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Quantum error correction is crucial for scalable quantum information-processing applications. Tradi-
tional discrete-variable quantum codes that use multiple two-level systems to encode logical information
can be hardware intensive. An alternative approach is provided by bosonic codes, which use the infinite-
dimensional Hilbert space of harmonic oscillators to encode quantum information. Two promising features
of bosonic codes are that syndrome measurements are natively analog and that they can be concatenated
with discrete-variable codes. In this work, we propose novel decoding methods that explicitly exploit the
analog syndrome information obtained from the bosonic qubit readout in a concatenated architecture. Our
methods are versatile and can be generally applied to any bosonic code concatenated with a quantum low-
density parity-check (QLDPC) code. Furthermore, we introduce the concept of quasi-single shot protocols
as a novel approach that significantly reduces the number of repeated syndrome measurements required
when decoding under phenomenological noise. To realize the protocol, we present the first implemen-
tation of time-domain decoding with the overlapping window method for general QLDPC codes and a
novel analog single-shot decoding method. Our results lay the foundation for general decoding algorithms
using analog information and demonstrate promising results in the direction of fault-tolerant quantum
computation with concatenated bosonic-QLDPC codes.

DOI: 10.1103/PRXQuantum.5.020349

I. INTRODUCTION

For quantum computing, an important design consid-
eration is the choice of technology used to physically
realize qubits. A standard approach is to engineer discrete-
variable (DV) qubits, where the basis states are defined
by two distinct energy levels of the quantum system.
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Examples include ion-trap qubits [1,2], superconduct-
ing qubits [3], and spin qubits [4,5]. However, discrete-
variable qubits pose challenges, primarily in the intricate
task of effectively isolating the two-level encoding from
external influences that introduce errors. There is sub-
stantial evidence that, in the absence of error-suppression
methods, the coherence of quantum circuits is limited
to at most a logarithmic depth [6,7], which represents a
challenge for near-term quantum computing. To suppress
qubit errors, we can resort to notions of quantum error
correction (QEC). The goal of QEC is to harness entan-
glement to redundantly encode quantum information in
the logical qubit state of a larger physical Hilbert space,
albeit to the extent of substantial overhead. The QEC
encoding provides the system with additional degrees of
freedom that can be used to detect and correct errors in
real time. Beyond the initial encoding, full QEC proto-
cols must incorporate logical gates that allow the encoded
quantum information to be manipulated in a fault-tolerant
way. This provides the ability to compute fault tolerantly,
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whilst keeping the system protected against local noise.
Moreover, given a (potentially corrupted) encoded state,
a central task is to check whether errors occurred on the
encoded information, and if so to decode, i.e., to compu-
tationally derive a suitable recovery operation to restore
an error-free state. Identifying and realizing feasible and
practical schemes for fault-tolerant operation remains one
of the core challenges of quantum computing, both in
experiment and in theory.

On the highest level, both discrete-variable and
continuous-variable (CV) codes for quantum error correc-
tion have been considered in the literature and are seen
as candidates for feasible quantum codes. The latter offer
some compelling advantages for a number of platforms,
notably for cat codes [8] and Gottesman-Kitaev-Preskill
(GKP) codes [9]. However, there are also some challenges
that are unique to the continuous-variable setting. In par-
ticular, it is not obvious how to do decoding in light of
continuous syndrome information, as it is not clear how to
make use of continuous information in this task. For exam-
ple, the development of good decoders for GKP codes
constitutes a well-known technical challenge. The lack of
good methods of decoding for quantum error-correcting
codes with a continuous component can be seen as a
roadblock in the field.

In this work, we report substantial progress on the
partial use of continuous syndrome information in the
notions of quantum error correction. In this way, we aim
to bring the advantages of DV and CV quantum error
correction closer together. To this end, we explore the
combination of two promising classes of codes, instances
of bosonic codes and quantum low-density parity-check
(LDPC) codes, and investigate suitable decoding protocols
for general bosonic-LDPC constructions that make such
partial use of analog information. To further motivate this
combination and to show how continuous syndrome infor-
mation comes into play, we give a brief overview in the
following.

A. Bosonic qubits

Bosonic encodings offer an alternative to DV qubits
[10,11]. In this approach, the logical qubit state is non-
locally embedded within the phase space of an infinite-
dimensional quantum harmonic oscillator. The principal
advantage of using bosonic qubits is that the infinite-
dimensional Hilbert space provides the redundancy needed
to correct physical oscillator errors. Consequently, bosonic
encodings can be interpreted as intrinsic QEC protocols at
the individual qubit level. In principle, this provides an effi-
cient route to fault tolerance, and bosonic codes have been
extensively explored using protocols such as GKP codes
[9] and cat codes [8].

Similarly to discrete-variable qubits, multiple bosonic
qubits can be combined via a QEC code to create a logical

state. This strategy is usually referred to as a concatenated
bosonic code: at the inner level, the individual qubits are
protected by their bosonic encoding, and at the outer level,
the bosonic qubits are wired together to form a logical
state. Concatenated codes therefore combine the benefits
of both bosonic and discrete-variable QEC codes.

