform spectral
efficiency (SE) across the coverage area, overshadowing the
performance of co-located mMIMO [3], [4].

The architecture of UC D-mMIMO is inherently dis-
tributed. However, the processing implementation can be
either centralized or distributed. This flexibility arises from
performing certain baseband functions locally at the TRPs
or at the edge CPU. The processing is distributed when
tasks such as channel estimation and precoding computation
occur at the TRPs. This approach employs simpler precoding
techniques, aligning with the system’s distributed nature and
offering high computational resource efficiency. Conversely,
centralized processing enables more advanced processing
techniques by performing the aforementioned tasks at edge
CPUs, potentially achieving superior performance at the
expense of increased computational complexity [4], [5].

Initially, UC D-mMIMO was mainly based on distributed
processing due to its simplicity, which was believed to in-
crease the system’s scalability and reduce fronthaul signaling
[3]. However, it was later proven that centralized processing
could also be scalable. Moreover, it has potentially lower
fronthaul signaling than the distributed case while providing
much higher performance [5], [6]. Nevertheless, this does
not mean centralized approaches are always superior. The
computational complexity can be orders of magnitude higher
than the distributed case [7]. Besides that, the fronthaul
requirements can be higher in the centralized case depending
on the antenna count on the TRP, its supported number of
UEs, and the adequate sample bit width for the supported
UE data rate [5], [8].

A comprehensive techno-economic comparison is essen-
tial to adequately assess the superiority of centralized or
distributed processing in different situations. This analysis
should scale factors like deployment expenses and power
consumption with the required computational complexity
and fronthaul signaling load, quantifying costs to support
different UE traffic demands. However, the field of UC
D-mMIMO’s techno-economics remains largely uncharted in
the literature [9]–[11]. The main reason behind this fact is
the novelty of UC D-mMIMO as a theoretical concept op-
erating under a new communication paradigm. Nevertheless,
recent advancements in models for UC D-mMIMO clarified
its capabilities and requirements [6]–[8], [12], [13]. These
developments pave the way for a comprehensive techno-
economic analysis.

This paper proposes a cost assessment methodology for
UC D-mMIMO. The aim is to compare centralized and
distributed processing implementations to determine their
general feasibility. It also identifies specific scenarios where
feasibility trends might differ. Furthermore, the cost trends
are assessed for TRPs with varying capabilities, specifically

antenna count and UE support. To this end, existing liter-
ature models had to be adapted and integrated with newly
developed models for the deployment of the UC D-mMIMO
system and its associated components.

A. LITERATURE REVIEW
1) UC D-MMIMO
As mMIMO matured into the primary solution for enhancing
SE for fifth-generation (5G) systems, the research focus
has shifted towards coordinated transmission techniques un-
der the name cell-free mMIMO [6]. This new transmis-
sion approach is effectively equivalent to a UC distributed
multiple-input multiple-output (MIMO) system, utilizing
various TRPs to serve different UEs while still being rooted
in technologies initially developed for traditional cellular
mMIMO [3]. The UC communication ensures that UEs are in
communication with a dynamically tailored subset of TRPs
based on their individual needs. This approach eliminates
fixed associations between UEs, TRPs, and coverage areas,
virtually eliminating cell boundaries [3], [6].

In [14], a fully distributed, scalable UC architecture for
D-mMIMO systems was introduced. The study advocated
for distributed strategies in signal processing and power
control, driven by the belief that the natural distributed
architecture of UC D-mMIMO can deliver excellent per-
formance using simple conjugate beamforming precoders,
which are inherently scalable. The study also pointed out
that centralized processing strategies may offer superior per-
formance. However, they were deemed unnecessary for UC
D-mMIMO, being unscalable and potentially burdensome on
the fronthaul signaling.

Contrary to these beliefs, [5] shattered the notion that
D-mMIMO consistently outperforms small-cell systems
when relying solely on distributed conjugate beamforming.
Moreover, the study also identified that centralized process-
ing could potentially have a lower fronthaul signaling load
than its distributed counterparts. Due to these characteristics,
the work advocated for centralized processing, pointing out
that local minimum mean square error (MMSE) precoders
should be considered if distributed processing is pursued, as
they consistently outperform small-cell systems. However,
it is essential to note that the work did not consider scala-
bility aspects. Additionally, it recognized that a non-infinite
precision fronthaul, with an adequate representation of the
sample bit width, can potentially alter the fronthaul bit rate
behavior.

In [8], the implications of quantized signals on fronthaul
of D-mMIMO networks across uplink and downlink were
examined. This study modeled quantization-related errors
using an additive quantization noise model (AQNM) based
on Bussgang decomposition, presenting models for two
functional splits representing distributed and centralized pro-
cessing implementations. These models aligned with those
in [5], accommodating a variable bit width depending on
the number of UEs and fronthaul capacity. The results
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corroborated with [5], proving that fronthaul signaling was
smaller in the centralized implementation for a similar level
of UE rate performance.

In [6], a scalable framework for UC D-mMIMO was
introduced, containing modified centralized precoders, UC
TRPs cluster formation, and pilot assignment. The study
proved that centralized processing can be scalable, cementing
its position as the best processing approach. Expanding on
the framework, [7] identified that an increasing number
of TRPs might reintroduce non-scalability. Accordingly, it
complemented the TRPs cluster formation to guarantee scal-
ability under such conditions.

Even with centralized approaches being appointed as the
best ones, the distributed local partial MMSE (LP-MMSE)
implementation is still being investigated as UC D-mMIMO
systems delve into practical aspects, as it has less compu-
tational complexity and more flexibility of implementation
[12], [13], [15].

2) 5G AND UC D-MMIMO TECHNO-ECONOMICS
In [16], an extensive analysis of literature concerning 5G
techno-economics was carried out. This review considers
various technologies, use cases, and evaluation metrics.
The study’s primary aim was to provide recommendations
for techno-economic assessments of next-generation mo-
bile communication systems. Several essential conclusions
were reached. Firstly, the accuracy and reliability of any
techno-economic analysis hinge on a well-defined network
dimensioning procedure. Secondly, when evaluating financial
metrics, it is imperative to consider both capital expenditure
(CAPEX) and operational expenditure (OPEX). Lastly, a
sensitivity analysis is essential to ascertain the validity of
proposed models and methods. An important observation
is that most of the works in the review did not focus on
mMIMO, despite it being an integral enabler of the 5G.

Simplified techno-economic models on UC D-mMIMO
systems were recently introduced by [9] and [10]. In [9],
the feasibility of using serial interconnection among TRPs
was evaluated, a possible solution to reduce the number
of fronthaul links and decrease network complexity. The
analysis focused on a fiber-based transport network, and the
results suggested that a serial interconnection can be cost-
effective in a tree configuration with two or three serially
connected TRPs. However, the study points out that serial
interconnection may not be feasible in high-demand scenar-
ios. Limitations of this work include excessive emphasis on
transport infrastructure and simplified models. For instance,
only a basic conjugate beamforming distributed processing
approach is considered, and no relationship between compu-
tational requirements and costs is delineated.

In [10], a comparative analysis of cost efficiency was
presented, evaluating UC D-mMIMO against small cells.
The study investigates various sizes of TRP clusters for each
UE and examines different fiber transport connections under

single and multiple CPU scenarios. The findings suggested
that UC D-mMIMO can achieve superior throughput at
a reasonable system cost, contingent on carefully chosen
cluster sizes and inter-CPU cooperation levels. The study
model was adequate for the proposed analysis but has several
shortcomings for further development. These include the
absence of OPEX modeling, reliance on only a centralized
non-scalable MMSE precoder, use of a fixed TRP quantity,
and simplified step models for the costs associated with
deploying TRPs and CPUs. In the latter case, the calculations
scale solely with the size of the subset of TRPs serving each
UE.

One of the primary limitations of [10] is addressed by [11],
which expanded the analysis to incorporate energy-related
OPEX in the model. Nevertheless, this subsequent work
did not address the other deficiencies in the initial model.
Furthermore, different types of OPEX costs still need to be
explored. Although the energy model can be considered ad-
equate, there is room for expansion, as many computational
operations at the CPU and TRP are overlooked.

Finally, neither [9] nor [11] address the dimensioning
of the necessary number of TRPs concerning demands.
Instead, these works circumvent this challenge by assuming
a fixed number of TRPs and delving into other aspects,
like transport network configuration. However, it is evident
that existing literature’s dimensioning procedures for cellular
systems, like the ones in [17] and [18], are not adept at
determining the required number of TRPs because of the
multiple coordinated TRP connections to a single UE. In this
context, dimensioning procedures in economical analysis for
UC D-mMIMO can be imperative for future works.

B. CONTRIBUTIONS
The contributions of this paper can be summarized as:

• A cost assessment methodology is proposed to calculate
the total cost of ownership (TCO) of UC D-mMIMO
networks. One that scales components deployment ex-
penses and power consumption with the required com-
putational complexity and fronthaul signaling load. The
cost results depend on the scenario, active UE load
profile, and target UE expected rate.

• A comprehensive cost model is presented, covering
both CAPEX and OPEX considerations. For CAPEX,
expenses consider the acquisition and installation of (i)
TRPs, (ii) edge cloud CPU, and (iii) fronthaul equip-
ment. On the OPEX side, expenses take into account
(i) repairs, (ii) equipment occupied floor space rent,
and (iii) power consumption. Besides that, technician
salaries impact both CAPEX and OPEX.

• A TRP deployment model is proposed to determine the
necessary number of active TRPs based on coverage
or capacity constraints. In the second case, the model
supports a given expected UE rate derived from UE
average rates or a proportional fairness-based UE rate.
This latter metric complies with a service level agree-
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ment (SLA), aiming to maintain a significant part of an
agreed rate throughout a large portion of the coverage
area.

• The number of baseband processing operations is ade-
quately allocated between CPU and TRPs for two com-
monly adopted functional splits for UC D-mMIMO,
which aim to support distributed and centralized pro-
cessing implementations.

• A fronthaul bit rate calculation based on a maxi-
mum acceptable SE degradation due to quantization
is proposed. Under this novel metric, two sub-optimal
methods for bit allocation in distributed and central-
ized processing implementations are presented. A non-
limited fronthaul bit rate for a negligible degradation in
UE experience can be obtained using these methods.

• A non-vendor-specific model for the structure of TRPs
is proposed and is used in conjunction with a cloud
radio access network (C-RAN) workload consolidation
model. This approach allows the derivation of equa-
tions for deployment expenses and energy consumption
associated with TRPs and CPUs, while considering
processing and fronthaul requirements.

• A techno-economic analysis is conducted in a dense
urban scenario to compare distributed and centralized
processing implementation for the downlink operation
of UC D-mMIMO. The results show that the distributed
method might offer cost benefits for demands up to 50
Mbps per UE, or even 200 Mbps when the TRP features
at least seven antennas. Despite this, the centralized ap-
proach often presents greater cost-efficiency, especially
in high-demand scenarios and when an actively fairer
TRP deployment is utilized.

• Tree precoders are analyzed in terms of cost:
LP-MMSE, partial regularized zero-forcing (P-RZF),
and partial MMSE (P-MMSE). The first is implemented
in a distributed fashion, and the two later in a cen-
tralized fashion. The results show that, in most cases,
P-MMSE is more cost-efficient. However, P-RZF is the
most feasible under high demands, with 500 Mbps per
UE and a TRP antenna count larger than four.

C. PAPER OUTLINE AND NOTATIONS
The remainder of this paper is organized as follows. Sec-
tion II presents the system model, detailing channel model-
ing, fronthaul constraints impact, channels estimation proce-
dure, system scalability considerations, and UE rate calcula-
tion. Section III discusses the cost assessment methodology,
modeling the required TRP count, fronthaul bit rate, and
computational resource requirements. Moreover, the price
and energy consumption models for TRPs and the CPU are
also presented. Section IV introduces the cost models utilized
to determine the TCO of the UC D-mMIMO system in the
proposed methodology. Section V presents the results of this
work for a baseline scenario and relevant variations in the
assumptions. Finally, Section VI concludes the paper.

Notation: Boldface lowercase and uppercase letters denote
vectors and matrices, respectively, the superscript (·)H de-
notes the conjugate-transpose operation, the N ×N identity
matrix is IN , and the cardinality of the set A is represented
by |A|. The trace, euclidean norm and expectation operator
are denoted as tr( . ), ∥ . ∥ and E { . }, respectively, and the
notation CN (µ, σ2) stands for a complex Gaussian random
variable with mean µ and variance σ2.

II. SYSTEM MODELS
It is considered a downlink (DL) transmission of a UC
D-mMIMO system with L TRPs with N antennas serving
K single-antenna spatially distributed UEs. The TRPs are
connected to an edge cloud CPUs via dedicated fronthaul
links, and UEs are only served by best possible set of
TRPs, as shown in Fig. 1. The system operates under time-
division duplex (TDD) protocol inside a coherence time-
frequency resource block with τc samples [4]. Moreover,
details for channel modeling, fronthaul constraints impact,
channel estimation procedure, system scalability considera-
tions, and UE rate calculation are presented in the following
subsections. For the reader’s convenience, Table 1 lists all the
mathematical representations used throughout the equations
of this section.

TRP

FIGURE 1. Illustration of the system model considered network
architecture. Dedicated fronthaul links connect the edge cloud CPU to the
TRPs. UEs are served by a limited optimal set of TRPs with available
resources.

