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Abstract: We introduce and examine three subclasses of the family of quantum no-
signalling (QNS) correlations introduced by Duan and Winter: quantum commuting,
quantum and local. We formalise the notion of a universal TRO of a block operator
isometry, define an operator system, universal for stochastic operator matrices, and re-
alise it as a quotient of a matrix algebra. We describe the classes of QNS correlations in
terms of states on the tensor products of two copies of the universal operator system and
specialise the correlation classes and their representations to classical-to-quantum cor-
relations. We study various quantum versions of synchronous no-signalling correlations
and show that they possess invariance properties for suitable sets of states. We introduce
quantum non-local games as a generalisation of non-local games. We define the opera-
tion of quantum game composition and show that the perfect strategies belonging to a
certain class are closed under channel composition. We specialise to the case of graph
colourings, where we exhibit quantum versions of the orthogonal rank of a graph as the
optimal output dimension for which perfect classical-to-quantum strategies of the graph
colouring game exist, as well as to non-commutative graph homomorphisms, where we
identify quantum versions of non-commutative graph homomorphisms introduced by
Stahlke.
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1. Introduction

Non-local games [19] have in the past decade acquired significant prominence, demon-
strating both the power and limitations of quantum entanglement. These are cooperative
games, played by two players, Alice and Bob, against a verifier, in each round of which
the verifier feeds in as an input a pair (x, y), selected from the Cartesian product X × Y
of two finite sets, and the players produce as an output a pair (a, b) from a Cartesian
product A × B. The combinations (x, y, a, b) that yield a win are determined by a
predicate function λ : X × Y × A × B → {0, 1}. A probabilistic strategy is a family
p = {(p(a, b|x, y))(a,b)∈A×B : (x, y) ∈ X × Y } of probability distributions, one for
each input pair (x, y), where the value p(a, b|x, y) denotes the probability that the play-
ers spit out the output (a, b) given they have received the input (x, y). Such families p
are in addition required to satisfy a no-signalling condition, which ensures no commu-
nication between the players takes place during the course of the game, and are hence
called no-signalling (NS) correlations.

In pseudo-telepathy games [11], no deterministic perfect (that is, winning) strategies
exist, while shared entanglement can produce perfect quantum strategies. Such strate-
gies consist of two parts: a unit vector ξ in the tensor product HA ⊗ HB of two finite
dimensional Hilbert spaces (representing the joint physical system of the players), and
local measurement operators (Ex,a)x,a (for Alice) and (Fy,b)y,b (for Bob), leading to the
probabilities p(a, b|x, y) = 〈(Ex,a ⊗ Fy,b)ξ, ξ 〉. Employing the commuting model of
quantum mechanics leads, on the other hand, to the broader set of quantum commuting
strategies, whose underlying no-signalling correlations arise from mutually commuting
measurement operators (that is, Ex,a Fy,b = Fy,bEx,a) acting on a single Hilbert space.
This viewpoint leads to the following chain of classes of no-signalling correlations:

Cloc ⊆ Cq ⊆ Cqa ⊆ Cqc ⊆ Cns. (1.1)

The class Cqa of approximately quantum correlations is the closure of the quantum class
Cq—known, due to the work of Slofstra [69] (see also [23]) to be strictly larger than
Cq—and Cns is the class of all no-signalling correlations, playing a fundamental role
in generalised probabilistic theories [3,4]. The long-standing question of whether Cqa
coincides with the class Cqc of all quantum commuting correlations, known as Tsirelson’s
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problem, was recently settled in the negative in [38]. Due to the works [39] and [57],
this also resolved the fundamental Connes embedding problem [65].

In this paper, we propose a quantisation of the chain of inclusions (1.1). Our motiva-
tion is twofold. Firstly, the resolution of the Connes embedding problem in [38] follows
complexity theory routes, and it remains of great interest if an operator algebraic ap-
proach is within reach. The classes of correlations we introduce are wider and hence
may offer more flexibility in looking for counterexamples.

Our second source of motivation is the development of non-local games with quan-
tum inputs and quantum outputs. A number of versions of quantum games have already
been examined. In [20], the authors studied the computability and the parallel repeti-
tion behaviour of the entangled value of a rank one quantum game, where the players
receive quantum inputs from the verifier, but a measurement is taken against a rank
one projection to determine the likelihood of winning. In [31], the focus is on multiple
round quantum strategies that are available to players with quantum memory, while the
quantum-classical and extended non-local games considered in [66] both have classical
outputs (see also [15]). Here, we propose a framework for quantum-to-quantum non-
local games, which generalises directly (classical) non-local games. This allows us to
define a quantum version of the graph homomorphism game (see [23,51,52,62]), and
leads to notions of quantum homomorphisms between (the widely studied at present
[7,8,21,22,46,70]) non-commutative graphs.

Our starting point is the definition of quantum no-signalling correlations given by
Duan and Winter in [22]. Note that no-signalling (NS) correlations correspond precisely
to (bipartite) classical information channels from X × Y to A × B with well-defined
marginals. In [22], quantum no-signalling (QNS) correlations are thus defined as quan-
tum channels MX×Y → MA×B (here MZ denotes the space of all Z × Z complex
matrices) whose marginal channels are well-defined. In Sect. 4, we define the quantum
versions of the classes in (1.1), arriving at an analogous chain

Qloc ⊆ Qq ⊆ Qqa ⊆ Qqc ⊆ Qns. (1.2)

The base for our definitions is a quantisation of positive operator valued measures,
which we develop in Sect. 3. The stochastic operator matrices defined therein replace
the families (Ex,a)x∈X,a∈A of measurement operators that play a crucial role in the
definitions of the classical classes (1.1). In Sect. 5, we define a universal operator system
TX,A, whose concrete representations on Hilbert spaces are precisely determined by
stochastic operator matrices. Our route passes through the definition of a universal ternary
ring of operatorsVX,A of a given A×X -block operator isometry, which is a generalisation
of the Brown algebra of a unitary matrix [12] (see also [30]). We describe TX,A as a
quotient of a full matrix algebra (Corollary 5.6); this is a quantum version of a previous
known result in the classical case [27]. We show that any such quotient possesses the
local lifting property [44]. This unifies a number of results in the literature, implying in
particular [36, Theorem 4.9].

In Sect. 6, we provide operator theoretic descriptions of the classes Qloc, Qqa, Qqc
and Qns, establishing a perfect correspondence between the elements of these classes
and states on operator system tensor products. We see that, similarly to the case of
classical NS correlations [49], each QNS correlation of the class Qqc arises from a state
on the commuting tensor product TX,A ⊗c TY,B , and that similar descriptions hold for
the rest of the aforementioned classes. Along with the hierarchy (1.2), we introduce an
intermediate chain

CQloc ⊆ CQq ⊆ CQqa ⊆ CQqc ⊆ CQns, (1.3)
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lying between (1.1) and (1.2), whose terms are classes of classical-to-quantum no-
signalling (CQNS) correlations. We define their universal operator system, and provide
analogous characterisations in terms of states on its tensor products; this is achieved in
Sect. 7. In Sect. 8, we point out the canonical surjections Qx → CQx → Cx (where x
denotes any specific correlation class from the set {loc, q, qa, qc, ns}). Combined with
the separation results at each term, known for (1.1), this implies that the inclusions in
(1.2) and (1.3) are proper.

The classQloc at the ground level of the chain (1.2) is in fact well-known: its elements
are precisely the local operations and shared randomness (LOSR) channels (see e.g. [72,
p. 358]). Thus, the channels from Qq can be thought of as entanglement assisted LOSR
transformations, and a similar interpretation can be adopted for the higher terms of (1.2).

The notion of a synchronous NS correlation [61] is of crucial importance when
correlations are employed as strategies of non-local games. Here, we assume that X = Y
and A = B. These correlations were characterised in [61] as arising from traces on
a universal C*-algebra AX,A—the free product of |X | copies of the |A|-dimensional
abelian C*-algebra. In Sect. 9, we propose two quantum versions of synchronicity. Fair
correlations are defined in operational terms, but display a lower level of relevance than
tracial correlations, which are defined operator algebraically, via traces on the universal
C*-algebra of a stochastic operator matrix. Tracial QNS correlations are closely related
to factorisable channels [1] which have been used to produce counterexamples to the
asymptotic Birkhoff conjecture [32]. More precisely, if one restricts attention to QNS
correlations that arise from the Brown algebra as opposed to the ternary ring of operators
VX,A, then the tracial QNS correlations are precisely the couplings of a pair of factorisable
channels with equal terms.

Restricted to CQNS and NS correlations, traciality produces classes of correlations
that strictly contain synchronous NS correlations. The difference between synchronous
and tracial NS correlations can be heuristically compared to that between projection and
positive operator valued measures. The operational significance of tracial QNS, tracial
CQNS and tracial NS correlations arises from the preservation of appropriate classes
of states, which quantise the symmetry possessed by the classical pure states supported
on the diagonal of a matrix algebra. The ground class, of locally reciprocal states, turns
out to be a twisted version of de Finetti states [18]. Thus, the higher classes of quantum
reciprocal and C*-reciprocal states can be thought of as an entanglement assisted and
a commuting model version, respectively, of de Finetti states.

In Sect. 10, we point out how QNS and CQNS correlations can be used as strategies
for quantum-to-quantum and classical-to-quantum non-local games. This is not an ex-
haustive treatment, and is rather intended to summarise several directions and provide a
general context that we hope to investigate subsequently. Employing the CQNS classes,
we define new versions of quantum chromatic numbers of a classical graph G. The class
CQloc yields the well-known orthogonal rank ξ(G) of G [67]; thus, the chromatic num-
bers ξq(G) and ξqc(G), arising from CQq and CQqc, respectively, can be thought of as
entanglement assisted and commuting model versions of this classical graph parameter.

In Sect. 10.2, we define a non-commutative version of the graph homomorphism
game [51]. We show that its perfect strategies from the class Qloc correspond precisely
to non-commutative graph homomorphisms in the sense of Stahlke [70]. Thus, the perfect
strategies from the larger classes in (1.2) can be thought of as quantum non-commutative
graph homomorphisms. We note that special cases have been previously considered in
[8] and [56], and that a different perspective, motivated by non-commutative topol-
ogy, has been studied in [55]. The treatment in the latter papers was restricted to non-
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commutative graph isomorphisms, and the suggested approach was operator-algebraic.
We remedy this by suggesting, up to our knowledge, the first operational approach to
non-commutative graph homomorphisms, thus aligning the non-commutative case with
the case of quantum homomorphisms between classical graphs [51].

Finally, in Sect. 10.3, we introduce a quantum version of non-local games that contains
as a special case the games considered in the previous subsections. To this end, we
view the rule predicate as a map between the projection lattices of algebras of diagonal
matrices. We define game composition, show that the perfect strategies from a fixed class
x ∈ {loc, q, qa, qc, ns} are closed under channel composition, and prove that channel
composition preserves traciality. Some of these results extend results previously proved
in [58] in the case of classical no-signalling strategies.

2. Preliminaries

All inner products appearing in the paper will be assumed linear in the first variable. Let
H be a Hilbert space. We denote by B(H) the space of all bounded linear operators on
H and often write L(H) if H is finite dimensional. If ξ, η ∈ H , we write ξη∗ for the
rank one operator given by (ξη∗)(ζ ) = 〈ζ, η〉ξ . In addition to inner products, 〈·, ·〉 will
denote bilinear dualities between a vector space and its dual. We write B(H)+ for the
cone of positive operators in B(H), denote by T (H) its ideal of trace class operators,
and by Tr—the trace functional on T (H).

An operator system is a self-adjoint subspace S of B(H) for some Hilbert space H ,
containing the identity operator IH . The linear space Mn(S) of all n by n matrices with
entries in S can be canonically identified with a subspace of B(Hn), where Hn is the
direct sum of n-copies of H ; we set Mn(S)+ = Mn(S) ∩ B(Hn)+ and write Sh for the
real vector space of all hermitian elements of S. If K is a Hilbert space, T ⊆ B(K ) is
an operator system and φ : S → T is a linear map, we let φ(n) : Mn(S) → Mn(T )
be the (linear) map given by φ(n)((xi, j )i, j ) = (φ(xi, j ))i, j . The map φ is called positive
(resp. unital) if φ(S+) ⊆ T + (resp. φ(IH ) = IK ), and completely positive if φ(n) is
positive for every n ∈ N. We call φ a complete order embedding if it is injective and
φ−1|φ(S) : φ(S) → S is completely positive; we write S ⊆c.o.i. T . We note that C
is an operator system in a canonical way; a state of S is a unital positive (linear) map
φ : S → C. We denote by S(S) the (convex) set of all states of S. We note that every
operator system is an operator space in a canonical fashion, and denote by Sd the dual
Banach space of S, equipped with its canonical matrix order structure. Operator systems
can be described abstractly via a set of axioms [59]; we refer the reader to [24,59,64]
for details and for further background on operator space theory.

We denote by |X | the cardinality of a finite set X , let HX = ⊕x∈X H and denote by
MX the space of all complex matrices of size |X | × |X |; we identify MX with L(CX )

and write IX = ICX . For n ∈ N, we set [n] = {1, . . . , n} and Mn = M[n]. We write
(ex )x∈X for the canonical orthonormal basis of CX , denote by DX the subalgebra of MX
of all diagonal, with respect to the basis (ex )x∈X , matrices, and let �X : MX → DX be
the corresponding conditional expectation.

Whenω is a linear functional on MX , we often writeω = ωX . The canonical complete
order isomorphism from MX onto Md

X maps an element ω ∈ MX to the linear functional
fω : MX → C given by fω(T ) = Tr(Tωt) (here, and in the sequel, ωt denotes the
transpose of ω in the canonical basis); see e.g. [63, Theorem 6.2]. We will thus consider
MX as self-dual space with pairing

(ρ, ω)→ 〈ρ, ω〉 := Tr(ρωt). (2.1)
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On the other hand, note that the Banach space predual B(H)∗ can be canonically identi-
fied with T (H); every normal functional φ : B(H)→ C thus corresponds to a (unique)
operator Sφ ∈ T (H) such that φ(T ) = Tr(T Sφ), T ∈ B(H). In the case where X is a
fixed finite set (which will sometimes come in the form of a direct product), we will use
a mixture of the two dualities just discussed: if ω, ρ ∈ MX , S ∈ T (H) and T ∈ B(H),
it will be convenient to continue writing

〈ρ ⊗ T, ω ⊗ S〉 = Tr(ρωt)Tr(T S).

If X and Y are finite sets, we identify MX ⊗ MY with MX×Y and write MXY in its
place. Similarly, we set DXY = DX ⊗ DY . Here, and in the sequel, we use the symbol
⊗ to denote the algebraic tensor product of vector spaces. For an element ωX ∈ MX
and a Hilbert space H , we let LωX : MX ⊗ B(H) → B(H) be the linear map given
by LωX (S ⊗ T ) = 〈S, ωX 〉T . If H = C

Y and ωY ∈ MY , we thus have linear maps
LωX : MXY → MY and LωY : MXY → MX ; note that

〈LωX (R), ρY 〉 = 〈R, ωX ⊗ ρY 〉, R ∈ MXY , ρY ∈ MY ,

and a similar formula holds for LωY . We let TrX : MXY → MY (resp. TrY : MXY →
MX ) be the partial trace, that is, TrX = L IX (resp. TrY = L IY ).

Let X and A be finite sets. A classical information channel from X to A is a positive
trace preserving linear map N : DX → DA. It is clear that if N : DX → DA is a
classical channel, then p(·|x) := N (exe∗x ) is a probability distribution over A, and that
N is completely determined by the family {(p(a|x))a∈A : x ∈ X}.

A quantum channel from MX into MA is a completely positive trace preserving map

 : MX → MA; such a 
 will be called (X, A)-classical if 
 = �A ◦ 
 ◦ �X . A
classical channel N : DX → DA gives rise to a (X, A)-classical (quantum) channel

N : MX → MA by letting 
N = N ◦ �X . Conversely, a quantum channel 
 :
MX → MA induces a classical channel N
 : DX → DA by letting N
 = �A ◦
|DX .
Note that N
N = N for every classical channel N .

Let X,Y, A and B be finite sets. A quantum correlation over (X,Y, A, B) (or simply
a quantum correlation if the sets are understood from the context) is a quantum channel
� : MXY → MAB . Such a � is called a quantum no-signalling (QNS) correlation [22]
if

TrA�(ρX ⊗ ρY ) = 0 whenever Tr(ρX ) = 0 (2.2)

and
TrB�(ρX ⊗ ρY ) = 0 whenever Tr(ρY ) = 0. (2.3)

We denote by Qns the set of all QNS correlations; it is clear that Qns is a closed convex
subset of the cone CP(MXY ,MAB) of all completely positive maps from MXY into MAB .

Remark 2.1. A quantum channel � : MXY → MAB is a QNS correlation if and only if

TrA�(ρ
′) = 0 and TrB�(ρ

′′) = 0

provided ρ′, ρ′′ ∈ MXY are such that TrXρ′ = 0 and TrYρ′′ = 0. Indeed, suppose that �
is a QNS correlation andρ′ ∈ MXY , TrXρ′ = 0. Writingρ′ =∑

x,x ′,y,y′ ρ
′
x,x ′,y,y′exe

∗
x ′⊗

eye∗y′ , we have that
∑

x∈X ρ′x,x,y,y′ = 0 for all y, y′ ∈ Y .

Thus Tr
(∑

x∈X ρ′x,x,y,y′exe
∗
x

)
= 0, and hence

TrA�

((
∑

x∈X
ρ′x,x,y,y′exe

∗
x

)

⊗ eye
∗
y′

)

= 0, y, y′ ∈ Y.
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Since Trexe∗x ′ = δx,x ′ , we also have TrA�(exe∗x ′ ⊗ eye∗y′) = 0 if x = x ′, for all
y, y′ ∈ Y . It follows that TrA�(ρ′) = 0. The second property is verified similarly, while
the converse direction of the statement is trivial.

A classical correlation over (X,Y, A, B) is a family

p = {
(p(a, b|x, y))(a,b)∈A×B : (x, y) ∈ X × Y

}
,

where (p(a, b|x, y))(a,b)∈A×B is a probability distribution for each (x, y) ∈ X × Y ;
classical correlations p thus correspond precisely to classical channels Np : DXY →
DAB . A classical no-signalling correlation (or simply a no-signalling (NS) correlation)
is a correlation p = ((p(a, b|x, y))a,b)x,y that satisfies the conditions

∑

a′∈A
p(a′, b|x, y) =

∑

a′∈A
p(a′, b|x ′, y), x, x ′ ∈ X, y ∈ Y, b ∈ B, (2.4)

and ∑

b′∈B
p(a, b′|x, y) =

∑

b′∈B
p(a, b′|x, y′), x ∈ X, y, y′ ∈ Y, a ∈ A. (2.5)

We denote by Cns the set of all NS correlations and identify its elements with classical
channels from DXY to DAB . Given a classical correlation p, we write �p = 
Np ; thus,
�p : MXY → MAB is the (X × Y, A × B)-classical channel given by

�p(ρ) =
∑

x∈X,y∈Y

∑

a∈A,b∈B
p(a, b|x, y) 〈ρ(ex ⊗ ey), ex ⊗ ey

〉
eae

∗
a ⊗ ebe

∗
b . (2.6)

Remark 2.2. If p is a classical correlation over (X,Y, A, B), then p is an NS correlation
precisely when �p is a QNS correlation. Indeed, if TrρX = 0 and p satisfies (2.4) and
(2.5), then

TrA�p(ρX ⊗ ρY )
=

∑

x∈X,y∈Y

∑

a∈A,b∈B
p(a, b|x, y) 〈ρXex , ex 〉

〈
ρY ey, ey

〉
ebe

∗
b

=
∑

y∈Y

∑

b∈B

(
∑

x∈X

∑

a∈A
p(a, b|x, y) 〈ρXex , ex 〉

)
〈
ρY ey, ey

〉
ebe

∗
b = 0;

(2.3) is checked similarly. Conversely, assuming that �p satisfies (2.2) and (2.3), the
relations (2.4) and (2.5) are obtained by substituting in (2.6) ρ = exe∗x ⊗eye∗y−ex ′e∗x ′ ⊗
eye∗y and ρ = exe∗x⊗eye∗y−exe∗x⊗ey′e∗y′ . It follows that if� is a (X×Y, A×B)-classical
QNS correlation, then � = �p for some NS correlation p.

Let H1, . . . , Hn be Hilbert spaces, at most one of which is infinite dimensional,
T ∈ B(H1 ⊗ · · · ⊗ Hn) and f be a bounded functional on B(Hi1 ⊗ · · · ⊗ Hik ), where
k ≤ n and i1, . . . , ik are distinct elements of [n] (not necessarily in increasing order).
We will use the expression L f (T ), or 〈T, f 〉 (in the case k = n), without mentioning
explicitly that a suitable permutation of the tensor factors has been applied before the
action of f . We note that if g is a bounded functional on B(Hj1 ⊗ · · · ⊗ Hjl ), where
l ≤ n and the subset { j1, . . . , jl} does not intersect {i1, . . . , ik}, then

L f Lg = LgL f . (2.7)
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Considering an element ω ∈ MX as a functional on MX via (2.1), we have that if
E = (Ex,x ′)x,x ′ ∈ MX ⊗ B(H), then

Lexe∗x ′ (E) = Ex,x ′ , x, x ′ ∈ X. (2.8)

3. Stochastic Operator Matrices

Let X,Y, A and B be finite sets. A stochastic operator matrix over (X, A) is a positive
operator E ∈ MX ⊗ MA ⊗ B(H) for some Hilbert space H such that

TrAE = IX ⊗ IH . (3.1)

We say that E acts on H . This terminology becomes natural after noting that the operator
stochastic matrices E ∈ DX ⊗ DA ⊗ B(C) coincide, after the natural identification of
DX ⊗DA with the space of all |X |× |A| matrices, with the row-stochastic scalar-valued
matrices.

Let E ∈ MX ⊗ MA ⊗ B(H) be a stochastic operator matrix and Ex,x ′,a,a′ ∈ B(H),
x, x ′ ∈ X , a, a′ ∈ A, be the operators such that

E =
∑

x,x ′∈X

∑

a,a′∈A
exe

∗
x ′ ⊗ eae

∗
a′ ⊗ Ex,x ′,a,a′ ;

we write E = (Ex,x ′,a,a′)x,x ′,a,a′ . Note that

Ex,x ′,a,a′ = Lexe∗x ′⊗eae∗a′ (E) , x, x ′ ∈ X, a, a′ ∈ A.

Set

Ea,a′ = (Ex,x ′,a,a′)x,x ′∈X ∈ MX ⊗ B(H);
thus, Ea,a′ = Leae∗a′ (E), a, a

′ ∈ A, and hence Ea,a ∈ (MX ⊗ B(H))+, a ∈ A. By
Choi’s Theorem, stochastic operator matrices E are precisely the Choi matrices of unital
completely positive maps 
E : MA → MX ⊗ B(H) defined by


E (eae
∗
a′) = Ea,a′, a, a′ ∈ A. (3.2)

Recall that a positive operator-valuedmeasure (POVM) on a Hilbert space H , indexed
by A, is a family (Ea)a∈A of positive operators on H , such that

∑
a∈A Ea = IH . If Ea

is a projection for each a ∈ A, the family (Ea)a∈A is called a projection valued measure
(PVM).

Theorem 3.1. Let H be a Hilbert space and E ∈ (MX ⊗MA ⊗B(H))+. The following
are equivalent:

(i) E is a stochastic operator matrix;
(ii) (Ea,a)a∈A is a POVM in MX ⊗ B(H);

(iii) TrALωX (E) = IH , for all states ωX ∈ MX;
(iv) TrALωX (E) = Tr(ωX )IH , for all ωX ∈ MX;
(v) there exists a Hilbert space K and operators Va,x : H → K, x ∈ X, a ∈ A, such

that (Va,x )a,x ∈ B(HX , K A) is an isometry and

Ex,x ′,a,a′ = V ∗
a,x Va′,x ′ , x, x ′ ∈ X, a, a′ ∈ A. (3.3)
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In particular, if E is a stochastic operator matrix, then (Ex,x,a,a)a∈A is a POVM for
every x ∈ X.

Proof. (i)⇔(ii) and (iv)⇒(iii) are trivial, while (i)⇒(iii) is immediate from (2.7).
(iii)⇒(iv) By assumption, TrALω(E) = Tr(ω)IH for every state ω ∈ MX . Write

ω =∑4
i=1 λiωi , where ωi is a state in MX and λi ∈ C, i = 1, 2, 3, 4. Then,

TrALω(E) =
4∑

i=1

λiTrALωi (E) =
4∑

i=1

λi IH = Tr(ω)IH .

(iii)⇒(i) By (2.7), for all ωX ∈ S(MX ) and all normal states τ on B(H), we have

〈IX ⊗ IH , ωX ⊗ τ 〉 = 1 = 〈
TrALωX (E), τ

〉 = 〈
LωX TrA(E), τ

〉

= 〈TrA(E), ωX ⊗ τ 〉 .
By polarisation and linearity,

〈TrA(E), σ 〉 = 〈IX ⊗ IH , σ 〉
for all σ ∈ (MX ⊗ B(H))∗, and hence TrA(E) = IX ⊗ IH .