Another appealing feature of various bosonic codes is
that they can be precisely tuned to exhibit noise asymme-
try in their qubit-level error model. For example, recent
experiments have shown that cat code qubits can be engi-
neered to have phase-flip rates that dominate over bit flips
by almost 3 orders of magnitude [12,13]. In a concatenated
bosonic code, highly biased inner-level qubits can reduce
the overhead required by the outer code. For example, in
recent work by Darmawan et al. [14], it is proposed that cat
code qubits can be concatenated with the XZZX code [15],
an instance of a surface code modified by Clifford conju-
gations that has extremely high thresholds in the limit of
large bias [16].

B. Concatenated bosonic codes

To date, most studies of bosonic codes have focused on
their concatenation with repetition codes [17–21] or two-
dimensional topological codes [14,22–24]. Such codes are
favored for near-term experiments because they require
only nearest-neighbor interactions. This facilitates their
implementation on a two-dimensional array of qubits,
making them particularly suitable for architectures such
as superconducting qubits. However, from an information
theoretical standpoint, two-dimensional topological codes
may be seen as being far from optimal. The main draw-
back lies in their poor rate: the surface code, for instance,
encodes only a single logical qubit per patch. This means
that increasing the surface code distance comes at the
expense of the encoding density. This is in stark contrast
to the efficiency of contemporary classical error correction
protocols. In particular, numerous classical communica-
tion technologies employ LDPC codes. Such codes have
the advantage of preserving a constant encoding density
even as the code distance is scaled. Moreover, it has
been shown that in the asymptotic limit, LDPC codes can
approach the Shannon bound, which represents the theo-
retical limit on the rate of information transfer through a
noisy channel.

C. Low-density parity-check quantum codes

Until recently, it was an open question as to whether
quantum LDPC (QLDPC) codes with good parameter scal-
ing comparable to their classical counterparts exist. This
question has recently been answered in the affirmative via
a series of theoretical breakthroughs [25–29]. Central to
these innovations has been the use of sophisticated prod-
uct constructions that provide procedures for transforming
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classical LDPC codes into quantum codes. The result-
ing QLDPC codes exhibit constant encoding rates and
distances that scale proportionally with the length of the
code.

Implementing QLDPC codes poses greater challenges
than their planar counterparts. Several no-go theorems
indicate that implementing (good) QLDPC codes will not
be possible in two-dimensional geometrically local archi-
tectures [30–34]: they must necessarily involve geomet-
rically nonlocal connections. Nonetheless, various qubit
technologies are being developed that enable long-range
interactions needed to implement QLDPC codes [35–39].
In this setting, QLDPC codes promise quantum computa-
tion with considerably reduced overhead compared to the
surface code [35,40].

In Ref. [24], Raveendran et al. have explored the con-
catenation of GKP bosonic qubits with QLDPC codes
based on the lifted product construction [41]. Their results
show that there are distinct advantages to using a concate-
nated bosonic code over directly implementing a QLDPC
code with discrete variable qubits. Specifically, it is possi-
ble to feed forward analog information from the GKP qubit
readout to improve the performance of the outer code’s
decoder. This leads to improved error suppression beyond
what is achievable with discrete variable qubits alone.

In light of this promising line of research on concate-
nated bosonic codes, we focus on QEC protocols con-
structed from bosonic-LDPC codes in a general fashion,
assuming only that the inner code provides analog syn-
drome readout and possibly a noise bias and that the outer
code is an arbitrary quantum LDPC code. We focus on
the decoding of such codes and demonstrate that, by com-
bining their properties, we obtain high-performance QEC
protocols.

D. Overview of contributions

In this work, we develop methods for the decoding
and analysis of concatenated bosonic-LDPC codes. To
this end, our primary test bed is a protocol in which
cat code qubits (inner code) are concatenated with the
three-dimensional surface code (outer code). We choose
to focus on the three-dimensional surface code as it is per-
haps the simplest example of a QLDPC code that extends
upon the capabilities of the standard two-dimensional sur-
face code. From an implementation perspective, three-
dimensional surface codes can be realized with relatively
few long-range connections in two and completely locally
in three dimensions [42]. Suitable experimental platforms
for implementing three-dimensional codes include archi-
tectures with photonic links or neutral atom arrays [37,38].
For comparison, the concatenated lifted product schemes
of Ref. [24] require arbitrary qubit connectivity in general.
Another distinguishing feature of the three-dimensional
surface code is the fact that it has a transversal CCZ gate

[42]. This leaves it fully equipped for universal quantum
computation without the need for resource-intensive magic
state injection.

We introduce a novel decoding method, analog Tanner
graph decoding (ATD), which makes use of the analog
readout information from the bosonic qubits. Our numeri-
cal simulations show that this leads to improved thresholds
for decoding with the three-dimensional surface codes.
Furthermore, we demonstrate that using ATD, the number
of repetitions required by the non-single-shot component
of the three-dimensional surface codes can be reduced to a
small number. In this setting, we refer to three-dimensional
surface codes as being quasi-single shot. Finally, this paper
is accompanied by open-source software tools that facil-
itate the reproduction and extension of our analysis of
concatenated bosonic-LDPC codes and provide means to
automatically conduct respective numerical simulations.
Our results are summarized in more detail below.