1) CHANNEL MODEL
The channel between the TRP l and the UE k (hl,k ∈ CN×1)
undergoes independent correlated Rician fading in each
coherence block, being defined as

hl,k =

√
κl,kβl,k

1 + κl,k
hLoS
l,k︸ ︷︷ ︸

hl,k

+

√
βl,k

1 + κl,k
hNLoS
l,k︸ ︷︷ ︸

gl,k

, (1)

where hl,k ∈ CN×1 represents the LoS component, and
gl,k ∼ CN (0N ,Rl,k) ∈ CN×1 denotes the NLoS compo-
nent. The covariance matrix Rl,k = E{gl,kg

H
l,k} ∈ CN×N
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TABLE 1. List of mathematical notations used in Section II.

Symbol Description
αl,k Fronthaul quantization distortion factor between TRP l and

UE k

αl Fronthaul quantization distortion factor in TRP l

βl,k Average channel gain between TRP l and UE k

dl,k Distance between TRP l and UE k

DSk Desired signal component for UE k

gl,k Non-line-of-sight (NLoS) Ricean component
hk Global channel of UE k

hl,k Channel between TRP l and UE k

hLoS
l,k Line-of-sight (LoS) channel between TRP l and UE k

hNLoS
l,k NLoS channel between TRP l and UE k

hl,k LoS Ricean component
ISk Interferent signal component for UE k

K Number of UEs
κl,k Rician factor between TRP l and UE k

L Number of TRPs
Mk Set of TRPs serving UE k

N Number of antennas in each TRP
ql Additive quantization noise in antenna signals for TRP l in

a baseband processing at the CPU (BCPU)
ql,i Additive quantization noise for the signal of UE i on TRP

l in a baseband processing at the TRP (BTRP)
pLoS LoS probability determined by the propagation scenario
Rl,k Covariance matrix with channel components and spatial

correlation
ρl,k DL power allocated by TRP l to UE k

σ2
dl DL additive white Gaussian noise (AWGN) noise

τc Number of samples in the coherence block
τp Number of orthogonal pilots
Dl Set of UEs served by TRP l

Dl,k Binary diagonal matrix indicating which antennas of TRP l

serve UE k

QNk Fronthaul quantization noise component for UE k

wl,k Normalized precoder of UE k in TRP l

wk Normalized global precoder for UE k

describes the spatial correlation [19]. Moreover, κl,k is the
Rician factor, which is modeled as a function of the distance
dl,k between TRP l and UE k. It takes the minimum value be-
tween 101.3−0.003dlk and pLoS(dl,k)/(1−pLoS(dl,k)), where
pLoS is the LoS probability determined by the propagation
scenario. Besides that, βl,k represents the average channel
gain of hl,k, encompassing path loss and shadowing [19].

2) FRONTHAUL CONSTRAINTS IMPACTS
The TRPs are connected to CPUs via a fronthaul with
limited capacity. In this way, the antenna signals or pre-
coded/combined UE data symbols are not sent through the
fronthaul in an infinite precision fashion but in quantized
versions. The errors associated with the quantization pro-
cesses are obtained from an AQNM applied to two dif-

ferent functional split approaches between CPU and TRP,
presented in Fig. 2 [8]. In the first case, BTRP, the data
symbols to each UE the TRP serves are quantized and sent
by the CPU. Moreover, the signal to each antenna comes
from the precoding procedure made at the TRPs. In this
way, the number of data streams on the fronthaul of a TRP
l is directly equivalent to the size of the set of UEs served
by the said TRP, represented by Dl ⊂ {1, ...,K}. In the
second case, BCPU, the signals transmitted in each TRP
antenna are quantized and sent by the CPU, which performs
channel estimation and precoding. In this way, the number
of data streams on the fronthaul equals N . Throughout this
work, centralized processing implementations use the BCPU
approach, and distributed processing implementations use the
BTRP approach.

CPU

TRP l

Channel Estimation

Precoding/Combining

streams

(a) BTRP

CPU

Channel Estimation

Precoding/Combining

TRP l

streams

(b) BCPU

FIGURE 2. Simplified overview of the classical functional splits for UC
D-mMIMO [8].

Beyond its impact on data transmission, the fronthaul’s
capacity limitations also extend to the channel estimation
procedure. Specifically, under the BCPU approach, the pilot
samples arriving at the CPU undergo distortion due to quan-
tization during fronthaul transmission. This introduces an
additional source of error to the channel estimation process,
subsequently leading to compromised precoder performance
and reduced SE [8].

3) CHANNEL ESTIMATION PROCEDURE
The TRP uplink (UL) channel estimates to its UEs are
obtained through an MMSE estimator using UL orthog-
onal pilots transmitted by the UEs, while accounting for
quantization distortion on the pilot samples in centralized
processing approaches [8]. DL channel estimation is not
performed since the channel reciprocity of using TDD inside
a coherence block allows UL channel estimates to be used for
DL processing [3]. The number of orthogonal pilots equals
the number of samples in each pilot (τp), which theoretically
can be as large as τc. Still, in practice, τp is smaller to avoid
over-signaling in the coherence block and due to hardware
limitations in the devices performing the channel estimation
procedure. If the total number of UEs is larger than τp, pilot
contamination happens due to pilot reuse among UEs. This
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contamination degrades the estimation quality and generates
DL coherent interference [3], [6].

4) SYSTEM SCALABILITY
A dynamic cooperation clustering (DCC) framework is used
to manage the UE/TRP connections and assure that the
computational complexity of channel estimation and signal
processing will be limited even if L or K grows to infinity.
The initial access procedure from [6] is executed combined
with the TRP cluster size control technique outlined in [7].
This strategy ensures that each TRP establishes connections
with a maximum of τp UEs, and correspondingly, each
UE forms connections with up to Umax TRPs. Moreover,
scalable LP-MMSE, P-RZF, and P-MMSE precoders are
utilized [4].

For mathematical representation, a diagonal matrix Dl,k

is used to indicate which antennas of a TRP l serve UE k.
Besides that, it is considered that all antennas of a TRP will
provide connection to all its served UEs [6]. In this way,
Dl,k can be expressed as follows

Dl,k =

{
IN , if (l) ∈Mk

0N , otherwise
, (2)

whereMk ⊂ {1, ..., L} represents the set of TRPs connected
to each UE k. Mk is complemented by Dl .

5) UE RATE CALCULATION
A lower bound of the DL SE can be obtained using the
use-and-then-forget bound under decoders based on channel
hardening while considering the fronthaul quantization noise
and distortion [6], [8], i.e.,

SEk =
(
1− τp

τc

)
log2

(
1 +

DSk
ISk −DSk +QNk + σ2

dl

)
, (3)

where DSk, ISk, QNk and σ2
dl are the powers of the desired

signal, interference signals, fronthaul quantization noise, and
AWGN noise, respectively. The values for the first three
variables are calculated as

DSk =

∣∣∣∣∣
L∑

l=1

αl,kE
{√

ρl,k h
H
l,kDl,kwl,k

}∣∣∣∣∣
2

,

ISk =

K∑
i=1

E


∣∣∣∣∣

L∑
l=1

αl,k
√
ρl,i h

H
l,kDl,iwl,i

∣∣∣∣∣
2
 ,

QNk =


E

{∣∣∣∣ L∑
l=1

hH
l,kDl,iql

∣∣∣∣2
}

, for BCPU

E

{∣∣∣∣ L∑
l=1

hH
l,kDl,i

K∑
i=1

wl,iql,i

∣∣∣∣2
}

, for BTRP

,

(4)

where αl,k is the quantization distortion factor between TRP
l and UE k. In the context of a BCPU implementation,
αl,k = αl, indicating that distortion occurs only at the
TRP level. Additionally, ρl,k is the DL power allocated
by TRP l to UE k. Moreover, wl,k ∈ CN×1 represents

the unit-power precoding vector for the channel between
TRP l and UE k. Centralized precoders like P-MMSE and
P-RZF usually are calculated for the collective channel
hk = [hT

1,k, · · · ,hT
L,k]

T, resulting in global UE precoder
wk ∈ CLN×1 [4]. Despite this, the individual wl,k can
still be obtained from wk since wk = [wT

1,k, · · · ,wT
L,k]

T.

Finally, ql ∼ CN
(
0, αl (αl − 1)

K∑
k=1

ρl,kE
{
wl,kw

H
l,k

})
de-

notes the additive quantization noise in the antenna sig-
nals for TRP l in a BCPU implementation, and ql,i ∼
CN (0, αl,i (αl,i − 1) ρl,i) represents the additive quantiza-
tion noise for the signal of UE i on TRP l in a BTRP
implementation.

III. COST ASSESSMENT METHODOLOGY
The proposed methodology to assess the total cost of a
UC D-mMIMO is presented in Fig. 3. It begins with a
predefined scenario that includes propagation characteristics,
the maximum number of UEs, and existing infrastructure.
Moreover, a UE load daily profile characterizes the active UE
ratio at different hours, while an expected UE rate represents
UE demands.

Calculate number of active UEs along

the day

Calculate number of active TRPs along

the day

Calculate required

computational

resources at CPU

Calculate required

computational

resources at TRP

Model TRP energy

consumption

Model TRP

deployment expense

Model CPU energy

consumption

Model CPU

deployment expense

Calculate fronthaul bit rate

along the day

Scenario

Cost calculations

Expected UE rate

(UE demands)

Daily

profile

Peak

Daily
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FIGURE 3. Proposed cost assessment methodology of a UC D-mMIMO
system.

These inputs drive calculations for the number of active
UEs and TRPs along the day. The latter is chosen to
support the expected UE rate in the provided scenario.
Then, computational resource requirements for CPUs and
TRPs are calculated, with peak requirements used to model
deployment expenses and the daily variation used to calculate
daily energy consumption in TRP and CPU. Simultaneously,
the methodology determines the necessary fronthaul bit rate
to accommodate fluctuating active UEs and TRPs under the
expected UE rate. Ultimately, the fronthaul bit rate, TRP, and
CPU models are used alongside the total number of active
and inactive TRPs to calculate the comprehensive costs of
deploying and operating a UC D-mMIMO system.
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When different precoders are considered, the methodology
is fully executed for each of them, where the number of
active TRPs to support the UE expected rate becomes the
main driver in performance difference between the precoders.

A. NUMBER OF ACTIVE TRPS
This subsection calculates the number of required TRPs to
support the UE’s requirements. For the reader’s convenience,
Table 2 outlines all mathematical notations introduced by
equations throughout the subsection.

TABLE 2. List of mathematical notations introduced in Subsection III-A.

Symbol Description
αt Active UE load ratio at time t

Fcov Percentage of the SLA agreed coverage area with at least
the guaranteed rate

Frate Percentage of the SLA agreed rate equivalent to the network
rate guarantee

Lmax Maximum number of possible deployed TRPs
Lt Number of active TRPs to support the UEs load at time t

Lt,C Minimum number TRPs to support all UEs inside the
coverage area at time t

Lt,R Required number of TRPs to deliver a UE expected rate R

at time t

L Specific set of TRPs counts generating R
R UE expected rate inside the coverage area
Ragreed SLA agreed rate
Racov Average of the achievable UE rates higher or equal to rFcov

Rbcov Average of the achievable UE rates smaller than rFcov

R Set of rates R for a specific set of TRP counts
rFcov (100 − Fcov) th percentile rate in the UE achievable rate

cumulative distribution function (CDF)
ρK UE density
S Scenario area

A scalable UC D-mMIMO system with DCC ensures that
each UE remains connected to at least one TRP [4]. In this
scenario, the minimum viable count of TRPs is determined
by the ratio between the number of UEs in the coverage area
and the TRPs capacity in terms of UE connections. In this
work, this capacity corresponds to the number of pilots [6].
However, to effectively enhance the capacity for UEs in a UC
D-mMIMO system, it is desirable that the number of TRPs
within the coverage area is much larger than the number of
UEs present in that area [3].

These two constraints present two possible values for TRP
count, one limited by coverage, i.e., restricted by the TRP
maximum UE connections and coverage radius, and the other
limited by capacity, i.e., to ensure the support of a given UE
traffic demands requirement. In this context, the number of
active TRPs inside a coverage area to support the UE load
of the time t can be calculated similarly to [20] as

Lt = max (Lt,C , Lt,R) , (5)

where Lt,C is the minimum number TRP to support all
UEs inside the coverage area in time t, and Lt,R denotes

the number of TRPs necessary to provide the UEs with an
expected rate R for the UE load of the time t.

Assuming that each individual TRP can have a effective
communication channel to any UE in the entire coverage
area, then Lt,C = ρKαt S/τp, where ρK is UE density, αt

is the active UE load ratio at time t, and S symbolizes the
coverage area. In other cases, the calculation of Lt,C is more
complex and not considered in this work, being left for future
implementations1.

There is no straightforward way to compute Lt,R. Nev-
ertheless, obtaining an average rate equivalent to R for a
given L = Lt,R and K = ρK αtS is relatively simple
using a Monte Carlo simulation process in conjunction with
(4) [4]. In this context, it is possible to calculate a set
of rates R for a specific set of TRP counts, defined by
L = {Lt,C , Lt,C + Lstep, Lt,C + 2Lstep, · · · , Lmax}, where
Lmax is the maximum value of TRPs that can be imple-
mented and Lstep is the increment step for each element in
L. This procedure results in R = {R1, R2, · · · , R|L|} where
R1 < R2 < · · · < R|L|. Finally, the value for an arbitrary
Lt,R can be calculated using an interpolation process, which
takes L and R as inputs, as long as R1 < R < R|L|.