(i)⇒(v) Let 
 = 
E be the unital completely positive map given by (3.2). By
Stinespring’s dilation theorem, there exist a Hilbert space K̃ , an isometry V : CX⊗H →
K̃ and a unital *-homomorphism π : MA → B(K̃ ) such that 
(T ) = V ∗π(T )V ,
T ∈ MA. Up to unitary equivalence, K̃ = C

A ⊗ K for some Hilbert space K and
π(T ) = T ⊗ IK , T ∈ MA. Write Va,x : H → K , a ∈ A, x ∈ X , for the entries of V ,
when V is considered as a block operator matrix. For ξ, η ∈ H , x, x ′ ∈ X and a, a′ ∈ A,
we have

〈
Ex,x ′,a,a′ξ, η

〉 =
〈
Lexe∗x ′ (Ea,a′)ξ, η

〉
= Tr

(
Lexe∗x ′ (
(eae

∗
a′))(ξη

∗)
)

= Tr
(

(eae

∗
a′)((ex ′e

∗
x )⊗ (ξη∗))

)

= Tr
(
V ∗((eae∗a′)⊗ IK )V (ex ′ ⊗ ξ)(ex ⊗ η)∗

)

= 〈
V ∗((eae∗a′)⊗ IK )V (ex ′ ⊗ ξ), ex ⊗ η

〉

= 〈
((eae

∗
a′)⊗ IK )V (ex ′ ⊗ ξ), V (ex ⊗ η)

〉

= 〈
((eae

∗
a′)⊗ IK )((ea′e

∗
a′)⊗ IK )V (ex ′ ⊗ ξ), ((eae∗a)⊗ IK )V (ex ⊗ η)

〉

= 〈
Va′,x ′ξ, Va,xη

〉 = 〈
V ∗
a,x Va′,x ′ξ, η

〉
.

(v)⇒(ii) Let ξ =∑
x∈X

∑
a∈A ex ⊗ea⊗ξx,a , where ξx,a ∈ H , x ∈ X , a ∈ A. Using

(3.3), we have

〈Eξ, ξ 〉 =
∑

x,x ′∈X

∑

a,a′∈A

〈
Va′,x ′ξx ′,a′ , Va,xξx,a

〉 =
∥
∥
∥
∥
∥

∑

x∈X

∑

a∈A
Va,xξx,a

∥
∥
∥
∥
∥

2

,

and thus E is positive. Since V is an isometry, we have
∑

a∈A
Ex,x ′,a,a =

∑

a∈A
V ∗
a,x Va,x ′ = δx,x ′ IH .
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Let (Ex,a)a∈A be a POVM on a Hilbert space H for every x ∈ X . A stochastic
operator matrix of the form

E =
∑

x∈X

∑

a∈A
exe

∗
x ⊗ eae

∗
a ⊗ Ex,a (3.4)

will be called classical. A general stochastic operator matrix can thus be thought of as
a coordinate-free version of a finite family of POVM’s.
Remarks. (i) In view of Theorem 3.1, stochastic operator matrices are precisely the
positive completions E of partially defined diagonal block matrices D = (Ea,a)a∈A
with entries in MX ⊗ B(H) and TrA(D) = I .

(ii) The following generalisation of Naimark’s dilation Theorem was proved in [60]:
if (Ex,a)a∈A ⊆ B(H), x ∈ X , are POVM’s, then there exist a Hilbert space H̃ , a PVM
(Ẽa)a∈A ⊆ B(H̃) and isometries Vx : H → H̃ , x ∈ X , with orthogonal ranges such
that

Ex,a = V ∗
x ẼaVx , a ∈ A, x ∈ X. (3.5)

This can be seen as a corollary of Theorem 3.1: given POVM’s (Ex,a)a∈A ⊆ B(H),
x ∈ X , let E be the stochastic operator matrix defined by (3.4) and let V = (Va,x )a,x be
the isometry from Theorem 3.1. Set Ẽa = eae∗a ⊗ IH , a ∈ A, and let Vx be the column
isometry (Va,x )a∈A : H → K A, x ∈ X . Then, (Ẽa)a∈A is a PVM fulfilling (3.5).

Let E ∈ MX ⊗ MA ⊗ B(H) be a stochastic operator matrix and 
 = 
E be given
by (3.2). Recall that the predual 
∗ : MX ⊗ T (H) → MA of 
 is the completely
positive map satisfying 〈
∗(ρ), ω〉 = 〈ρ,
(ω)〉, ρ ∈ MX ⊗ T (H), ω ∈ MA. For a
state σ ∈ T (H), set

�E,σ (ρX ) = 
∗(ρX ⊗ σ), ρX ∈ MX ;
then �E,σ : MX → MA is a quantum channel. We have

�E,σ (ρX ) = LρX⊗σ (E), ρX ∈ MX ; (3.6)

indeed, if a, a′ ∈ A, then
〈
�E,σ (exe

∗
x ′), eae

∗
a′
〉 = 〈


∗(exe∗x ′ ⊗ σ), eae∗a′
〉 = 〈

exe
∗
x ′ ⊗ σ,
(eae∗a′)

〉

= 〈
exe

∗
x ′ ⊗ σ, Ea,a′

〉 = 〈
σ, Ex,x ′,a,a′

〉

=
〈
Lexe∗x ′⊗σ (E), eae

∗
a′
〉
;

(3.6) now follows by linearity. By Choi’s Theorem, every quantum channel 
 : MX →
MA has the form �E,1 for some stochastic operator matrix E ∈ MX ⊗ MA.

Remark 3.2. Let H be a Hilbert space and E ∈ MX ⊗ MA ⊗ B(H) be a stochastic
operator matrix. The following are equivalent:

(i) E is classical;
(ii) for each state σ ∈ T (H), the quantum channel �E,σ : MX → MA is (X, A)-

classical.

Proof. The channel �E,σ is (X, A)-classical if and only if �E,σ (exe∗x ′) = 0 whenever
x = x ′ and

〈
�E,σ (exe

∗
x ), eae

∗
a′
〉 = 0 whenever a = a′.

The latter equality holds for every σ if and only if Ex,x ′,a,a′ = 0 whenever x = x ′ and
Ex,x,a,a′ = 0 whenever a = a′, that is, if and only if E is classical.
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4. Three Subclasses of QNS Correlations

In this section, we introduce several classes of QNS correlations, which generalise cor-
responding classes of NS correlations studied in the literature (see e.g. [49]).

4.1. Quantum commuting QNS correlations. Let H be a Hilbert space, and E ∈ MX ⊗
MA⊗B(H) and F ∈ MY ⊗MB⊗B(H) be stochastic operator matrices. The pair (E, F)
will be called commuting if LωX⊗ωA (E) and LωY⊗ωB (F) commute for all ωX ∈ MX ,
ωY ∈ MY , ωA ∈ MA and ωB ∈ MB . Writing E = (Ex,x ′,a,a′)x,x ′,a,a′ and F =
(Fy,y′,b,b′)y,y′,b,b′ , we have that (E, F) is commuting if and only if

Ex,x ′,a,a′Fy,y′,b,b′ = Fy,y′,b,b′Ex,x ′,a,a′ , x, x
′ ∈ X, y, y′ ∈ Y, a, a′ ∈ A, b, b′ ∈ B.

Proposition 4.1. Let H be a Hilbert space and E ∈ MX ⊗ MA ⊗ B(H), F ∈ MY ⊗
MB ⊗ B(H) form a commuting pair of stochastic operator matrices. There exists a
unique operator E · F ∈ MXY ⊗ MAB ⊗ B(H) such that

〈E · F, ρX ⊗ ρY ⊗ ρA ⊗ ρB ⊗ σ 〉 = 〈
LρX⊗ρA(E)LρY⊗ρB (F), σ

〉
, (4.1)

for all ρX ∈ MX, ρY ∈ MY , ρA ∈ MA, ρB ∈ MB and σ ∈ T (H). Moreover,

(i) E · F is a stochastic operator matrix;
(ii) ‖E · F‖ ≤ ‖E‖‖F‖;

(iii) If σ ∈ T (H) is a state, then �E ·F,σ is a QNS correlation.

Proof. Let

E · F := (
Ex,x ′,a,a′Fy,y′,b,b′

) ∈ MXY ⊗ MAB ⊗ B(H).

Denote by A (resp. B) the C*-algebra, generated by Ex,x ′,a,a′ , x, x ′ ∈ X , a, a′ ∈ A
(resp. Fy,y′,b,b′ , y, y′ ∈ Y , b, b′ ∈ B); by assumption, B ⊆ A′. Let πA : MXA(A) →
MXY AB(B(H)) (resp. πB : MY B(B)→ MXY AB(B(H))) be the *-representation given
by πA(S) = S ⊗ IY B (resp. πB(T ) = T ⊗ IX A). Then, the ranges of πA and πB
commute and hence the pair (πA, πB) gives rise to a *-representation π : MXA(A)⊗max
MY B(B) → MXY AB(B(H)) with π(S ⊗ T ) = πA(S)πB(T ), S ∈ MXA(A), T ∈
MY B(B). Thus, E · F = π(E ⊗ F) ∈ MXY AB(B(H))+. Inequality (ii) now follows
from the contractivity of *-representations. In addition,

TrAB(E · F) =
∑

a∈A

∑

b∈B

(
Ex,x ′,a,a Fy,y′,b,b

)
x,x ′,y,y′

= (
δx,x ′δy,y′ I

)
x,x ′,y,y′ = IXY ⊗ IH ,

that is, E · F is a stochastic operator matrix. For x, x ′ ∈ X , y, y′ ∈ Y , a, a′ ∈ A,
b, b′ ∈ B and σ ∈ T (H), we have

〈
E · F, exe∗x ′ ⊗ eye

∗
y′ ⊗ eae

∗
a′ ⊗ ebe

∗
b′ ⊗ σ

〉
(4.2)

= 〈
Ex,x ′,a,a′Fy,y′,b,b′ , σ

〉 =
〈
Lexe∗x ′⊗eae∗a′ (E)Leye∗y′⊗ebe∗b′ (F), σ

〉
,

and (4.1) follows by linearity.
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To show (iii), let σ ∈ T (H) be a state. Suppose that ρX ∈ MX is traceless and
ρY ∈ MY . For every τB ∈ MB , by (4.1) and Theorem 3.1, we have

〈
TrA�E ·F,σ (ρX ⊗ ρY ), τB

〉 = 〈
�E ·F,σ (ρX ⊗ ρY ), IA ⊗ τB

〉

= 〈E · F, ρX ⊗ ρY ⊗ IA ⊗ τB ⊗ σ 〉
= 〈

TrALρX (E)LρY⊗τB (F), σ
〉 = 0.

Thus, (2.2) is satisfied; by symmetry, so is (2.3). ��
If ξ is a unit vector in H , we set for brevity �E,F,ξ = �E ·F,ξξ∗ .

Definition 4.2. A QNS correlation of the form �E,F,ξ , where (E, F) is a commuting
pair of stochastic operator matrices acting on a Hilbert space H , and ξ ∈ H is a unit
vector, will be called quantum commuting.

We denote by Qqc the set of all quantum commuting QNS correlations.

Proposition 4.3. In Definition 4.2 one can assume, without gain of generality, that σ is
an arbitrary state.

Proof. Suppose that H is a Hilbert space and E ∈ MX ⊗ MA ⊗ B(H), F ∈ MY ⊗
MB ⊗ B(H) form a commuting pair of stochastic operator matrices. Let σ be a state
in T (H) and write σ = ∑∞

i=1 λiξiξ
∗
i , where (ξi )∞i=1 is sequence of unit vectors and

λi ≥ 0, i ∈ N, are such that
∑∞

i=1 λi = 1. Set H̃ = H ⊗ �2 and ξ =∑∞
i=1

√
λiξi ⊗ ei ;

then, ξ is a unit vector in H̃ and 〈ξξ∗, T ⊗ I�2〉 = 〈σ, T 〉, T ∈ B(H).
Let Ẽ = E ⊗ I�2 and F̃ = F ⊗ I�2 ; thus, Ẽ and F̃ are stochastic operator matrices

acting on H̃ that form a commuting pair. Moreover, if ρX ∈ MX , ρY ∈ MY , σA ∈ MA
and σB ∈ MB , then

〈
�Ẽ,F̃,ξ (ρX ⊗ ρY ), σA ⊗ σB

〉
=
〈
Ẽ · F̃, ρX ⊗ ρY ⊗ σA ⊗ σB ⊗ ξξ∗

〉

=
〈
LρX⊗σA (Ẽ)LρY⊗σB (F̃), ξξ∗

〉
= 〈(

LρX⊗σA (E)LρX⊗σA (F)
)⊗ I�2 , ξξ∗

〉

= 〈
LρX⊗σA (E)LρX⊗σA (F), σ

〉 = 〈
�E ·F,σ (ρX ⊗ ρY ), σA ⊗ σB

〉
.

��
Remark 4.4. Recall that a classical NS correlation p over (X,Y, A, B) is called quantum
commuting [61,62] if there exist a Hilbert space H , POVM’s (Ex,a)a∈A, x ∈ X , and
(Fy,b)b∈B , y ∈ Y , on H with Ex,a Fy,b = Fy,bEx,a for all x, y, a, b, and a unit vector
ξ ∈ H , such that

p(a, b|x, y) = 〈Ex,a Fy,bξ, ξ 〉, x ∈ X, y ∈ Y, a ∈ A, b ∈ B.

Suppose that the stochastic operator matrices E ∈ MX ⊗ MA ⊗ B(H) and F ∈
MY ⊗ MB ⊗ B(H) are classical, and correspond to the families (Ex,a)a∈A, x ∈ X ,
and (Fy,b)b∈B , y ∈ Y , respectively, as in (3.4). It is clear that pair (E, F) is commuting
and E · F is classical. We have that �p = �E,F,ξ . Indeed, by Remark 3.2, the QNS
correlation �E,F,ξ is classical; by Remark 2.2, �E,F,ξ = �p′ for some NS correlation
p′. It is now straightforward that p′ = p.
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4.2. Quantum QNS correlations. Let HA and HB be Hilbert spaces, and E ∈ MX ⊗
MA ⊗ B(HA) and F ∈ MY ⊗ MB ⊗ B(HB) be stochastic operator matrices; then

E ⊗ F ∈ MX ⊗ MA ⊗ B(HA)⊗ MY ⊗ MB ⊗ B(HB).

Reshuffling the terms of the tensor product, we consider E⊗ F as an element of MXY ⊗
MAB ⊗B(HA ⊗ HB); to underline this distinction, the latter element will henceforth be
denoted by E � F . Note that if

Ẽ = E ⊗ IHB ∈ MX ⊗ MA ⊗ B(HA ⊗ HB)

and

F̃ = F ⊗ IHA ∈ MY ⊗ MB ⊗ B(HA ⊗ HB)

(where the last containment is up to a suitable permutation of the tensor factors), then
(Ẽ, F̃) is a commuting pair of stochastic operator matrices, and E � F = Ẽ · F̃ .
By Proposition 4.1, E � F is a stochastic operator matrix on HA ⊗ HB and, if σ ∈
T (HA ⊗ HB) is a state, then, by Proposition 4.1, �E�F,σ is a QNS correlation.

Remark 4.5. It is straightforward to check that if σ = σA⊗σB , where σA ∈ T (HA) and
σB ∈ T (HB) are states, then �E,σA ⊗ �F,σB = �E�F,σA⊗σB .

Definition 4.6. (i) A QNS correlation � : MXY → MAB is called quantum if there
exist finite dimensional Hilbert spaces HA and HB , stochastic operator matrices E ∈
MX ⊗ MA ⊗ L(HA) and F ∈ MY ⊗ MB ⊗ L(HB) and a pure state σ ∈ L(HA ⊗ HB)

such that � = �E�F,σ .
(ii) A QNS correlation will be called approximately quantum if it is the limit of a

sequence of quantum QNS correlations.

We denote by Qq (resp. Qqa) the set of all quantum (resp. approximately quantum)
QNS correlations. It is clear from the definitions that Qq ⊆ Qqc. It will be shown later
that Qqc is closed, and hence contains Qqa.

Similarly to Proposition 4.3, it can be shown that quantum QNS correlations can
equivalently be defined using arbitrary, as opposed to pure, states.

Remark 4.7. Recall that a classical NS correlation p over (X,Y, A, B) is called quantum
if there exist finite dimensional Hilbert spaces HA and HB , POVM’s (Ex,a)a∈A, on HA,
x ∈ X , (Fy,b)b∈A on HB , y ∈ Y , and a unit vector ξ ∈ HA ⊗ HB , such that

p(a, b|x, y) = 〈
(Ex,a ⊗ Fy,b)ξ, ξ

〉
, x ∈ X, y ∈ Y, a ∈ A, b ∈ B. (4.3)

It is easy to verify that if the stochastic operator matrices E ∈ MX ⊗ MA ⊗ B(HA)

and F ∈ MY ⊗ MB ⊗ B(HB) are classical, and determined by the families (Ex,a)a∈A,
x ∈ X , and (Fy,b)b∈B , y ∈ Y , then E � F is classical and determined by the family
{(Ex,a ⊗ Fy,b)(a,b)∈A×B : (x, y) ∈ X × Y }. As in Remark 4.4, it is easy to see that
�p = �E,F,ξ .

Proposition 4.8. The sets Qq and Qqa are convex.
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Proof. Let Ei ∈ MX ⊗MA⊗L(K1,i ) (resp. Fi ∈ MY ⊗MB ⊗L(K2,i )) be a stochastic
operator matrix over (X, A) (resp. (Y, B)) and σi = ηiη

∗
i be a pure state on K1,i ⊗ K2,i ,

i = 1, . . . , n. Fix λi ≥ 0, i = 1, . . . , n, with
∑n

i=1 λi = 1. Let Kk = ⊕n
i=1Kk,i , k =

1, 2, E = ⊕n
i=1Ei , F = ⊕n

i=1Fi , and η = ⊕n
i=1

√
λiηi ∈ K1 ⊗K2, viewed as supported

on the (i, i)-terms of K1 ⊗ K2 ≡ ⊕n
i, j=1K1,i ⊗ K2, j . Set σ = ηη∗. Using distributivity,

we consider E (resp. F) as a stochastic operator matrix in MX ⊗ MA ⊗ L(K1) (resp.
MY ⊗ MB ⊗ L(K2)). A direct verification shows that

n∑

i=1

λi�Ei�Fi ,σi = �E�F,σ ;

thus, Qq is convex, and the convexity of Qqa follows from the fact that Qqa = Qq. ��

4.3. Local QNS correlations. It is clear that if
 : MX → MA and � : MY → MB are
quantum channels, then the quantum channel � := 
⊗� is a QNS correlation.

Definition 4.9. A QNS correlation � : MXY → MAB is called local if it is a convex
combination of quantum channels of the form 
 ⊗ �, where 
 : MX → MA and
� : MY → MB are quantum channels.

We denote by Qloc the set of all local QNS correlations. The elements of Qloc are
precisely the maps that arise via local operations and shared randomness (LOSR) (see
e.g. [72, p. 358]).

Remark 4.10. We have that Qloc is a closed convex subset of Qq.

Proof. Let 
 : MX → MA and � : MY → MB be quantum channels and E ∈
MX ⊗ MA and F ∈ MY ⊗ MB be the Choi matrices of 
 and �, respectively. By
Remark 4.5,


⊗� = �E,1 ⊗ �F,1 = �E�F,1

and hence 
⊗� ∈ Qq.
Let (�k)k∈N ⊆ Qloc be a sequence with limit� ∈ Qns. Note that�k all are elements of

a real vector space of dimension 2|X |2|Y |2|A|2|B|2. Let L = 2|X |2|Y |2|A|2|B|2 +1. By
Carathéodory’s theorem,�k =∑L

l=1 λ
(k)
l 


(k)
l ⊗�(k)l as a convex combination. By com-

pactness, we may assume, by passing to subsequences as necessary, that 
(k)l →k→∞

l , �

(k)
l →k→∞ �l and λ(k)l →k→∞ λl . Thus, � = ∑L

l=1 λl
l ⊗ �l as a convex
combination, that is, � ∈ Qloc, showing that Qloc is closed. ��
Remark 4.11. Recall that a classical NS correlation p over (X,Y, A, B) is called lo-
cal if there exist families of probability distributions {(p1

k (a|x))a∈A : x ∈ X} and
{(p2

k (b|y))b∈B : y ∈ Y } and positive scalars λk , k = 1, . . . ,m, such that
∑m

k=1 λk = 1
and

p(a, b|x, y) =
m∑

k=1

λk p
1
k (a|x)p2

k (b|y), x ∈ X, y ∈ Y, a ∈ A, b ∈ B.

It is clear that if 
k (resp. �k) is the (X, A)-classical (resp. (Y, B)-classical) channel
corresponding to pk1 (resp. pk2), then �p =∑m

k=1 λk
k ⊗�k and hence �p ∈ Qloc.

If needed, we specify the dependence of Qx on the sets X , Y , A and B by using the
notation Qx(X,Y, A, B), for x ∈ {loc, q, qa, qc, ns}.
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5. The Operator System of a Stochastic Operator Matrix

Recall [37,73] that a ternary ring is a complex vector space V , equipped with a ternary
operation [·, ·, ·] : V × V × V → V , linear on the outer variables and conjugate linear
in the middle variable, such that

[s, t, [u, v, w]] = [s, [v, u, t], w] = [[s, t, u], v, w], s, t, u, v, w ∈ V.

A ternary representation of V is a linear map θ : V → B(H, K ), for some Hilbert
spaces H and K , such that

θ ([u, v, w]) = θ(u)θ(v)∗θ(w), u, v, w ∈ V.

We call θ non-degenerate if span{θ(u)∗η : u ∈ V, η ∈ K } is dense in H . A concrete
ternary ring of operators (TRO) [73] is a subspace U ⊆ B(H, K ) for some Hilbert
spaces H and K such that S, T, R ∈ U implies ST ∗R ∈ U .

Let X and A be finite sets, and V0
X,A be the ternary ring, generated by elements va,x ,

x ∈ X , a ∈ A, satisfying the relations
∑

a∈A
[va′′,x ′′ , va,x , va,x ′ ] = δx,x ′va′′,x ′′ , x, x ′, x ′′ ∈ X, a′′ ∈ A. (5.1)

Note that (5.1) implies
∑

a∈A
[u, va,x , va,x ′ ] = δx,x ′u, x, x ′ ∈ X, u ∈ V0

X,A. (5.2)

Indeed, suppose that (5.2) holds for u = ui , i = 1, 2, 3. Then,
∑

a∈A
[[u1, u2, u3], va,x , va,x ′ ] =

∑

a∈A
[u1, u2, [u3, va,x , va,x ′ ]] = δx,x ′ [u1, u2, u3];

(5.2) now follows by induction.
Let θ : V0

X,A → B(H, K ) be a non-degenerate ternary representation. Setting Va,x =
θ(va,x ), x ∈ X , a ∈ A, (5.2) implies

∑

a∈A
V ∗
a,x Va,x ′ = δx,x ′ IH , x, x ′ ∈ X; (5.3)

conversely, a family {Va,x : x ∈ X, a ∈ A} ⊆ B(H, K ) satisfying (5.3) clearly gives rise
to a non-degenerate ternary representation θ : V0

X,A → B(H, K ). We therefore call such
a family a representation of the relations (5.1). We note that the set of representations
of (5.1) is non-empty. Indeed, consider isometries Vx , x ∈ X , with orthogonal ranges
on some Hilbert space H , i.e. V ∗

x Vx ′ = δx,x ′ IH , x, x ′ ∈ X . Fix a0 ∈ A and let Va,x =
δa,a0Vx . Then,

∑
a∈A V ∗

a,x Va,x ′ = V ∗
x Vx ′ = δx,x ′ IH .

We note that (5.3) implies ‖Va,x‖ ≤ 1, x ∈ X , a ∈ A. We identify the family {Va,x :
a ∈ A, x ∈ X} with the isometry V = (Va,x )a,x and write HV = H , KV = K and
θV = θ . Two representations V = (Va,x )a,x and W = (Wa,x )a,x are called equivalent
if there exist unitary operators UH : HV → HW and UK : KV → KW such that
Wa,xUH = UKVa,x , x ∈ X , a ∈ A.

Write θ̂ = ⊕V θV , where the direct sum is taken over all equivalence classes of
representations of the relations (5.1), where the cardinality of the underlying Hilbert
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spaces are bounded by that of V0
X,A. For u ∈ V0

X,A, let ‖u‖0 := ‖θ̂ (u)‖. As ‖va,x‖ ≤ 1

andV0
X,A is generated byva,x ,a ∈ A, x ∈ X , we have that‖u‖0 <∞ for everyu ∈ V0

X,A.

It is also clear that ‖ · ‖0 is a semi-norm on V0
X,A. Set N =

{
u ∈ V0

X,A : ‖u‖0 = 0
}

.

We have that N is a ternary ideal of V0
X,A, that is, [u1, u2, u3] ∈ N if ui ∈ N for some

i ∈ {1, 2, 3}. The ternary product of V0
X,A thus induces a ternary product on V0

X,A/N ,

and θ̂ induces a ternary representation of V0
X,A/N that will be denoted in the same way.

Letting ‖u‖ := ‖θ̂ (u)‖, u ∈ V0
X,A/N , we have that ‖ ·‖ is a norm on V0

X,A/N , and hence

V0
X,A/N is a ternary pre-C*-ring (see [73]). We let VX,A be the completion of V0

X,A/N ;

thus, VX,A is a ternary C*-ring [73]. Note that θ̂ extends to a ternary representation of
VX,A (denoted in the same way) onto a concrete TRO, and the equality ‖u‖ = ‖θ̂ (u)‖
continues to hold for every u ∈ VX,A. We thus have that VX,A is a TRO in a canonical
fashion. It is clear that each θV induces a ternary representation of VX,A onto a TRO,
which will be denoted in the same way.

Let CX,A be the right C*-algebra of VX,A; if VX,A is represented faithfully as a
concrete ternary ring of operators in B(H, K ) for some Hilbert spaces H and K (that
is, VX,AV∗

X,AVX,A ⊆ VX,A), the C*-algebra CX,A may be defined by letting

CX,A = span{S∗T : S, T ∈ VX,A}.
Each representation V = (Va,x )a,x of the relations (5.1) gives rise [35] to a unital
*-representation πV of CX,A on HV by letting

πV (S
∗T ) = θV (S)

∗θV (T ), S, T ∈ VX,A.