E. Analog Tanner graph decoding

Fundamentally, in discrete-variable QEC, the syn-
dromes obtained from stabilizer measurements are dis-
crete, although readout techniques can yield an analog
value. This stands in contrast to bosonic qubits, where
measurements yield analog outcomes due to the infinite-
dimensional Hilbert space. The strength of the analog
readout can be used to assign an uncertainty associated
with the measurement. Syndromes derived from analog
bosonic readout are termed analog syndromes. The analog
Tanner graph decoder we introduce in this work provides
a method for mapping analog syndromes to a belief prop-
agation decoder, sketched in Fig. 1(d). Our approach is
extremely versatile: ATD can be applied to any stabilizer
code with analog syndrome information. Furthermore, it is
possible to incorporate ATD as part of both single-shot and
time-domain decoding strategies, as illustrated in Fig. 1(e)
and Fig. 1(f).

F. Single-shot decoding with analog information

A problem in QEC is that syndromes must be extracted
using auxiliary qubits that are also susceptible to errors.
As such, there is uncertainty associated with any syn-
drome we measure. To counteract this problem, we can
adapt the time-domain approach in which syndrome mea-
surements are repeated ∝ d times, where d is the code
distance. Measurement errors can then be accounted for
by considering the entire syndrome history in the decod-
ing. An alternative strategy is to use a code that has the
so-called single-shot property. Single-shot codes have an
additional structure that allows measurement errors to be
directly corrected, removing the need to decode over time
[43]. The three-dimensional surface code is single-shot for
phase noise but requires time-domain decoding for bit-flip
noise [42,44]. Our numerical results show that under ATD
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FIG. 1. Overview of our main techniques. (a) We investigate QLDPC codes concatenated with cat qubits encoded in coherent
states of a harmonic oscillator. (b) An important property of cat qubits, in addition to their biased noise model, is that the syndrome
information obtained from qubit readout is intrinsically analog valued, as the wave function of a coherent state is a Gaussian centered at
α. (c) Depending on the measured value xm during (quadrature) readout, we can assign an outcome-dependent error probability p(xm)

that is a function of the size of the cat qubit α2. (d) We incorporate the analog information obtained during the syndrome measurements
into a Tanner graph construction that we refer to as an analog Tanner graph (ATG). The ATG stores the analog syndrome information
directly in the factor graph used for decoding. We show that the ATG construction can be adapted to work with decoding strategies
such as (e) single-shot shot decoding and (f) overlapping window time-domain decoding.

decoding, the single-shot component of the concatenated
three-dimensional surface code has a sustained threshold
of 9.9% under phenomenological noise. This improves
over the previous best-observed threshold for the discrete
variable three-dimensional surface codes of 7.1% [45].

G. Quasi-single shot protocol

Time-domain decoding can lead to large overheads for
quantum codes, since the number of repeated syndrome
measurements required is proportional to the code distance
d [46–48]. This increases the length of the decoding cycle
and reduces the frequency with which logical operations
can be applied [49]. To address this overhead, we propose a
novel protocol called (w)-quasi-single shot decoding. The
key idea is to use the analog information obtained during
the syndrome readout of the inner bosonic code to enhance
the decoding performance and reduce the need to repeat
the measurement multiple times in the noisy readout set-
ting. On an intuitive level, this idea is somewhat analogous
to the fact that to learn m bits during the quantum phase
estimation algorithm, one needs O(m) measurements [50],
whereas, using bosonic qubits, one can learn the phase (in
principle) using a single measurement [9].

Quasi-single shot decoding leverages our strategies for
decoding with analog information, and we obtain a scheme
that reduces the required number of repeated syndrome
measurement rounds to a small number w � d. In com-
bination with the tunable noise bias of the inner cat qubit
code, the quasi-single shot three-dimensional surface code
yields a three-dimensional topological code with signifi-
cantly higher thresholds and reduced time overhead when
compared to two-dimensional topological codes.

H. Open-source software tools

We have implemented a set of software tools as part
of the Munich Quantum Toolkit (MQT) to foster further
research in the direction and to provide the community
with numerical tools to conduct simulations and reproduce
our results.

The remainder of this work is structured as follows. In
Sec. II, we review the main concepts of bosonic quan-
tum codes and quantum error correction that are needed
throughout this work. In Sec. III, we discuss iterative
decoding approaches that are fundamental for state-of-
the-art algorithms and the proposed techniques. Then, in
Sec. IV our decoding strategies for decoding quantum
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codes using analog information and the respective numeri-
cal simulation results are presented. In Sec. V, we elaborate
on the proposed quasi-single shot protocol and present
numerical results. Section VI focuses on more practi-
cal aspects around the considered bosonic-LDPC code
architectures and reviews important open challenges with
respect to potential implementations in superconducting
architectures. We conclude and give a brief overview of
future work in Sec. VII.

II. PRELIMINARIES

Here, we introduce basic notions of quantum coding that
are needed throughout the rest of this work. We assume
the reader is familiar with fundamental notions of quantum
information theory and quantum error correction.