A rate R based on the average UE rate is a valid metric
to evaluate the throughput of a communication system.
However, this criteria can mask subtleties like rate variations
between UEs under good and bad service quality, also called
sometimes lucky and unlucky UEs. In this context, a R cal-
culation based on a proportional fairness metric is proposed
and used to perform a fairer TRP deployment actively. This
way, both the basic average rate-based deployment and the
proposed fairer one are used to provide a more thoughtful
analysis of the network feasibility assessment.

The proposed fairer TRP deployment is established on a
customer-based SLA with an agreed UE rate [21]. Ensuring
a fixed rate in mobile networks is challenging due to UEs’
mobility and other random factors [22]. In this context, UEs
may experience rates above or below the agreed rate. Nev-
ertheless, the network ensures that at least a certain fraction
of the agreed rate is consistently achieved, regardless of the
UEs’ disposition or location. This performance guarantee is
denoted as a percentage of the agreed rate, represented by
Frate, which can vary between 0 % and 100 %. Additionally,
this guarantee covers a portion of the coverage area, denoted
by Fcov as a percentage ranging from 0 % to 100 %. This
metric is labeled as SLA Frate:Fcov.

From the CDF of achievable UE rates [4], the agreed rate
is calculated by

Ragreed = min

(
Racov,

rFcov

0.01Frate

)
, (6)

1The problem can be addressed by optimizing a clustering algorithm
applied to UE positions, with the goal of minimizing the number of clusters.
Constraints include a maximum cluster size of τp and the distance from a
cluster element to its centroid not exceeding the TRP’s maximum coverage
radius. The variable Lt,C is defined as the number of clusters.
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where rFcov
is the (100−Fcov)th percentile rate in the CDF

and Racov is the average rate of the achievable UE rates
higher or equal to rFcov

.
The expected UE rate for an SLA Frate:Fcov TRP deploy-

ment is calculated as

R =
100− Fcov

100
Rbcov +

Fcov

100
Ragreed, (7)

where Rbcov denotes the average rate of the achievable UE
rates smaller than rFcov

. It is noticeable that the expected
rate for the UEs with achievable rates larger than rFcov

is
assumed to be the SLA agreed rate.

B. FRONTHAUL BIT RATE CALCULATION
This subsection computes the necessary fronthaul data rate
for each TRP to meet the UE’s demands. To aid the reader,
Table 3 summarizes all mathematical symbols introduced in
the equations within this subsection.

TABLE 3. List of mathematical notations introduced in Subsection III-B.

Symbol Description
adeg Maximum acceptable SE degradation due to quantized

fronthaul samples in bps/Hz
B System bandwidth
bdatal Fronthaul bit width for the data symbols in all antennas of

TRP l for the BCPU implementation
bdatal,k Fronthaul bit width for the data symbols between TRP l

and UE k in the BTRP implementation
bpill Fronthaul bit width for pilot samples for channel estimation

in all antennas of TRP l for the BCPU implementation
Fl,t Required fronthaul bandwidth for TRP l at time t

Dl,t Set of UEs served by TRP l at time t

In the context of UC D-mMIMO, the calculation of
fronthaul bit rate relies on multiple factors. These include
the total number of coherence blocks across all available
bandwidth within one second, the chosen functional split
between TRPs and CPU, the interval between transmission
of channel statistics to the CPU, the number of fronthaul
transmitted samples in terms of real scalars, and the bit width
to represent the samples [4], [6], [8].

In this work, the transmission of statistics is disregarded
since the interval for changes in the channel statistics is usu-
ally much larger than the coherence time [3]. The fronthaul
bit rate of the two considered split implementations for the
UE load of the time t is given by

Fl,t =


2B
(
1− τp

τc

) ∑
k∈Dl,t

bdatal,k , for BTRP

2NB
[(
1− τp

τc

)
bdatal +

τp
τc
bpill

]
, for BCPU

(8)

where B is the total available bandwidth, Dl,t is Dl at
time t, and bdatal,k is the bit width for the data symbols
inside the coherence block between TRP l and UE k in
the BTRP implementation [4], [8]. Moreover, for the BCPU
implementation, bdatal is the bit width for the data samples of
the coherence block in all antennas of TRP l, and bpill is the

bit width of pilot samples for channel estimation. The latter
is applied only to τp samples of the coherence block [4],
[8]. Different bit widths for data and pilots arise because
a higher precision in channel estimation samples is usually
necessary, implying large bit widths for pilots [5].

In the literature, the bit width is usually pre-fixed or
calculated for a given fronthaul capacity [8]. The cost-
analysis nature of this work allows different fronthaul capa-
bilities at distinct costs. In this context, fixing the fronthaul
capacity or the number of bits representing each scalar is
undesirable. In this context, this work proposes the utilization
of a maximum acceptable SE degradation due to quantized
fronthaul samples parameter in bps/Hz (adeg) to calculate
the number of bits to represent the transmitted scalars.
This approach allows the fronthaul bit rate to be associated
with the theoretical UE rate performance. If adeg is small
enough, the network provides its best performance in terms
of throughput.

Under a simplification where the same bit width is applied
at a TRP level, in such a way that bdatal = bdatal′ ∀l′ ∈
{1, ..., L}, bpill = bpill′ ∀l′ ∈ {1, ..., L} and bdatal,k = bdatal′,k ∀l′ ∈
{1, ..., L}, the Algorithms 1 and 2 obtain the number of bits
for the quantized data samples in the BTRP and BCPU splits,
respectively. Both algorithms ensure that the SE degradation
caused by fronthaul quantization does not exceed adeg, even
for the UE with the highest degradation. Besides that, the
BTRP algorithm increments the bit width on a per-UE basis
while trying to maximize the network throughput.

C. REQUIRED COMPUTATIONAL COMPLEXITY
CAPACITY IN CPU and TRPS
This subsection computes the necessary capacity in terms
of giga operations per second (GOPS) that the hardware of
CPU and TRPs will require to operate in the BCPU and
BTRP splits. To facilitate understanding, Table 4 provides a
summary of all mathematical symbols introduced throughout
the subsection.

Depending on the functional split, various digital signal
processing procedures are executed at the TRP or the CPU,
as shown in Fig. 4, which presents the task division for
two commonly adopted functional splits for UC D-mMIMO
[8]. Consequently, the computational complexity of tasks
performed at the TRP or CPU varies according to the chosen
functional split [8], [13].

In both BCPU and BTRP cases, certain operations are al-
ways executed at the CPU, and the number GOPS associated
with these operations is calculated using a reference scaling
model [23]. Table 5 provides a detailed breakdown of the
scaling factors used in these calculations. Within this context,
the variables Bbase and SEbase represent the bandwidth and
SE of the reference GOPS value. In contrast, B and SEt,R

represent the adopted bandwidth and SE, with the latter
assumed to be equal to the simulated average SE for an
expected UE rate R at the UE load of the time t. Final
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Algorithm 1: Bit Allocation Evaluation in a BTRP
split when the same bit width is applied at a TRP
level (bdatal,k = bdatal′,k ∀l′ ∈ {1, ..., L}).
Input: K, adeg

1 bits← [1]1×K ▷ Initializes an array of ones
representing the number of bits used to represent
each UE’s signal

2 SE← CALCULATE SE(bits) ▷ Calculates the SE of
each UE according to the number of bits used to
represent each UE’s signal

3 SE target← CALCULATE SE(∞∗ bits) ▷
Calculates the SE of each UE for a fronthaul with
unlimited capacity

4 while maxi=1,··· ,K(SE target[i]− SE[i]) > adeg do
5 bits crt← bits
6 for each i in {1, 2, . . . ,K} do
7 bits fut← bits crt
8 bits fut[i]← bits fut[i] + 1
9 SE fut← CALCULATE SE(bits fut)

10 if (SE target[i]− SE fut[i]) > adeg then

11 if

(
K∑
j=1

SE fut[j] >
K∑
j=1

SE[j]

)
then

12 SE← SE fut
13 bits← bits fut
14 end
15 end
16 end
17 end

Output: bits = {bdatal,1 , · · · bdatal,K }

Algorithm 2: Bit Allocation Evaluation in a BCPU
split when the same bit width is applied at a TRP
level (bdatal = bdatal′ ∀l′ ∈ {1, ..., L}).
Input: K, adeg

1 bdatal ← 1
2 SE← CALCULATE SE(bdatal ) ▷ Calculates the SE

of each UE according to the bit width
3 SE target← CALCULATE SE(∞) ▷ Calculates the

SE of each UE for a fronthaul with unlimited
capacity

4 while maxi=1,··· ,K(SE target[i]− SE[i]) > adeg do
5 bdatal ← bdatal + 1
6 SE← CALCULATE SE(bdatal )
7 end

Output: bdatal

GOPS values are obtained by multiplying the scaling factor
with their respective GOPS reference value.

The calculations in Table 5 follow the methodology in
[23], with adjustments made to account for specific char-
acteristics of UC D-mMIMO. In these systems, all UEs
transmit/receive information using the entire bandwidth. In

TABLE 4. List of mathematical notations introduced in Subsection III-C.

Symbol Description
Bbase Bandwidth of the reference GOPS values
CCcomb

all,t Number of complex multiplications and divisions in
the CPU to generate the precoding vectors at time t

CCcomb
l,t Number of complex multiplications and divisions in

the TRP l to perform channel estimation at time t

CCest
all,t Number of complex multiplications and divisions in

the CPU to perform channel estimation at time t

CCest
l,t Number of complex multiplications and divisions in

the TRP l to generate the precoding vectors at time t

fs Sampling frequency
γChcd GOPS scaling parameter for channel coding
γHLct GOPS scaling parameter for higher-layer control
γHLnt GOPS scaling parameter for higher-layer network
γMpDp GOPS scaling parameter for layer mapping and

demapping
γOFDM GOPS scaling parameter for orthogonal frequency-

division multiplexing (OFDM) modulation and de-
modulation

GOPSChcd Reference GOPS value for channel coding
GOPSHLct Reference GOPS value for higher-layer control
GOPSHLnt Reference GOPS value for higher-layer network
GOPSMpDp Reference GOPS value for layer mapping
GOPSOFDM Reference GOPS value for OFDM modulation and

demodulation
GOPSBCPU

t,R GOPS for specific CPU operations of the BCPU split
for an expected UE rate R at time t

GOPSCPU
t,R GOPS to be executed at the CPU for an expected UE

rate R at time t

GOPSCPUcommon
t,R GOPS to be executed at the CPU in both BCPU and

BTRP splits for expected UE rate R at time t

GOPSTRP
t,R Required TRP processing capacity in GOPS to effi-

ciently handle the UE rate R at time t

NDFT Dimension of the discrete Fourier transform (DFT)
Nsc Number of subcarriers
Ql Subset of UEs with TRPs in common with those

served by TRP l

Sk Subset of UEs that are partially served by the same
TRPs as UE k

SEbase SE of the reference GOPS values
SEt,R Expected SE for an expected UE rate R at time t

Ts OFDM symbol duration
Zk Subset of TRPs serving the UEs that are in Sk

this way, the number of streams is equivalent to the number
of UEs. Additionally, the total number of antennas equals
LN , and the OFDM modulation scales with the number of
UEs, unlike the reference, where it scales with the number
of antennas. This deviation arises from the fact that in UC
D-mMIMO, there is no need to modulate for each antenna
since the precoding process takes each UE’s modulated
symbol as input.
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FIGURE 4. Distribution of digital signal processing procedures in the CPU
and TRPs for BCPU and BTRP splits.

TABLE 5. GOPS scaling parameters calculation for common CPU opera-

tions in BCPU and BTRP [23].

Scaling factor Calculation

γHLnt

(
B

Bbase

)1 (SEt,R

SEbase

)1

γHLct (LN)0.5K0.2

γChcd

(
B

Bbase

)1 (SEt,R

SEbase

)1
K1

γMpDp

(
B

Bbase

)1 (SEt,R

SEbase

)1.5
K1

γOFDM

(
B

Bbase

)1
K1

The total summed GOPS associated with higher-
layer control/network, channel coding, mapping/demapping,
and OFDM modulation/demodulation for an expected
UE rate R at the UE load of the time t are
aggregated in GOPSCPUcommon

t,R = γHLnt GOPSHLnt +
γHLct GOPSHLct + γChcd GOPSChcd + γMpDp GOPSMpDp +
γOFDM GOPSOFDM, where GOPSHLnt, GOPSHLct, GOPSChcd,
GOPSMpDp, GOPSOFDM are the reference values of GOPS for
higher-layer network, higher-layer control, channel coding,
layer mapping and demapping, and OFDM modulation and
demodulation, respectively. In this way, the number of GOPS
to be executed at the CPU for an expected UE rate R at the
UE load of the time t can be calculated as

GOPSCPU
t,R =

{
GOPSCPUcommon

t,R + GOPSBCPU
t,R , for BCPU

GOPSCPUcommon
t,R , for BTRP

(9)

where GOPSBCPU
t,R is the number of GOPS of the specific

CPU operations of the BCPU split for an expected UE rate

R at the UE load of the time t, calculated as

GOPSBCPU
t,R =

8NscCCest
all,t

Ts109τc︸ ︷︷ ︸
Channel estimation

+
8NscCCcomb

all,t

Ts109τc︸ ︷︷ ︸
Precoding computation

+

8NscN
L∑

l=1

∣∣Dl,t

∣∣
Ts109τc︸ ︷︷ ︸

Reciprocity calibration

+

8NscN (τc − τp)
L∑

l=1

∣∣Dl,t

∣∣
Ts109τc︸ ︷︷ ︸

Precoding

,

(10)

where Nsc is the number of subcarriers and Ts is the OFDM
symbol duration. Moreover, CCest

all,t and CCcomb
all,t denote the

required number of complex multiplications and divisions in
the CPUs to perform channel estimation and generate the
precoding vectors for all active UEs at time t. The term
8/(109Ts) converts the number of complex multiplications
to GOPS. Additionally, reciprocity calibration is a one-time
operation per coherence block. Thus, it is divided by τc.
Finally, the precoder is exclusively applied to data samples,
and as such, it is scaled by (τc − τp)/τc [13].