Lemma 5.1. The following hold true:

(i) Every non-degenerate ternary representation of VX,A has the form θV , for some
representation V of the relations (5.1);

(ii) θ̂ is a faithful ternary representation of VX,A;
(iii) Every unital *-representation π of CX,A has the form πV , for some representation

V of the relations (5.1).

Proof. (i) Suppose that θ is a non-degenerate ternary representation of VX,A. Letting
q : V0

X,A → VX,A be the quotient map, write θ0 = θ ◦ q; thus, θ0 is a non-degenerate

ternary representation of V0
X,A. Letting V be the representation of the relations (5.1)

such that θ0 = θV , we have that θ = θV .
(ii) follows from the fact that ‖θ̂ (u)‖ = ‖u‖, u ∈ VX,A.
(iii) Let π : CX,A → B(H) be a unital *-representation. Then, there exists a ternary

representation θ : VX,A → B(H, K ) such that π(S∗T ) = θ(S)∗θ(T ), S, T ∈ VX,A
(see e.g. [5, Theorem 3.4] and [25, p. 1636]). Since π is unital, θ is non-degenerate. By
(i), there exists a representation V of the relations (5.1) such that θ = θV , and hence
π = πV . ��

Set ex,x ′,a,a′ = v∗a,xva′,x ′ ∈ CX,A, x, x ′ ∈ X , a, a′ ∈ A. We call the operator
subsystem

TX,A := span{ex,x ′,a,a′ : x, x ′ ∈ X, a, a′ ∈ A}
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of CX,A the Brown-Cuntz operator system. Note that relations (5.1) imply
∑

a∈A
ex,x ′,a,a = δx,x ′1, x, x ′ ∈ X. (5.4)

Theorem 5.2. Let H be a Hilbert space and φ : TX,A → B(H) be a linear map. The
following are equivalent:

(i) φ is a unital completely positive map;
(ii)

(
φ(ex,x ′,a,a′)

)
x,x ′,a,a′ is a stochastic operator matrix;

(iii) there exists a *-representation π : CX,A → B(H) such that φ = π |TX,A .

Moreover, if
(
Ex,x ′,a,a′

)
x,x ′,a,a′ is a stochastic operator matrix acting on a Hilbert space

H, then there exists a (unique) unital completely positive map φ : TX,A → B(H) such
that φ(ex,x ′,a,a′) = Ex,x ′,a,a′ for all x, x ′, a, a′.
Proof. (i)⇒(ii) By Arveson’s extension theorem and Stinespring’s theorem, there exist
a Hilbert space K , a *-representationπ : CX,A → B(K ) and an isometry W ∈ B(H, K ),
such thatφ(u) = W ∗π(u)W , u ∈ TX,A. By Lemma 5.1,π = πV for some representation
V = (Va,x )a,x of the relations (5.1). By the proof of Theorem 3.1, E := (

π(ex,x ′,a,a′)
) ∈

(MX ⊗ MA ⊗ B(K ))+, and hence
(
φ(ex,x ′,a,a′)

) = (IX ⊗ IA ⊗W )∗E(IX ⊗ IA ⊗W ) ∈ (MX ⊗ MA ⊗ B(H))+ .

By (5.4) and Theorem 3.1,
(
φ(ex,x ′,a,a′)

)
x,x ′,a,a′ is a stochastic operator matrix.

(ii)⇒(iii) By Theorem 3.1, there exist a Hilbert space K and an isometry V =
(Va,x )a,x ∈ B(HX , K A) such that

φ(ex,x ′,a,a′) = V ∗
a,x Va′,x ′ , x, x ′ ∈ X, a, a′ ∈ A.

The *-representation πV of CX,A is an extension of φ.
(iii)⇒(i) is trivial.
Suppose that E = (

Ex,x ′,a,a′
)
x,x ′,a,a′ is a stochastic operator matrix acting on H .

Letting V be the isometry, associated with E via Theorem 3.1, we have thatφ := πV |TX,A

satisfies the required conditions. ��
Let S be an operator system. Recall that the pair (C∗

u (S), ι) is called a universal
C*-cover of S, if C∗

u (S) is a unital C*-algebra, ι : S → C∗
u (S) is a unital complete

order embedding, and whenever H is a Hilbert space and φ : S → B(H) is a unital
completely positive map, there exists a *-representation πφ : C∗

u (S)→ B(H) such that
πφ ◦ ι = φ. It is clear that the universal C*-cover is unique up to a *-isomorphism. The
following corollary is immediate from Theorem 5.2.

Corollary 5.3. The pair (CX,A, ι), where ι is the inclusion map of TX,A into CX,A, is the
universal C*-cover of TX,A.

We will need the following slight extension of the equivalence (i)⇔(ii) of Theorem
5.2.

Proposition 5.4. Let H be a Hilbert space and φ : TX,A → B(H) be a linear map. The
following are equivalent:

(i) φ is a completely positive map;
(ii)

(
φ(ex,x ′,a,a′)

)
x,x ′,a,a′ ∈ (MX ⊗ MA ⊗ B(H))+.
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Proof. (i)⇒(ii) It follows from Theorem 3.1 and Lemma 5.1 (iii), with πV a faithful
*-representation of CX,A, that (ex,x ′,a,a′) ∈ (MX ⊗ MA ⊗ CX,A)+. Since TX,A ⊆ CX,A
as an operator subsystem, we have

(ex,x ′,a,a′)x,x ′,a,a′ ∈ (MX ⊗ MA ⊗ TX,A)
+ (5.5)

and (ii) follows.
(ii)⇒(i) Write E = (

φ(ex,x ′,a,a′)
)
x,x ′,a,a′ and letT = φ(1). Since 1 =∑

a∈A ex,x,a,a
(where x is any element of X ), we have that T ≥ 0. Note also that if x, x ′ ∈ X and
x = x ′, then

∑

a∈A
Ex,x ′,a,a = φ

(
∑

a∈A
ex,x ′,a,a

)

= 0. (5.6)

Assume first that T is invertible. Let ψ : TX,A → B(H) be the map given by

ψ(u) = T−1/2φ(u)T−1/2, u ∈ TX,A. (5.7)

Setting F = (
ψ(ex,x ′,a,a′)

)
x,x ′,a,a′ , we have that

F =
(
IX A ⊗ T−1/2

)
E
(
IX A ⊗ T−1/2

)
≥ 0.

Let ω = (ωx,x ′) ∈ MX and σ be a state in T (H). Using (5.6), we have

〈TrALω(F), σ 〉 = 〈F, ω ⊗ IA ⊗ σ 〉
=
〈(
IX A ⊗ T−1/2

)
E
(
IX A ⊗ T−1/2

)
, ω ⊗ IA ⊗ σ

〉

=
〈
E, ω ⊗ IA ⊗ T−1/2σT−1/2

〉

=
∑

x,x ′∈X

∑

a∈A
ωx,x ′

〈
Ex,x ′,a,a, T

−1/2σT−1/2
〉

=
∑

x∈X

∑

a∈A
ωx,x

〈
Ex,x,a,a, T

−1/2σT−1/2
〉

=
∑

x∈X
ωx,x

〈
T, T−1/2σT−1/2

〉
=
∑

x∈X
ωx,x = Tr(ω).

By Theorem 3.1, F is a stochastic operator matrix; by Theorem 5.2, ψ is completely
positive. Since φ(·) = T 1/2ψ(·)T 1/2, so is φ.

Now relax the assumption that T be invertible. For every ε > 0, let φε : TX,A →
B(H) be the map, given by φε(u) = φ(u) + ε I . By the previous paragraph, φε is
completely positive. Since φ = limε→0 φε in the point-norm topology, φ is completely
positive. ��

Let

LX,A =
{

(λx,x ′,a,a′) ∈ MXA : ∃ c ∈ C s.t.
∑

a∈A
λx,x ′,a,a = δx,x ′c, x, x

′ ∈ X

}

;

we consider LX,A as an operator subsystem of MXA. For the next proposition, note
that, by [17, Corollary 4.5], if T is a finite dimensional operator system than its (matrix
ordered) dual T d is an operator system, when equipped with any faithful state of T as an
Archimedean order unit. It is straightforward to verify that, in this case, T dd ∼=c.o.i. T .
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Proposition 5.5. The linear map � : T d
X,A → LX,A, given by

�(φ) = (
φ(ex,x ′,a,a′)

)
x,x ′∈X,a,a′∈A (5.8)

is a well-defined complete order isomorphism.

Proof. By Proposition 5.4, if φ ∈ TX,A → C is a positive functional, then
(
φ(ex,x ′,a,a′)

)
x,x ′,a,a′ ∈ L+

X,A. Thus, the map �+ :
(
T d
X,A

)+ → L+
X,A, given by

�+(φ) =
(
φ(ex,x ′,a,a′)

)
x,x ′,a,a′ , φ ∈

(
T d
X,A

)+
,

is well-defined. It is clear that �+ is additive and

�+(λφ) = λ�+(φ), λ ≥ 0, φ ∈
(
T d
X,A

)+
.

Suppose that φ ∈ T d
X,A is a hermitian functional. If φ = φ1 − φ2, where φ1 and φ2 are

positive functionals on TX,A, set

�h(φ) = �+(φ1)−�+(φ2).

The map �h : (TX,A
)d
h → LX,A is well-defined: if φ1 − φ2 = ψ1 − ψ2, where φ1,

φ2, ψ1 and ψ2 are positive functionals then, by the additivity of �+, we have that
�+(φ1)+�+(ψ2) = �+(ψ1)+�+(φ2), that is,�+(φ1)−�+(φ2) = �+(ψ1)−�+(ψ2).
It is straightforward that the map�h is R-linear, and thus it extends to a (C-)linear map
� : T d

X,A → LX,A.

Suppose that (φi, j )mi, j=1 ∈ Mm

(
T d
X,A

)+
; thus, the map 
 : TX,A → Mm , given by


(u) = (φi, j (u))mi, j=1, is completely positive. By Proposition 5.4, (φi, j (ex,x ′,a,a′))i, j ∈
(MXA ⊗ Mm)

+. This shows that � is completely positive.
If �(φ) = 0, then φ(ex,x ′,a,a′) = 0 for all x, x ′ ∈ X and all a, a′ ∈ A, implying

φ = 0; thus,� is injective. SinceLX,A is an operator subsystem of MXA, it is spanned by
the positive matrices it contains. Using Theorem 5.2, we see that every positive element
of LX,A is in the range of �; it follows that � is surjective.

Finally, suppose that φi, j ∈ T d
X,A, i, j = 1, . . . ,m, are such that the matrix

(
�(φi, j )

)m
i, j=1 is a positive element of Mm

(
LX,A

)
. Let 
 : TX,A → Mm be given

by 
(u) = (φi, j (u))mi, j=1. Then,
(

(ex,x ′,a,a′)

) ∈ Mm
(
LX,A

)+. By Proposition 5.4,


 is completely positive, that is,
(
φi, j

)m
i, j=1 ∈ Mm

(
T d
X,A

)+
. Thus, �−1 is completely

positive, and the proof is complete. ��
Let S be an operator system. A kernel in S [44] is a linear subspace J ⊆ S, for which

there exists an operator system T and a unital completely positive map ψ : S → T
such that J = ker(ψ). If J is a kernel in S, the quotient space S/J can be equipped
with a unique operator system structure with the property that whenever T is an operator
system and φ : S → T is a completely positive map annihilating J , the induced map
φ̃ : S/J → T is completely positive. If T is an operator system, a surjective map
φ : S → T is called complete quotient, if the map φ̃ is a complete order isomorphism.
We refer the reader to [44] for further details.
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Let

JX,A = {(μx,x ′,a,a′) ∈ MXA : μx,x ′,a,a′ = 0 and μx,x ′,a,a = μx,x ′,a′,a′ , a = a′,
and

∑

x∈X
μx,x,a,a = 0, a ∈ A}.

Corollary 5.6. The space JX,A is a kernel in MX A and the operator system TX,A is
completely order isomorphic to the quotient MX A/JX,A.

Proof. By Proposition 5.5, the map � : T d
X,A → MXA is a complete order embedding.

By [29, Proposition 1.8], the dual �∗ : Md
X A → TX,A of� is a complete quotient map.

Identifying Md
X A with MXA canonically, for an element f ∈ Md

X A, we have

�∗( f ) = 0 ⇐⇒ 〈
�∗( f ), φ

〉 = 0 for all φ ∈ TX,A

⇐⇒ 〈 f,�(φ)〉 = 0 for all φ ∈ TX,A

⇐⇒ 〈 f, T 〉 = 0 for all T ∈ LX,A

⇐⇒ f ∈ JX,A.

Thus, ker(�∗) = JX,A. ��

6. Descriptions via Tensor Products

In this section, we provide a description of the classes of QNS correlations, introduced in
Sect. 4, analogous to the description of the classes of NS correlations given in [49] (see
also [27] and [62]). We will use the tensor theory of operator systems developed in [43].
If S and T are operator systems, S⊗min T denotes the minimal tensor product of S and
T : if A and B are unital C*-algebras, A⊗min B is the spatial tensor product of A and B,
and S ⊆c.o.i. A and T ⊆c.o.i. B, then S⊗min T ⊆c.o.i. A⊗min B. The commuting tensor
product S ⊗c T sits completely order isomorphically in the maximal tensor product
C∗
u (S) ⊗max C∗

u (T ) of the universal C*-covers of S and T , while the maximal tensor
product S ⊗max T is characterised by the property that it linearises jointly completely
positive maps θ : S × T → B(H). We refer the reader to [43] for more details and
further background.

Let X , Y , A and B be finite sets. As in Sect. 5, we write ex,x ′,a,a′ , x, x ′ ∈ X , a, a′ ∈ A,
for the canonical generators of TX,A. Similarly, we write fy,y′,b,b′ , y, y′ ∈ Y , b, b′ ∈ B,
for the canonical generators of TY,B . Given a linear functional s : TX,A ⊗TY,B → C (or
a linear functional s : CX,A ⊗ CY,B → C), we let �s : MXY → MAB be the linear map
given by

�s

(
exe

∗
x ′ ⊗ eye

∗
y′
)
=

∑

a,a′∈A

∑

b,b′∈B
s
(
ex,x ′,a,a′ ⊗ fy,y′,b,b′

)
eae

∗
a′ ⊗ ebe

∗
b′ . (6.1)

Remark 6.1. The correspondence s → �s is a linear map from the dual (TX,A ⊗ TY,B)d
of TX,A ⊗ TY,B into the space L(MXY ,MAB) of all linear transformations from MXY
into MAB .

Theorem 6.2. Let X,Y, A, B be finite sets and � : MXY → MAB be a linear map. The
following are equivalent:

(i) � is a QNS correlation;
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(ii) there exists a state s : TX,A ⊗max TY,B → C such that � = �s .

Proof. (i)⇒(ii) Let � : MXY → MAB be a QNS correlation and write

�
(
exe

∗
x ′ ⊗ eye

∗
y′
)
=

∑

a,a′∈A

∑

b,b′∈B
Cx,x ′,y,y′
a,a′,b,b′ eae

∗
a′ ⊗ ebe

∗
b′ ,

for some Cx ′,x,y′,y
a,a′,b,b′ ∈ C, x, x ′ ∈ X , y, y′ ∈ Y , a, a′ ∈ A, b, b′ ∈ B. It follows from (2.2)

and (2.3) that the Choi matrix C :=
(
Cx,x ′,y,y′
a,a′,b,b′

)
of � satisfies the following conditions

(see also [22]):

(a) C ∈ M+
XY AB ;

(b) there exists cy,y
′

b,b′ ∈ C such that
∑

a∈A C
x,x ′,y,y′
a,a,b,b′ = δx,x ′c

y,y′
b,b′ , y, y

′ ∈ Y , b, b′ ∈ B;

(c) there exists dx,x
′

a,a′ ∈ C such that
∑

b∈B Cx,x ′,y,y′
a,a′,b,b = δy,y′d

x,x ′
a,a′ , x, x

′ ∈ X , a, a′ ∈ A.

By condition (b), LωY B (C) ∈ LX,A for every ωY B ∈ MY B , while by condition (c),
LωX A(C) ∈ LY,B for every ωX A ∈ MXA. Thus,

C ∈ (LX,A ⊗ LY,B
) ∩ M+

XY AB;

by the injectivity of the minimal operator system tensor product,C ∈ (LX,A ⊗min LY,B
)+.

By [29, Proposition 1.9] and Proposition 5.5,

(
TX,A ⊗max TY,B

)d ∼=c.o.i. LX,A ⊗min LY,B, (6.2)

via the identification � given by (5.8). The state s of TX,A ⊗max TY,B corresponding to
C via (6.2) satisfies

Cx,x ′,y,y′
a,a′,b,b′ = s

(
ex,x ′,a,a′ ⊗ fy,y′,b,b′

)
, x, x ′ ∈ X, y, y′ ∈ Y, a, a′ ∈ A, b, b′ ∈ B.

(6.3)
Thus, � = �s .

(ii)⇒(i) Let s be a state of TX,A ⊗max TY,B , and define Cx,x ′,y,y′
a,a′,b,b′ via (6.3); thus, C is

the Choi matrix of �s . By (5.5) and the definition of the maximal tensor product,

(
ex,x ′,a,a′ ⊗ fy,y′,b,b′

) ∈ MXY AB
(
TX,A ⊗max TY,B

)+
,

and hence the matrixC :=
(
Cx,x ′,y,y′
a,a′,b,b′

)
is positive; by Choi’s Theorem,�s is completely

positive. Relations (5.4) imply that �s is trace preserving and that conditions (b) and (c)
hold. Suppose that ρX = (ρx,x ′)x,x ′ ∈ MX has zero trace and ρY = (ρ y,y

′
)y,y′ ∈ MY .

We have
∑

x,x ′∈X

∑

y,y′∈Y

∑

b,b′∈B

∑

a∈A
Cx,x ′,y,y′
a,a,b,b′ ρx,x ′ρ

y,y′ebe
∗
b′

=
(
∑

x∈X
ρx,x

)
∑

y,y′∈Y

∑

b,b′∈B
ρ y,y

′
cy,y

′
b,b′ ebe

∗
b′ = 0,

that is, (2.2) holds; similarly, (c) implies (2.3). ��
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Theorem 6.3. Let X,Y, A, B be finite sets and � : MXY → MAB be a linear map. The
following are equivalent:

(i) � is a quantum commuting QNS correlation;
(ii) there exists a state s : TX,A ⊗c TY,B → C such that � = �s ;

(iii) there exists a state s : CX,A ⊗max CY,B → C such that � = �s .

Proof. (i)⇒(iii) Let H be a Hilbert space, E ∈ MX⊗MA⊗B(H), F ∈ MY⊗MB⊗B(H)
form a commuting pair of stochastic operator matrices, and τ ∈ T (H)+ be such that
� = �E ·F,τ . By Theorem 5.2, there exist representations πX and πY of CX,A and CY,B ,
respectively, such that Ex,x ′,a,a′ = πX (ex,x ′,a,a′) and Fy,y′,b,b′ = πY (ey,y′,b,b′) for all
x, x ′ ∈ X , y, y′ ∈ Y , a, a′ ∈ A, b, b′ ∈ B. Since CX,A (resp. CY,B) is generated by
the elements ex,x ′,a,a′ , x, x ′ ∈ X , a, a′ ∈ A (resp. fy,y′,b,b′ , y, y′ ∈ Y , b, b′ ∈ B),
πX and πY have commuting ranges. Let πX × πY be the (unique) *-representation
CX,A ⊗max CY,B → B(H) such that (πX × πY )(u ⊗ v) = πX (u)πY (v), u ∈ CX,A,
v ∈ CY,B . By (4.2),

〈
�E ·F,τ (exe∗x ′ ⊗ eye

∗
y′), eae

∗
a′ ⊗ ebe

∗
b′
〉

= 〈
Ex,x ′,a,a′Fy,y′,b,b′, τ

〉 = 〈
(πX × πY )(ex,x ′,a,a′ ⊗ fy,y′,b,b′), τ

〉
.

Letting s(w) = 〈(πX × πY )(w), τ 〉, w ∈ CX,A ⊗max CY,B , we have � = �s .
(iii)⇒(i) Let s be a state on CX,A⊗max CY,B and write πs and ξs for the corresponding

GNS representation of CX,A ⊗max CY,B and for its cyclic vector, respectively. Then,
E := (πs(ex,x ′,a,a′ ⊗ 1))x,x ′,a,a′ and F := (πs(1⊗ fy,y′,b,b′)y,y′,b,b′ form a commuting
pair of stochastic operator matrices; moreover, for x, x ′ ∈ X , y, y′ ∈ Y , a, a′ ∈ A and
b, b′ ∈ B, we have

〈
�s(exe

∗
x ′ ⊗ eye

∗
y′), eae

∗
a′ ⊗ ebe

∗
b′
〉
= s(ex,x ′,a,a′ ⊗ fy,y′,b,b′)

= 〈πs(ex,x ′,a,a′ ⊗ fy,y′,b,b′)ξs, ξs〉
= 〈Ex,x ′,a,a′Fy,y′,b,b′ξs, ξs〉
=
〈
�E,F,ξs (exe

∗
x ′ ⊗ eye

∗
y′), eae

∗
a′ ⊗ ebe

∗
b′
〉
.

(ii)⇔(iii) By Corollary 5.3 and [43, Theorem 6.4], TX,A ⊗c TY,B sits completely
order isomorphically in CX,A ⊗max CY,B ; thus the states of TX,A ⊗c TY,B are precisely
the restrictions of the states of CX,A ⊗max CY,B . ��
Corollary 6.4. The set Qqc is closed and convex.

Proof. By Theorem 6.3 and Remark 6.1, the map s → �s is an affine bijection from the
state space of TX,A ⊗c TY,B onto Qqc. It is straightforward that it is also a homeomor-
phism, when its domain is equipped with the weak* topology. Since the state space of
TX,A ⊗c TY,B is weak* compact, its range is (convex and) closed. ��
Theorem 6.5. Let X,Y, A, B be finite sets and � : MXY → MAB be a linear map. The
following are equivalent:

(i) � is an approximately quantum QNS correlation;
(ii) there exists a state s : TX,A ⊗min TY,B → C such that � = �s ;

(iii) there exists a state s : CX,A ⊗min CY,B → C such that � = �s .
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Proof. The proof is along the lines of the proof of [62, Theorem 2.8]; we include the
details for the convenience of the reader.

(iii)⇒(i) Let πX : CX,A → B(HX ) and πY : CY,B → B(HY ) be faithful *-
representations. Then, πX ⊗ πY : CX,A ⊗min CY,B → B(HX ⊗ HY ) is a faithful *-
representation of CX,A ⊗min CY,B . Let s be a state satisfying (iii). By [40, Corollary
4.3.10], s can be approximated in the weak* topology by elements of the convex hull of
vector states on (πX ⊗ πY )(CX,A ⊗min CY,B); thus, given ε > 0, there exist unit vectors
ξ1, . . . , ξn ∈ HX ⊗ HY and positive scalars λ1, . . . , λn with

∑n
i=1 λi = 1 such that

∣
∣
∣
∣
∣
s(ex,x ′,a,a′ ⊗ fy,y′,b,b′)−

n∑

i=1

λi
〈(
πX (ex,x ′,a,a′)⊗ πY ( fy,y′,b,b′)

)
ξi , ξi

〉
∣
∣
∣
∣
∣
< ε,

for all x, x ′ ∈ X , y, y′ ∈ Y , a, a′ ∈ A and b, b′ ∈ B. Let ξ = ⊕n
i=1

√
λiξi ∈ C

n⊗(HX⊗
HY ); then, ‖ξ‖ = 1. Set Ex,x ′,a,a′ = In ⊗ πX (ex,x ′,a,a′) and Fy,y′,b,b′ = πY ( fy,y′,b,b′).
Then, (Ex,x ′a,a′)x,x ′,a,a′ (resp. (Fy,y′,b,b′)y,y′,b,b′ ) is a stochastic operator matrix on
C
n ⊗ HX (resp. HY ), and

∣
∣s
(
ex,x ′,a,a′ ⊗ fy,y′,b,b′

)− 〈
Ex,x ′a,a′ ⊗ Fy,y′,b,b′ξ, ξ

〉∣
∣ < ε.

It follows that �s is in the closure of the set of correlations of the form �E�F,ξ ,
where E and F act on, possibly infinite dimensional, Hilbert spaces H and K . Given
such a correlation �E�F,ξ , let (Pα)α (resp. (Qβ)β ) be a net of finite rank projections on
H (resp. K ) such that Pα →α IH (resp. Qβ →β IK ) in the strong operator topology.
Set Hα = PαH (resp. Kβ = QβK ), Eα = (IX ⊗ IA ⊗ Pα)E(IX ⊗ IA ⊗ Pα) (resp.
Fβ = (IY ⊗ IB ⊗ Qβ)F(IY ⊗ IB ⊗ Qβ)), and ξα,β = 1

‖(Pα⊗Qβ)ξ‖ (Pα ⊗ Qβ)ξ (note
that ξα,β is eventually well-defined). Then, Eα (resp. Fβ ) is a stochastic operator matrix
acting on Hα (resp. Kβ ), and �Eα�Fβ ,ξα,β →(α,β) �E�F,ξ along the product net. It
follows that �s ∈ Qqa.