A. Bosonic quantum codes

The use of bosonic codes toward achieving fault-tolerant
quantum computing has become a promising alterna-
tive to the approach based on so-called discrete-variable
qubits such as spin qubits, trapped ions, neutral atoms,
or superconducting qubits [1–5]. It is often quoted, see,
for instance, Refs. [51,52] that the advantage of bosonic
codes over discrete-variable codes is the fact that a single
bosonic mode, realized, e.g., in a superconducting cavity
or the motional states of trapped ions, lives in an infinite-
dimensional Hilbert space. Bosonic codes therefore offer
a hardware-efficient route toward fault-tolerant quantum
computing, since the principle of quantum error correc-
tion relies on encoding logical information redundantly in
a subspace of a much larger Hilbert space, as opposed to
using multiple two-level systems. The main idea of how
bosonic codes can be realized in practice is that a particu-
lar bosonic code constitutes the first layer in a concatenated
quantum error-correction code, consisting of (at least) one
continuous-variable and one discrete-variable code, which
is called outer code in this context. As there are various
realizations and families of discrete-variable codes, there
are similarly multiple families of bosonic codes. As the
choice of the discrete-variable code determines properties,
such as the availability of transversal gates, the choice of a
particular bosonic code can be tailored to the physical plat-
form on which the code is realized, but also determines the
(effective) noise model that is relevant for the outer code
as well.

As such, in addition to their large surrounding Hilbert
space, bosonic codes offer further advantages over two-
level systems relevant to the design of quantum error-
correcting codes and decoders. One of these features is that
many families of bosonic codes have a biased-noise error
model, where some types of errors occur more frequently
than others. While discrete-variable qubits can have a
biased noise channel, this noise bias cannot be preserved
by gate operations needed throughout the QEC protocol,

i.e., there does not exist a bias-preserving CNOT implemen-
tation [17]. While a Pauli-Z error occurring before the gate
is not converted to other types of Pauli errors, a Z error
during the execution of the gate will be converted to other
types of Paulis. Thus, intuitively, for the CNOT = CX(π)

one must require that Z errors commute with the gate at all
times, i.e., [ZCX(α)] = 0, ∀α ∈ [0, π ]. However, imple-
mentation of the CNOT in such a way is not possible without
leaving the code space [53]. Hence, the bias is annihilated
during the computation and bias-tailored QEC codes such
as the ones proposed in Refs. [54–57] are not beneficial for
discrete-variable systems. However, the additional degrees
of freedom of continuous-variable states natively allow for
bias-preserving operations [17,58].

While the additional degrees of freedom of bosonic
codes yield a clear advantage over two-level systems, the
continuous support of states in quantum phase space has
the consequence that any measurement, e.g., the mea-
surement of a stabilizer check, of such a state is inher-
ently imprecise. Instead of dismissing this characteristic of
bosonic quantum codes as a drawback, it can equivalently
be seen as a feature that yields additional information dur-
ing the qubit readout, called analog information that can
be used for decoding. We note that in practice the readout
of a two-level system in finite time also yields a contin-
uous outcome. However, with technological progress in
recent years, the readout uncertainty due to the finite mea-
surement time has become almost negligible [59]. For the
interested reader, we describe the properties of stabilized
cat codes more explicitly in Sec. VI.

B. Low-density parity-check quantum codes

In the following, all vector spaces are over F2 unless
stated otherwise. We use [�] to denote the set {1, 2, . . . , �}.
A (discrete-variable, DV) [[n, k, d]]-quantum stabilizer
code is defined by an Abelian subgroup S of the n-qubit
Pauli group Pn that does not contain−I . The generators of
S are commonly called stabilizer checks of the code.

An important class of quantum stabilizer codes are
Calderbank-Shor-Steane (CSS) codes. The defining fea-
ture of CSS codes is that their stabilizer generators can
be split into two decoupled sets SX and SZ , which con-
tain only products of the Pauli-X and Pauli-Z operators,
respectively. By using the (isomorphic) mapping between
the n-qubit Pauli group (modulo global phases) and binary
vector spaces [60]

Pn/{±I ,±iI} ∼= F2n
2 , (1)

it is possible to represent the SX and SZ stabilizers of a CSS
code as two matrices: HX ∈ FrX ×n

2 and HZ ∈ FrZ×n
2 . These

matrices can be interpreted as the parity-check matrices of
two classical linear codes, the first designed to correct bit
flips and the second to correct phase flips. For any CSS
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code, the HX and HZ matrices must satisfy the following
orthogonality condition:

HZ · H T
X ≡ HX · H T

Z , (2)

which ensures that the X and Z stabilizer generators com-
mute, i.e., their supports have even overlap. A CSS code
can then be defined as a code over F2n

2 with check matrix

H =
(

0 HZ
HX 0

)
. (3)

The CSS syndrome s of a qubit error e = (eX , eZ) is
defined as

s = (sX , sZ) = (HZ · eX , HX · eZ). (4)

From the syndrome equations above, it is clear that the
decoding of CSS codes amounts to two independent classi-
cal decoding problems for phase flips and bit flips, respec-
tively. However, note that decoding the two check sides
independently ignores correlations, such as Y errors, and
thus is suboptimal in general. In the following, we will
drop the subscripts, but it should be assumed that we are
referring to a single error type (X or Z) unless otherwise
stated. In the language of vector spaces, the goal of decod-
ing is, given a syndrome, to infer an estimate ε such that
s = H · ε that can be used to apply a recovery operation to
restore an error-free logical state. The decoding is success-
ful if the residual error r = e+ ε is a stabilizer, and it fails
if r is a logical operator.