Table 6 presents the values of CCest
all and CCcomb

all for
precoders considered in this work. The presented cal-
culations are derived from [4]. In the table, Sk =
{i : DkDi ̸= 0LN×LN} represents the subset of UEs that
are partially served by the same TRPs as UE k. Subset
Zk = ∪(i∈Sk)Mi denotes the TRPs serving the UEs that
are in Sk, while subset Ql = ∪(l′∈Mk)Dl′ represents the
UEs with TRPs in common with those served by TRP l.
Both Zk and Ql are utilized to calculate common operations
performed only once for each UE k or TRP l, such as channel
estimation.

In both BCPU and BTRP cases, baseband filtering and
inverse fast Fourier transform (IFFT)/fast Fourier transform
(FFT) operations are executed at the TRP. The GOPS of
these common operations for an expected UE rate R at the
UE load of the time t can be calculated as

GOPSTRPcommon
t,R =

8NDFT log2(NDFT )

Ts109︸ ︷︷ ︸
FFT/IFFT

+
40Nfs
109︸ ︷︷ ︸

Baseband Filter

,
(11)

where NDFT represents the dimension of the DFT, and fs
is the sampling frequency. Moreover, The term 40Nfs/10

9

denotes the GOPS for a filter with ten taps in a polyphase
filtering implementation [13].

The number of GOPS to be executed at the TRP for an
expected UE rate R at the UE load of the time t can be
calculated as

GOPSTRP
t,R =

{
GOPSTRPcommon

t,R , for BCPU

GOPSTRPcommon
t,R + GOPSBTRP

t,R , for BTRP
(12)

where GOPSBTRP
t,R is the number of GOPS of the specific

TRP l operations of the BTRP split for an expected UE rate
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R at the UE load of the time t, calculated as

GOPSBTRP
t,R =

8NscCCest
l,t

Ts109τc︸ ︷︷ ︸
Channel estimation

+
8NscCCcomb

l,t

Ts109τc︸ ︷︷ ︸
Combining computation

+
8NscN |Dl,t|

Ts109τc︸ ︷︷ ︸
Reciprocity calibration

+
8NscN (τc − τp) |Dl,t|

Ts109τc︸ ︷︷ ︸
Precoding

,

(13)

where CCest
l,t and CCcomb

l,t denote the number of complex
multiplications and divisions that the TRP l needs to perform
channel estimation and generate the combining vectors for
all active UEs at time t. Moreover, CCest

l,t and CCcomb
l,t are

computed as in Table 6.

D. TRP STRUCTURE MODEL
This subsection calculates the power consumption and ex-
pected prices for TRPs to accommodate the UE’s require-
ments under both considered functional splits. For ease of
reference, Table 7 outlines all mathematical notations utilized
in equations within the subsection.

The TRPs are deployed throughout the coverage area to
ensure effective communication between the network and
UE devices. Besides the proper spacing between TRPs to
improve coverage and signal distribution, it is important
to model their components for power and cost modeling.
Fig. 5 provides an illustrative overview of the components
of a non-vendor specific TRP in the UC D-mMIMO system.
These components include antennas for bidirectional signal
transmission, an analog front-end for initial radio signal
processing, DSPs for tasks such as channel estimation and
FFT/IFFTs conversions, and an I/Os interface that facilitates
seamless network communication [3], [13], [24].
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FIGURE 5. Example of the components for a non-vendor specific TRP in a
UC D-mMIMO system.

The analog front end comprises several subcomponents,
such as VGAs, IQ modulators, filters, DAC, and ADC
converters. Fig. 5 illustrates how they are interconnected for
each antenna in the TRP. The subcomponents work together
to adjust signal amplitudes, manage phase and frequency,
refine bandwidth, and facilitate digital-to-analog conversion.
They are usually designed to operate in synergy and can be
integrated into a unified SoC configuration [3], [13], [24].

The power consumption of a TRP is influenced by its
transmission power, accounting for losses during amplifica-
tion, as well as the power usage of its individual components
[13], [23], [24]. In this context, it can be calculated as

PTRP = pwDSP + pwAFend + pwIOint + αamppwTx, (14)

where pwIOint, pwDSP, pwAFend are of the power consumption
of I/O interfaces, DSP, and analog front-end, respectively.
Besides that, pwTx and αamp represent the transmission power
and an expansion factor to account for losses in the ampli-
fication process, respectively. The DSP power consumption
is dependent on the computational complexity of the digital
processing functions executed at the TRP, being calculated
as

pwDSP = γpwDcore

⌈
GOPSTRP

t,R

CAPDcore

⌉
+ γpwDSP GOPSTRP

t,R + pwother
DSP , (15)

where γpwDcore and γpwDSP are power slopes related to the
DSP idle core operation and the number of operations in
all cores, respectively. The variables CAPDcore and pwother

DSP
are the GOPS capacity of a DSP processing core and a
constant term representing other types of power consumption
in the DSP, respectively. GOPSTRP

t,R denotes the required
TRP processing capacity in GOPS to efficiently handle the
network’s UE load at a specific time t, while maintaining a
data transmission rate of R, respectively. The analog front-
end power consumption is given by

pwAFend = 2N
(
2pwana

filter + pwIQmod + pwVGA + pwDAC + pwADC

)
, (16)

where pwana
filter, pwIQmod, pwVGA, pwDAC, pwADC are the power

consumption of analog filter, IQ modulator, VGA, DAC and
ADC, respectively.

Similarly to power consumption, the price of the TRP can
also be modeled by the individual prices of its components,
being calculated as

prTRP = prDSP + prAFend + prIOint +Nprant, (17)

where prDSP, prAFend, prIOint, prant are the prices of DSP,
analog front-end, I/O interface and antennas, respectively.
The price of the used DSP can be calculated as

prDSP = γprDcore

⌈
GOPSTRP

peak,R

CAPDcore

⌉
+ prbase

DSP, (18)

where γprDcore is a price slope for the necessary number of
cores in the DSP, GOPSTRP

peak,R is the peak number GOPS
in a TRP to provide an expected UE rate R, and prbase

DSP is
a fixed price related to other DSP construction parameters.
The analog front-end price is given by

prAFend = αSoC2N(2prana
filter + prIQmod + prVGA + 2prDAC|ADC, (19)

where prana
filter, prIQmod, prVGA, prDAC|ADC are the prices of

analog filter, IQ modulator, VGA, and DAC or ADC, re-
spectively. Besides that, αSoC is a price reduction factor due
to SoC integration.
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TABLE 6. Number of complex multiplications and divisions required from the network to perform channel estimation and generate the combining vectors

for all UEs in each coherence block for different precoding schemes.

Scheme Channel estimation Combining vector computation

P-RZF
∑L

l=1

(
Nτp +N2

)
|Ql|

∑L
l=1

[
1
2

(
|Ql|2 + |Ql|

)
N
]
+

∑K
k=1

[
|Sk|2 +N |Mk||Sk|+ 1

3

(
|Sk|3 − |Sk|

)
+ |Sk|

]
P-MMSE

∑K
k=1

(
Nτp +N2

)
|Zk|

∑K
k=1

[
1
2

(
(N |Zk|)2 +N |Zk|

)
+ (N |Mk|)2 + 1

3

(
(N |Mk|)3 −N |Mk|

)
+N |Mk|

]
LP-MMSE

∑L
l=1

(
Nτp +N2

)
|Dl|

∑L
l=1

[
1
2
(N2 +N)|Dl|+N2|Dl|+ 1

3
(N3 −N) +N

]
TABLE 7. List of mathematical notations introduced in Subsection III-D.

Symbol Description
αamp Expansion factor to account for losses in the amplifica-

tion process
αSoC Price reduction factor due to System-on-a-Chip (SoC)

integration
γprDcore Price slope for the necessary number of cores in the

digital signal processing (DSP)
γpwDcore Power slope related to the DSP idle core operation
γpwDSP Power slope related to the operations in all cores of the

DSP
PTRP TRP power consumption
CAPDcore GOPS capacity of the DSP processing core
GOPSTRP

peak,R Peak number of GOPS in a TRP to provide an expected
UE rate R

prAFend TRP analog front-end price
prant Antenna price
prDAC|ADC Price of digital-to-analog converter (DAC) or analog-to-

digital converter (ADC) in the TRPs
prDSP DSP price
prbase

DSP Fixed price related to other DSP construction parameters
prana

filter TRP analog filter price
prIOint I/O interface price
prIQmod TRP in-phase and quadrature (IQ) modulator price
prTRP TRP expected price
prVGA TRP variable gain amplifier (VGA) price
pwADC TRP ADC power consumption
pwAFend TRP analog front-end power consumption
pwDAC TRP DAC power consumption
pwDSP TRP DSP power consumption
pwother

DSP Non-GOPS dependant power consumption in the DSP
pwana

filter TRP analog filter power consumption
pwIOint TRP input/output (I/O) interfaces power consumption
pwIQmod TRP IQ modulator power consumption
pwTx TRP transmission power
pwVGA TRP VGA power consumption

E. CPU STRUCTURE MODEL
This subsection evaluates the power consumption and ex-
pected pricing for edge cloud CPU required to satisfy the
UE requirements under the analyzed functional splits. For the
convenience of the reader, Table 8 compiles all mathematical
notations introduced in the equations within this subsection.

The CPU is deployed virtually in edge-cloud servers, fol-
lowing the C-RAN workload consolidation model outlined

in [25]. The edge cloud CPU is then composed of global
cloud controller (GCC), workload dispatcher, GPPs, and
monitor/sensors, as presented in Fig. 6. The GCC converts
UE traffic into manageable workloads and makes resource
management. It ensures that the number of active GPPs
aligns with the current workload, optimizing GPP utilization.
The workload dispatcher distributes the workload among
the GPPs, which executes the workload processing. The
monitors/sensors collect utilization status from the GPPs and
gather utilization data from the GPPs and transmit it back

TABLE 8. List of mathematical notations introduced in Subsection III-E.

Symbol Description
CAPbat CPU backup power battery capacity in Wh factoring in the

depth of discharge
CAPGPP General purpose processor (GPP) processing capacity in

GOPS
CAPrack Maximum amount of GPPs that an edge cloud CPU rack

can hold
γCo|PD Price slope for CPU cooling and power distribution infras-

tructure
γinv Price slope for inverter in the Edge CPU
N act

GPPs,t Number of active GPPs in the edge cloud CPU at time t

NGPPs Number of GPPs deployed at the edge cloud CPU
PCPU,t Edge cloud CPU power consumption at time t

P IT
CPU,t Edge cloud CPU information technology (IT) equipment

power consumption at time t

P cool
CPU,t Edge cloud CPU cooling system power consumption at time

t

PGPP,t Power consumption of the GPP at a time t

P
peak
CPU Edge cloud CPU peak power consumption

PUEcool Power usage effectiveness (PUE) of the edge cloud CPU
cooling system

prCPU
Sinf Price of the support infrastructure for the edge cloud CPU

prbat Price for the battery’s acquisition and installation in CPU
deployment

prrk&nt Price for acquisition and installation cost of a rack and the
network equipment in CPU deployment

pwidle
GPP Idle power consumption of the GPP

pwpeak
GPP Peak power consumption of the GPP

pwrack
Net Power consumption of the network equipment per rack in

CPU deployment
sCPU Deployment area of the edge cloud CPU
srack Necessary area to install a rack in CPU deployment
TPout Maximum duration of a power outage that can be managed
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to the GCC. This information assists in proper workload
management and resource allocation.

Global cloud controler

GPP

1

GPP

2

GPP

N GPPs

Workload dispatcher
Monitor

/sensor

Fronthaul interface

Cloud central processing unit (CPU)

FIGURE 6. Illustration of the edge cloud CPU workload consolidation
model [25].

The workload capacity at a time t in the edge cloud CPU
is given by the number of active GPPs, which is calculated
as

N act
GPPs,t =

⌈
GOPSCPU

t,R

CAPGPP

⌉
, (20)

where CAPGPP represents the capacity of the GPP in GOPS,
and GOPSCPU

t,R denotes the required CPU processing capacity
in GOPS to efficiently handle the network’s UE load at a
specific time t, while maintaining a data transmission rate of
R. The deployed number of GPPs is calculated by NGPPs =
supt N

act
GPPs,t.