(i)⇒(iii) Given ε > 0, let E and F be stochastic operator matrices acting on finite
dimensional Hilbert spaces HX and HY , respectively, and ξ ∈ HX ⊗HY be a unit vector,
such that

∣
∣
∣
〈
�(exe

∗
x ′ ⊗ eye

∗
y′), eaea′ ⊗ ebe

∗
b′
〉
− 〈(

Ex,x ′,a,a′ ⊗ Fy,y′,b,b′
)
ξ, ξ

〉∣∣
∣ < ε,

for all x, x ′ ∈ X , y, y′ ∈ Y , a, a′ ∈ A and b, b′ ∈ B. By Lemma 5.1, there exists a *-
representationπX (resp.πY ) of CX,A (resp. CY,B) on HX (resp. HY ) such that Ex,x ′,a,a′ =
πX (ex,x ′,a,a′) (resp. Fy,y′,b,b′ = πY ( fy,y′,b,b′)), x, x ′ ∈ X , a, a′ ∈ A (resp. y, y′ ∈ Y ,
b, b′ ∈ B). Let sε be the state on CX,A ⊗min CY,B given by

sε (u ⊗ v) = 〈(πX (u)⊗ πY (v)) ξ, ξ 〉 ,
and s be a cluster point of the sequence {s1/n}n in the weak* topology. Then,

s
(
ex,x ′,a,a′ ⊗ fy,y′,b,b′

) = lim
n→∞ s1/n

(
ex,x ′,a,a′ ⊗ fy,y′,b,b′

)

=
〈
�(exe

∗
x ′ ⊗ eye

∗
y′), eaea′ ⊗ ebe

∗
b′
〉
,

giving � = �s .
(ii)⇔(iii) follows from the fact that TX,A ⊗min TY,B ⊆c.o.i CX,A ⊗min CY,B . ��
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Recall [63] that, given any Archimedean ordered unit (AOU) space V , there exists a
(unique) operator system OMIN(V ) (resp. OMAX(V )) with underlying space V , called
the minimal operator system (resp. the maximal operator system) of V that has the
property that every positive map from an operator system T into V (resp. from V into an
operator system T ) is automatically completely positive as a map from T into OMIN(V )
(resp. from OMAX(V ) into T ). If V is in addition an operator system, we denote by
OMIN(V ) (resp. OMAX(V )) the minimal (resp. maximal) operator system of the AOU
space, underlying V .

Lemma 6.6. Let V and W be finite dimensional AOU spaces with units e and f , re-
spectively. An element u ∈ OMAX(V ) ⊗max OMAX(W ) is positive if and only if
u =∑k

i=1 vi ⊗ wi , for some vi ∈ V +, wi ∈ W+, i = 1, . . . , k.

Proof. Let D be the set of all sums of elementary tensors v ⊗ w with v ∈ V + and
w ∈ W+. We claim that if, for every ε > 0, there exists uε ∈ D such that ‖uε‖ →ε→0 0
and u + uε ∈ D for every ε > 0, then u ∈ D. Assume, without loss of generality,
that ‖uε‖ ≤ 1 for all ε > 0. Set L = 2 dim(V ) dim(W ) + 1 and, using Carathéodory’s
theorem, write

u + uε =
L∑

j=1

v
(ε)
j ⊗ w(ε)j ,

where v(ε)j ∈ V +, w(ε)j ∈ W+ and ‖v(ε)j ‖ = ‖w(ε)j ‖ for all j = 1, . . . , L and all

ε > 0. Since v(ε)j ⊗ w
(ε)
j ≤ u + uε and ‖u + uε‖ ≤ ‖u‖ + 1 for all ε > 0, we have

‖v(ε)j ‖ ≤ √‖u‖ + 1 and ‖w(ε)j ‖ ≤ √‖u‖ + 1, j = 1, . . . , L . By compactness, we may

assume that v(ε)j →ε→0 v j and w(ε)j →ε→0 w j for all j = 1, . . . , L . It follows that

u =∑L
j=1 v j ⊗ w j ∈ D.

Let

S0 =
l∑

p=1

ap ⊗ vp and T0 =
r∑

q=1

bq ⊗ wq , (6.4)

for some ap ∈ Mn , vp ∈ V +, p = 1, . . . , l, and bq ∈ M+
m , wq ∈ W+, q = 1, . . . , r . If

α ∈ M1,nm , then

α(S0 ⊗ T0)α
∗ =

l∑

p=1

r∑

q=1

(
α(ap ⊗ bq)α

∗) vp ⊗ wq ∈ D.

Suppose that S ∈ Mn(OMAX(V ))+ and α ∈ M1,nm . By the definition of the maximal
tensor product [43], if ε > 0, then S + ε1n has the form of S0 in (6.4). Hence

α (S ⊗ T0) α
∗ + εα (1n ⊗ T0) α

∗ = α ((S + ε1n)⊗ T0) α
∗ ∈ D.

Since α (1n ⊗ T0) α
∗ ∈ D, the previous paragraph shows that

α (S ⊗ T0) α
∗ ∈ D.

Now let T ∈ Mm(OMAX(W ))+, and write T + ε1m in the form of T0 in (6.4). Then,

α (S ⊗ T ) α∗ + εα (S ⊗ 1m) α
∗ = α (S ⊗ (T + ε1m)) α

∗ ∈ D.
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By the previous paragraph, α (S ⊗ 1m) α∗ ∈ D; by the first paragraph, α (S ⊗ T ) α∗ ∈
D.

Let u ∈ (OMAX(V )⊗max OMAX(W ))+. By the definition of the maximal tensor
product [43], for every ε > 0, there exist n,m ∈ N, S ∈ Mn(OMAX(V ))+, T ∈
Mm(OMAX(W ))+ and α ∈ M1,nm , such that u + ε1 = α (S ⊗ T ) α∗. By the previous
and the first paragraph, u ∈ D. ��
Theorem 6.7. Let X,Y, A, B be finite sets and � : MXY → MAB be a linear map. The
following are equivalent:

(i) � is a local QNS correlation;
(ii) there exists a state s : OMIN(TX,A)⊗min OMIN(TY,B)→ C such that � = �s .

Proof. (ii)⇒(i) Let s : OMIN(TX,A)⊗min OMIN(TY,B)→ C be a state. Using [41, The-
orem 9.9] and [29, Proposition 1.9], we can identify s with an element of

(
OMAX(T d

X,A)

⊗max OMAX(T d
Y,B)

)+. By Lemma 6.6, there exist states φi ∈
(
T d
X,A

)+
and ψi ∈

(
T d
Y,B

)+
, and non-negative scalars λi , i = 1, . . . ,m, such that s ≡∑m

i=1 λiφi ⊗ψi . Set

Ei = (φi (ex,x ′,a,a′))x,x ′,a,a′ (resp. Fi = (ψi ( fy,y′,b,b′))y,y′,b,b′ ), and let 
i : MX →
MA (resp. �i : MY → MB) be the quantum channel with Choi matrix Ei (resp. Fi ),
i = 1, . . . ,m. Then, �s =∑m

i=1 λi
i ⊗�i .
(i)⇒(ii) Write � =∑m

i=1 λi
i ⊗�i as a convex combination of quantum channels

i : MX → MA and �i : MY → MB , i = 1, . . . ,m, and let s be a functional on
TX,A⊗TY,B such that � = �s . Let Ei ∈ (MX ⊗MA)

+ (resp. Fi ∈ (MY ⊗MB)
+) be the

Choi matrix of
i (resp.�i ); thus, Ei (resp. Fi ) is a stochastic operator matrix acting on
C. By Theorem 5.2, there exist positive functionals φi : TX,A → C and ψi : TY,B → C

such that (φi (ex,x ′,a′,a))x,x ′,a,a′ = Ei and (ψi ( fy,y′,b′,b))y,y′,b,b′ = Fi , i = 1, . . . ,m. It
is now straightforward to see that s is the functional corresponding to

∑m
i=1 λiφi ⊗ ψi

and is hence, by Lemma 6.6, a state on OMIN(TX,A)⊗min OMIN(TY,B). ��

7. Classical-to-Quantum No-signalling Correlations

In this section, we consider the set of classical-to-quantum no-signalling correlations,
and provide descriptions of its various subclasses in terms of canonical operator systems.

7.1. Definition and subclasses. Let X , Y , A and B be finite sets and H be a Hilbert
space.

Definition 7.1. A family � = (σx,y)x∈X,y∈Y of states in MAB is called a classical-to-
quantum no-signalling (CQNS) correlation if

TrAσx ′,y = TrAσx ′′,y and TrBσx,y′ = TrBσx,y′′ , (7.1)

for all x, x ′, x ′′ ∈ X and all y, y′, y′′ ∈ Y .

A stochastic operator matrix E ∈ MX ⊗ MA ⊗ B(H) will be called semi-classical
if Lexe∗x ′ (E) = 0 whenever x = x ′, that is, if

E =
∑

x∈X
exe

∗
x ⊗ Ex ,
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for some Ex ∈ (MA ⊗ B(H))+ with TrAEx = IH , x ∈ X . We write E = (Ex )x∈X ;
note that, in its own right, Ex is a stochastic operator matrix in L(C) ⊗ MA ⊗ B(H),
x ∈ X .

Suppose that E = (Ex )x∈X and F = (Fy)y∈Y form a commuting pair of semi-
classical stochastic operator matrices, acting on a Hilbert space H and σ is a vector state
on B(H). The family formed by the states

σx,y = Lσ (Ex · Fy), x ∈ X, y ∈ Y, (7.2)

is a CQNS correlation; indeed, by Proposition 4.1, TrAσx,y = Lσ (Fy) and TrBσx,y =
Lσ (Ex ) for all x, y. We call the CQNS correlations of this form quantum commuting.
Similarly, if (Ex )x∈X (resp. (Fy)y∈Y ) is a semi-classical stochastic operator matrix on
HA (resp. HB) and σ is a vector state on L(HA ⊗ HB), the family formed by

σx,y = Lσ (Ex � Fy), x ∈ X, y ∈ Y,

will be called a quantum CQNS correlation. A CQNS correlation � = (σx,y)x∈X,y∈Y
will be called approximately quantum if there exist quantum CQNS correlations �n =
(σ
(n)
x,y)x∈X,y∈Y , n ∈ N, such that

σ (n)x,y →n→∞ σx,y, x ∈ X, y ∈ Y.

Finally,� will be called local if there exist states σ A
i,x (resp. σ B

i,y) in MA (resp. MB) and
scalars λi > 0, i = 1, . . . ,m, such that

σx,y =
m∑

i=1

λiσ
A
i,x ⊗ σ B

i,y x ∈ X, y ∈ Y.

If E : DXY → MAB is a (classical-to-quantum) channel, we set �E = E ◦ �XY ;
thus, �E is a (quantum) channel from MXY to MAB . Given a CQNS correlation � =(
σx,y

)
x∈X,y∈Y , we let E� : DXY → MAB be the channel given by

E�
(
exe

∗
x ⊗ eye

∗
y

)
= σx,y, x ∈ X, y ∈ Y,

and �� = �E� . In the sequel, we will often identify � with the channel E�. For
x ∈ {loc, q, qa, qc, ns}, we write CQx for the set of all CQNS correlations of class x;
thus, the elements of CQx will often be considered as channels from DXY to MAB .
Similarly to the proof of Proposition 4.3, it can be shown that quantum and quantum
commuting CQNS correlations can be defined using normal (not necessarily vector)
states.

In the next lemma, for (finite) sets X and A and a Hilbert space H , we let for brevity

�̃X := �X ⊗ idA ⊗ idB(H) : MX ⊗ MA ⊗ B(H)→ DX ⊗ MA ⊗ B(H)

and

�̃X,A := �X ⊗�A ⊗ idB(H) : MX ⊗ MA ⊗ B(H)→ DX ⊗DA ⊗ B(H).
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Lemma 7.2. Let H be a Hilbert space, E ∈ MX ⊗MA⊗B(H) be a stochastic operator
matrix and σ ∈ T (H) be a state. Set E ′ = �̃X (E) and E ′′ = �̃X,A(E). Then, E ′ (resp.
E ′′) is a semi-classical (resp. classical) stochastic operator matrix,

�E,σ ◦�X = �E ′,σ and �A ◦ �E,σ ◦�X = �E ′′,σ . (7.3)

Moreover, if F ∈ MY ⊗ MB ⊗ B(H) is a stochastic operator matrix that forms a
commuting pair with E, then

�̃XY (E · F) = �̃X (E) · �̃Y (F). (7.4)

Proof. Note that if E =∑
x,x ′∈X

∑
a,a′∈A exe∗x ′ ⊗ eae∗a′ ⊗ Ex,x ′,a,a′ , then

�̃X (E) =
∑

x∈X

∑

a,a′∈A
exe

∗
x ⊗ eae

∗
a′ ⊗ Ex,x,a,a′ .

We now have
〈
�E,σ (�X (exe

∗
x ′)), eae

∗
a′
〉 = δx,x ′ 〈Ex,x ′,a,a′ , σ 〉 =

〈
�E ′,σ (exe

∗
x ′), eae

∗
a′
〉

for all x, x ′ ∈ X and all a, a′ ∈ A. The second identity in (7.3) is equally straightforward.
Finally, for (7.4), notice that if E = (

Ex,x ′,a,a′
)

and F = (
Fy,y′,b,b′

)
, then both sides of

the identity are equal to
∑

x∈X

∑

y∈Y

∑

a,a′∈A

∑

b,b′∈B
exe

∗
x ⊗ eye

∗
y ⊗ eae

∗
a′ ⊗ ebe

∗
b′ ⊗ Ex,x,a,a′Fy,y,b,b′ .

��
Theorem 7.3. Fix x ∈ {loc, q, qa, qc, ns}. If � ∈ Qx, then �|DXY ∈ CQx; conversely, if
E ∈ CQx, then �E ∈ Qx. Moreover, for a channel E : DXY → MAB, we have that

(i) E ∈ CQqc if and only if �E = �E ·F,σ , where (E, F) is a commuting pair of semi-
classical stochastic operator matrices, acting on a Hilbert spaces H, and σ is a
normal state on B(H);

(ii) E ∈ CQq if and only if �E = �E�F,σ , where E and F are semi-classical stochastic
operator matrices, acting on finite dimensional Hilbert spaces HA and HB, respec-
tively, and σ is a state on L(HA ⊗ HB).

Proof. It is trivial that if � ∈ Qns, then �|DXY ∈ CQns. Conversely, suppose that
E ∈ CQns, and let ρX ∈ MX and ρY ∈ MY be states, with Tr(ρX ) = 0. By (7.1),

TrA�E (ρX ⊗ ρY ) =
∑

x∈X

∑

y∈Y
〈ρXex , ex 〉〈ρY ey, ey〉TrAσx,y = 0

and, by symmetry, �E ∈ Qns.
Let E ∈ MX ⊗ MA ⊗B(H) and F ∈ MY ⊗ MB ⊗B(H) form a commuting pair of

stochastic operator matrices and σ ∈ T (H) be a state. It follows from Lemma 7.2 that

�E ·F,σ |DXY = ��XY (E ·F),σ |DXY = ��X (E)·�Y (F),σ |DXY ∈ CQqc.

Conversely, suppose that E� ∈ CQqc, where� = (σx,y)x∈X,y∈Y is a CQNS correlation.
Let H , σ , E and F be such that (7.2) holds; then, �� = �E ·F,σ . A similar argument
applies in the case x = q, and the case x = qa follows from the fact that the map
E → E ◦ �XY , from L(DXY ,MAB) into L(MXY ,MAB), is continuous. Finally, if
σx,y = σx ⊗ σ y , where σx ∈ MA (resp. σ y ∈ MB) is a state, x ∈ X (resp. y ∈ Y ), and

 : MX → MA (resp. � : MY → MB) is the channel given by 
(exe∗x ′) = δx,x ′σx
(resp. �(eye∗y′) = δy,y′σ y), then �E = 
⊗�, and the case x = loc follows. ��
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7.2. Description in terms of states. We next introduce an operator system, universal for
classical-to-quantum no-signalling correlations in a similar manner thatTX,A is universal
for the (fully) quantum correlations, and describe the subclasses of CQNS correlations
via states on tensor products of its copies.

Let

BX,A = MA ∗1 · · · ∗1 MA︸ ︷︷ ︸
|X | times

,

a free product, amalgamated over the unit. For each x ∈ X , write {ex,a,a′ : a, a′ ∈ A}
for the canonical matrix unit system of the x-th copy of MA, and let

RX,A = span{ex,a,a′ : x ∈ X, a, a′ ∈ A},
considered as an operator subsystem of BX,A.

Given operator systems S1, . . . ,Sn , their coproduct S = S1 ⊕1 · · · ⊕1 Sn is an
operator system, equipped with complete order embeddings ιi : Si → S, characterised
by the universal property that whenever R is an operator system and φi : Si → R is
a unital completely positive map, i = 1, . . . , n, there exists a unique unital completely
positive map φ : S → R such that φ ◦ ιi = φi , i = 1, 2, . . . , n. We refer the reader to
[42, Section 8] for a detailed account of the coproduct of operator systems.

Remark 7.4. LetAi , i = 1, . . . , n, be unital C*-algebras andS = span{ai : ai ∈ Ai , i =
1, . . . , n}, considered as an operator subsystem of the free product A1 ∗1 · · · ∗1 An ,
amalgamated over the unit. It was shown in [28, Theorem 5.2] that S ∼=c.o.i. A1 ⊕1
· · · ⊕1 An . In particular, we have

RX,A ∼= MA ⊕1 · · · ⊕1 MA︸ ︷︷ ︸
|X | times

. (7.5)

An application of [62, Lemma 2.8] now shows that

RX,A ⊗c RY,B ⊆c.o.i. BX,A ⊗max BY,B . (7.6)

Theorem 7.5. Let H be a Hilbert space and φ : RX,A → B(H) be a linear map. The
following are equivalent:

(i) φ is a unital completely positive map;

(ii)
((
φ(ex,a,a′)

)
a,a′∈A

)

x∈X is a semi-classical stochastic operator matrix.

Proof. (i)⇒(ii) The restriction φx of φ to the x-th copy of MA is a unital completely
positive map. By Choi’s Theorem,

(
φx (ex,a,a′)

)
a,a′ is a stochastic operator matrix in

MA⊗B(H) for every x ∈ X ; thus,
((
φ(ex,a,a′)

)
a,a′∈A

)

x∈X is a semi-classical stochastic

operator matrix.
(ii)⇒(i) For each x ∈ X , let φx : MA → B(H) be the linear map defined by letting

φx (eae∗a′) = φ(ex,a,a′). By Choi’s Theorem, φx is a (unital) completely positive map.
By the universal property of the coproduct, there exists a (unique) unital completely
positive map ψ : RX,A → B(H) whose restriction to the x-th copy of MA coincides
with φx . It follows that ψ = φ, and hence φ is completely positive. ��
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Remark 7.6. By [28, Theorem 5.1], RX,A is an operator system quotient of MXA. Now
[29, Proposition 1.8] shows that if

QX,A = {⊕x∈XTx ∈ ⊕x∈XMA : ∃ c ∈ C s.t. TrTx = c, x ∈ X} ,
then the linear map �cq : Rd

X,A → QX,A, given by

�cq(φ) = ⊕x∈X
(
φ(ex,a,a′)

)
a,a′ ,

is a well-defined unital complete order isomorphism.

We denote the canonical generators of RY,B by fy,b,b′ , y ∈ Y , b, b′ ∈ B. Given a
functional t : RX,A ⊗RY,B → C, we let Et : DXY → MAB be the linear map defined
by

Et
(
exe

∗
x ⊗ eye

∗
y

)
=

∑

a,a′∈A

∑

b,b′∈B
t
(
ex,a,a′ ⊗ fy,b,b′

)
eae

∗
a′ ⊗ ebe

∗
b′ .

We note that t → Et is a linear map from (RX,A ⊗RY,B)
∗ into L(DXY ,MAB).

Theorem 7.5 and the universal property of the coproduct imply the existence of a
unital completely positive map βX,A : RX,A → TX,A such that

βX,A(ex,a,a′) = ex,x,a,a′ , x ∈ X, a, a′ ∈ A.

Similarly, the matrix (δx,x ′ex,a,a′)x,x ′,a,a′ is stochastic, and Theorem 5.2 implies the
existence of a unital completely positive map β ′X,A : TX,A → RX,A such that

β ′X,A(ex,x ′,a,a′) = δx,x ′ex,a,a′ , x, x ′ ∈ X, a, a′ ∈ A.

It is clear that

β ′X,A ◦ βX,A = idRX,A .

Theorem 7.7. The map t → Et is an affine isomorphism

(i) from the state space ofRX,A ⊗max RY,B onto CQns;
(ii) from the state space ofRX,A ⊗c RY,B onto CQqc;

(iii) from the state space ofRX,A ⊗min RY,B onto CQqa;
(iv) from the state space of OMIN

(
RX,A

)⊗min OMIN
(
RY,B

)
onto CQloc.

Proof. It is clear that the map t → Et is bijective. It is also straightforward to see
that, for a linear functional s : TX,A ⊗ TY,B → C, we have �s |DXY = Et , where
t = s ◦ (βX,A ⊗ βY,B

)
. The claims now follow from Theorems 6.2, 6.3, 6.5, 6.7, 7.3 and

the functoriality of the involved tensor products. ��
As a consequence of Theorem 7.7, we see that the sets CQqc and CQloc are closed

(as are CQns and CQqa).
Remark. As in Theorems 6.3 and 6.5, the classes CQqc and CQqa can be equivalently
described via states on the C*-algebraic tensor products BX,A⊗max BY,B and BX,A⊗min
BY,B , respectively. For the class CQqa, this is a direct consequence of the injectivity of
the minimal tensor product in the operator system category, while for the class CQqc,
this is a consequence of Remark 7.4.
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8. Classical Reduction and Separation

Let X and A be finite sets. We let

AX,A = �∞A ∗1 · · · ∗1 �
∞
A︸ ︷︷ ︸

|X | times

,

where the free product is amalgamated over the unit, and

SX,A = �∞A ⊕1 · · · ⊕1 �
∞
A︸ ︷︷ ︸

|X | times

,

the operator system coproduct of |X | copies of �∞A . Note that, by [28, Theorem 5.2] (see
Remark 7.4), SX,A is an operator subsystem of AX,A. We let (ex,a)a∈A be the canonical
basis of the x-th copy of �∞A inside SX,A; thus, SX,A is generated, as a vector space, by
{ex,a : x ∈ X, a ∈ A}, and the relations

∑

a∈A
ex,a = 1, x ∈ X,

are satisfied. Note that, by the universal property of the operator system coproduct,
SX,A is characterised by the following property: whenever H is a Hilbert space and
{Ex,a : x ∈ X, a ∈ A} is a family of positive operators on H such that (Ex,a)a∈A
is a POVM for every x ∈ X , there exists a (unique) unital completely positive map
φ : SX,A → B(H) such that φ(ex,a) = Ex,a , x ∈ X , a ∈ A.

We denote by E the map sending a quantum channel � : MXY → MAB to �|DXY

(and recall that N stands for the map sending � to N� = �AB ◦ �|DXY ); Remark 8.1
below justifies calling E and N classical reduction maps. The forward implications all
follow similarly to the one in (ii), which was shown in Theorem 7.3, while the reverse
ones can be seen after an application of Lemma 7.2. We recall that we identify Cns with
the set {Np : p an NS correlation}.
Remark 8.1. Let X , Y , A and B be finite sets, x ∈ {loc, q, qa, qc, ns}, p ∈ Cx and
E ∈ CQx. The following hold:

(i) p ∈ Cx ⇔ Ep ∈ CQx ⇔ �p ∈ Qx;
(ii) E ∈ CQx ⇔ �E ∈ Qx.

Moreover, the maps E : Qx → CQx andN : CQx → Cx are well-defined and surjective.

We identify an elementN of Cx with the corresponding classical-to-quantum channel
from DXY into MAB , and an element E of CQx with the corresponding quantum channel
from MXY into MAB . The subsequent table summarises the inclusions between the
various classes of correlations:

Cloc ⊂ Cq ⊂ Cqa ⊂ Cqc ⊂ Cns
∩ ∩ ∩ ∩ ∩

CQloc ⊂ CQq ⊂ CQqa ⊂ CQqc ⊂ CQns
∩ ∩ ∩ ∩ ∩

Qloc ⊂ Qq ⊂ Qqa ⊂ Qqc ⊂ Qns.

By Bell’s Theorem, Cloc = Cq for all subsets X,Y, A, B of cardinality at least 2. By
Remark 8.1, we have that CQloc = CQq and Qloc = Qq. By [69], Cq = Cqa for some
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finite sets X , Y , A and B (see also [23]) and hence CQq = CQqa and Qq = Qqa for
a suitable choice of sets. The inequality Cqc = Cns is well-known (it follows e.g. from
[27, Theorem 7.11]), implying that CQqc = CQns and Qqc = Qns.

It was recently shown [38] that the inequality Cqa = Cqc also holds true for suitable
sets X , Y , A and B, thus resolving the long-standing Tsirelson problem and, by [39] and
[57], the Connes embedding problem, in the negative. It thus follows from Remark 8.1
that, for this choice of sets, CQqa = CQqc and Qqa = Qqc. We next strengthen these
inequalities.

Lemma 8.2. Let Xi and Ai be finite sets, i = 1, 2, with X1 ⊆ X2 and A1 ⊆ A2. There
exist unital completely positive maps ι1 : SX1,A1 → SX2,A2 and ι2 : SX2,A2 → SX1,A1

such that ι2 ◦ ι1 = id.

Proof. Denote the canonical generators of SX1,A1 by ex,a , and of SX2,A2 —by fx,a . By
induction, it suffices to prove the claim in two cases.
Case 1. X1 = X2 and A2 = A1 ∪ {a2}, where a2 ∈ A1.

Let a1 ∈ A1. Define the maps ι1 and ι2 by setting

ι1(ex,a) =
{
fx,a if a ∈ A1 \ {a1},
fx,a1 + fx,a2 a = a1,

and

ι2( fx,a) =
{
ex,a if a ∈ A1 \ {a1},
1
2ex,a1 a ∈ {a1, a2}.

Case 2. A2 = A1 and X2 = X1 ∪ {x2}, where x2 ∈ X1.
Let x1 ∈ X1. Define ι1(ex,a) = fx,a , x ∈ X1, a ∈ A1, and

ι2( fx,a) =
{
ex,a if x ∈ X1,
ex1,a x = x2.