The Tanner graph T (H) = (VD ∪ VC, E) of a code
defined by the parity-check matrix H is a bipartite graph
with data nodes VD and check nodes VC whose incidence
matrix is H . That is, given H , T (H) can be constructed
by creating a data node d ∈ VD for each column and a
check node c ∈ VC for each row of H , and inserting an
edge e = (vc, vd) ∈ E if H(c,d) = 1.

Example 1 (Tanner graph of the Hamming code). Con-
sider the Hamming code, defined as the kernel of the
parity-check matrix

H =
⎛
⎝1 0 0 1 0 1 1

0 1 0 1 1 0 1
0 0 1 0 1 1 1

⎞
⎠ .

The corresponding Tanner graph T (H) is illustrated in
Fig. 2.

In the context of decoding algorithms based on factor-
ization of probability distributions, the Tanner graph is
frequently referred to as factor graph.

A family of quantum low-density parity-check (QLDPC)
codes refers to a stabilizer code family with the additional

FIG. 2. Tanner graph of the Hamming code. The square nodes
represent the checks VC (rows of the check matrix H ) and the
circles represent data nodes VD (columns of H ).

property that the stabilizer generators are sparse. More
specifically, it is required that the degree of the data and
check nodes in the Tanner graph is upper bounded by a
constant (independent of the code size). Intuitively, each
check has a constant weight and each qubit participates in
a constant number of checks.

1. Three-dimensional surface codes

For the remainder of this work, we focus on topo-
logical quantum codes [61–63] as the “outer code” of a
concatenated code. Such codes are derived from a geo-
metric D-dimensional lattice and have local connectivity in
D-dimensional space. In particular, we focus on the three-
dimensional surface code (3DSC) [42,48,57,64,65] as a
representative QLDPC code. Each constituent is identified
with a qubit with Hilbert space C2. Consider a three-
dimensional lattice in Euclidean space captured by a graph
� = (V, E) consisting of vertices V, edges E, faces F , and
volumes W. For two objects in the lattice v, f , we write,
v ∼ f (f ∼ v) to indicate that v is adjacent to f .

To define a quantum code on the lattice �, we associate
qubits with edges and checks with vertices and faces, i.e.,
we define vertex checks Av, v ∈ V, acting on edges adjacent
to vertices

Av :=
∏

e∈E,e∼v

Ze (5)

depicted in Fig. 3(a), and face checks Bf , f ∈ F acting on
edges adjacent to faces

Bf :=
∏

e∈E,e∼f

Xe (6)

shown in cf. Fig. 3(b). To reason about the logical opera-
tors of the code, let us introduce some informal notation.
For a more formal discussion in the language of homology,
we refer the reader to Sec. A.

Let ζ be an edge path in �. A string operator is defined
as a Pauli X or Z operator whose support corresponds to
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(a)

(b)

(c)

(d) (e)

X
Z

FIG. 3. Three-dimensional surface codes with periodic boundaries indicated by additional edges on the sides of the lattice. (a) A
vertex check (of weight six). (b) A face check (of weight four). (c) A volume check (of weight 12). (d) Three-dimensional lattice � with
open boundaries. Rough boundaries are indicated with open edges. A single-qubit X error gives a pairlike syndrome at the endpoints
of the error string (indicated by red vertices). A single-qubit Z error produces a looplike syndrome at adjacent faces (indicated by blue
faces). The loop can be readily seen in the dual-lattice pictures whose dual edges are indicated with dashed lines. (e) Logical operators
of the three-dimensional surface codes. A looplike string corresponds to a logical X operator. A logical Z operator corresponds to a
loop of faces in the dual lattice, i.e., forming a dual sheet wrapping across the lattice along two axes.

the qubits that are associated to edges in ζ as

SP
ζ :=

∏
i∈ζ

Pi, P ∈ {X , Z}. (7)

The weight of a string is the size of its support, i.e., the
number of nontrivial Paulis. In addition to the lattice �,
consider also the dual lattice �∗, which is obtained from
� by associating dual vertices to volumes, dual edges to
faces, dual faces to edges and dual volumes to vertices,
and define co-string operators as string operators on �∗.
Hence, qubits are associated with dual faces, Z checks to
dual volumes, and X checks to dual edges.