The GPPs are assumed to be housed in racks, each with
a specific housing capacity. If the number of GPPs exceeds
the capacity of a single rack, additional ones will be utilized.
In this context, the space occupied by the edge cloud CPU
depends on the number of racks and is given by

sCPU =

⌈
NGPPs

CAPrack

⌉
srack, (21)

where CAPrack represent the maximum amount of GPPs that
a rack can hold and srack is the necessary area to install a
rack in m2, which is larger than the area of the rack since
extra space exists for equipment installation/maintenance,
movement of personnel, and ventilation needs.

The power consumption of the entire edge-cloud CPU at
a time t is calculated as

PCPU,t = P IT
CPU,t + P cool

CPU,t, (22)

where P IT
CPU,t is the power of IT components at time t, i.e.,

servers and network equipment, and P cool
CPU,t is the power of

the cooling system at time t [26], [27].
The power of the IT components at the time t is given by

P IT
CPU,t =

⌈
NGPPs

CAPrack

⌉
pwrack

Net + PGPP,tN
act
GPPs,t, (23)

where pwrack
Net and PGPP,t represent the power consumption of

the network equipment per rack and the power consumption

of the GPP at a time t, respectively. The latter component
is calculated by

PGPP,t = pwidle
GPP +

(
pwpeak

GPP − pwidle
GPP

)
GOPSCPU

t,R

CAPGPP N act
GPPs,t

, (24)

where pwidle
GPP and pwpeak

GPP are the idle and peak power
consumption of the GPP, respectively [26], [27].

The cooling requirements of a server room mainly depend
on its floor area and the heat generated by the IT and other
electric equipment. The calculation of the requirements may
be complex and require special software [28]. Consequently,
the power consumption of the cooling system in data centers
can also be complex to calculate [29]. Despite this, if the
cooling PUE is known, the power consumption of the cooling
system can then at a time t be calculated as

P cool
CPU,t = (PUEcool − 1)P IT

CPU,t, (25)

where PUEcool is the PUE of the cooling system [27].
The pricing of the support infrastructure for the edge cloud

CPU is calculated as

prCPU
Sinf =

⌈
P peak

CPU TPout

CAPbat

⌉
prbat + P peak

CPU (γCo|PD + γinv) +
⌈

NGPPs
CAPrack

⌉
prrk&nt, (26)

where P peak
CPU is the edge cloud CPU peak power consumption,

achieved when all deployed GPPs are fully active and
utilized. Moreover, CAPbat, TPout, and prbat are variables
linked to the installed battery bank. Specifically, CAPbat
is the battery capacity in Wh factoring in the depth of
discharge, TPout is the maximum duration of a power outage
that can be managed, and prbat represent the cost for the
battery’s acquisition and installation. Besides that, γCo|PD and
γinv stand for price slopes. The former indicates the cooling
and power distribution infrastructure expense per Watt, while
the latter pertains to the inverter costs of the backup power
source per Watt. Finally, prrk&nt defines the acquisition and
installation cost of a rack and the network equipment on a
per-rack basis [26], [30].

IV. COST MODELS
This section presents the cost models utilized to determine
the TCO of the UC D-mMIMO system in the context of
the methodology in Fig. 3. For the reader’s convenience,
Table 9 lists all the mathematical representations introduced
throughout the equations of this section.

The model is divided into CAPEX and OPEX, which are
summed to obtain the TCO. In this context, the CAPEX is
given by

CAPEX = CCPU
a&i + CTRPs

a&i + CXhaul
a&i , (27)

where CCPU
a&i , CTRPs

a&i , CXhaul
a&i represents the acquisition and

installation cost for CPU, TRPs, and fronthaul interfaces,
respectively. Conversely, the OPEX is given by

OPEX = T hours
ope

Chourly
fSpace + Chourly

rep +
prkWh

24

N daily
samples∑
n=1

P total
n T sample

n

 , (28)

where T hours
ope is the adopted operational time in hours, prkWh

is the price of kWh, N daily
samples is the considered number of

VOLUME , 13



FERNANDES et al.: A Cost Assessment Methodology for User-Centric Distributed Massive MIMO Architectures

TABLE 9. List of mathematical notations introduced in Section IV.

Symbol Description
CCPU

a&i Acquisition and installation cost for CPU
CTRPs

a&i Acquisition and installation cost for TRPs
CXhaul

a&i Acquisition and installation cost for fronthaul interfaces
C

hourly
fSpace Hourly costs of floor space

C
hourly
rep Hourly costs of repairs

Fl,peak Peak fronthaul bit rates for TRP l

Lt Number of active TRPs at time t

Mi Equipment of type i mean time between failures (MTBF)
NTRP Number of deployed TRPs
N

daily
samples Number of samples of time during the day

Ni Number of equipment of type i

N i
tech Number of technicians required for the repair of equipment

of type i

P total
n Network power consumption at each time sample n

PTRP,t TRP expected power at time t

PXhaul,t Power associated with the backhaul/fronthaul network at
time t

E Set of different equipment types

pr
Fl,peak
FEport Price of an Ethernet fronthaul switch port capable of sup-

porting rates of Fl,peak

prFdrop Price to install the final link from the fiber to the building
(FTTB) infrastructure to the TRPs

prGPP GPP acquisition price
prkWh Price of kilowatt hour (kWh)
prirep Cost of replacement parts for a failure of equipment of type

i

pr
Fl,peak
SFP Price of a grey small form-factor pluggable (SFP) capable

of supporting rates of Fl,peak

pw
Fl,peak
FEport Power consumption for an Ethernet fronthaul switch port

capable of supporting rates of Fl,peak

pw
Fl,peak
SFP Power consumption of a grey SFP capable of supporting

rates of Fl,peak

Stech Technicians salary per hour
T

sample
n Duration of each time sample n in the day

T ins
GPP GPP installation time

T hours
ope Total operational time in hours

T ins
TRP TRP installation time

T i
rep Expected repair time of equipment of type i

Ttrv Technicians travel time

time samples in a 24-hour period for the UE load variation,
P total
n is the total power consumption at each time sample n,

and T sample
n is the duration of each time sample n in hours,

i.e., n is a discretization of t. Additionally, Chourly
fSpace and Chourly

rep

are the hourly costs of floor space and repairs, respectively.
The CPU installation and acquisition cost is defined by

CCPU
a&i = NGPPs(prGPP + T ins

GPPStech) + prCPU
Sinf , (29)

where prGPP is the price of the GPP and T ins
GPP is the

installation time for the GPP.
The TRPs installation and acquisition cost is defined by

CTRP
a&i = NTRP

(
prTRP + T ins

TRPStech + prFdrop

)
, (30)

where NTRP is the number of deployed TRPs, which is
equal to the supremum of Lt. Moreover, T ins

TRP is the TRP
installation time, Stech is the technician salary per hour, and
prFdrop is the price to install the final link from the FTTB
infrastructure to the TRPs.

The fronthaul implementation cost can be dependent on
various factors, like the type of the transmission medium,
topology, number of derivation nodes, installed wired length,
and distance between wireless nodes, among others [17],
[18], [31]. This work assumes that the fronthaul network
utilizes a pre-deployed FTTB infrastructure, a reasonable
assumption since the FTTB/fiber to the home (FTTH) pene-
tration is already over 60 % in Europe and east Asia, growing
more every year [32], [33]. In this context, the only costs to
deploy the fronthaul network are related to equipment at its
tip, i.e., at the CPU and TRPs, being calculated as

CXhaul
a&i =

NTRP∑
l=1

(
2prFl,peak

SFP + prFl,peak
FEport

)
, (31)

where Fl,peak is the peak fronthaul bit rate for TRP l,
calculated by supt Fl,t. Moreover, prFl,peak

Eport is the price of the
fronthaul Ethernet switch port capable of supporting rates of
Fl,peak. Lastly, prFl,peak

SFP is the price of a grey SFP capable of
supporting rates of Fl,peak [34].

The total power consumption at time sample n is calcu-
lated through the power consumption at the associated time
t by

P total
t = PTRP,t Lt + PCPU,t + PXhaul,t, (32)

where PXhaul,t is the power associated with the back-
haul/fronthaul network at the time t, which is calculated by

PXhaul,t =

Lt∑
l=1

(
2pwFl,peak

SFP + pwFl,peak
FEport

)
, (33)

where pwFl,peak
FEport is the power consumption for an Ethernet

fronthaul switch port capable of supporting rates of Fl,peak

and pwFl,peak
SFP is the power consumption of a grey SFP capable

of supporting rates of Fl,peak [35].
The hourly repair costs are calculated by

Chourly
rep =

∑
i∈E

(
Ni N

i
tech (T

i
rep + 2Ttrv)Stech + prirep

Mi

)
, (34)

where E represents the set of different equipment types. This
set is composed of the following elements: TRP, fiber final
drop, SFP, GPP, rack networking device, fronthaul switch,
and outdoor fibers. For a device of type i: Ni is the number
of devices, N i

tech is the number of technicians required for
repair, T i

rep is the repair time, prirep is the cost of replacement
parts, Mi is the device’s MTBF. Additionally, Ttrv refers to
the technicians’ travel time [34].

The hourly floor space costs are calculated by

Chourly
fSpace =

(
srack

⌈
NGPPs

CAPrack

⌉
+ sTRP NTRP

)
pryear

floor

8760
, (35)

where sTRP and pryear
floor represent the physical area occupied

by a TRP and the price of renting per year per unit of area,
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respectively. The number 8760 converts rent prices from
yearly to hourly.

V. NUMERICAL RESULTS
A reasonable baseline case study is defined and used to
identify the main cost trends for distributed and centralized
processing alternatives. Then, the impact of cost reduction
in the non-CPU deployment infrastructure is evaluated,
considering work-related expenditures. This evaluation aims
to evaluate the benefits of markets with more affordable
equipment and labor costs or by the adoption of the cheaper
integrated solution UC D-mMIMO systems in the literature,
like the one in [3]. On the other hand, The prices of GPP and
energy are also varied to identify possible changes in trends,
as they can vary among vendors and globally, respectively.
Finally, constructive parameters of the TRPs are varied to
identify changes in cost trends, including the maximum
number of UEs served by each TRP and its antenna count.

A. CASE STUDY
1) GENERAL ASSUMPTIONS
Fig. 7 depicts the considered scenario, covering an area of
500 x 500 m with 16 blocks of buildings, each measuring
100 x 100 m. This scenario aims to emulate a dense urban
environment. Although cities may differ in their building
configurations, the grid building block is commonly found
in larger cities like Barcelona or New York. Thus, it is
considered a meaningful layout for a generic, dense urban
environment. The TRPs are placed atop buildings at a 15 m
height and are installed equally spaced between themselves
on the side of each block. This configuration simplifies TRP
deployment and is adequate to serve outdoor UEs on the
streets, which are the focus of this work analysis. If, for any
reason, the number of TRPs per block is not equal, some
of them are randomly selected to have an additional TRP.
Similarly, if the number of TRPs on each side of the block
is unequal, one or more sides are randomly selected to have
an additional TRP. Finally, UEs are randomly distributed on
streets at 1.65 m height.

The number of active UEs fluctuates throughout the day
according to a profile (Fig. 8) with three possible levels of ac-
tive UEs at different hours. Ideally, since the day is assumed
to be discretized into hourly intervals, the profile should
include 24 levels of active UEs. The main problem with this
approach is that it is computationally burdensome since it
would require 24 distinct simulations for each combination
of precoders, UE demands, and TRP deployment strategies.
Most simulations have a substantial count of TRPs and UEs
and may take a long time to be executed, even in high-
performance machines. Adopting only three possible levels
is justified to depict a reasonable representation of active UE
presence, capturing values at peak, valley, and approximate
average while reducing the number of required simulations.
Consequently, the adopted profile strikes a balance between
the fidelity of portraying UE presence and the minimization

500 m x 500 m

Edge

cloud

CPU

TRPs

100 m

100 m

FIGURE 7. Considered urban-dense scenario. TRPs are placed atop
buildings at a 15 m height.

of the computational resources required for simulation. The
highest number of active connections occurs around 14:00
and 20:00, while the lowest number is around 6:00, resulting
in a 5.6 peak-to-valley UE ratio. These figures align with the
daily variation in the ratio of connected UEs to a long-term
evolution (LTE) cell at a European metropolitan city [36].
The peak number of active UEs is calculated for a high-
density urban area with 10,000 people per km2, assuming
each person has one UE. Furthermore, the calculation con-
siders that the operator has a contract with approximately
one-third of the UEs and that only outdoor UEs are served
by the UC D-mMIMO network, which traditionally accounts
for 25 % of all UEs [37].
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FIGURE 8. Assumed profile of active UEs over the hours of the day.

Table 10 presents the power and price information for
SFPs and Ethernet ports. The values are sourced from online
network equipment suppliers. For Ethernet ports, values are
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extracted from the FS S8550, S8050, and S5850 switch
families. For SFPs, Cisco devices with a 10 km range are
used as benchmarks. All pricing is standardized using a cost
unit (CU) equivalent to the cost of a grey optical 10 Gbps
SFP, approximately US$27 at the time of the writing of this
study. In this way, the prices for hourly technician salary
(Stech), kWh (prkWh), and yearly floor space rent (pryear

floor)
are specified as 7.4 CU, 3.7 × 10−3 CU, and 10.7 CU,
respectively [38].