By the universal property of the operator systemsSX,A, ι1 and ι2 are unital completely
positive maps, and the condition ι2 ◦ ι1 = id is readily verified. ��
Theorem 8.3. For all finite sets X, Y , A and B of sufficiently large cardinality, the
following hold true:

(i) Qqa(X,Y, A, B) = Qqc(X,Y, A, B);
(ii) CQqa(X,Y, A, B) = CQqc(X,Y, A, B);

(iii) TX,A ⊗min TY,B = TX,A ⊗c TY,B;
(iv) RX,A ⊗min RY,B = RX,A ⊗c RY,B;
(v) BX,A ⊗min BY,B = BX,A ⊗max BY,B;

(vi) CX,A ⊗min CY,B = CX,A ⊗max CY,B.
Proof. By [38], there exist (finite) sets X0, Y0, A0 and B0 and an NS correlation

p ∈ Cqc(X0,Y0, A0, B0) \ Cqa(X0,Y0, A0, B0).

Using [49, Corollary 3.2], let s be a state on SX0,A0 ⊗c SY0,B0 such that

p(a, b|x, y) = s(ex,a ⊗ ey,b) (8.1)

for all x ∈ X0, y ∈ Y0, a ∈ A0 and b ∈ B0. Assume that X0 ⊆ X , Y0 ⊆ Y , A0 ⊆ A
and B0 ⊆ B. Write ιAi (resp. ιBi ), i = 1, 2, for the maps arising from Lemma 8.2 for
the operator systems SX0,A0 and SX,A (resp. SY0,B0 and SY,B). By the functoriality of
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the commuting tensor product, the map t := s ◦ (ιA2 ⊗ ιB2 ) is a state on SX,A ⊗c SY,B .
The NS correlation q ∈ Cqc(X,Y, A, B) arising from t as in (8.1) does not belong to the
class Cqa. Indeed, if q ∈ Cqa, then, by [49, Corollary 3.3], t is a state on SX,A⊗min SY,B ,
and hence s = t ◦ (ιA1 ⊗ ιB1 ) (see Lemma 8.2) is a state on SX0,A0 ⊗min SY0,B0 which, in
view of [49, Corollary 3.3], contradicts the fact that p is not approximately quantum.

It follows that Cqa(X,Y, A, B) = Cqc(X,Y, A, B) for all sets X , Y , A and B of
sufficiently large cardinality. Parts (i) and (ii) now follow from Remark 8.1. Claim (iii)
follows from Theorems 6.3 and 6.5, while (iv)—from (ii) and Theorem 7.7. Finally, (v)
follows from (iv) and Remark 7.4, and (vi) follows from (iii), Corollary 5.3 and [43,
Theorem 6.4]. ��

Recall that an operator system S is said to possess the operator system local lifting
property (OSLLP) [44] if, whenever A is a unital C*-algebra, I ⊆ A is a two-sided
ideal, T ⊆ S is a finite dimensional operator subsystem and ϕ : T → A/I is a unital
completely positive map, there exists a unital completely positive mapψ : T → A such
that ϕ = q ◦ψ (here q : A → A/I denotes the quotient map). We conclude this section
with showing that the operator systems we introduced possess OSLPP.

Proposition 8.4. Let S be an operator system quotient of Mk, for some k ∈ N, and H
be a Hilbert space. Then, S ⊗min B(H) ∼=c.o.i. S ⊗max B(H), and hence S possesses
OSLLP.

Proof. Let J ⊆ Mk be a kernel such that S = Mk/J ; write q : Mk → S for the quotient
map. By [29, Proposition 1.8], the dual q∗ : Sd → Md

k is a complete order embedding.
Fix u ∈ Mn (S ⊗min B(H))+; after a canonical identification, we consider u as an

element of (S ⊗min Mn (B(H)))+. Let {S1, . . . , Sm} be a basis of S, and write u =∑m
i=1 Si ⊗ Ti , for some Ti ∈ Mn (B(H)), i = 1, . . . ,m. By [42, Proposition 6.1], the

map φu : Sd → Mn (B(H)), given by φu( f ) = ∑m
i=1 f (Si )Ti , is completely positive.

By Arveson’s extension theorem, there exists a completely positive map ψ : Md
k →

Mn (B(H)) with ψ ◦ q∗ = φu . Let S′i ∈ Mk be such that q(S′i ) = Si , i = 1, . . . ,m, and
let {S′i : i = m + 1, . . . , k2} be a basis of J . Then, {S′1, . . . , S′m, S′m+1, . . . , S

′
k2} is a basis

of Mk . Let

v =
k2
∑

i=1

S′i ⊗ T ′
i ∈ Mk ⊗ Mn (B(H))

be an element such that

ψ(g) =
k2
∑

i=1

g(S′i )T ′
i , g ∈ Md

k ;

by [42, Proposition 6.1], v ∈ (Mk ⊗min Mn (B(H)))+. Since Mk is nuclear, v belongs
to (Mk ⊗max Mn (B(H)))+. Let w = (q ⊗ id)(v); by the functoriality of the maximal
tensor product, w ∈ (S ⊗max Mn(B(H)))+. We have

w =
k2
∑

i=1

q(S′i )⊗ T ′
i =

m∑

i=1

Si ⊗ T ′
i .
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For all f ∈ Sd, we have

m∑

i=1

f (Si )T
′
i =

k2
∑

i=1

q∗( f )(S′i )T ′
i = ψ(q∗( f )) = φu( f ) =

m∑

i=1

f (Si )Ti .

It follows that Ti = T ′
i , i = 1, . . . ,m, and henceu = w. Thus,u ∈ Mn (S ⊗max B(H))+,

and it follows from [44, Theorem 8.6] that S possesses OSLLP. ��
Proposition 8.4, combined with Corollary 5.6 and Remark 7.6, yields the following

corollary.

Corollary 8.5. Let X and A be finite sets. Then, TX,A and RX,A possess OSLPP.

Remark. It is worth noting the different nature of the C*-algebras AX,A and BX,A on
one hand, and CX,A on the other. This is best seen in the special case where |X | = 1,
when AX,A ∼= DA, BX,A ∼= MA and CX,A ∼= C∗

u (MA).

9. Quantum Versions of Synchronicity

Let X and A be finite sets, Y = X and B = A. We will often distinguish the notation
for X vs. Y (resp. A vs. B) although they coincide, in order to make clear with respect
to which term in a tensor product a partial trace is taken. An NS correlation p ={
(p(a, b|x, y))a,b∈A : x, y ∈ X

}
is called synchronous [61] if

p(a, b|x, x) = 0 x ∈ X, a, b ∈ A, a = b.

In this section, we examine possible quantum versions of the notion of synchronicity.
Our main motivation is the following result, which was proved in [61].

Theorem 9.1. Let p be an NS correlation. Then,

(i) p is synchronous and quantum commuting if and only if there exists a trace τ :
AX,A → C such that

p(a, b|x, y) = τ
(
ex,aey,b

)
, x, y ∈ X, a, b ∈ A; (9.1)

(ii) p is synchronous and quantum if and only if there exist a finite dimensional C*-
algebraA, a trace τA onA and a *-homomorphism π : AX,A → A such that (9.1)
holds for the trace τ = τA ◦ π ;

(iii) p is synchronous and local if and only if there exist an abelian C*-algebra A, a
trace τA on A and a *-homomorphism π : AX,A → A such that (9.1) holds for
the trace τ = τA ◦ π .

9.1. Fair correlations. If A is a unital C*-algebra, we write Aop for the opposite C*-
algebra ofA; recall thatAop has the same underlying set (whose elements will be denoted
by uop, for u ∈ A), the same involution, linear structure and norm, and multiplication
given by uopvop = (vu)op, u, v ∈ A. For a subset S ⊆ A, we let Sop = {uop : u ∈ S}.

For a Hilbert space H , we denote by Hd its Banach space dual; if K is a(nother)
Hilbert space and T ∈ B(H, K ), we denote by T d its adjoint, acting from K d into Hd.
We note the relation

(T ∗)d = (T d)∗, T ∈ B(H, K ). (9.2)
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It is straightforward to see that if A is a C*-algebra and π : A → B(H) is a (faith-
ful) *-representation, then the map πop : Aop → B(Hd), given by πop(uop) =
π(u)d, is a (faithful) *-representation. Note that the transposition map u → (ut )op

is a *-isomorphism between MX and Mop
X . It was shown in [45] that there exists a *-

isomorphism ∂A : AX,A → Aop
X,A such that ∂A(ex,a) = eop

x,a , x ∈ X , a ∈ A. The
following analogous statements for CX,A and BX,A will be needed later.

Lemma 9.2. Let X and A be finite sets.

(i) There exists a *-isomorphism ∂ : CX,A → Cop
X,A such that

∂(ex,x ′,a,a′) = eop
x ′,x,a′,a, x, x ′ ∈ X, a, a′ ∈ A.

(ii) There exists a *-isomorphism ∂B : BX,A → Bop
X,A such that

∂B(ex,a,a′) = eop
x,a′,a, x ∈ X, a, a′ ∈ A.

Proof. (i) Let π : CX,A → B(H) be a faithful *-representation. Write Ex,x ′,a,a′ =
π(ex,x ′,a,a′), x, x ′ ∈ X , a, a′ ∈ A. Using Theorem 3.1, let K be a Hilbert space and
(Va,x )a,x : HX → K A be an isometry such that Ex,x ′,a,a′ = V ∗

a,x Va′,x ′ , x, x
′ ∈ X ,

a, a′ ∈ A. Let Wa,x = (
V d
a,x

)∗
; thus, Wa,x ∈ B(Hd, K d), x ∈ X , a ∈ A. Using (9.2),

we have
∑

a∈A
W ∗

a,x ′Wa,x =
∑

a∈A
V d
a,x ′

(
V ∗
a,x

)d =
∑

a∈A

(
V ∗
a,x Va,x ′

)d = δx,x ′ I
d;

thus,
(
Wa,x

)
a,x is an isometry. By Theorem 3.1, if Fx,x ′,a,a′ = W ∗

a,xWa′,x ′ , x, x ′ ∈ X ,

a, a′ ∈ A, then
(
Fx,x ′,a,a′

)
x,x ′,a,a′ is a stochastic operator matrix. Note that

Fx,x ′,a,a′ = V d
a,x

(
V d
a′,x ′

)∗ =
(
V ∗
a′,x ′Va,x

)d = Ed
x ′,x,a′,a .

By the universal property of CX,A, there exists a *-homomorphism π ′ : π (CX,A
) →

B
(
Hd
)

such that

π ′ (Ex,x ′,a,a′
) = Ed

x ′,x,a′,a, x, x ′ ∈ X, a, a′ ∈ A.

By the paragraph before Lemma 9.2, π ′ ◦ π can be regarded as a *-homo-morphism
from CX,A into Cop

X,A, which maps ex,x ′,a,a′ to eop
x ′,x,a′,a . The claim follows by symmetry.

(ii) The words of the form ex1,a1,a′1 . . . exk ,ak ,a′k span a dense ∗-subalgebra of BX,A.

As u  → (ut )op is a *-isomorphism from MA to Mop
A that maps the matrix unit eae∗a′ to

(
ea′e∗a

)op, the universal property of the free product implies that the map ∂B given by

∂B(ex1,a1,a′1 . . . exk ,ak ,a′k ) = eop
x1,a′1,a1

. . . eop
xk ,a′k ,ak

extends to the desired *-isomorphism. ��
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If U is a subspace of a C∗-algebra A, we call a linear functional s : U ⊗ Uop → C

fair if
s(u ⊗ 1) = s(1 ⊗ uop) for all u ∈ U . (9.3)

It will be convenient to write tY for the transpose map on MY . A state ρ ∈ MXY
will be called fair if TrX ((id ⊗ tY )(ρ)) = TrY ((id ⊗ tY )(ρ)). We write �X = {ρ ∈
M+

XY : ρ a fair state}, and observe that an element ρ = (ρx,x ′,y,y′) ∈ M+
XY belongs to

�X precisely when

∑

x∈X

∑

y,y′∈Y
ρx,x,y,y′ey′e

∗
y =

∑

x,x ′∈X

∑

y∈Y
ρx,x ′,y,yexe

∗
x ′ ,

that is, when ∑

x∈X
ρx,x,z,z′ =

∑

y∈X
ρz′,z,y,y, z, z′ ∈ X. (9.4)

We let �cl
X = �X ∩DXY ; thus, a state ρ = (ρx,y)x,y ∈ D+

XY is in �cl
X precisely when

∑

x∈X
ρx,z =

∑

y∈X
ρz,y, z ∈ X. (9.5)

It follows from (9.4) and (9.5) that

�XY (�X ) = �cl
X . (9.6)

Definition 9.3. A QNS correlation � : MXY → MAB (resp. a CQNS correlation E :
DXY → MAB , an NS correlation N : DXY → DAB) is called fair if � (�X ) ⊆ �A
(resp. E

(
�cl

X

) ⊆ �A, N
(
�cl

X

) ⊆ �cl
A ).

Theorem 9.4. Let � be a QNS correlation.

(i) � is fair if and only if there exists a state s : TX,A⊗maxTX,A → C such that � = �s
and the state s ◦ (id ⊗ ∂)−1 is fair;

(ii) � is fair and belongs toQqc if and only if there exists a state s : TX,A⊗c TX,A → C

such that � = �s and the state s ◦ (id ⊗ ∂)−1 is fair;
(iii) � is fair and belongs toQqa if and only if there exists a state s : TX,A⊗minTX,A → C

such that � = �s and the state s ◦ (id ⊗ ∂)−1 is fair;
(iv) � is fair and belongs toQloc if and only if there exists a state s : OMIN(TX,A)⊗min

OMIN(TY,B)→ C such that � = �s and the state s ◦ (id ⊗ ∂)−1 is fair.

Proof. We only show (i); the proofs of (ii)-(iv) are similar. Let � be a QNS correlation.
By Theorem 6.2, there exists a state s ∈ TX,A ⊗max TX,A → C such that � = �s . The
condition

TrA ((id ⊗ tB)(�(ρ)) = TrB ((id ⊗ tB)(�(ρ))

is equivalent to

∑

a∈A
〈(id ⊗ tB(�(ρ))ea ⊗ eb′ , ea ⊗ eb〉 =

∑

a∈A
〈(id ⊗ tB(�(ρ))eb′ ⊗ ea, eb ⊗ ea〉 ,

(9.7)
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b, b′ ∈ B. Note that

�(ρ) =
∑

a,a′∈A

∑

b,b′∈A

∑

x,x ′∈X

∑

y,y′∈X
ρx,x ′,y,y′s(ex,x ′,a,a′ ⊗ ey,y′,b,b′)eae

∗
a′ ⊗ ebe

∗
b′

and hence

(id ⊗ tB)(�(ρ)) =
∑

a,a′∈A

∑

b,b′∈A

∑

x,x ′∈X

∑

y,y′∈X
ρx,x ′,y,y′s(ex,x ′,a,a′ ⊗ ey,y′,b,b′)eae

∗
a′ ⊗ eb′e

∗
b .

Thus, letting μ(1)y,y′ =
∑

x∈X ρx,x,y,y′ , we have that the left hand side of (9.7) coincides
with

∑

a∈A

∑

x,x ′∈X

∑

y,y′∈X
ρx,x ′,y,y′s

(
ex,x ′,a,a ⊗ ey,y′,b′,b

)

=
∑

x,x ′∈X

∑

y,y′∈X
ρx,x ′,y,y′s

((
∑

a∈A
ex,x ′,a,a

)

⊗ ey,y′,b′,b

)

=
∑

x,x ′∈X

∑

y,y′∈X
ρx,x ′,y,y′δx,x ′s

(
1 ⊗ ey,y′,b′,b

) = s

⎛

⎝1 ⊗
∑

y,y′∈X
μ
(1)
y,y′ey,y′,b′,b

⎞

⎠

= s ◦ (id ⊗ ∂)−1

⎛

⎝1 ⊗
∑

y,y′∈X
μ
(1)
y,y′e

op
y′,y,b,b′

⎞

⎠ .

Similarly, letting μ(2)x,x ′ = ∑
y∈X ρx,x ′,y,y , we have that the right hand side of (9.7)

coincides with
∑

a∈A

∑

x,x ′∈X

∑

y,y′∈X
ρx,x ′,y,y′s

(
ex,x ′,b,b′ ⊗ ey,y′,a,a

)

=
∑

x,x ′∈X

∑

y,y′∈X
ρx,x ′,y,y′s

(

ex,x ′,b,b′ ⊗
(
∑

a∈A
ey,y′,a,a

))

=
∑

x,x ′∈X

∑

y,y′∈X
ρx,x ′,y,y′δy,y′s

(
ex,x ′,b,b′ ⊗ 1

)

= s

⎛

⎝
∑

x,x ′∈X
μ
(2)
x,x ′ex,x ′,b,b′ ⊗ 1

⎞

⎠ ,

that is, with

s ◦ (id ⊗ ∂)−1

⎛

⎝
∑

y,y′∈X
μ
(2)
y′,yey′,y,b,b′ ⊗ 1

⎞

⎠ .

Let nowρ ∈ �X . By (9.4),μ(1)y,y′ = μ
(2)
y′,y . Hence, if s◦(id⊗∂)−1 is fair, then�(ρ) ∈ �A,

that is, � is fair.
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Conversely, assuming that � is fair, the previous paragraph shows that

s ◦ (id ⊗ ∂)−1(u ⊗ 1) = s ◦ (id ⊗ ∂)−1(1 ⊗ uop) (9.8)

for any u of the form u = ∑
y,y′∈X (

∑
x ρx,x,y,y′)ey,y′,b,b′ with ρ ∈ �X . Letting ρ =

exe∗x ⊗ exe∗x ∈ �X we conclude that (9.8) holds for u = ex,x,b,b′ , x ∈ X , b, b′ ∈ A.
Letting ρ = 1 ⊗ ωt + ω ⊗ 1, where ω = α(eze∗z + ez′e∗z′) + βeze∗z′ + β̄ez′e∗z , z = z′,
with α ≥ |β|, we obtain that (9.8) holds for u = α(2

∑
y∈X ey,y,b,b′ + |X |ez,z,b,b′ +

|X |ez′,z′,b,b′) + β|X |ez′,z,b,b′ + β̄|X |ez,z′,b,b′ . From this we deduce that (9.8) holds for
any u = ey,y′,b,b′ , y, y′ ∈ X , b, b′ ∈ A. ��

Let S ⊆ B(K ) be an operator system. We let Sop = {ud : u ∈ S}, considered as
an operator subsystem of B(K d). Note that Sop is well-defined: if φ : S → B(K̃ ) is a
unital complete isometry, then the map φ̃ : Sop → B(K̃ d), given by φ̃(ud) = φ(u)d, is
also unital and completely isometric. We thus write uop = ud in the (abstract) operator
system Sop.

For a linear map 
 : MX → MA, let 
� : MX → MA be the linear map given by

�(ω) = 
(ωt)t .

Lemma 9.5. Let S be an operator system.

(i) If φ : S → B(H) be a unital completely positive map, then the map φop : Sop →
B(Hd), given by φop(uop) = φ(u)d, is unital and completely positive.

(ii) Up to a canonical *-isomorphism, C∗
u (Sop) = C∗

u (S)op.
(iii) If 
 : MX → MA is a completely positive map, then so is 
�.

Proof. (i) Represent S ⊆ B(K ) as a concrete operator system. Then, Sop ⊆ B(K d).
Suppose that ui, j ∈ S, i, j = 1, . . . , n, are such that (ud

i, j )i, j ∈ Mn(B(K d))+. Then,

(u j,i )i, j = (ud
i, j )

d
i, j ∈ Mn(B(K ))+ and hence (φ(u j,i ))i, j ∈ Mn(B(H))+. Thus,

(
φop(uop

i, j )
)

i, j
=
(
φ(ui, j )

d
)

i, j
∈ Mn

(
B(Hd)

)+
.

(ii) Suppose that ψ : Sop → B(H) is a unital completely positive map. By (i),
ψop : S → B(Hd) is (unital and) completely positive. By the universal property of the
maximal C*-cover, there exists a *-homomorphism π : C∗

u (S) → B(Hd) extending
ψop. It follows that πop : C∗

u (S)op → B(H) is a *-homomorphism that extends ψ .
Thus, C∗

u (S)op satisfies the universal property of the C*-cover of Sop.
(iii) The transposition is a (unital) complete order isomorphism from MX onto Mop

X .
The statement follows after observing that, under the latter identification, 
� coincides
with 
op. ��
Corollary 9.6. A local QNS correlation � is fair if and only if � = ∑m

i=1 λi
i ⊗ �i
for some quantum channels 
i , �i : MX → MA and scalars λi ≥ 0, i = 1, . . . ,m,∑m

i=1 λi = 1, such that
m∑

i=1

λi
i =
m∑

i=1

λi�
�
i . (9.9)
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Proof. Suppose that � is fair and, using Theorem 9.4, write � = �s , where s is a state
on OMIN(TX,A)⊗min OMIN(TY,B) such that s ◦ (id ⊗ ∂)−1 is fair. As in the proof of
Theorem 6.7, identify s with a convex combination

∑m
i=1 λiφi ⊗ ψi , where φi and ψi

are states on TX,A, i = 1, . . . ,m; then, the fairness condition is equivalent to

m∑

i=1

λiφi (u) =
m∑

i=1

λiψi (∂
−1(uop)), u ∈ TX,A. (9.10)

Let 
i and �i be the quantum channels from MX to MA, corresponding to φi and ψi ,
respectively; then, � = ∑m

i=1 λi
i ⊗ �i . Let ψ̃i : u  → ψi ((∂
−1(uop)), u ∈ TX,A. By

Lemma 9.2, ψ̃i is a state. Moreover,

〈��i (exe∗x ′), eae∗a′ 〉 = 〈�i (ex ′e
∗
x )

t , eae
∗
a′ 〉 = 〈�i (ex ′e

∗
x ), ea′e

∗
a〉

= ψi (ex ′,x,a′,a) = ψi (∂
−1(eop

x,x ′,a,a′)) = ψ̃i (ex,x ′,a,a′),

that is, the quantum channel ��i corresponds to ψ̃i . Identity (9.9) now follows from
(9.10). The converse implication follows by reversing the previous steps.

Corollary 9.7. (i) A CQNS correlation E is fair if and only if there is a state t :
RX,A ⊗max RX,A → C such that t ◦ (id ⊗ ∂B)−1 is fair and E = Et . Similar
descriptions hold for fair correlations in the classes CQqc, CQqa and CQloc.

(ii) An NS correlation p is fair if and only if there is a state t : SX,A ⊗max SX,A → C

such that t (u ⊗ 1) = t (1 ⊗ u), u ∈ SX,A, and

p(a, b|x, y) = t (ex,a ⊗ ey,b), x, y ∈ X, a, b ∈ A.

Similar descriptions hold for fair correlations in the classes Cqc, Cqa and Cloc.

Proof. We only give details for (i). Let E : DXY → MAB be a fair CQNS correlation.
By (9.6), E ◦ �XY : MXY → MAB is a fair QNS correlation. By Theorem 9.4 (i),
E ◦�XY = �s , for some state s on TX,A ⊗max TX,A such that s ◦ (id ⊗ ∂)−1 is fair. It
follows that E = Et , where t := s ◦ (βX,A ⊗ βX,A) is a state on RX,A ⊗max RX,A and
t ◦ (id ⊗ ∂B)−1 is fair. Conversely, if E = Et for some state t on RX,A ⊗max RX,A such
that t ◦(id⊗∂B)−1 is fair, then�E = �s , where s := t ◦(β ′X,A⊗β ′X,A) and s ◦(id⊗∂)−1

is fair. By Theorem 9.4 (i), �E is fair, and hence so is E . The statements regarding CQqc,
CQqa and CQloc follow after a straightforward modification of the argument.

Remark. It follows from Theorems 9.1, 9.4 and Corollary 9.7 that fair correlations can be
viewed as a non-commutative, and less restrictive, version of synchronous correlations.

9.2. Tracial QNS correlations. Let A be a unital C*-algebra, τ : A → C be a state and
Aop be the opposite C*-algebra of A. By the paragraph before Theorem 6.2.7 in [13],
the linear functional sτ : A⊗max Aop → C, given by sτ (u ⊗ vop) = τ(uv), is a state.

A positive element E ∈ MX ⊗ MA ⊗ A will be called a stochastic A-matrix if
(id⊗ id⊗π)(E) is a stochastic operator matrix for some faithful *-representation of A.
Such an E will be called semi-classical if it belongs to DX ⊗ MA ⊗A.

Let E = (gx,x ′,a,a′)x,x ′,a,a′ be a stochastic A-matrix, and set

Eop = (gop
x ′,x,a′,a)x,x ′,a,a′ ∈ MX ⊗ MA ⊗Aop;
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Lemma 9.2 shows that Eop is a stochastic Aop-matrix. Thus, after a permutation of the
tensor factors, we can consider E⊗Eop as an element of (MXA ⊗ MXA ⊗ (A⊗max Aop))+.
By Theorem 5.2, there exists a *-homomorphismπE : CX,A → A, such thatπE (ex,x ′,a,a′) =
gx,x ′,a,a′ for all x, x ′, a, a′. By Corollary 5.3 and Lemma 9.5, C∗

u (T
op
X,A) ≡ Cop

X,A; thus,

TX,A ⊗c T op
X,A ⊆c.o.i. CX,A ⊗max Cop

X,A.

Write

fE,τ = sτ ◦ (πE ⊗ πop
E ) ◦ (id ⊗ ∂); (9.11)

we have that fE,τ is a state on TX,A ⊗c TX,A, and

fE,τ (ex,x ′,a,a′ ⊗ ey,y′,b,b′) = τ(gx,x ′,a,a′gy′,y,b′,b), x, x
′, y, y′ ∈ X, a, a′, b, b′ ∈ A.

In the sequel, we write �E,τ = � fE,τ ; by Theorem 6.3, �E,τ ∈ Qqc. By Theorem 5.2,
we may assume, without loss of generality, that A = CX,A and E = (ex,x ′,a,a′)x,x ′,a,a′ .
In this case, we will abbreviate �E,τ to �τ .