Errors correspond to X and Z strings on the lattice that
cause the anticommuting (Z and X ) adjacent checks to be
“flagged,” indicating an error occurred (all other, nonad-
jacent checks are not violated and thus not flagged). The
syndromes caused by violated vertex checks are created
in pairs at the vertices that are the endpoints of X -error
strings, as depicted in Fig. 3(d) for a single-qubit error (i.e.,
a length-1 error string in �). The syndrome of a Z-error
string corresponds to the adjacent violated face checks as
shown in Fig. 3(d) for a single-qubit error. Syndromes
caused by violated face checks are better illustrated in the
dual lattice �∗ (recall that edges correspond to dual faces,
so a string operator in � corresponds to the respective col-
lection of faces in �∗). Considering �∗ it can be seen that
Z syndromes have a looplike geometry in the lattice. In
fact, the looplike syndromes induced by face checks lead
to an additional structure that has been shown to imply the
single-shot property, see also Sec. II B 2.

Given a three-dimensional lattice, we distinguish two
types of boundary conditions. When � has periodic bound-
aries (depicted by additional edges in Fig. 3), i.e., a tessel-
lation of a three-dimensional torus (therefore also called
the three-dimensional toric code, 3DTC), the logical X
operators correspond to strings that form loops on the lat-
tice along one axis, as depicted in Fig. 3(e). The logical Z
operators correspond to looplike sets of faces, called sheets
in �∗, i.e., sets of faces that go across the dual lattice along
two axes as illustrated in Fig. 3(e). Topologically, logi-
cal operators correspond to nontrivial loops, i.e., loops (of
edges and faces, respectively) that are noncontractible and
the contractible loops (those that enclose a region on the
lattice) correspond to stabilizers of the code. It is straight-
forward to see that there are three pairs of logical operators
X̄ , Z̄, corresponding to three (nonequivalent) minimum-
weight loops, one along each of the three different axes,
and the three corresponding orthogonal sheets. Therefore,
the code encodes k = 3 logical qubits. The weight of a log-
ical operator is the number of qubits in its support, i.e., the
length of ζ .

If we instead consider a code on a three-dimensional
lattice � with open boundaries, we define two opposite
sides of the lattice as X -type boundaries, called smooth
boundaries and the four remaining sides as Z-type bound-
aries, called rough boundaries—in analogy to the two-
dimensional surface code. A string operator SX

ζ (of min-
imal length) that connects the smooth boundaries is a
logical X operator on the code, and a dual string operator
SZ

ζ connecting the four rough boundaries corresponds to a
logical Z operator. Since in the presence of open bound-
aries, there is only a single pair of such strings such that
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they are orthogonal and connect the respective boundaries,
the code encodes a single logical qubit.

The X -distance dX of the code is defined as the mini-
mum weight of a logical X operator, and analogously for
dZ . That is, dX is the minimum number of edges across
�, and dZ is the minimum number of edges corresponding
to a sheet across the dual lattice in the presence of peri-
odic boundaries. For a lattice with open boundaries, dX
is defined as the minimum number of edges in a string
connecting smooth boundaries and dZ is defined as the
minimum number of edges corresponding to a sheet con-
necting rough boundaries. For instance, the code depicted
in Fig. 3 has distances dX = 3, dZ = 9. In summary, the
three-dimensional surface code parameters (with open and
periodic boundaries) are given by

3DSC: [[2L(L− 1)2 + L3, 1, dX = L, dZ = L2]],

3DTC: [[3L3, 3, dX = L, dZ = L2]].

Note that by associating X checks with vertices and Z
checks with faces, we obtain an equivalent code, where the
corresponding notions of logicals and distances are simply
exchanged.

2. Single-shot codes

In general, the syndrome extraction circuit used to mea-
sure the stabilizer of the code is subject to noise. As
such, syndrome errors need to be accounted for in fault-
tolerant QEC protocols. Designing fault-tolerant syndrome
extraction circuits can add considerable overhead. For
instance, the Shor fault-tolerant scheme requires at least
∝ d3 check measurements [46,47]. Dennis et al. [48] argue
that for a two-dimensional surface code with distance d,
O(d) rounds of noisy syndrome measurements need to be
conducted to achieve fault tolerance.

As an alternative to time-domain decoding, Bombin [43]
showed that there exist single-shot codes for which a single
round of noisy syndrome measurements suffices. One of
the main advantages of single-shot codes is that the com-
plexity of decoding is reduced since the structure of the
decoding problem does not have an additional time dimen-
sion—as is the case for non-single-shot codes. Moreover,
the time needed to conduct a QEC cycle is reduced since
only a single set of stabilizer measurements needs to be
done, which results in the fact that more logical operations
can be conducted in a time interval compared to time-
domain decoding. The explicit construction of single-shot
codes has been explored recently [44,66], where the central
idea is to use redundancy in the checks to ensure the single-
shot property. In Ref. [44], it is shown that single-shot
codes with necessary redundancy can be constructed using
tensor products of chain complexes (i.e., three-dimensional
hypergraph product constructions). Intuitively, in this
construction, the extra dimension yields an additional

(classical) code that can be used to detect syndrome errors.
In this case, we can define an additional set of classi-
cal checks called metachecks with check matrix M that
defines the corresponding classical linear metacode M.
The metacode satisfies the condition M · HX /Z = 0, which
means that every syndrome that can originate from HX /Z
is a codeword of the metacode M. The metacode M
is used to determine whether a syndrome is valid, i.e.,
we can use the metachecks to compute a metasyndrome
sm := M · sX /Z , which can then be decoded to fix syn-
drome failures.