TABLE 10. SFP and fronthaul port price and power consumption.

Parameter/Equipment Price (CU) Power (W)

Capacity (Gbps) 10 25 40 10 25 40
Grey SFP 1 2.6 11.4 1 1.3 3.5
Fronthaul Ethernet port 2.6 4.6 5.8 2.8 4.3 6

Three processing strategies are compared: distributed
LP-MMSE, centralized P-RZF, and centralized P-MMSE.
The first follows a BTRP functional split, and the others
follow a BCPU functional split. All comparisons focus on
the DL performance, using the expected UE rate as the
main parameter. Two distinct TRP deployment strategies are
analyzed. The first deploys TRPs to achieve a given average
UE rate and is not actively trying to provide fairness among
UEs. While this strategy does not necessarily lead to unfair
performance, it does not prioritize fairness. The second is
based on an agreed-upon SLA rate and tries to emulate a
deployment that actively tries to provide fairness. It deploys
TRPs while ensuring that at least 40 % of the agreed rate is
achieved at any time in 90 % of the coverage area.

2) SYSTEM MODEL ASSUMPTIONS
The 3rd generation partnership project (3GPP) urban micro
(UMi) path-loss model is adopted for the system simulations
[39]. The existence of LoS link components between every
UE and TRP is checked by taking into account the positions
of UEs and blocks of buildings in Fig. 7. The LoS probability
for the calculation of the Rician factor is given by the
probability equations in [39] for the UMi scenario. The
correlation matrices follow the Gaussian local scattering
model [19]. A joint pilot assignment and TRP selection
is assumed, where the first τp UEs are assigned mutually
orthogonal pilots, and the remaining UEs are assigned to the
pilot that experiences the lowest pilot contamination. Then,
each TRP selects up to τp UEs with the highest average
channel gain in each pilot [6].

Table 11 summarizes the system simulation parameters.
Most are selected based on parameters commonly adopted
in the literature [4], [7], [40], [41]. The number of an-
tennas per TRP is chosen to represent the simplest TRP
with multi-antenna processing capabilities. The assumed bit
width of pilot samples and acceptable fronthaul data sample
degradation assures a very low degradation in the channel
estimates and data samples sent through the fronthaul. The

maximum number of TRP connections per UE is selected
to be high to ensure that each UE is connected to a large
number of antennas. Lastly, the maximum number TRPs
is chosen to allow an 8 m spacing between TRPs. This
constraint is established to manage simulation computational
requirements.

TABLE 11. System, channel, and signal simulation parameters.

Parameter Values

Number of antennas per TRP (N ) 2

Number of supported UEs per TRP (max(|Dl|))
and UL pilot samples (τp)

10

Coherence block samples (τc) 200

Carrier frequency 3.5 GHz
Bandwidth (B) 100 MHz
Number of subcarriers (Nsc) 3300
Sampling frequency (fs) 122.88 MHz
Symbol time (Ts) 35.38 µs
TRP total Tx power (pwTx) 23 dBm
UE total Tx power 20 dBm
Noise figure 7 dB

Angular standard deviation 15◦

Shadow fading standard deviation 4 dB
Shadow fading decorrelation distance 9 m
Uniform linear array antenna spacing half-wavelength
Fronthaul pilot samples bit width (bpil

l ) 10

Acceptable SE degradation due to fronthaul data
samples (adeg)

0.1 bps/Hz

Maximum TRP connections per UE (Umax) 64

Maximum deployed TRPs (Lmax) 800

3) TRP MODEL ASSUMPTIONS
The TRP’s DSP power consumption and pricing are based on
the TMS320C6671/72/74/78 family by Texas Instruments. In
this context, several key approximations have been outlined:
the DSP core single precision processing capacity (CAPDcore)
is 20 GOPS, the idle DSP core power slope (γpwDcore) is
0.57 W/GOPS, the power slope related to processing load
on the DSP (γpwDSP) is 49.1 mW/GOPS, the other related
DSP power consumption (pwother

DSP ) is 8.52 W, the price slope
for DSP cores (γprDcore) is 0.42 CU, and the base price of
the DSP (prbase

DSP) is 2.92 CU.
A comprehensive breakdown of the pricing and power

assumptions for various TRP subcomponents can be found
in Table 12. Prices are based on an online electronic compo-
nents supplier. Power consumption values are based on [23].
Besides that, the same price and power assumptions made
for the fronthaul Ethernet switch ports are used for the I/O
interface of the TRP.

The price reduction factor due to SoC integration of the
analog front-end (αSoC) equals 0.44. This figure is derived
from schematics of SoCs possessing similar subcomponents.
The factor is calculated considering the pricing of these SoCs
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TABLE 12. Power and pricing assumptions for TRP components.

Component Price (CU) Power (W)

Filter 0.05 0.125

VGA 0.32 0.063

IQ modulator 0.39 0.2

DAC 0.14 0.175

ADC 0.14 0.225

Antenna 0.42 -

in an online electronic components supplier in relation to
their discrete circuit counterparts.

Lastly, the price to install the final fiber drop from the
building FTTB structure to the TRPs (prFdrop) is 5.6 CU,
which is based on the price of a drop in fiber internet
installation for a building according to a telecommunication
service company.

4) EDGE CLOUD CPU MODEL ASSUMPTIONS
The deployed GPPs are based on Dell 1U PowerEdge
R650xs rack servers, featuring a chipset with dual Intel Xeon
Gold 6330 processors, one solid-state drive (SSD), and 16
sticks of 8 GB of random access memory (RAM). This setup
results in a power consumption of 242 W when idle (pwidle

GPP)
and 652 W at peak (pwpeak

GPP) operation [42]. The Intel Xeon
Gold 6330 has a base clock of 2 GHz, 28 cores, and an
Ice Lake microarchitecture, supporting 64 single-precision
FLOPS per cycle. The resulting GFLOPS capacity can be
converted to GOPS by a factor of 1, resulting in a GPP with
a GOPS capacity (CAPGPP) of 7168 for a price (prGPP) of
367.7 CU.

For the racks, a 42U configuration is assumed. This means
that, when utilizing a 1U server, the total capacity of each
rack (CAPrack) is 42 GPPs. Each rack requires a space
(srack) of 1.728 m2. From the pricing standpoint, the cost
of acquisition and installation for both the rack and the
accompanying network equipment (prrk&nt) is 370.4 CU [26].

For the support infrastructure to the IT components, the
cooling PUE (PUEcool) is 1.3, while the pricing for cooling
and power distribution infrastructure (γCo|PD) is 0.46 CU/W
[26], [27]. For the backup power solution, a battery bank
is assumed. The acquisition and installation of each battery
cost (prbat) is 11.11 CU, and their capacity (CAPbat) is 1512
Wh [30]. The battery bank is designed to support an outage
time of 5.52 hours, equal to the expected non-momentary
energy interruption time in the United States. Finally, the
inverter acquisition and installation price slope (γinv) is 0.015
CU/W [30].

5) INSTALLATION AND REPAIR ASSUMPTIONS
The presented cost model requires TRPs and GPPs in-
stallation time. The first is assumed to be one hour. The
second breaks down as follows: 30 minutes for physical

server installation, 10 minutes for network connection, and
30 minutes for server provisioning, cumulatively amounting
to 1.17 hours. These estimations are based on analogous
components in other types of networks and the duration of
manual server provisioning [43]–[45].

Table 13 presents repair parameters for various equipment
types. GPP MTBF and repair time metrics are sourced from
server node failure data in large-scale computational clusters
[46]. Other values are derived from analogous components
in different network types [44], [47]. Outdoor fiber MTBF
scales with fiber length, which can be obtained as in [48] for
a block scenario. The time to repair an SFP is considered
equivalent to installing a port in a switch. Replacement parts’
prices are assumed to be the same as acquisition prices. For
GPP parts, costs are calculated by scaling component costs
with respective failure rates and normalizing them with the
GPP failure rate.

TABLE 13. Installation and repair parameters.

Equipment Repair
time (h)

MTBF (h) Replacement
parts price (CU)

GPP 1.12 177523 100

SFP 0.17 2300000 pr
Fl,peak
SFP

TRP 1 520000 prTRP

Fr. switch 7 500000 pr
Fl,peak
FEport

Out. fiber 7 1754386× km −

Fiber drop − 10000000 prFdrop

For networking rack equipment, repair time, MTBF, and
replacement parts cost are assumed to be equivalent to those
of the fronthaul switch. The estimated travel duration for
the repair team is one hour. Most repairs involve a single
technician, but outdoor fibers require a trio [44].

B. BASELINE RESULTS
Fig. 9 provides an overview of the TCO after five years
of operation concerning the expected UE rate, which is
calculated by summing (27) and (28). The analysis includes
distributed LP-MMSE and centralized P-RZF and P-MMSE
processing implementations under the case study assump-
tions, as outlined in Subsection V-A. The cost differences
between these implementations originate from the variations
in the parameters within (27) and (28), which, in turn, are
influenced by network requirements calculated in Section
III for each type of processing. The data points span from
expected rates of 15, 25, and 50 to 500 Mbps in increments
of 50 Mbps, allowing for a detailed examination of the cost
implications across a spectrum of UE demands. Additionally,
the cost range is presented up to 35.8 thousand CUs, provid-
ing a comprehensive view of the economic considerations.
Notably, the observed TCO trends exhibit exponential be-
havior concerning the expected UE rate, with distinct growth
rates discernible among the various processing alternatives.
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It is evident that LP-MMSE starts with lower costs but
experiences a more accelerated cost growth rate than cen-
tralized alternatives. For instance, by increasing the expected
rate from 50 Mbps2 to 200 Mbps3, the cost of LP-MMSE
increases by up to 5.22 times. In contrast, a centralized
P-MMSE implementation sees a cost increase of only 1.96
times between the aforementioned UE rates. This behavior
suggests that centralized deployment can be more attractive
and future-proof for next-generation networks4. The direct
comparison between the processing alternatives reveals that
a distributed LP-MMSE implementation is the most cost-
effective alternative for UE demands up to 58.1 Mbps.
Beyond that point, a centralized P-MMSE implementation
becomes the least expensive. The centralized P-RZF imple-
mentation is always more costly than P-MMSE, regardless
of the rate considered, being even less economical than
LP-MMSE up to UE expected rates of 83.7 Mbps. Based
on the results, it is more beneficial to use the distributed
implementation approach for low demands per UE, i.e.,
required UE rates up to slightly over 50 Mbps. However,
the centralized approach is more advantageous for medium
and high traffic demands.

On the other hand, it is essential to note that these findings
do not hold when considering a fairer service level agreement
where at least 40 % of the agreed UE rate is guaranteed
to be achieved at anytime in 90 % of the coverage area
(SLA 40:90) TRP deployment. In this case, the costs are

2The required 5G downlink UE rate for an urban wide-area scenario [49].
It can handle Full HD cloud virtual reality (VR) and 4K 3D video [50].

3A UE rate capable of handling most bandwidth-intensive applications,
such as augmented reality (AR), cloud 2K VR, and 8K 3D video [50].

4In 6G systems, improvements should be sought as possible for UL and
DL data rates within economic and sustainability constraints, since a 10x
or 100x increase from 5G UE rates may be unsustainable [51].

always higher than in the previous analysis, and the curve
behavior is initially increasing concave down before trending
to the original exponential behavior in demands of 150 to
200 Mbps, even matching the non-SLA case starting in
demands of 250 to 300 Mbps. In this way, LP-MMSE costs
in lower demands are up to 104 % higher, while centralized
processing alternatives have cost increases up to 36 %. In this
way, for the SLA approach, centralized processing options
are the most cost-effective for any expected rate, being
the best way to implement a UC D-mMIMO system, with
P-MMSE being the least costly processing alternative.
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FIGURE 10. CAPEX and 5 years OPEX values and composition for up to
six expected UE rates and the case study assumptions (N = 2 and
max(|Dl|) = 10). The nominal non-SLA TRP deployment is considered
unless when specified. The percentages within the stacks of bars
represent the contribution of a component to the CAPEX or OPEX
composition.

Fig. 10 provides a comprehensive insight into the absolute
value and cost composition of both CAPEX and OPEX
across expected UE rates of 50, 100, 200, and 300 Mbps.
These rates are achievable by all processing alternatives
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under the specified case study assumptions. Notably, results
for the fairer SLA 40:90 TRP deployment are exclusively
presented for P-RZF, as the behavior changes from the non-
SLA results can be easily discerned by analyzing this specific
precoder.

The findings underscore that CAPEX is the predominant
factor in the five-year TCO for all expected UE rates and
processing alternatives, representing between 73.2 % and
75.9 % of the costs. Extrapolating these results, it becomes
apparent that for demands of 50 Mbps, the total OPEX
would reach the CAPEX value in 14.3, 13.7, and 13.9
years of operation for LP-MMSE, P-RZF, and P-MMSE,
respectively. Furthermore, for demands of 300 Mbps, the
total OPEX would equal the CAPEX value in 19.8, 15.8,
and 15.3 years of operation for LP-MMSE, P-RZF, and
P-MMSE, respectively. These results signify that CAPEX
remains the dominant factor in the TCO for an expected
operation time ranging between 5 and 15 years, a typical
duration for communication networks, especially in high-
traffic demands scenarios.