Definition 9.8. A QNS correlation � is called

(i) tracial if � = �τ , where τ : CX,A → C is a trace;
(ii) quantum tracial if there exists a finite dimensional C*-algebra A, a trace τA on A

and a *-homomorphism π : CX,A → A such that � = �τA◦π ;
(iii) locally tracial if there exists an abelian C*-algebra A, a state τA on A and a *-

homomorphism π : CX,A → A such that � = �τA◦π .

Theorem 9.9. Let X and A be finite sets.

(i) If � is a quantum tracial QNS correlation, then � ∈ Qq;
(ii) A QNS correlation � : MXX → MAA is locally tracial if and only if there exists

quantum channels 
 j : MX → MA, j = 1, . . . , k, such that

� =
k∑

j=1

λ j
 j ⊗
�j (9.12)

as a convex combination. In particular, if � is a locally tracial QNS correlation, then
� ∈ Qloc.

Proof. (i) Suppose that H is a finite dimensional Hilbert space on whichA acts faithfully
and let π : CX,A → A be as in Definition 9.8 (ii). Let Ex,x ′,a,a′ = π(ex,x ′,a,a′) and

E = (
Ex,x ′,a,a′

)
x,x ′,a,a′ . By the proof of Lemma 9.2, Eop :=

(
Ed
x ′,x,a′,a

)

x,x ′,a,a′
is a

stochastic operator matrix. Let σ be any positive functional on L(H ⊗ Hd) that extends
the state sτA which, by nuclearity, may be considered as a state on A⊗min Aop. Then,
�τ = �E�Eop,σ and, by the paragraph before Remark 4.7, �τ ∈ Qq.

(ii) Suppose that
 j : MX → MA, j = 1, . . . , k, are quantum channels and � is the

convex combination (9.12). Letting
(
λ
( j)
x,x ′,a,a′

)

a,a′
= 
 j

(
exe∗x ′

)
, x, x ′ ∈ X , we have

that the matrix C j =
(
λ
( j)
x,x ′,a,a′

)

x,x ′,a,a′
is a stochastic C-matrix. By Theorem 5.2, there
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exists a (unique) *-representation π j : CX,A → C such that π j (ex,x ′,a,a′) = λ
( j)
x,x ′,a,a′ ,

x, x ′ ∈ X , a, a′ ∈ A. Let π : CX,A → Dk be the *-representation given by

π (u) =
k∑

j=1

π j (u) e j e
∗
j , u ∈ CX,A,

and let τk : Dk → C be the state defined by τk
(
(μ j )

k
j=1

)
=∑k

j=1 λ jμ j . We have

�τk◦π
(
exe

∗
x ′ ⊗ eye

∗
y′
)

=
∑

a,a′∈A

∑

b,b′∈B
(τk ◦ π)(ex,x ′,a,a′ey′,y,b′,b)eae∗a′ ⊗ ebe

∗
b′

=
∑

a,a′∈A

∑

b,b′∈B
τk

⎛

⎝
k∑

j=1

π j (ex,x ′,a,a′ey′,y,b′,b)e j e
∗
j

⎞

⎠ eae
∗
a′ ⊗ ebe

∗
b′

=
k∑

j=1

λ j

∑

a,a′∈A

∑

b,b′∈B
λ
( j)
x,x ′,a,a′λ

( j)
y′,y,b′,beae

∗
a′ ⊗ ebe

∗
b′

=
k∑

j=1

λ j

⎛

⎝
∑

a,a′∈A
λ
( j)
x,x ′,a,a′eae

∗
a′

⎞

⎠⊗
⎛

⎝
∑

b,b′∈B
λ
( j)
y′,y,b′,bebe

∗
b′

⎞

⎠

=
k∑

j=1

λ j
 j
(
exe

∗
x ′
)⊗
�j

(
eye

∗
y′
)
.

Conversely, let A be a unital abelian C*-algebra, τA : A → C a state, and π :
CX,A → A a *-homomorphism such that � = �τA◦π . Without loss of generality,
assume that A = C(�), where � is a compact Hausdorff topological space, and μ is a
Borel probability measure on � such that τA( f ) =

∫
�

f dμ, f ∈ A. Set hx,x ′,a,a′ =
π(ex,x ′,a,a′), x, x ′ ∈ X , a, a′ ∈ A. For each s ∈ �, let 
(s) : MX → MA be the
quantum channel given by 
(s)

(
exe∗x ′

) = (
hx,x ′,a,a′(s)

)
a,a′ . We have

�
(
exe

∗
x ′ ⊗ eye

∗
y′
)

=
∑

a,a′∈A

∑

b,b′∈A

(∫

�

hx,x ′,a,a′(s)hy′,y,b′,b(s)dμ(s)

)

eae
∗
a′ ⊗ ebe

∗
b′

=
∫

�


(s)
(
exe

∗
x ′
)⊗
(s)�

(
eye

∗
y′
)
dμ(s).

It follows that � is in the closed hull of the set of all correlations of the form (9.12). An
argument using Carathéodory’s theorem, similar to the one in the proof of Remark 4.10,
shows that � has the form (9.12).

Remark 9.10. (i) Every tracial QNS correlation � = �E,τ is fair. Indeed, writing E =
(gx,x ′,a,a′), we have

fE,τ ◦ (id ⊗ ∂)−1(ex,x ′,a,a′ ⊗ 1) = τ(gx,x ′,a,a′)

= fE,τ ◦ (id ⊗ ∂)−1(1 ⊗ eop
x,x ′,a,a′).
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It can be seen from Corollary 9.6 and Theorem 9.9 (see the closing remarks of this
section) that the converse does not hold true.

(ii) The set of all tracial (resp. quantum tracial, locally tracial) QNS correlations over
(X, A) is convex. Indeed, suppose that A (resp. B) is a unital C*-algebra, τA (resp. τB)
a trace on A and E (resp. F) a stochastic A-matrix (resp. a stochastic B-matrix). Let
λ ∈ (0, 1), C = A ⊕ B, τ : C → C be given by τ(u ⊕ v) = λτA(u) + (1 − λ)τB(v),
and G = E ⊕ F , considered as an element of MX ⊗ MA ⊗ C. Then, G is a stochastic
C-matrix and

λ�E,τA + (1 − λ)�F,τB = �G,τ .

(iii) It is straightforward from Theorem 9.1 that if p ∈ Cqc (resp. p ∈ Cq, p ∈ Cloc) is
synchronous, then�p is a tracial (resp. quantum tracial, locally tracial) QNS correlation.
By [23, Theorem 4.2], the set Cs

q of synchronous quantum NS correlations is not closed

if |X | = 5 and |A| = 2. Let p ∈ Cs
q\Cs

q. Then, p is a synchronous NS correlation and
does not lie in Cq. Assume that �p is quantum tracial. By Theorem 9.9, �p ∈ Qq and
hence, by Remark 8.1, p ∈ Cq, a contradiction. It follows that the set of quantum tracial
NS correlations is not closed.

(iv) The set of all tracial QNS correlations is closed; this can be seen via a standard
argument (see e.g. [54]): Assuming that (�n)n∈N is a sequence of tracial QNS correlations
converging to the QNS correlation �, let An be a unital C*-algebra with a trace τn , and

En =
(
g(n)x,x ′,a,a′

)
be a stochastic An-matrix such that �n = �En ,τn . Let A be the tracial

ultraproduct of the family {(An, τn)}n∈N with respect to a non-trivial ultrafilter u [34,
Section 4]. Write τ for the trace on A and E = (gx,x ′,a,a′) for the class of ⊕n∈NEn in
A. Then,

〈
�(exe

∗
x ′ ⊗ eye

∗
y′), eae

∗
a′ ⊗ ebe

∗
b′
〉
= lim

n→∞ τn
(
g(n)x,x ′,a,a′g

(n)
y′,y,b′,b

)

= τ
(
gx,x ′,a,a′gy′,y,b′,b

)
.

We next show that the class of all tracial QNS correlations, as well as each of the
subclasses of quantum tracial and locally tracial QNS correlations, have natural classes
of invariant states. Given a unital C*-algebra A, a trace τ : A → C and a stochastic

A-matrix E = (gz,z′)z,z′ ∈ L(C)⊗MZ ⊗A, let ωE,τ =
(
ω
E,τ
z,z′,u,u′

)
∈ MZZ be defined

by

ω
E,τ
z,z′,u,u′ = τ(gz,z′gu′,u), z, z′, u, u′ ∈ Z .

Equivalently, let Eop be the stochastic Aop-matrix
(
gop
u′,u

)
, and recall that sτ : A⊗max

Aop → C is the state given by sτ (u ⊗ vop) = τ(uv). Then, ωE,τ = Lsτ (E ⊗ Eop) ,

where

Lsτ : MZZ ⊗ (
A⊗max Aop)→ MZZ

is the corresponding slice. It follows that ωE,τ is a state.

Definition 9.11. Let Z be a finite set. A state ω ∈ MZZ is called

(i) C*-reciprocal if there exists a unital C*-algebra A, a trace τ on A and a stochastic
A-matrix E ∈ MZ ⊗A such that ω = ωE,τ ;
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(ii) quantum reciprocal if it is C*-reciprocal, and the C*-algebra A from (i) can be
chosen to be finite dimensional;

(iii) locally reciprocal if it is C*-reciprocal, and the C*-algebraA from (i) can be chosen
to be abelian.

We will denote by ϒ(Z) (resp. ϒq(Z), ϒloc(Z)) the set of all C*-reciprocal (resp.
quantum reciprocal, locally reciprocal) states in MZZ .

Theorem 9.12. Let � be a QNS correlation.

(i) If � is tracial, then � (ϒ(X)) ⊆ ϒ(A);
(ii) If � is quantum tracial, then �

(
ϒq(X)

) ⊆ ϒq(A);
(iii) If � is locally tracial, then � (ϒloc(X)) ⊆ ϒloc(A).

Proof. (i) Let τ be a trace on CX,A, A be a C*-algebra, τA be a trace on A, and E =
(gx,x ′)x,x ′ ∈ MX ⊗ A be a stochastic A-matrix. Set ω = �τ

(
ωE,τA

)
and write ω =(

ωa,a′,b,b′
)
a,a′,b,b′ . Let B = A⊗max CX,A and τB = τA ⊗ τ be the product trace on B

[13, Proposition 3.4.7]. Set

ha,a′ =
∑

x,x ′∈X
gx,x ′ ⊗ ex,x ′,a,a′ , a, a′ ∈ A;

thus, F := (ha,a′)a,a′ ∈ MA ⊗ B. Moreover,

TrAF =
∑

a∈A
ha,a =

∑

x,x ′∈X
gx,x ′ ⊗

(
∑

a∈A
ex,x ′,a,a

)

=
∑

x,x ′∈X
gx,x ′ ⊗ δx,x ′1 =

∑

x∈X
gx,x ⊗ 1 = 1B.

To see that F is positive, we assume that A and CX,A are faithfully represented and
let Vx and Va,x be operators such that (Vx )x is a row isometry, (Va,x )a,x is an isom-
etry, gx,x ′ = V ∗

x Vx ′ and ex,x ′,a,a′ = V ∗
a,x Va′,x ′ , x, x

′ ∈ X , a, a′ ∈ A. Letting W =
(∑

x∈X Vx ⊗ Va,x
)
a∈A, considered as row operator, we have that F = W ∗W . Hence, F

is a stochastic B-matrix. In addition, for a, a′, b, b′ ∈ A we have

τB
(
ha,a′hb′,b

) =
∑

x,x ′∈X

∑

y,y′∈X
τA
(
gx,x ′gy′,y

)
τ
(
ex,x ′,a,a′ey′,y,b′,b

) = ωa,a′,b,b′ ,

implying that ω = ωF,τB .
(ii) and (iii) follow from the fact that if the C*-algebra A is finite dimensional (resp.

abelian) and τ factors through a finite-dimensional (resp. abelian) C*-algebra, then so
does τB.

Remark 9.13. (i) The state 1
|X |2 IX X is locally reciprocal, and hence it follows from

Theorem 9.12 that

ϒloc(A) =
{

1

|X |2�(IX X ) : X finite, � loc. tracial QNS correlation

}

= {�(1) : � : C → MAA loc. tracial QNS correlation} . (9.13)
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Similar descriptions hold for ϒq(A) and ϒ(A). Remark 9.10 thus implies that the sets
ϒ(A), ϒq(A) and ϒloc(A) are convex and the sets ϒ(A) and ϒloc(A) are closed.

(ii) Recall that a state ρ ∈ MXX is called de Finetti [18] if there exist statesωi ∈ MX ,
i = 1, . . . , k, such that ρ =∑k

j=1 λ jω j ⊗ ω j as a convex combination. By (9.13) and
Theorem 9.9,

ϒloc(X) = conv
{
ω ⊗ ωt : ω a state in MX

}
.

Thus, the locally reciprocal states can be viewed as twisted de Finetti states. The presence
of the transposition in our case is required in view of the necessity to employ opposite
C*-algebras. Thus, quantum reciprocal states can be viewed as an entanglement assisted
version of (twisted) de Finetti states, while C*-reciprocal states—as their commuting
model version.

(iii) C*-reciprocal states are closely related to factorisable channels introduced in
[1] (see also [33,53], to which we refer the reader for the definition used here). Indeed,
factorisable channels have Choi matrices of the form τ(gx,x ′hy′,y)x,x ′,y,y′ , where τ is
a faithful normal trace on a von Neumann algebra A, and (gx,x ′)x,x ′ and (hy,y′)y,y′
are matrix unit systems—a special type of stochastic A-matrices (see [53, Proposition
3.1]). Equivalently, the Choi matrices of factorisable channels 
 : MX → MX can be
described [33, Definition 3.1] as the matrices of the form

(
τ(v∗a,xva′,x ′)

)
x,x ′,a,a′ , where

V = (va,x )a,x ∈ MX (A) is a unitary matrix. Note that if E is the stochastic operator
matrix corresponding to V , then the QNS correlation � = �E,τ has marginal channels
�A(·) = �(· ⊗ I ) and �B(·) = �(I ⊗ ·) that coincide with 
. We can thus view tracial
QNS correlations as generalised couplings of factorisable channels. Here, by a coupling
of the pair (
,�) of channels, we mean a channel � with �A = 
 and �B = �—a
generalisation of classical coupling of probability distributions in the sense of optimal
transport [71].

9.3. Tracial CQNS correlations. In this subsection, we define a tracial version of CQNS
correlations. LetA be a unital C*-algebra, τ : A → C be a trace and E ∈ DX ⊗MA⊗A
be a semi-classical stochastic A-matrix. Write E = (gx,a,a′)x,a,a′ ; thus, (gx,a,a′)a,a′ ∈
(MA ⊗A)+ and

∑
a∈A gx,a,a = 1, for each x ∈ X . Set Eop = (gop

x,a′,a)x,a,a′ ; thus,
Eop ∈ DX ⊗ MA ⊗ Aop and Lemma 9.2 shows that Eop is a semi-classical stochastic
Aop-matrix. Let φE,x : MA → A be the unital completely positive map given by
φE,x (eae∗a′) = gx,a,a′ . By Boca’s Theorem [6], there exists a unital completely positive
map φE : BX,A → A such that φE (ex,a,a′) = gx,a,a′ , x ∈ X , a, a′ ∈ A. Let φop

E :
Bop
X,A → Aop be the map given by φop

E (u
op) = φE (u)op, which is completely positive

by Lemma 9.5. Write

fE,τ = sτ ◦ (φE ⊗ φop
E ) ◦ (id ⊗ ∂B);

thus, by (7.6) fE,τ is a state on RX,A ⊗c RX,A. Note that

fE,τ
(
ex,a,a′ ⊗ ey,b,b′

) = τ
(
gx,a,a′gy,b′,b

)
, x, y ∈ X, a, a′, b, b′ ∈ A.

In the sequel, we write EE,τ = E fE,τ ; by Theorem 7.7, EE,τ ∈ CQqc.

Definition 9.14. A CQNS correlation E is called

(i) tracial if E = EE,τ , where E ∈ DX ⊗ MA ⊗ A is a semi-classical stochastic
A-matrix for some unital C*-algebra A and τ : A → C is a trace;
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(ii) quantum tracial if it is tracial and the C*-algebra as in (i) can be chosen to be finite
dimensional;

(iii) locally tracial if it it is tracial and the C*-algebra as in (i) can be chosen to be
abelian.

Proposition 9.15. Let E : DXX → MAA be a CQNS correlation.

(i) If E is quantum tracial, then E ∈ CQq;
(ii) E is locally tracial if and only if there exist channels E j : DX → MA, j = 1, . . . , k,

such that

E =
k∑

j=1

λ jE j ⊗ E�j . (9.14)

In particular, if E is locally tracial, then E ∈ CQloc.

Proof. (i) Suppose thatE is quantum tracial and writeE = EE,τ , where E = (gx,a,a′)x,a,a′
∈ DX ⊗ MA ⊗ A is a semi-classical stochastic A-matrix for some finite dimensional
C*-algebra A and a trace τ : A → C. The matrix Ẽ = (

δx,x ′gx,a,a′
)
x,x ′,a,a′ is a

stochastic matrix in MX ⊗MA⊗A and hence gives rise, via Theorem 5.2, to a canonical
*-homomorphism πẼ : CX,A → A. Letting τ̃ = τ ◦ πẼ , we have that τ̃ is a trace on
CX,A and �E = �τ̃ . Thus, �E ∈ Qq. By Remark 8.1, E ∈ CQq.

(ii) We fix A, τ and E as in (i), with A abelian. The trace τ̃ , defined in the proof
of (i), now factors through an abelian C*-algebra, and hence �E is locally tracial. By
Theorem 9.9, there exists quantum channels 
 j : MX → MA, j = 1, . . . , k, such that

�E = ∑k
j=1
 j ⊗ 


�
j as a convex combination. Letting E j = 
 j |DX , j = 1, . . . , k,

we see that E has the form (9.14).
Conversely, suppose that E has the form (9.14). By Theorem 9.9, there exists an

abelian C*-algebra A, a *-representation π : CX,A → A and a trace τ on A such that
�E = �τ◦π . The stochastic operator matrix E = (

π(ex,x,a,a′)
)
x,a,a′ is semi-classical

and E = EE,τ .

We now specialise Definition 9.11 to states in DXX , that is, bipartite probability
distributions. A probability distribution q = (q(x, y))x,y∈X on X× X will be called C*-
reciprocal if there exists a C*-algebra A, a POVM (gx )x∈X in A and a trace τ : A → C

such that q(x, y) = τ(gxgy), x, y ∈ X . If A can be chosen to be finite dimensional
(resp. abelian), we call q quantum reciprocal (resp. locally reciprocal). We denote by
ϒcl(X) (resp. ϒcl

q (X), ϒ
cl
loc(X)) the (convex) set of all C*-reciprocal (resp. quantum

reciprocal, locally reciprocal) probability distributions on X × X .
It can be seen as in Remark 9.13 that the class of locally reciprocal probability distri-

butions coincides with the well-known class of exchangeable probability distributions,
that is, the convex combinations of the form

q(x, y) =
n∑

i=1

λi qi (x)qi (y), x, y ∈ X,

where qi is a probability distribution on X , i = 1, . . . , n. Thus, C*-reciprocal and
quantum reciprocal probability distributions can be viewed as quantum versions of ex-
changeable distributions.

It is straightforward to see that, writing � = �XX , we have

�(ϒ(X)) = ϒcl(X), �(ϒq(X)) = ϒcl
q (X) and �(ϒloc(X)) = ϒcl

loc(X).
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These relations, combined with Theorem 9.12, easily yield the following proposition,
whose proof is omitted.

Proposition 9.16. Let E : DXX → MAA be a CQNS correlation.

(i) If E is tracial, then E
(
ϒcl(X)

) ⊆ ϒ(A);

(ii) If E is quantum tracial, then E
(
ϒcl

q (X)
)
⊆ ϒq(A);

(iii) If E is locally tracial, then E
(
ϒcl

loc(X)
) ⊆ ϒloc(A).

9.4. Tracial NS correlations. The correlation classes introduced in Sects. 9.2 and 9.3
have a natural NS counterpart. For a C*-algebra A, equipped with a trace τ , and a
classical stochastic A-matrix E ∈ DX ⊗DA⊗A, say, E = (gx,a)x,a (so that gx,a ∈ A+

for all x ∈ X and all a ∈ A and
∑

a∈A gx,a = 1, x ∈ X ), write

pE,τ (a, b|x, y) = τ(gx,agy,b), x, y ∈ X, a, b ∈ A.

Similar arguments to the ones in Sects. 9.2 and 9.3 show that pE,τ ∈ Cqc.

Definition 9.17. An NS correlation p is called

(i) tracial if it is of the form pE,τ , where E is a classical stochastic A-matrix for some
unital C*-algebra A and τ : A → C is a trace;

(ii) quantum tracial if it is tracial and the C*-algebra A in (i) can be chosen to be finite
dimensional;

(iii) locally tracial if it it is tracial and the C*-algebra A in (i) can be chosen to be
abelian.

The next two propositions are analogous to Theorem 9.9 and 9.12, respectively, and
their proofs are omitted.

Proposition 9.18. Let p be an NS correlation.

(i) If p is quantum tracial, then p ∈ Cq;

(ii) p is locally tracial if and only if p =∑k
j=1 λ j q j⊗q j , where q j = {q j (·|x) : x ∈ X},

is a family of probability distributions, j = 1, . . . , k. In particular, if p is locally
tracial, then p ∈ Cloc.

Proposition 9.19. Let N : DXX → DAA be an NS correlation.

(i) If N is tracial, then N
(
ϒcl(X)

) ⊆ ϒcl(A).

(ii) If N is quantum tracial, then N
(
ϒcl

q (X)
)
⊆ ϒcl

q (A).

(iii) If N is locally tracial, then N
(
ϒcl

loc(X)
) ⊆ ϒcl

loc(A).

9.5. Reduction for tracial correlations. We next specialise the statements contained in
Remark 8.1 to tracial correlations.

Theorem 9.20. Let X and A be finite sets, p be an NS correlation and E be a CQNS
correlation. The following hold:

(i) p is tracial (resp. quantum tracial, locally tracial, fair) if and only if Ep is tra-
cial (resp. quantum tracial, locally tracial, fair), if and only if �p is tracial (resp.
quantum tracial, locally tracial, fair);
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(ii) E is tracial (resp. quantum tracial, locally tracial, fair) if and only if �E is tracial
(resp. quantum tracial, locally tracial, fair).

Moreover,

(iii) the mapN is a surjection from the class of all tracial (resp. quantum tracial, locally
tracial, fair) CQNS correlations onto the class of all tracial (resp. quantum tracial,
locally tracial) NS correlations;

(iv) the map C is a surjection from the class of all tracial (resp. quantum tracial, locally
tracial, fair) QNS correlations onto the class of all tracial (resp. quantum tracial,
locally tracial, fair) CQNS correlations.

Proof. We prove first the statements about tracial correlations.
(i) Suppose that the NS correlation p is tracial, and write p(a, b|x, y) = τ(gx,agy,b),

x, y ∈ X , a, b ∈ A, for some trace τ on a unital C*-algebra A and matrix F =
(gx,a)x,a ∈ (DX ⊗DA ⊗A)+ with

∑
a∈A gx,a = 1, x ∈ X . The matrix F ′ = (δa,a′

gx,a)x,a,a′ ∈ DX ⊗ MA ⊗ A is a semi-classical stochastic A-matrix and, trivially,
Ep = EF ′,τ . Similarly, the family F ′′ = (δa,a′δx,x ′gx,a)x,x ′,a,a′ ∈ MX ⊗ MA ⊗ A is a
stochastic A-matrix and �p = �F ′′,τ .

Conversely, suppose that �p = �E,τ , where E = (gx,x ′,a,a′)x,x ′,a,a′ is a stochastic
A-matrix and τ is a trace on the unital C*-algebra A. Then, E ′ := (gx,x,a,a′)x,a,a′ (resp.
E ′′ := (gx,x,a,a)x,a) is a semi-classical (resp. classical) stochastic A-matrix such that
Ep = EE ′,τ (resp. p = pE ′′,τ ).

(ii) is similar to (i).
(iii) follows from the fact that if E is a stochastic A-matrix and τ is a trace on A such

that � = �E,τ , then C(�) = EE ′,τ , where E ′ is given as in the second paragraph of the
proof.

(iv) is similar to (iii). All remaining statements about quantum tracial and locally
tracial correlations are analogous.

Turning to the case of fair correlations, (ii) follows from the equivalence

E(�cl
X ) ⊆ �A ⇐⇒ �E (�X ) = E(�X,Y (�X )).

For (i), observe that Ep = �A,B ◦ Ep and hence

Ep(�
cl
X ) ⊆ �A ⇐⇒ Ep(�

cl
X ) ⊆ �cl

A ⇐⇒ Np(�
cl
X ) ⊆ �cl

A ,

showing that p is fair if and only if so is Ep. As �p = �Ep , the equivalence with fairness
of �p follows from (ii).

We conclude this section with a comparison between the different classes of corre-
lations of synchronous type. Note first that if p is a synchronous quantum commuting
NS correlations, then, by Theorem 9.1, Np is a tracial NS correlation. In fact, the syn-
chronous quantum commuting NS correlations arise precisely from classical stochastic
A-matrices (gx,a)x,a , where each (gx,a)a∈A is a PVM, as opposed to POVM. Theo-
rem 9.4 implies that tracial QNS correlations are necessarily fair. We summarise these
inclusions below:

synch. Cloc ⊂ loc. tr. NS ⊂ loc. tr. CQNS ⊂ loc. tr. QNS
∩ ∩ ∩ ∩

synch. Cq ⊂ q. tr. NS ⊂ q. tr. CQNS ⊂ q. tr. QNS
∩ ∩ ∩ ∩

synch. Cqc ⊂ tracial NS ⊂ tracial CQNS ⊂ tracial QNS
∩ ∩ ∩

fair NS ⊂ fair CQNS ⊂ fair QNS
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The inclusions in the table are all strict. Indeed, for the first column this follows
from [23]. It can be shown, using results on the completely positive semidefinite cone of
matrices [14,46] that ϒcl

loc = ϒcl
q [2]. The properness of the first inclusion in the second

column now follows from Remark 9.13. The properness of the second inclusion in the
second column was pointed out in Remark 9.10 (iii), and Theorem 9.20 implies that the
first and the second inclusions in the third and the fourth column are proper.