Geometrically, in the 3DSC, we can associate
metachecks with the volumes of the lattice, as depicted
in Fig. 3(c). This gives a X metacode MX whose checks
act on the syndromes induced by the X -face checks. Intu-
itively, the volume metachecks help to close noisy looplike
syndromes.

C. Noise model

In this section, we describe the noise model that is
used for the investigation of the various decoding methods
(cf. Sec. III) as well as the quasi-single shot protocol (cf.
Sec. V). More details about our simulation procedures can
be found in Sec. G.

We consider a biased phenomenological noise model
with analog syndrome measurements inspired by stabilized
cat qubits. We assume a three-dimensional architecture in
which bosonic cat qubits are used as the inner code and a
[[n = 3L3, k = 3, dX = L, dZ = L2]] three-dimensional sur-
face code with periodic boundaries is used as the outer
code. i.e., the n physical qubits are cat qubits, so qubits
encoded in continuous-variable quantum systems with
Hilbert space L(R2), which are used to protect k logical
qubits with X (Z) distance dX = L (dZ = L2). That is to
say, this noise model affects the description on two lev-
els: the level of qubits in the outer code, and the level of
continuous-variable bosonic modes in the inner code. Note
that our phenomenological noise model, while capturing
key features of cat qubit noise, does not explicitly corre-
late effective error rates to physical noise and confinement
parameters. Our main motivation for using this model is
to retain generality and applicability to related inner qubit
noise models while capturing the key features of cat qubit
noise.

In each QEC cycle, the stabilizers are measured, yield-
ing an analog syndrome as a real number for bosonic
codes. Intuitively, the magnitude of the analog measure-
ment can be interpreted as information on the reliability of
the syndrome readout and thus can be used in the overall
decoding routine. Note that in this work we use a phe-
nomenological noise model and hence do not consider a
specific implementation of the syndrome extraction circuit.
For example, the standard Steane scheme [67] could be
used.
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1. Qubit error noise model

Here, we outline specifics concerning the error model
on the level of qubits in the outer code. We consider a
model defined as a quantum channel that takes the form of
a diagonal Pauli channel, reflecting stochastic Pauli noise.
Such a noise model can be obtained from a nondiagonal
error model via a group twirl. Let ρ denote the density
matrix of a single-qubit state that undergoes the quan-
tum noise. Then, the Pauli error-channel E has the Kraus
representation

E(ρ) := (1− p)ρ + pX X ρX + pYYρY + pZZρZ. (8)

The single-qubit physical error rate perr ∈ [0, 1] is the total
probability of X -, Y-, and Z-type errors. The individual
Pauli error rates p	, 	 ∈ {X , Y, Z} are specified by the
physical error rate perr and a bias vector �r = (rX , rY, rZ).
This bias η	 for a certain error species 	 ∈ {X , Y, Z} is
given by

η	 := r	∑
	′ =	 r	′

perr. (9)

We call, for example, a noise channel Z-biased, if

ηZ = rZ

rX + rY
> 0.5. (10)

2. Syndrome error noise model

Inspired by the physical realization of bosonic cat
qubits, we model the syndrome (or check) errors as Gaus-
sian random noise that is added to the continuous syn-
drome x ∈ R obtained in the measurement. This affects
the readout of the noiseless stabilizer values si = ±1.
Therefore, the noisy stabilizer values s̃i have a continu-
ous outcome given by s̃i = si + xi where xi ∼ N (0, σ 2

i )

is a Gaussian random variable with mean 0 and variance
σ 2. By thresholding the noisy syndrome s̃, i.e., taking
signs, sgn(s̃i), we obtain the hard syndrome. As detailed
in Sec. C 2, the thresholding procedure allows us to relate
syndrome error rates psynd

err and the variance σ 2 of the Gaus-
sian noise process. i.e., given psynd

err , the associated standard
deviation σ is given by

σ = 1√
2Erfc−1(2psynd

err )
, (11)

where x �→ Erfc−1(x) is the inverse of the complementary
error function.

When considering biased-noise error models, we also
bias the syndrome error channel in the same way as we bias
the qubit error channel discussed in the previous section.
From the individual syndrome error rates for X and Z
checks, we obtain through Eq. (11) the corresponding vari-
ance of the Gaussian random noise model. For example, a

large X bias means that there will be more bit-flip errors,
as well as more X -syndrome errors compared to phase-flip
errors and associated syndrome errors. In other words, we
model the error affecting the bosonic modes of the inner
code and in consequence the qubits of the outer code in a
phenomenological fashion.

When incorporating the analog information into the
decoding process, we replace the log-likelihood ratios
(LLRs) of a discrete error model γsynd = log[(1− q)/q],
where q is the measurement error probability, with

γi = log
[

Pr(s̃i|si = +1)

Pr(s̃i|si = −1)

]
= 2s̃i

σ 2 , (12)

where Pr(s̃i|si = ±1) is the probability of observing the
noisy syndrome s̃i under the condition that the noiseless
syndrome value is si = ±1.