Fig. 10a illustrates the breakdown of CAPEX, highlighting
its key components, including the acquisition and installation
of: (i) TRPs, (ii) GPPs, (iii) GPP racks, (iv) cloud cooling
infrastructures, (v) cloud power infrastructure, and (vi) fron-
thaul infrastructure. In the context of distributed LP-MMSE
processing, the primary cost driver is related to TRPs,
which presents a substantial increase in value and CAPEX
participation with growing traffic demands. For instance,
when the expected UE rate reaches 300 Mbps, the TRP cost
alone accounts for 73 % of the total CAPEX. This growth
can be attributed to the significantly larger number of TRPs
needed to support higher UE rates effectively. The fronthaul
cost becomes more relevant for LP-MMSE as the demands
increase, with higher capacity transceivers in the fronthaul
interface needed, constituting up to 24 % of the CAPEX
at 300 Mbps. In contrast, the costs associated with cloud
infrastructure for the distributed LP-MMSE implementation
remain relatively minor, exhibiting no significant growth
even with increased supported traffic demands.

Concerning the centralized processing implementations,
P-RZF and P-MMSE share TRPs as the primary cost driver.
Despite this, the dominance of TRP costs is less pronounced
than in the distributed case, as it grows slower with supported
traffic demands. Costs related to the GPPs also grow with
increased supported traffic demands, going from negligible
participation at 50 Mbps to around 20 % participation at
300 Mbps. It is noticeable that P-MMSE has lower costs
than P-RZF due to reduced expenses in both TRPs and
GPPs, originating from the higher performance of P-MMSE,
which reduces the required number of deployed TRPs and
consequently lowers processing complexity. Furthermore, it
is worth noting that the expenses with fronthaul are compara-
tively smaller in centralized processing implementations than
in the distributed one. This disparity is due to the fronthaul

bit rate scaling with the number of antennas in the first case
and UEs served by each TRP in the second [5].

When considering the fairer SLA 40:90 TRP deployment,
it is noticeable that TRP and GPP costs are more elevated
for all considered demands. In the cases of 50 and 100
Mbps, the cost increase compared to the non-SLA case
is more pronounced. This fact is primarily attributed to
the requirement for a higher number of TRPs to ensure
fairness in lower demands, leading to increased processing
computational complexity. As the demands approach 200 and
300 Mbps, the number of deployed TRPs in the non-SLA
is sufficiently large to result in improved fairness, resulting
in similar TRP and GPP costs to the SLA 40:90 case. This
behavior explains why the SLA 40:90 TCO curve initially
exhibits an increasing concave downtrend before trending
towards the original exponential behavior of the non-SLA
case.

Fig. 10b provides a comprehensive breakdown of the
yearly OPEX, highlighting its key components: (i) Edge
CPUs power consumption, (ii) TRPs power consumption,
(iii) fronthaul power consumption, (iv) repairs, and (v) floor
space. Notably, the repair cost emerges as the largest con-
tributor to the OPEX, accounting for between 38 % and 42 %
of the total OPEX. It is followed by floor space and TRP
power consumption, which can make up to 24 % and 23 %
of the OPEX, respectively. Fronthaul power consumption
is mostly negligible, except for LP-MMSE under higher
demands. For instance, at 300 Mbps per UE, it reaches 11 %
of the OPEX. The CPU power is mostly irrelevant for the
distributed alternatives. In contrast, for the centralized ones,
it becomes more relevant at medium-high rates, achieving
up to 14 % of the OPEX in the 300 Mbps scenario.

The increase in most cost categories with UE demands
is primarily driven by the growing number of deployed
TRPs, leading to the increased deployed area, number of
failures, computational complexity, and number of fronthaul
connections. This behavior is also the reason why the fairer
SLA 40:90 deployment incurs somewhat higher costs in all
OPEX categories, especially in lower demands, since SLA
40:90 has more TRPs than its non-SLA counterpart. For
higher demands, the behavior of the SLA and non-SLA
deployments is mostly similar.

C. IMPACTS OF PRICE VARIATIONS
The prices of TRP, fronthaul infrastructure, GPP, and energy
consumption play a crucial role in influencing both CAPEX
and OPEX. Analyzing how variations in assumed case
study prices affect overall costs is indispensable for making
informed decisions regarding the cost assessment of a UC
D-mMIMO network.

1) NON-CPU DEPLOYMENT PRICE REDUCTION
UC D-mMIMO systems stand to benefit from simpler and
more affordable TRPs, especially in integrated solutions
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with low installation time and complexity, such as the one
in [3]. Additionally, some markets may benefit from these
simpler TRPs even with non-integrated setups due to their
manufacturing capabilities and lower labor costs. In both
cases, the cost related to the TRPs might be more economical
than the one obtained from case study assumptions. In other
words, the considered market or an integrated solution has
the potential to decrease all considered non-CPU acquisition
and installation expenditures.
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FIGURE 11. 5-years TCO for price variations in TRP and fronthaul prices
concerning the case study, including equipment and work-related
expenses. The aim is to emulate the potential cost reductions from
integrated UC D-mMIMO solutions that reduce installation time and
complexity, like the one in [3], or markets with cheaper labor and
equipment. Colored bars represent costs for nominal non-SLA TRP
deployment, while the colorless stacked bars depict the additional cost
incurred by adopting the fairer SLA 40:90 TRP deployment.

Fig. 11 presents insights into the 5-year TCO for 90 %,
and 50 % reductions in TRP and fronthaul prices, includ-
ing work-related expenditures for network deployment, re-
garding the case study assumptions. These conditions aim
to emulate the potential cost reductions from integrated
UC D-mMIMO solutions that reduce installation time and
complexity or markets with cheaper labor and equipment.
Results representing low and medium demands are shown,
equivalent to 50 and 200 Mbps per UE, respectively. From a
purely economic perspective, the original findings remain the
same despite price reductions. That is, LP-MMSE is the best
approach in a non-SLA TRP deployment, and P-MMSE is
the best choice in other cases. However, carefully examining
the results reveals notable changes compared to the results
of the case study prices. With an 85 % to 90 % reduction in
non-CPU price variables, the distributed LP-MMSE becomes
more economical than the centralized P-RZF in medium
demands. Moreover, while P-MMSE remains the most af-
fordable alternative in low-demand scenarios, it exhibits a
very similar cost to LP-MMSE, hovering around 2 thousand
CUs.

These results indicate that solutions or markets with re-
duced non-CPU equipment acquisition and installation costs,

such as the integrated solution in [3], make distributed
processing more cost-competitive if they provide an 85 % to
90 % reduction in non-CPU expenditures. Moreover, even if
only a 50 % reduction is provided, such solutions or markets
make the cell-free system significantly more affordable at
higher rates, reducing costs in the demands around 200
Mbps per UE by multiple thousands of CUs, which are
equivalent to 42 % to 75 % TCO reductions, depending on
the processing scheme.

2) CPU DEPLOYMENT PRICE REDUCTION
Centralized processing implementations for UC D-mMIMO
systems depend more on CPU component prices as the UE
demands increase. The GPP prices assumed in the case study
could be higher since the lowest price found in the conducted
market research was considered.
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FIGURE 12. 5-years TCO for GPP price variations concerning the case
study. Colored bars represent costs for nominal non-SLA TRP
deployment, while the colorless stacked bars depict the additional cost
incurred by adopting the fairer SLA 40:90 TRP deployment.

Fig. 12 provides insights into the 5-year TCO for a seven
and 28 times increase in GPP prices compared to the case
study assumptions. Although these conditions surpass the
identified range in the market research conducted for GPP
prices, which had a maximum of 4 times increase, the
analysis can offer valuable observations on the cost trends
of different processing alternatives. The presented results
represent low and medium demands, corresponding to 50
and 200 Mbps per UE, respectively. It is noticeable that
an increase of seven times in GPP prices can elevate the
TCO by 37 % to 83 % for low demands and 14 % to 93 %
for medium demands. Notably, two significant changes were
observed concerning the results of the case study findings.
For both low and medium demands, LP-MMSE becomes
more cost-effective or remains competitive relative to P-RZF,
irrespective of the utilization of the fairer SLA 40:90 TRP
deployment.

20 VOLUME ,



These results reaffirm the advantages of the more neg-
ligible dependence on CPU cost for distributed processing
approaches. Concerning LP-MMSE, the cost increases for
seven times GPP prices can be up to 1.5 and 9 thousand
CUs higher for P-MMSE and P-RZF, respectively. Moreover,
a further GPP price increase of 28 times can render the
LP-MMSE approach more affordable than the P-MMSE
alternative in medium demands. Despite this, it is crucial
to note that the occurrence of these changes in findings
concerning the case study results depends on an CPU price
increase of at least seven times. Thus, the market research
increase of up to 4 times in prices cannot alter the findings
from the case study results.

3) ENERGY PRICE VARIATION
Energy costs vary significantly based on deployment loca-
tion. The case study employed a reference price for the
kWh, which would be compatible with developed energy-
rich countries where power is not so expensive. Despite this,
developed European countries could have kWh prices up
to 6 times higher at the date of this work submission. In
this context, an analysis of the variation in energy prices is
fundamental to ensure that the findings of this work can be
applied to different economic realities.
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FIGURE 13. 5-years TCO for energy price variations concerning the case
study. A line divides the participation of CAPEX and OPEX in the TCO.
Only results for the nominal non-SLA TRP deployments are shown.

Fig. 13 provides insights into the 5-year TCO for a 300 %
and a 500 % increase in energy prices compared to the case
study assumptions. Results representing low and medium
demands are shown, equivalent to 50 and 200 Mbps per
UE, respectively. A line is used to divide the participation
of CAPEX and OPEX in the TCO. Values below the line
account for CAPEX, and those above represent OPEX. For
a more aesthetic presentation, results for the fairer SLA
40:90 TRP deployment are omitted, but the findings of non-
SLA ones also apply to the fairer case. It can be observed
that changing the energy price can significantly increase the

TCO. A 500 % price increase can cause up to a 53 % increase
in total costs. Despite this, there are no changes in the most
and least cost-effective processing alternatives concerning
the case study results.

The main change in relation to the case study results is
the level of OPEX dominance on the TCO, which becomes
much higher as the energy price increases. In fact, OPEX is
almost the same as CAPEX for a 500 % price increase over
five years of operation. In this situation, extrapolating the
results shows that OPEX would reach the CAPEX value in
4.5 to 6.71 years of operation, depending on the processing
alternative and demands. This makes OPEX the dominant
factor in the TCO for the typical 5 to 15 years of operational
life of communication networks. A more reserved but still
significant increase in energy prices of just 300 % makes
the OPEX reach the CAPEX value in 7.8 to 11 years
of operation, depending on the processing alternative and
demands, providing higher chances for OPEX dominance
in the typical operational life. These findings justify works
related to increasing energy efficiency in UC D-mMIMO
systems.

D. IMPACT OF UES SUPPORTED PER TRP VARIATION
The number of supported UEs per TRP can strongly in-
fluence the performance and costs of different processing
implementations. For example, the interference levels and
computational complexity may experience substantial varia-
tions, especially for centralized processing. In this context,
analyzing how variations in the number of supported UEs per
TRP impact the TCO is essential to make informed decisions
regarding processing implementations.

Fig. 14 provides an overview of the TCO after five years
of operation concerning the number of supported UEs per
TRP for the expected UE rates of 50 and 200 Mbps,
representing low and medium demands. Results for 5, 10,
15, 20, and 25 UEs per TRP are shown in two subplots
representing (a) nominal non-SLA and (b) fairer SLA 40:90
TRP deployments. Moreover, besides the UEs supported per
TRP variation, all other parameters are the same as in the
case study. It can be noticed that from 15 UEs per TRP
onward, SLA and non-SLA costs are almost the same for
the centralized P-MMSE and P-RZF alternatives. For the
distributed approach LP-MMSE, the cost difference between
TRP deployments is significant in low demands but very
similar in medium demands.

Fig. 14a provides a detailed overview of the nominal
non-SLA results. Notably, for low demands, the distributed
LP-MMSE emerges as the most competitive implementation
for up to 15 UEs per TRP. Beyond this point, P-MMSE
becomes the preferred alternative. In the case of medium
demands, P-MMSE consistently outperforms other alterna-
tives by a substantial margin. An interesting behavior is the
presence of a valley in the P-RZF curve, occurring at 10 UEs
per TRP for both low and medium demands within the con-
sidered values of UEs per TRP. These findings suggest that
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FIGURE 14. 5-years TCO vs. maximum UEs per TRP for 50 and 200 Mbps
expected UE rates, representing low and medium demands, respectively.
Five values of maximum UEs per TRP are considered: 5, 10, 15, 20, and
25. Other parameters remain the same as in the case study.

the optimal operation in terms of cost for P-RZF lies around
10 UEs per TRP. Moreover, it is shown that the concave-
up behavior of the P-RZF can make it more expensive than
LP-MMSE in medium demands, as seen in 20 and 25 UEs
per TRP. The other processing alternatives exhibit a more
uniform behavior, with minor variations attributed to changes
in deployed TRPs, computational complexity, and fronthaul
requirements. Notably, the most significant variation outside
of P-RZF occurs in the 200 Mbps LP-MMSE between 20 and
25 UEs per TRP. This variation is primarily due to fronthaul
requirements scaling with the number of UEs per UE in
distributed processing implementations.