Let p = {p(·|x) : x ∈ X} and q = {q(·|x) : x ∈ X} be families of distributions
so that, for some x ∈ X , we have that suppp(·|x) ∩ suppq(·|x) = ∅. Then, p̃ =
1/2(p⊗ q + q ⊗ p) is a fair NS correlation. However, p̃ is not tracial; indeed, assuming
the contrary, we have that p̃ =∑m

j=1 λ j p j⊗ p j as a convex combination, where {p j }mj=1
consists of families of probability distributions indexed by X . Since

p̃(a, a|x, x) = 1

2
(p(a|x)q(a|x) + q(a|x)p(a|x)) = 0, a ∈ A,

we have
∑m

j=1 λ j p j (a|x)2 = 0, and hence p j (a|x) = 0, for all a ∈ A and all j , a
contradiction. Thus, the last inclusion in the second column is strict, and by Theorem
9.20 so are the last inclusions in the third and the fourth column.

Using Theorem 9.9 and Proposition 9.15, one can easily see that the second and third
inclusion on the first row are strict, and hence these inclusions are strict on all other
rows as well. Any NS correlation of the form q ⊗ q, where q = {q(·|x) : x ∈ X} is a
family of probability distributions with at least one x having |suppq(·|x)| > 1, is not
synchronous, but is locally tracial; thus, the first inclusion in the first, second and third
rows are strict.

10. Correlations as Strategies for Non-local Games

In this section, we discuss how QNS correlations can be viewed as perfect strategies
for quantum non-local games, extending the analogous viewpoint on NS correlations to
the quantum case. Let X , Y , A and B be finite sets. A non-local game on (X,Y, A, B)
is a cooperative game, played by two players against a verifier, determined by a rule
function (which will often be identified with the game) λ : X × Y × A × B → {0, 1}.
The set X (resp. Y ) is interpreted as a set of questions to, while the set A (resp. B) as
a set of answers of, player Alice (resp. Bob). In a single round of the game, the verifier
feeds in a pair (x, y) ∈ X × Y and the players produce a pair (a, b) ∈ A× B; they win
the round if and only if λ(x, y, a, b) = 1. An NS correlation p on X × Y × A × B is
called a perfect strategy for the game λ if

λ(x, y, a, b) = 0 "⇒ p(a, b|x, y) = 0.

The terminology is motivated by the fact that if, given a pair (x, y) of questions, the
players choose their answers according to the probability distribution p(·, ·|x, y), they
will win every round of the game.

10.1. Quantum graph colourings. Let G be a simple graph on a finite set X . For x, y ∈
X , we write x ∼ y if {x, y} is an edge of G. By assumption, x ∼ y implies x = y; we
write x # y if x ∼ y or x = y. A classical colouring of G is a map f : X → A, where
A is a finite set, such that

x ∼ y "⇒ f (x) = f (y).
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The chromatic number χ(G) of G is the minimal cardinality |A| of a set A for which a
classical colouring f : X → A of G exists.

The graph colouring game for G (called henceforth the G-colouring game) [16] is
the non-local game with Y = X , B = A, and rules

(i) x = y "⇒ a = b;
(ii) x ∼ y "⇒ a = b.

Thus, an NS correlation p = {
(p(a, b|x, y))a,b∈A : x, y ∈ X

}
is a perfect strategy of

the G-colouring game if

(S) p is synchronous;
(P) x ∼ y ⇒ p(a, a|x, y) = 0 for all a.

It is easy to see that if p is a perfect strategy of the G-colouring game from the class
Cloc, then G possesses a classical colouring from the set A. Thus, the perfect strategies
for the G-colouring game from Cx, where x ∈ {loc, q, qc} can be thought of as classical
x-colourings of G. The x-chromatic number of G is the parameter

χx(G) = min {|A| : G has a classical x-colouring by A} ;
in particular, χloc(G = χ(G) (see [16,50,62] and the references therein).

We call p a G-proper correlation if condition (P) is satisfied. For a finite set A, we
let �A be the non-normalised maximally entangled matrix in MAA, namely,

�A =
∑

a,b∈A
eae

∗
b ⊗ eae

∗
b .

Remark 10.1. Let G be a graph with vertex set X . An NS correlation p over (X, X, A, A)
is G-proper if and only

x ∼ y "⇒
〈
Ep

(
exe

∗
x ⊗ eye

∗
y

)
,�A

〉
= 0.

Proof. The claim is immediate from the fact that
〈
Ep

(
exe

∗
x ⊗ eye

∗
y

)
,�A

〉

=
∑

a,b∈A

∑

a′,b′∈A
p (a, b|x, y) 〈eae∗a ⊗ ebe

∗
b, ea′e

∗
b′ ⊗ ea′e

∗
b′
〉

=
∑

a,b∈A

∑

a′,b′∈A
p (a, b|x, y) 〈eae∗a, ea′e∗b′

〉 〈
ebe

∗
b, ea′e

∗
b′
〉

=
∑

a∈A
p (a, a|x, y) .

Remark 10.1 allows to generalise the classical x-colourings of a graph G to the
quantum setting as follows.

Definition 10.2. Let G be a graph with vertex set X . A CQNS correlation E : DXX →
MAA is called G-proper if

x ∼ y "⇒
〈
E(exe∗x ⊗ eye

∗
y),�A

〉
= 0.

A G-proper CQNS correlation E is called
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(i) a quantum loc-colouring of G by A if E is locally tracial;
(ii) a quantum q-colouring of G by A if E is quantum tracial;

(iii) a quantum qc-colouring of G by A if E is tracial.

For x ∈ {loc, q, qc}, let

ξx(G) = min {|A| : ∃ a quantum x − colouring of G by A}
be the quantum x-chromatic number of G.
Remark. The complete quantum graph on n vertices was introduced in [70] as the
subspace Qn = {�n}⊥, where �n is the maximally entangled state in C

n ⊗ C
n . In

view of Definition 10.8 below, we see that the existence of a G-proper correlation
E : DXX → Mn2 of a specified type t is equivalent to the existence of a homomorphism
of type t from the quantisation (10.10) of G into Qn .

Recall [67] that an orthogonal representation of a graph G with vertex set X is a
family (ξx )x∈X of unit vectors in C

k such that

x ∼ y "⇒ 〈
ξx , ξy

〉 = 0.

The orthogonal rank ξ(G) of G is given by

ξ(G) = min
{
k : ∃ an orthogonal representation of G in C

k
}
.

Proposition 10.3. Let G be a graph with vertex set X. The following are equivalent:

(i) the graph G has an orthogonal representation in Ck;
(ii) there exists a quantum loc-colouring of G by a set A with |A| = k.

Proof. (i)⇒(ii) Suppose that (ξx )x∈X ⊆ C
k is an orthogonal representation of G. Let

E0 : DX → MA be the quantum channel given by

E0(exe
∗
x ) = ξxξ

∗
x , x ∈ X,

and set E = E0 ⊗ E�0; by Proposition 9.15, E is locally tracial. If x ∼ y, then

〈
E(exe∗x ⊗ eye

∗
y),�A

〉
=

∑

a,b∈A

〈

ξxξ
∗
x ⊗

(
ξyξ

∗
y

)t
, eae

∗
b ⊗ eae

∗
b

〉

=
∑

a,b∈A
Tr
((
ξxξ

∗
x

) (
eae

∗
b

)t
)

Tr

((
ξyξ

∗
y

)t (
eae

∗
b

)t
)

=
∑

a,b∈A
Tr
((
ξxξ

∗
x

) (
ebe

∗
a

))
Tr
((
ξyξ

∗
y

) (
eae

∗
b

))

=
∑

a,b∈A
〈ξx , ea〉 〈eb, ξx 〉

〈
ξy, eb

〉 〈
ea, ξy

〉

=
(
∑

a∈A
〈ξx , ea〉

〈
ea, ξy

〉
)(

∑

b∈A

〈
ξy, eb

〉 〈eb, ξx 〉
)

= ∣
∣
〈
ξx , ξy

〉∣
∣2 = 0;

thus, E is a quantum loc-colouring of G.
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(ii)⇒(i) Suppose that E : DXX → MAA is a quantum loc-colouring of G, and
write E = ∑k

j=1 λ jE j ⊗ E�j as a convex combination with positive coefficients, where
E j : DX → MA is a quantum channel, j = 1, . . . , k. Suppose that x ∼ y. Then,

k∑

j=1

λ j

〈(
E j ⊗ E�j

) (
exe

∗
x ⊗ eye

∗
y

)
,�A

〉
= 0

and hence, by the non-negativity of each of the terms of the sum,
〈
E1(exe

∗
x )⊗ E�1(eye

∗
y),�A

〉
= 0. (10.1)

Let ξx be a unit eigenvector of E1(exe∗x ), corresponding to a positive eigenvalue, x ∈ X .

Condition (10.1) implies that

〈

ξxξ
∗
x ⊗

(
ξyξ

∗
y

)t
,�A

〉

= 0, which in turn means, by the

arguments in the previous paragraph, that 〈ξx , ξy〉 = 0.

By Proposition 10.3, ξloc(G) = ξ(G). Thus, the parameters ξq and ξqc can be viewed
as quantum versions of the orthogonal rank.

Proposition 10.4. Let G be a graph. Then,

(i) ξqc(G) ≤ ξq(G) ≤ ξloc(G), and
(ii) ξx(G) ≤ χx(G) for x ∈ {loc, q, qc}.
Proof. (i) The inequalities follow from the fact that CQloc ⊆ CQq ⊆ CQqc.

(ii) Let p be a synchronous NS correlation that is an x-colouring of G by a set A. By
Theorem 9.20, Ep ∈ CQx. By Remark 10.1, Ep is G-proper. Thus, ξx(G) ≤ χx(G).

Remarks. (i) There exist graphs G for which ξ(G) < χ(G) (see e.g. [67]). By Propo-
sition 10.3, for such G we have a strict inequality in Proposition 10.4 (ii) in the case
x = loc. In [52], an example of a graph G on 13 vertices was exhibited with the property
that ξ(G) < χq(G). By Proposition 10.4 (i), for this graph G, we have a strict inequality
in Proposition 10.4 (ii) in the case x = q. We do not know if a strict inequality can occur
in the case x = qc.

(ii) It was shown in [52] that there exists a graph G such that χq(G) < ξ(G). By
Proposition 10.4 (ii), this implies ξq(G) < ξ(G). We do not whether ξqc(G) can be
strictly smaller than ξq(G).

We point out that there is another natural family of quantum orthogonal ranks, defined
as follows. Call a CQNS correlation E : DXX → MAA genuinely tracial if there exist a
unital C*-algebra A, a trace τ : A → C and a *-homomorphism π : BX,A → A such
that

E(exe∗x ⊗ eye
∗
y) =

∑

a,a′,b,b′
τ(π(ex,a,a′ex,b′,b))eae

∗
a′ ⊗ ebe

∗
b′ , x, y ∈ X. (10.2)

We call a genuinely tracial CQNS correlation E a genuine quantum qc-colouring of G if
E is G-proper. In addition, we call E a genuine quantum q-colouring of G if the algebra
A for which (10.2) holds can be chosen to be finite dimensional, and E is G-proper. Set

ξ ′x(G) = min {|A| : ∃ a genuine quantum x − colouring of G by A} .
We have the inequalities ξx(G) ≤ ξ ′x(G), and we do not know if equality holds.
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We exhibit a lower bound on ξ ′qc(G) in terms of the Lovász number θ(G) of G. We
refer the reader to [48] for the definition and properties of the latter parameter. We denote
by Kd the complete graph on d vertices. We will need some notation, which will also
be essential in Sect. 10.2. If κ ⊆ X × X , let

Sκ = span
{
exe

∗
y : (x, y) ∈ κ

}
;

thus, Sκ is a linear subspace of MX which is a bimodule over the diagonal algebra DX .
We write

E(G) = {(x, y) ∈ X × X : x # y} and E0(G) = {(x, y) ∈ X × X : x ∼ y},
and let SG := SE(G) be the graph operator system of G [21], and S0

G := SE0(G) be the
graph operator anti-system of G [70] (here we use the terminology of [7]).

Proposition 10.5. Let G be a graphwith vertex set X. Then, ξ ′qc(G) ≥
√ |X |
θ(G) .Moreover,

ξ ′q(Kd2) = ξ ′qc(Kd2) = d.

Proof. Suppose that E : DXX → MAA is a genuine quantum qc-colouring of G and
write ωx,y = E(exe∗x ⊗ eye∗y), x, y ∈ X . We may assume that, in the definition of the
correlation E , we have that A = BX,A and π is the identity representation. Let H be a
Hilbert space, ξ ∈ H a unit vector and (Ex,a,a′)a,a′ matrix unit systems in B(H) such
that if ρ : BX,A → B(H) is the *-representation given by ρ(ex,a,a′) = Ex,a,a′ , x ∈ X ,
a, a′ ∈ A, then

τ(u) = 〈ρ(u)ξ, ξ 〉, u ∈ BX,A.

Set ξx,a,a′ = Ex,a,a′ξ , x ∈ X , a, a′ ∈ A; then
∑

a∈A
ξx,a,a = ξ, x ∈ X. (10.3)

In addition, if x ∼ y, then
∑

a,b∈A

〈
ξx,a,b, ξy,a,b

〉 =
∑

a,b∈A

〈
ωx,y, eae

∗
b ⊗ eae

∗
b

〉 = 〈
ωx,y,�A

〉 = 0. (10.4)

Let

Qa,a′,b,b′ =
(〈ξx,a,a′ , ξy,b,b′ 〉

)
x,y∈X , a, a′, b, b′ ∈ A,

and note that the matrix
(
Qa,a′,b,b′

)
a,a′,b,b′ is positive. In addition, being a Gram matrix,

Qa,b,a,b is positive for all a, b ∈ A. Write Q =∑
a,b∈A Qa,b,a,b. By (10.4),

x ∼ y "⇒ 〈
Qex , ey

〉 = 0.

By Theorem 3.1, there exist operators Va,x such that (Va,x )a,x is an isometry and
Ex,a,a′ = V ∗

a,x Va′,x , x ∈ X , a, a′ ∈ A. Thus, if x ∈ X , then

〈Qex , ex 〉 =
∑

a,b∈A

〈
ξx,a,b, ξx,a,b

〉 =
∑

a,b∈A

∥
∥Ex,a,bξ

∥
∥2

=
∑

a,b∈A

∥
∥V ∗

a,x Vb,xξ
∥
∥2 ≤

∑

a∈A

∑

b∈A

∥
∥Vb,xξ

∥
∥2

= |A|
∑

b∈A

〈
Vb,xξ, Vb,xξ

〉 = |A|
〈
∑

b∈A
V ∗
b,x Vb,xξ, ξ

〉

= |A|.
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Write Q = D + T , where D is diagonal and T ⊥ SG . We have shown that D ≤ |A|IX ;
thus |A|IX + T ∈ M+

X . It follows that

‖Q‖ ≤ ‖|A|IX + T ‖
≤ max

{
‖|A|IX + S‖ : S ∈ S⊥

G , |A|IX + S ∈ M+
X

}
= |A|θ(G). (10.5)

Let (Ea,b)a,b∈A be a matrix unit system on H and Ux be a unitary, such that

Ex,a,b = U∗
x Ea,bUx , x ∈ X

(such unitaries exist because every two matrix unit systems on H are unitarily equivalent).
Let η = (λx )x∈X ∈ C

X . We have

〈Qη, η〉 =
∑

x,y∈X

∑

a,b∈A

〈
ξx,a,b, ξy,a,b

〉
λyλx

=
∑

x,y∈X

∑

a,b∈A

〈
λx Ex,a,bξ, λy Ey,a,bξ

〉

=
∑

a,b∈A

〈
∑

x∈X
λx Ex,a,bξ,

∑

y∈X
λy Ey,a,bξ

〉

=
∑

a,b∈A

∥
∥
∥
∥
∥

∑

x∈X
λx Ex,a,bξ

∥
∥
∥
∥
∥

2

≥
∑

a∈A

∥
∥
∥
∥
∥

∑

x∈X
λxU

∗
x Ea,aUxξ

∥
∥
∥
∥
∥

2

≥ 1

|A|

(
∑

a∈A

∥
∥
∥
∥
∥

∑

x∈X
λxU

∗
x Ea,aUxξ

∥
∥
∥
∥
∥

)2

≥ 1

|A|

∥
∥
∥
∥
∥

∑

x∈X
λxU

∗
x

(
∑

a∈A
Ea,a

)

Uxξ

∥
∥
∥
∥
∥

2

= 1

|A|

∥
∥
∥
∥
∥

∑

x∈X
λxU

∗
x Uxξ

∥
∥
∥
∥
∥

2

= 1

|A|

∥
∥
∥
∥
∥

∑

x∈X
λxξ

∥
∥
∥
∥
∥

2

= 1

|A| 〈JXη, η〉 ,

where JX ∈ MX is the matrix all of whose entries are equal to 1. It follows that 1
|A| JX ≤

Q; thus, |X |
|A| ≤ ‖Q‖. Together with (10.5), this implies |X |

|A| ≤ |A|θ(G), completing the
proof of the inequality.

Realise A = Zd = {0, 1, . . . , d − 1} and let X = A× A. Let ζ be a primitive |A|-th
root of unity. For x = (a′, b′) and y = (a′′, b′′) ∈ X , let

ξx,y = 1√
d
ζ b

′′(a′′−a′)
d−1∑

l=0

ζ (b
′′−b′)l el ⊗ el−a′+a′′

and write σx,y = ξx,yξ
∗
x,y . We have

σx,y = 1

d

d−1∑

l,n=0

ζ (b
′′−b′)(l−n)ele

∗
n ⊗ el−a′+a′′e

∗
n−a′+a′′

= 1

d

d−1∑

l,n=0

ζ (b
′′−b′)(l−n)el+a′e

∗
n+a′ ⊗ el+a′′e

∗
n+a′′ .
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Note that if � = (σx,y)x,y , then E := E� is a CQNS correlation; indeed,

TrAσx,y = 1

d

d−1∑

l=0

el+a′′e
∗
l+a′′ =

1

d
IA = 1

d

d−1∑

l=0

el+a′e
∗
l+a′ = TrBσx,y

for all x, y ∈ X . Since

∑

a,b∈A
〈σx,y, eae∗b ⊗ eae

∗
b〉 =

1

d

∑

a,b∈A
δa′,a′′ζ

(b′′−b′)(a−b) = dδa′,a′′δb′,b′′ ,

we have that E is Kd2 -proper.
We claim that E is genuinely tracial. To see this, let

Ex,z,z′ = ζ (z
′−z)b′ez−a′e

∗
z′−a′ ∈ L(CA), x = (a′, b′) ∈ X, z, z′ ∈ A,

and note that, for each x ∈ X , the family {Ex,z,z′ : z, z′ ∈ A} is a matrix unit system.
For x = (a′, b′), y = (a′′, b′′) ∈ X and z, z′, w,w′ ∈ A we have

Tr
(
Ex,z,z′Ey,w′,w

)

= Tr
(
ζ (z

′−z)b′ζ (w−w′)b′′(ez−a′e
∗
z′−a′)(ew′−a′′e

∗
w−a′′)

)

= δz′−a′,w′−a′′δz−a′,w−a′′ζ
(z′−z)(b′−b′′)

=
d−1∑

l,n=0

ζ (b
′′−b′)(l−n) 〈ez′ , en+a′

〉 〈ew′ , en+a′′ 〉 〈el+a′ , ez〉 〈el+a′′ , ew〉

=
d−1∑

l,n=0

ζ (b
′′−b′)(l−n) 〈(el+a′e

∗
n+a′)ez′ ⊗ (el+a′′e∗n+a′′)ew′ , ez ⊗ ew

〉

= d
〈
σx,y(ez′ ⊗ ew′), ez ⊗ ew

〉
.

Therefore, E is genuinely quantum tracial. It follows that ξ ′q(Kd2) ≤ d; On the other
hand, θ(Kd2) = 1 and hence ξ ′qc(Kd2) ≥ d. Thus, ξ ′qc(Kd2) = ξ ′q(Kd2) = d.

10.2. Graph homomorphisms. In this subsection, we consider a quantum version of the
graph homomorphism game first studied in [51]. Let G and H be graphs with vertex
sets X and A, respectively. Recall that the homomorphism game G → H has Y = X ,
B = A, and λ(x, y, a, b) = 0 if and only if, either x = y and a = b, or x ∼ y and
a ∼ b. A synchronous NS correlation p = {

(p(a, b|x, y))a,b∈A : x, y ∈ X
}

is thus
called a perfect x-strategy for the game G → H if p ∈ Cx and

x ∼ y, a ∼ b "⇒ p(a, b|x, y) = 0.

For a subset κ ⊆ X × X , let Pκ : MX → MX be the map given by

Pκ(T ) =
∑

(x,y)∈κ
(exe

∗
x )T (eye

∗
y), T ∈ MX .

Thus, Pκ is the Schur projection onto Sκ ; it can be canonically identified with the
(positive) element

∑
(x,y)∈κ(exe∗x )⊗ (eye∗y) of DXX . We set (Pκ)⊥ = Pκc . For a graph

G, we write for brevity PG = PE0(G).
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Proposition 10.6. Let G (resp. H) be a graph with vertex set X (resp. A), and p ={
(p(a, b|x, y))a,b∈A : x, y ∈ X

}
be a synchronous NS correlation. The following are

equivalent:

(i) p is a perfect strategy for the homomorphism game G → H;
(ii)

〈
Np(PG), (PH )⊥

〉 = 0.

Proof. (i)⇒(ii) We have
〈
Np (PG) , (PH )⊥

〉

=
〈

Np

(
∑

x∼y

exe
∗
x ⊗ eye

∗
y

)

,
∑

a′ ∼b′
ea′e

∗
a′ ⊗ eb′e

∗
b′

〉

=
∑

x∼y

∑

a,b∈A

∑

a′ ∼b′
p(a, b|x, y) 〈eae∗a ⊗ ebe

∗
b, ea′e

∗
a′ ⊗ eb′e

∗
b′
〉

=
∑

x∼y

∑

a∼b

∑

a′ ∼b′
p(a, b|x, y) 〈eae∗a ⊗ ebe

∗
b, ea′e

∗
a′ ⊗ eb′e

∗
b′
〉 = 0.

(ii)⇒(i) If x ∼ y and a ∼ b, then exe∗x ⊗ eye∗y ≤ PG and eae∗a ⊗ ebe∗b ≤ (PH )⊥. By
the monotonicity of the pairing,

p (a, b|x, y) =
〈
Np

(
exe

∗
x ⊗ eye

∗
y

)
, eae

∗
a ⊗ ebe

∗
b

〉
≤ 〈

Np(PG), (PH )⊥
〉 = 0.

General operator systems in MX were considered in [21] as a quantum versions of
graphs (noting that SG is an operator system), while operator anti-systems (that is, self-
adjoint subspaces of MX each of whose elements has trace zero [7]) were proposed as
such a quantum version in [70] (noting that S0

G is an operator anti-system). Note that one
can pass from any of the two notions to the other by taking orthogonal complements.
Due to the specific definition of QNS correlations in [22], employed also here, it will be
convenient to use a slightly different perspective on non-commutative graphs, which we
now describe. Let Z be a finite set, H = C

Z , Hd be its dual space and d : H → Hd be
the map given by d(ξ)(η) = 〈η, ξ 〉; we write ξd = d(ξ). Note that if T ∈ L(H), then

T dξd = (T ∗ξ)d, T ∈ L(H). (10.6)

Let θ : H ⊗ H → L(Hd, H) be the linear map given by

θ(ξ ⊗ η)(ζ d) = 〈ξ, ζ 〉η, ζ ∈ H.

By (10.6),
θ((S ⊗ T )ζ ) = T θ(ζ )Sd, ζ ∈ H ⊗ H, S, T ∈ L(H). (10.7)

We denote by m : H ⊗ H → C the map given by

m(ζ ) =
〈

ζ,
∑

z∈Z
ez ⊗ ez

〉

, ζ ∈ H ⊗ H.

Let also f : H ⊗ H → H ⊗ H be the flip operator given by f(ξ ⊗ η) = η⊗ ξ . Note that
if ξ, η, ζ1, ζ2 ∈ H , then

〈θ(ξ ⊗ η)∗(ζ1), ζ
d
2 〉 = 〈ζ1, θ(ξ ⊗ η)ζ d

2 〉 = 〈ζ1, 〈ξ, ζ2〉η〉 = 〈ζ2, ξ 〉〈ζ1, η〉
= 〈ξd, ζ d

2 〉〈ζ1, η〉 = 〈〈ζ1, η〉ξd, ζ d
2 〉
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and hence

d−1(θ(ξ ⊗ η)∗(d−1(ζ d
1 )) = d−1(〈ζ1, η〉ξd) = 〈η, ζ1〉ξ = θ(η ⊗ ξ)(ζ d

1 );
thus,

d−1 ◦ θ(ζ )∗ ◦ d−1 = (θ ◦ f)(ζ ), ζ ∈ H ⊗ H. (10.8)

In addition,
∑

z∈Z
〈θ(ξ ⊗ η)(d(ez)), ez〉 =

∑

z∈Z
〈ξ, ez〉〈η, ez〉 = m(ξ ⊗ η),

and hence
m(ζ ) =

∑

z∈Z
〈(θ(ζ ) ◦ d)(ez), ez〉, ζ ∈ H ⊗ H. (10.9)

Definition 10.7. A linear subspace U ⊆ H ⊗ H is called skew if m(U) = {0} and
symmetric if f(U) = U .

Suppose that U is a symmetric skew subspace of H ⊗ H . Let SU = θ(U); by (10.8)
and (10.9), the subspace SU of L(Hd, H) satisfies

• T ∈ SU "⇒ d−1 ◦ T ∗ ◦ d−1 ∈ SU , and
• T ∈ SU "⇒∑

z∈Z 〈(T ◦ d)(ez), ez〉 = 0.

We call a subspace of L(Hd, H) satisfying these properties a twisted operator anti-
system. Conversely, given a twisted operator anti-system S ⊆ L(Hd, H), (10.8) and
(10.9) imply that the subspace US = θ−1(S) of H ⊗ H is symmetric and skew. Given
a graph G, let

UG = span{ex ⊗ ey : x ∼ y}; (10.10)

it is clear thatUG is a symmetric skew subspace ofCX⊗C
X . We thus consider symmetric

skew subspaces of CX ⊗ C
X as a non-commutative version of graphs. We note that if

∂ : Hd → H is the unitary operator given on the standard basis {ez}z∈Z in H by
∂(ed

z )→ ez , z ∈ Z , then S ⊆ L(Hd, H) is a twisted operator anti-system if and only if
the subspace S∂−1 ⊆ L(H) is closed under transposition and traceless, see [10, p. 36].

We write PU for the orthogonal projection from C
X ⊗ C

X onto U . Let U⊥ ⊂
(
C

X ⊗ C
X
)d

be the annihilator of U and write PU⊥ ∈ L
(
(CX ⊗ C

X )d
)

for the or-
thogonal projection onto U⊥. Observe that ζ d ∈ U⊥ if and only if ζ belongs to the
orthogonal complement U⊥ of U in C

X ⊗ C
X . Thus, for ζ ∈ H ⊗ H we have

PU⊥ζ
d = ζ d ⇔ P⊥

U (ζ ) = ζ ⇔ 〈P⊥
U (ζ ), ζ

d〉 = 1

⇔ 〈ζ, (P⊥
U )

d(ζ d)〉 = 1 ⇔ (P⊥
U )

d(ζ d) = ζ d,

and hence
PU⊥ = (P⊥

U )
d. (10.11)

Let A be a finite set and ω ∈ MA. Writing fω for the functional on MA given by
fω(ρ) = Tr(ρωt), we have that the map ω→ fω is a complete order isomorphism from
MA onto Md

A (see e.g. [63, Theorem 6.2]). On the other hand, the map ωd  → ωt is a
*-isomorphism from L

(
(CA)d

)
onto MA. The composition of these maps,ωd  → fwt , is

thus a complete order isomorphism from L
(
(CA)d

)
onto Md

A. In the sequel, we identify
these two spaces; note that, via this identification,

〈ρ, ωd〉 = 〈ρ, ωt〉 = Tr(ρω), ρ, ω ∈ MA. (10.12)
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Definition 10.8. Let X and A be finite sets and U ⊆ C
X ⊗ C

X , V ⊆ C
A ⊗ C

A be
symmetric skew subspaces. A QNS correlation � : MXX → MAA is called

(i) a quantum commuting homomorphism from U to V (denoted U qc→ V) if � is tracial
and

〈
� (PU ) , PV⊥

〉 = 0. (10.13)

(ii) a quantum homomorphism from U to V (denoted U q→ V) if � is quantum tracial
and (10.13) holds;

(iii) a local homomorphism from U to V (denoted U loc→ V) if � is locally tracial and
(10.13) holds.

Given operator anti-systems S ⊆ MX and T ⊆ MA, Stahlke [70] defines a non-
commutative graph homomorphism from S to T to be a quantum channel 
 : MX →
MA with family {Mi }mi=1 of Kraus operators, such that MiSM∗

j ⊆ T , i, j = 1, . . . ,m;
if such 
 exists, he writes S → T . The appropriate version of this notion for twisted
operator anti-systems—directly modelled on Stahlke’s definition—is as follows. For
T ∈ MZ , we write T = T ∗t for the conjugated matrix of T .

Definition 10.9. Let X and A be finite sets, andS ⊆ L
(
(CX )d,CX

)
and T ⊆ L

(
(CA)d,

C
A
)

be twisted operator anti-systems. A homomorphism from S into T is a quantum
channel


 : MX → MA, 
(T ) =
m∑

i=1

MiT M∗
i ,

such that

M jSMd
i ⊆ T , i, j = 1, . . . ,m.

If S and T are twisted operator anti-systems, we write S → T as in [70] to denote
the existence of a homomorphism from S to T .

Proposition 10.10. Let X and A be finite sets and U ⊆ C
X ⊗ C

X , V ⊆ C
A ⊗ C

A be

symmetric skew spaces. Then, U loc→ V if and only if SU → SV .

Proof. Suppose that U loc→ V and let � be a locally tracial QNS correlation for which
(10.13) holds. By Theorem 9.9, there exist quantum channels 
 j : MX → MA, j =
1, . . . , k, such that � =∑k

j=1 λ j
 j ⊗
�j as a convex combination. We have

k∑

j=1

λ j

〈(

 j ⊗
�j

)
(PU ) , PV⊥

〉
= 〈
� (PU ) , PV⊥

〉 = 0;

since each of the terms in the sum on the left hand side is non-negative, selecting j with
λ j > 0 and setting 
 = 
 j , we have

〈(

⊗
�) (PU ) , PV⊥

〉 = 0. (10.14)
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Let 
(ω) =∑m
i=1 MiωM∗

i , ω ∈ MX , be a Kraus representation of 
. For ω ∈ MX ,
we have


�(ω) =
m∑

i=1

(
Miω

tM∗
i

)t =
m∑

i=1

(M∗
i )

tωM t
i =

m∑

i=1

MiωM
∗
i .

It follows that

(

⊗
�) (ρ) =

m∑

i, j=1

(Mi ⊗ M j )ρ(Mi ⊗ M j )
∗, ρ ∈ MXX . (10.15)

Let ξ ∈ U and η ∈ V⊥ be unit vectors; then, ξξ∗ ≤ PU . In addition, ηd = PV⊥η
d

and hence (ηη∗)d = ηd(ηd)∗ ≤ PV⊥ ; thus, (10.14) implies
〈(

⊗
�) (ξξ∗) , (ηη∗)d

〉
= 0.

By (10.15) and positivity,
〈
(Mi ⊗ M j )(ξξ

∗)(Mi ⊗ M j )
∗, (ηη∗)d

〉
= 0, i, j = 1, . . . ,m,

which, by (10.12), means that
〈
(Mi ⊗ M j )ξ, η

〉 = 0, i, j = 1, . . . ,m.

Thus, (Mi ⊗ M j )ξ ∈ V for every ξ ∈ U and, by (10.7),

M jθ(ξ)M
d
i = θ((Mi ⊗ M j )ξ) ∈ SV , ξ ∈ U ,

that is, SU → SV .
Conversely, suppose that 
 : MX → MA is a quantum channel with a family of

Kraus operators (Mi )
m
i=1 ⊆ L(CX ,CA) such that M jSUMd

i ⊆ SV , i, j = 1, . . . ,m.
The previous paragraphs show that

〈
(
⊗
�)(ξξ∗), (ηη∗)d

〉
= Tr((
⊗
�)(ξξ∗)(ηη∗)) = 0

for all unit vectors ξ ∈ U , η ∈ V⊥. It follows that

(
⊗
�)(ξξ∗) = (ηη∗)⊥(
⊗
�)(ξξ∗)(ηη∗)⊥,
for all unit vectors η ∈ V⊥. Taking infimum over all such η, we obtain

(
⊗
�)(ξξ∗) = PV (
⊗
�)(ξξ∗)PV ,
for all unit vectors ξ ∈ U . Thus, by (10.12) and (10.11),

Tr
((

⊗
�) (ξξ∗)P⊥

V
)
= 〈
(
⊗
�)(ξξ∗), PV⊥

〉 = 0,

for all unit vectors ξ ∈ U . Writing PU = ∑l
i=1 ξiξ

∗
i , where (ξi )li=1 is an orthonormal

basis of U , we obtain
〈
(
⊗
�)(PU ), PV⊥

〉 = 0.
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For graphs G and H , write G → H if there exists a homomorphism from G to
H . The next corollary justifies viewing the symmetric skew spaces as non-commutative
graphs.

Corollary 10.11. Let G and H be graphs.We have that G → H if and only ifUG
loc→ UH .

Proof. Write X and A for the vertex sets of G and H , respectively. Assume that G → H .
By [70], S0

G → S0
H . Write {Mi }mi=1 for the set of Kraus operators such that MiS0

GM
∗
j ⊆

S0
H , i, j = 1, . . . ,m. Let JX : CX → C

X be the map given by JX (η) = η̄. Then,
θ(ex ⊗ ey) = JX ◦ eye∗x ◦ d−1, x, y ∈ X . Therefore,

(JA ◦ Mi ◦ JX )(JX ◦ S0
G ◦ d−1)(d ◦ M∗

j ◦ d−1) ⊆ JA ◦ S0
H ◦ d−1,

implying MiSUG M
d
j ⊆ SUH ; by Proposition 10.10, UG

loc→ UH . The converse follows
after reversing the arguments.

10.3. General quantum non-local games. We write PM for the projection lattice of a
von Neumann algebra M, and denote as usual by ∨ (resp. ∧) the join (resp. the wedge)
operation in PM; thus, for P1, P2 ∈ PM, the projection P1 ∨ P1 (resp. P1 ∧ P2)
has range the closed span (resp. the intersection) of the ranges of P1 and P2. If M
and N are von Neumann algebras, a map ϕ : PM → PN is called join continuous
if ϕ (∨i∈IPi ) = ∨i∈Iϕ(Pi ) for any family {Pi }i∈I ⊆ PM. Note that if M is finite
dimensional, then join continuity is equivalent to the preservation of finite joins.

Let H be a Hilbert space and P be an orthogonal projection on H with range U . As
in Sect. 10.2, we denote by U⊥ the annihilator of U in the space Hd, and by P⊥—the
orthogonal projection on Hd with range U⊥.

Definition 10.12. Let X , Y , A and B be finite sets.

(i) A map ϕ : PMXY → PMAB (resp. ϕ : PDXY → PMAB , ϕ : PDXY → PDAB ) is called
a quantum non-local game (resp. a classical-to-quantum non-local game, a classical
non-local game) if ϕ is join continuous and ϕ(0) = 0. We say that such ϕ is a game
from XY to AB.

(ii) A QNS (resp. CQNS, NS) correlation � is called a perfect strategy for the quantum
(resp. classical-to-quantum, classical) non-local game ϕ if

〈�(P), ϕ(P)⊥〉 = 0, P ∈ PMXY (resp. P ∈ PDXY ). (10.16)

Remark 10.13. (i) Join continuous zero-preserving maps ϕ : PB(H) → PB(K ), where
H and K are Hilbert spaces, were first considered by J. A. Erdos in [26]. They are
equivalent to bilattices introduced in [68]—that is, subsets B ⊆ PB(H) × PB(K ) such
that (P, 0), (0, Q) ∈ B for all P ∈ PB(H), Q ∈ PB(K ), and (P1, Q1), (P2, Q2) ∈ B
⇒ (P1 ∨ P2, Q1 ∧ Q2) ∈ B and (P1 ∧ P2, Q1 ∨ Q2) ∈ B. Thus, quantum non-local
games (resp. classical-to-quantum non-local games, classical non-local games) can be
alternatively defined as bilattices; we have chosen to use maps instead because they are
more convenient to work with when compositions are considered (see Definition 10.15).

Conditions (10.16) are reminiscent of J. A. Erdos’ characterisation [26] of reflexive
spaces of operators, introduced by L. N. Loginov and V. S. Shulman in [47]. As shown in
[26], a subspaceS ⊆ B(H, K ) (H and K being Hilbert spaces) is reflexive in the sense of
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[47] if and only if there exists a join continuous zero-preserving mapϕ : PB(H) → PB(K )
such that S coincides with the space

Op(ϕ) =
{
T ∈ B(H, K ) : ϕ(P)⊥T P = 0, for all P ∈ PB(H)

}
.

(ii) The quantum (resp. classical-to-quantum, classical) non-local game ϕ with
ϕ(P) = IAB for every nonzero P ∈ PMXY (resp. P ∈ PDXY ) will be referred to as
the empty game. It is clear that the set of perfect strategies for the empty game coincides
with the class of all no-signalling correlations.

(iii) Let G be a graph with vertex set X and A be a finite set. The quantum graph
colouring game considered in Sect. 10.1 is the classical-to-quantum non-local game
ϕ : PDXX → PMAA , given by

ϕ(exe
∗
x ⊗ eye

∗
y) =

{
1
|A|�

⊥
A if x ∼ y

I otherwise.

Similarly, letting U ⊆ C
X ⊗ C

X and V ⊆ C
A ⊗ C

A be symmetric skew spaces, we
define the homomorphism game U → V to be the quantum non-local gameψ , given by

ψ(P) =

⎧
⎪⎨

⎪⎩

PV if 0 = P ≤ PU
0 if P = 0
I otherwise.

For x ∈ {loc, q, qc}, we have that U x→ V if and only if the game U → V has a perfect
strategy of class Qx.

Let (X,Y, A, B, λ) be a non-local game. For a subset α ⊆ X × Y , let Pα ∈ PDXY

be the projection with range span{ex ⊗ ey : (x, y) ∈ α}. For (x, y) ∈ X × Y , let

βx,y(λ) = {(a, b) ∈ A × B : λ(x, y, a, b) = 1}.
We associate with λ the (unique) classical non-local game ϕλ : PDXY → PDAB deter-
mined by the requirement

ϕλ
(
P{(x,y)}

) = Pβx,y(λ), (x, y) ∈ X × Y.

Proposition 10.14. An NS correlation p is a perfect strategy for the non-local game
(with rule function) λ if and only if Np is a perfect strategy for ϕλ.

Proof. Note that if (x, y) ∈ X × Y , then
(
Pβx,y(λ)

)
⊥ has range span{eae∗a ⊗ ebe∗b :

λ(x, y, a, b) = 0}. As in Proposition 10.6, it is thus easily seen that p is a perfect
strategy for λ if and only if

〈
Np

(
P{(x,y)}

)
,
(
Pβx,y(λ)

)
⊥
〉
= 0, (x, y) ∈ X × Y.

Assume that p is a perfect strategy for λ. For a projection P ∈ DXY , write P =
∨{P{(x,y)} : P(ex ⊗ ey) = ex ⊗ ey}; then,

ϕλ(P) = ∨{Pβx,y(λ) : P(ex ⊗ ey) = ex ⊗ ey}.
Thus,

〈
Np(P{(x,y)}), ϕλ(P)⊥

〉 = 0 for all pairs (x, y)with P(ex ⊗ey) = ex ⊗ey . Taking
the join over all those (x, y), we conclude that

〈
Np(P), ϕλ(P)⊥

〉 = 0. The converse is
direct from the first paragraph.
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Definition 10.15. Let X , Y , A, B, Z and W be finite sets and ϕ1 (resp. ϕ2) be a game
from XY to AB (resp. from AB to ZW ). The composition of ϕ1 and ϕ2 is the game
ϕ2 ◦ ϕ1 from XY to ZW .

It is clear that ϕ2 ◦ϕ1 is well-defined in all cases except when ϕ1 is a quantum game,
while ϕ2 is a classical-to-quantum game.

Lemma 10.16. Let X, A and Z be finite sets, H and K be Hilbert spaces and E ∈
MX ⊗ MA ⊗ B(H) and F ∈ MA ⊗ MZ ⊗ B(K ) be stochastic operator matrices. Set

Gx,x ′,z,z′ =
∑

a,a′∈A
Fa,a′,z,z′ ⊗ Ex,x ′,a,a′ , x, x ′ ∈ X, z, z′ ∈ Z .

Then, G = (Gx,x ′,z,z′)x,x ′,z,z′ is a stochastic operator matrix in MX ⊗MZ ⊗B(K ⊗H).

Proof. Let V = (Va,x )a,x (resp. W = (Wz,a)z,a) be an isometry from HX (resp. K A)
to H̃ A (resp. K̃ Z ) for some Hilbert space H̃ (resp. K̃ ), such that

Ex,x ′,a,a′ = V ∗
a,x Va′,x ′ and Fa,a′,z,z′ = W ∗

z,aWz′,a′

for all x, x ′ ∈ X , a, a′ ∈ A and z, z′ ∈ Z . Set

Uz,x =
∑

a∈A
Wz,a ⊗ Va,x , x ∈ X, z ∈ Z .

For x, x ′ ∈ X , we have

∑

z∈Z
U∗
z,xUz,x ′ =

∑

z∈Z

(
∑

a∈A
W ∗

z,a ⊗ V ∗
a,x

)(
∑

a′∈A
Wz,a′ ⊗ Va′,x ′

)

=
∑

z∈Z

∑

a,a′∈A
W ∗

z,aWz,a′ ⊗ V ∗
a,x Va′,x ′

=
∑

a,a′∈A

(
∑

z∈Z
W ∗

z,aWz,a′

)

⊗ V ∗
a,x Va′,x ′

=
∑

a,a′∈A
δa,a′ IK ⊗ V ∗

a,x Va′,x ′ =
∑

a∈A
IK ⊗ V ∗

a,x Va,x ′

= δx,x ′ IK ⊗ IH ;
thus, (Uz,x )z,x is an isometry from (K ⊗H)X into (K̃ ⊗ H̃)Z . In addition, for x, x ′ ∈ X
and z, z′ ∈ Z , we have

U∗
z,xUz′,x ′ =

(
∑

a∈A
W ∗

z,a ⊗ V ∗
a,x

)(
∑

a′∈A
Wz′,a′ ⊗ Va′,x ′

)

=
∑

a,a′∈A
Fa,a′,z,z′ ⊗ Ex,x ′,a,a′ = Gx,x ′,z,z′ .

By Theorem 3.1, G is a stochastic operator matrix acting on K ⊗ H .

We call the stochastic operator matrix G from Lemma 10.16 the composition of F
and E and denote it by F ◦ E .
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Theorem 10.17. Let ϕ1 (resp. ϕ2) be a quantum game from XY to AB (resp. from AB
to ZW) and x ∈ {loc, q, qa, qc, ns}.
(i) If �i is a perfect strategy for ϕi from the classQx, i = 1, 2, then �2 ◦�1 is a perfect

strategy for ϕ2 ◦ ϕ1 from the class Qx.
(ii) Assume that X = Y , A = B and Z = W. If �i is a perfect tracial (resp. quantum

tracial, locally tracial) strategy for ϕi , i = 1, 2, then �2 ◦ �1 is a perfect tracial
(resp. quantum tracial, locally tracial) strategy for ϕ2 ◦ ϕ1.

Proof. First note that if �i is a QNS correlation, then so is �2 ◦�1. Indeed, suppose that
ρ ∈ MXY is such that TrXρ = 0. By Remark 2.1, TrA�1(ρ) = 0, and hence, again by
Remark 2.1, TrZ (�2(�1(ρ)) = 0.

Suppose that �i ∈ Qqc, i = 1, 2. Let (E (i), F (i)) be a commuting pair of stochastic
operator matrices acting on a Hilbert space Hi , and σi be a normal state on B(Hi ),

such that �i = �E (i)·F (i),σi , i = 1, 2. Write E (1) =
(
E (1)x,x ′,a,a′

)
, F (1) =

(
F (1)y,y′,b,b′

)
,

E (2) =
(
E (2)a,a′,z,z′

)
and F (2) =

(
F (2)b,b′,w,w′

)
. Set H = H2 ⊗ H1, σ = σ2 ⊗ σ1,

E = E (2) ◦ E (1) and F = F (2) ◦ F (1); note that, by Lemma 10.16, E and F are
stochastic operator matrices. It is straightforward that (E, F) is a commuting pair. Write
E = (Ex,x ′,z,z′) and F = (Fy,y′,w,w′). Note that

∑

a,a′,b,b′

〈
E (1)x,x ′,a,a′F

(1)
y,y′,b,b′ , σ1

〉 〈
E (2)a,a′,z,z′F

(2)
b,b′,w,w′ , σ2

〉

=
∑

a,a′,b,b′

〈(
E (2)a,a′,z,z′ ⊗ E (1)x,x ′,a,a′

) (
F (2)b,b′,w,w′ ⊗ F (1)y,y′,b,b′

)
, σ2 ⊗ σ1

〉

= 〈
Ex,x ′,z,z′Fy,y′,w,w′ , σ

〉
,

and hence

(�2 ◦ �1)
(
exe

∗
x ′ ⊗ eye

∗
y′
)

=
∑

a,a′,b,b′

〈
E (1)x,x ′,a,a′F

(1)
y,y′,b,b′ , σ1

〉
�2
(
eae

∗
a′ ⊗ ebe

∗
b′
)

=
∑

z,z′,w,w′

∑

a,a′,b,b′
〈E (1)x,x ′,a,a′F

(1)
y,y′,b,b′ , σ1〉〈E (2)a,a′,z,z′F

(2)
b,b′,w,w′ , σ2〉eze∗z′ ⊗ ewe

∗
w′

=
∑

z,z′,w,w′

〈
Ex,x ′,z,z′Fy,y′,w,w′ , σ

〉
eze

∗
z′ ⊗ ewe

∗
w′ ;

thus, �2 ◦ �1 = �E ·F,σ .
If �i ∈ Qq, i = 1, 2, then the arguments in the previous paragraph—replacing

operator products by tensor products as necessary—show that �2 ◦ �1 ∈ Qq. By the
continuity of the composition, the assumptions �i ∈ Qqa, i = 1, 2, imply that �2 ◦�1 ∈
Qqa. Finally, assume that �i ∈ Qloc, i = 1, 2, and write �i =∑mi

k=1 λ
(i)
k 


(i)
k ⊗�(i)k as

a convex combination, where 
(i)k : MX → MA and �(i)k : MY → MB are quantum
channels, i = 1, 2. Then,

�2 ◦ �1 =
m1∑

k=1

m2∑

l=1

λ
(1)
k λ

(2)
l

(


(2)
l ◦
(1)k

)
⊗
(
�
(2)
l ◦�(1)k

)
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as a convex combination, and hence �2 ◦ �1 ∈ Qloc.
Suppose that �i is a tracial QNS correlation; thus, there exist unital C*-algebras A1

and A2, traces τ1 and τ2 on A1 and A2, respectively, and stochastic matrices E (1) ∈
MX ⊗ MA ⊗ A1 and E (2) ∈ MA ⊗ MZ ⊗ A2, such that �i = �E (i),τi , i = 1, 2. The
arguments given for (i) show that

�2 ◦ �1 = �E (2)◦E (1),τ2⊗τ1
,

where τ2⊗τ1 is the product trace onA2⊗minA1; E (2)◦E (1) is considered as a stochastic
A2 ⊗min A1-matrix (note that we identify

(
E (2) ◦ E (1)

)op
with E (2)op ◦ E (1)op in the

natural way).
It remains to show that if �i is a perfect strategy for ϕi , i = 1, 2, then �2 ◦ �1

is a perfect strategy for ϕ2 ◦ ϕ1. Let P ∈ PMXY and ω be a pure state with ω ≤
P . Then, �1(ω) = ϕ1(P)�1(ω)ϕ1(P) and hence �1(ω) ≤ ϕ1(P). Similarly, for any
pure state σ with σ ≤ ϕ1(P) we have �2(σ ) = ϕ2(ϕ1(P))�2(σ )ϕ2(ϕ1(P)), giving
〈(�2(σ ), (ϕ2 ◦ ϕ1)(P)⊥〉 = 0. In particular,

〈(�2 ◦ �1)(ω), (ϕ2 ◦ ϕ1)(P)⊥〉 = 0.

As in the proof of Proposition 10.10, this yields

〈(�2 ◦ �1)(P), (ϕ2 ◦ ϕ1)(P)⊥〉 = 0,

establishing the claim. ��
Suppose that p1 (resp. p2) is an NS correlation from XY to AB (resp. from AB to

ZW ). It is straightforward to verify that the correlation p with Np = Np2 ◦Np1 is given
by

p(z, w|x, y) =
∑

a∈A

∑

b∈B
p2(z, w|a, b)p1(a, b|x, y);

we write p = p2 ◦ p1. Such compositions were first studied in [58]. For a non-local
game from XY to AB (resp. from AB to ZW ) with rule function λ1 (resp. λ2), let
λ2 ◦ λ1 : X × Y × Z ×W → {0, 1} be given by

(λ2 ◦ λ1)(x, y, z, w) = 1 ⇔ ∃ (a, b) s.t. λ1(x, y, a, b) = λ2(a, b, z, w) = 1.

Combining Theorem 10.17 with classical reduction and Proposition 10.14, we obtain
the following perfect strategy version of [58, Proposition 3.5], which simultaneously
extends the graph homomorphism transitivity results contained in [58, Theorem 3.7].

Corollary 10.18. Let λ1 (resp. λ2) be the rule functions of non-local games from XY to
AB (resp. from AB to ZW) and x ∈ {loc, q, qa, qc, ns}. If pi is a perfect strategy for λi
from the class Cx, i = 1, 2, then p2 ◦ p1 is a perfect strategy for λ2 ◦ λ1 from the class
Cx.

Combining Theorem 10.17 with Remark 10.13 (iii) yields the following transitivity
result; in view of Proposition 10.10, it extends [70, Proposition 9].

Corollary 10.19. Let X, A and Z be finite sets, U ⊆ C
X ⊗ C

X , V ⊆ C
A ⊗ C

A and
W ⊆ C

Z ⊗C
Z be symmetric skew spaces, and x ∈ {loc, q, qc}. If U x→ V and V x→ W ,

then U x→ W .
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