Fig. 14b provides detailed results for fairer SLA 40:90
TRP deployments. Notably, for both considered demands,
P-MMSE emerges as the most competitive implementation
regardless of the number of UEs served per TRP. The

P-RZF curve exhibits a valley, as observed in the non-SLA
results, occurring at 15 and 10 UEs per TRP for low and
medium demands, respectively. Comparing it to the non-
SLA results, there is a shift in the valley’s location from
10 and 15 UEs per TRP. However, the cost difference
between these points is small enough to say that for low
demands, the optimal point of operation lies within this
range. Additionally, another noteworthy change concerning
non-SLA results is that P-RZF becomes more expensive
for low UE counts per TRP being more economical than
LP-MMSE only for 10 and 15 UEs per TRP. This behavior
is attributed to the higher costs associated with the SLA
40:90 deployment, coupled with the concave-up nature of
the P-RZF curve.

200 Mbps P-RZF 200 Mbps P-RZF (SLA 40:90)

5 10 15 20 25 5 10 15 20 25

Number of UEs per TRP

0

5

10

15

20

25

30

35

40

5
 y

ea
rs

 T
C

O
 (

th
o
u
sa

n
d
s 

o
f 

C
U

s)

TRPs

CPU infra.

Fronthaul infra.

OPEX

FIGURE 15. TCO composition of P-RZF for demands of 200 Mbps per UE
concerning 5, 10, 15, 20, and 25 maximum UEs per TRPs. Other
parameters are the same as the case study assumptions. CAPEX is
further divided into TRPs, CPU, and fronthaul costs.

Fig. 15 presents the cost composition of the TCO concern-
ing TRPs, edge CPU, fronthaul infrastructure, and OPEX
for the 200 Mbps P-RZF curve in the supported UEs per
TRP variation analysis. The aim is to better understand the
concave-up behavior of the cost curve. It can be observed
that for both Nominal non-SLA and fairer SLA 40:90 TRP
deployments, the cost with TRP decreases. This reduction
occurs because fewer TRPs are needed to support UE
demands as UEs per TRP increase. However, the costs
associated with edge CPU experience a significant increase
with UEs per TRP. This is attributed to the higher number
of common UEs between TRPs, leading to an increase in
the computational complexity of partially centralized pre-
coders/combiners, such as P-RZF and P-MMSE. While the
valley phenomenon is evident for P-RZF, a similar trend is
expected for P-MMSE. However, larger variations in UEs per
TRP need to be observed to determine the point at which this
occurs conclusively. The presented analysis of up to 25 UEs
per TRP revealed minor variations, but it was inconclusive
regarding the valley’s location.
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E. IMPACT OF ANTENNAS PER TRP VARIATION
The number of antennas per TRP can strongly influence the
performance and costs of different processing implemen-
tations. For example, distributed processing techniques are
known to combat interference much better if the TRPs have
more antennas. In this context, analyzing how variations in
the number of antennas impact total costs is essential to make
informed decisions regarding processing implementations.
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FIGURE 16. 5-years TCO vs. antennas per TRP for 50, 200, and 500 Mbps
expected UE rates, representing low, medium, and high demands,
respectively. Other parameters remain the same as in the case study.

Fig. 16 provides a comprehensive overview of the TCO
over a five-year operational period, considering different
numbers of antennas per TRP for expected UE rates of 50,
200 Mbps, and 500 Mbps, representing low, medium, and

high demands, respectively. The results for 1 to 8 antennas
per TRP are presented in two subplots, depicting (a) nominal
non-SLA and (b) fairer SLA 40:90 TRP deployments. All
other parameters remain consistent with the case study. For
high demands, the curves start in 2 antennas for central-
ized P-RZF and P-MMSE, and 5 antennas for distributed
LP-MMSE. These are the minimum number of antennas
where it becomes feasible to support 500 Mbps UE demands
under the assumptions of the case study, considering the
different processing schemes. Finally, it is important to note
that this is the first result demonstrating the capability of
distributed LP-MMSE processing to support demands of
around 500 Mbps per UE.

A comparison between non-SLA and fairer SLA 40:90
TRP deployments reveals that as the number of antennas
increases, the latter becomes progressively more expensive
than the former. This trend is primarily attributed to a more
significant reduction in deployed TRPs in the non-SLA case
with increasing antennas per TRP. Thus, when fairness is not
explicitly addressed, providing higher rates with far fewer
TRPs becomes possible, as the total number of antennas in
all TRPs tends to remain similar. However, this behavior
results in less evenly distributed TRPs across the coverage
area, reducing macrodiversity and fairness. This explains
why far more TRPs may be needed for fairer SLA 40:90
TRP deployments when considering a higher antenna count.
The only exception to this behavior is LP-MMSE under 500
Mbps demands, which already has a TRP count high enough
to provide fairness.

Fig. 16a provides a detailed overview of the nominal non-
SLA TRP deployment results. Notably, for low demands, the
distributed LP-MMSE emerges as the most competitive im-
plementation, starting from 2 antennas per TRP and having
similar costs to P-MMSE at 7 antennas per TRP. Centralized
P-MMSE is the most affordable for medium demands until
6 antennas per TRP. Beyond this, LP-MMSE becomes the
most cost-efficient alternative. For high demands, P-MMSE
is the more economical approach to up to 4 antennas per
TRP. After this point, using P-RZF is more cost-effective.
Focusing on distributed LP-MMSE, it can support 500 Mbps
demands but is generally more expensive than the centralized
approach, being 7.5 thousand CU more expensive with 8
antennas specifically. As for the centralized approaches, they
mostly exhibit an interesting behavior from 4 to 5 antennas,
where the cost increases instead of decreasing. Consequently,
for high demands and P-MMSE, a minimum of 8 antennas
per TRP is necessary to obtain a TCO smaller than in the
4 antenna case, despite the cost decreasing since 5 antennas
per TRP.

Fig. 16b provides detailed results for fairer SLA 40:90
TRP deployments. Notably, centralized P-MMSE proves to
be the most cost-effective approach for low and medium
demands across all considered numbers of antennas. For high
demands, P-MMSE starts as the more economical option but
loses its cost advantage to P-RZF after 4 antennas per TRP.
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Although it becomes close again, starting from 7 antennas,
it never becomes less expensive than P-RZF. There are
interesting behaviors for centralized P-MMSE, and P-RZF
observed once again, particularly the transition from 4 to 5
antennas, which appears to increase costs in most of the
analyzed conditions. Similar behaviors also occur at low
demands for P-MMSE from 6 to 7 antennas, at medium
demands for P-MMSE from 7 to 8 antennas, and at high
demands for P-RZF from 6 to 7 antennas. These behaviors
ensure that for centralized P-MMSE and P-RZF, costs with
4 and 8 antennas are similar for medium and high demands.
Moreover, 4 antennas per TRP is the point where the lowest
cost of the low demands is achieved by P-MMSE.

200 Mbps P-RZF 200 Mbps P-RZF (SLA 40:90)
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FIGURE 17. TCO composition of P-RZF for demands of 200 Mbps per UE
concerning a variation of one to eight antennas per TRP. Other
parameters are the same as the case study assumptions. CAPEX is
further divided into TRPs, CPU, and fronthaul costs.

Fig. 17 presents the cost composition of the TCO concern-
ing TRPs, edge CPU, fronthaul infrastructure, and OPEX
for the 200 Mbps P-RZF curve in the number of antennas
per TRP variation analysis. The aim is to better understand
the increasing behavior that sometimes occurs between two
antenna counts in the cost curves, most often in the transition
from 4 to 5 antennas per TRP.

In the nominal non-SLA case, it is observed that the cost
with TRPs remains roughly the same when transitioning
from 4 to 5 antennas per TRP. This implies that despite
the reduction in the number of deployed TRPs, the price
of an individual TRP increased significantly, offsetting any
potential economic gains. The individual cost of a TRP
always rises with the number of antennas, as more expensive
analog front-ends and digital signal processors are needed
to support higher antenna counts. In the case of centralized
processing, the I/O interface of TRPs can also become more
expensive as the fronthaul bit rate scales with the number
of antennas. Moreover, for the same reason, fronthaul costs
can increase. Thus, in the transition from 4 to 5 antennas per
TRP, the fronthaul costs increased because the reduction in
deployed fronthaul infrastructure from having fewer TRPs is

insufficient to compensate for the increase in costs from the
individual fronthaul equipment needed to support a higher
bit rate. This transition is not observed for every antenna
count because the capacity boundary between the considered
transceivers is high. For example, a 14 or 24 Gbps fronthaul
demand requires a 25 Gbps transceiver, but as soon as the
fronthaul demand surpasses 25 Gbps, 40 Gbps transceivers,
which are more expensive, need to be used.

For the fairer SLA 40:90, the explanation for the in-
termediate increases is similar, but an increase in CPU
costs is also observed. This behavior happens because the
reduction in TRP count is insufficient to compensate for
the increased computational complexity introduced by the
higher antenna count, as noticed in the transition from 4
to 5 antennas. Increasing the number of antennas should
cause more computational complexity in centralized pre-
coders’ calculations. The decrease in CPU costs observed
in most antenna count transitions occurs because the global
computational complexity of the precoders decreases with
fewer TRPs deployed.

VI. CONCLUSION
This paper introduced a comprehensive cost assessment
methodology to calculate the TCO of UC D-mMIMO net-
works. The methodology includes models for network de-
ployment, computational baseband processing requirements,
fronthaul signaling, equipment pricing, and power consump-
tion. The network deployment model was based on a pro-
posed TRP distribution method bounded by coverage or
capacity constraints. In the latter case, it supports varying UE
loads at an expected UE rate, representing the demands from
the UE’s perspective. This rate is derived from the network-
provided average UE rate or a proportional fairness-based
UE rate complying with a service level agreement agreed
rate. The fairer TRP deployment strategy aims to maintain
a significant part of this UE rate throughout a large portion
of the coverage area.

The case study carried out in this paper focuses on
comparing distributed and centralized processing functional
split options on a dense urban deployment. The results,
categorized into low, medium, and high demands equivalent
to 50, 200, and 500 Mbps per UE, demonstrated that when
the TRP deployment does not actively prioritize fairness,
distributed processing is more cost-efficient only for low de-
mands. Besides that, a higher TRP antenna count, like eight
or more, can make the distributed processing implementa-
tion more cost-effective for medium demands. Nevertheless,
centralized processing implementation is always more cost-
effective for an actively fairer TRP deployment, even for
higher antenna per TRP counts.

The analysis of the TCO composition reveals a dominance
of CAPEX over OPEX, with TRP costs as the main contrib-
utors in centralized and distributed processing implementa-
tions. A sensitivity analysis indicates that implementations
with reduced fronthaul and TRP deployment costs, with
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reduced equipment and work-related costs, have the potential
to make distributed solutions more cost-competitive for low
and medium demands or at least provide significant cost
reductions for all processing alternatives. Further sensitivity
analyses suggest that substantially higher-than-normal GPP
prices are required to make centralized implementations less
competitive. Moreover, a high energy price does not change
the cost competitiveness level of the processing alternatives
but can strongly reduce CAPEX dominance in TCO.

The evaluation of centralized implementation considered
two signal processing solutions: P-MMSE and P-RZF. The
results showed that the first was the more cost-effective in
low and medium demands. On the other hand, the P-RZF
can be more cost-effective in high-demand scenarios when
the antenna count per TRP is higher than 4. However, this
is contingent upon the number of UEs per TRP since it is
shown that P-RZF achieved its minimum cost when each
TRP served around ten UEs.

Considering all findings, the centralized implementation
utilizing P-MMSE precoding stands out as the most eco-
nomically viable solution for UC D-mMIMO networks. This
approach offers a reasonable cost across various user rates,
with the added benefit of becoming even more cost-effective
as user data rates increase, thus making it more future-proof
than the other alternatives. Furthermore, its costs are less
sensitive to the number of UEs served per TRP, avoiding
the exponential cost increases in computational complexity
and Edge CPU expenses seen with P-RZF. P-MMSE also
maintains its cost-effectiveness even with simpler TRPs that
have fewer antennas, thanks to its superior interference
cancellation capabilities, which reduce the number of TRPs
needed compared to distributed scenarios. While certain con-
ditions may make distributed processing or P-RZF precoding
more economically feasible, centralized P-MMSE generally
offers superior economic benefits.

Finally, building upon the comprehensive analysis con-
ducted in this paper, there are several possible directions
for future research. Firstly, it could be beneficial to conduct
an analysis with multiple edge CPU, one that includes the
signaling dynamics of backhaul links connecting the edge
CPU. Secondly, it would be valuable to compare the costs
of a UC D-mMIMO setup with a cellular massive MIMO one
using distributed and centralized signal processing solutions
like single-cell and multi-cell minimum mean square error
combining. Thirdly, there is room for further investigation
into fronthaul considerations, such as individualizing bit
width for data samples in different TRPs, analyzing full
greenfield implementation, and considering different access
medium and topology options. Lastly, it would be interesting
to explore a paradigm shift where the central processing unit
is seen as a cloud service hosted within a third-party data
center, implying in an edge CPU that the operator does not
own.
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