III. MIN-SUM BELIEF PROPAGATION
ALGORITHMS

In this section, we discuss the decoding of quan-
tum codes using iterative decoding procedures based on
minimum-sum belief propagation (BP) decoding. First in
Sec. III A, we review standard min-sum BP decoding for
hard syndromes (i.e., for discrete-variable codes), which
forms the basis for the discussed decoding procedures. In
Sec. III B, we review recent work on the use of analog syn-
drome information to decode quantum codes [68], propose
improvements to these techniques, and discuss caveats of
the original method. The results of the numerical sim-
ulation are presented in the following section, Sec. IV,
together with a comparison to the proposed decoding
technique, analog Tanner graph decoding.

A. Hard syndrome MSA decoding

Belief propagation (BP) is an iterative algorithm that is
known to be efficient in decoding classical LDPC codes
and has been adapted to quantum codes successfully in
recent years. BP is a message-passing algorithm operat-
ing on the Tanner graph of the code (also called the factor
graph in this context). The graph is considered a model that
describes the factorization of the joint probability distribu-
tion of the error. Given the measured syndrome, the goal
of BP is to (approximately) compute the marginal proba-
bilities for each bit. For an error e and syndrome s = H · e,
BP finds an estimate ε of the error e that yields the same
syndrome s = H · ε. The estimate vector ε is formed as
ε = (ε1, . . . , εn) where

εi := argmaxei
[P(ei|s)]. (13)

There are several variations of the standard BP algorithm
that differ in the way marginal probabilities are computed.
In the following, we focus on min-sum BP, which has been
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argued to be easier to implement on hardware-near devices
than other variants [68]. For more details on min-sum BP,
we refer the reader to Sec. C 3.

When applied to factor graphs that are trees (i.e., that
do not contain loops), BP is known to be exact and will
converge to a solution within a number of iterations less
than the diameter of the graph. However, in general, LDPC
codes contain loops. In this setting, BP computes approx-
imate marginals and is not guaranteed to converge to a
solution that satisfies the syndrome equation. In cases
where BP does not terminate, the decoding can be deferred
to a postprocessing routine. Such postprocessing routines
are typically more computationally expensive but will
ensure the decoder returns a solution satisfying the syn-
drome equation. A commonly used postprocessing method
to improve the overall decoding performance of BP algo-
rithms is ordered statistics decoding (OSD). This was first
introduced in Ref. [69] and has recently been adapted to
QLDPC codes [41,70].

Let us briefly summarize the main aspects of OSD. We
consider a single check side in the following syndrome
equation:

H · e = s. (14)

In general, H may not be a square matrix and may not
have full rank, and therefore we cannot directly invert H to
solve Eq. (14). The strategy applied is to choose a subset
of columns that are linearly independent, and hence form
a basis. Let S := {Si} be the set of column indices of lin-
early independent columns we chose and HS be the matrix
of column vectors obtained. Clearly, HS has full rank and
can thus be inverted to give a solution

H−1
S · s = eS. (15)

Different choices of S correspond to (unique) solutions eS.
The main idea of BP+OSD is to use the marginal proba-
bilities computed by the BP decoding algorithm to select
a set C that contains columns corresponding to bits with a
high error probability.

B. Soft-syndrome MSA decoder

Recently, Ravendraan et al. [68] introduced a variant
of iterative min-sum decoding called soft-syndrome min-
sum algorithm (SSMSA) to decode QLDPC codes using
analog information. We briefly review the main aspects of
the algorithm, for which we present the first open-source
implementation. We show that the results of our imple-
mentation match the original results presented in Ref. [68].
Furthermore, we explore the combination of SSMSA with
ordered statistics decoding (OSD), which improves the
decoding performance compared to the original work.

SSMSA is an iterative message-passing decoding pro-
cedure, i.e., a variant of (min-sum) belief propagation

(a) (b)

FIG. 4. (a) Illustration of the tanner graph for SSMSA decod-
ing. The analog information taken into account by SSMSA can
be illustrated similarly to ATD (although in SSMSA the analog
information is not directly incorporated in the factor graph), how-
ever, because of the cutoff parameter, it may happen that SSMSA
discards the analog information, which corresponds to ignoring
the virtual nodes, indicated by dashed edges. (b) Sketch of the
analog Tanner graph. The subgraph colored in black corresponds
to the Tanner graph of the code. The subgraph highlighted in yel-
low corresponds to the virtual nodes that are used to incorporate
the analog information. Their union is the ATG.

(BP) that uses soft information, i.e., real syndrome values
instead of hard (binary) ones in its update rules. Initially,
the corresponding binary syndrome is obtained by “thresh-
olding” the analog syndrome, i.e., determined by the signs
of the analog values. The update rules that are used to com-
pute the messages are equivalent to those used in min-sum
BP decoding with the addition of a “cutoff” parameter ,
which is used to determine if the analog syndrome infor-
mation should be considered in the update rules or not.
If the absolute value of the analog syndrome is below
the cutoff, it is taken into account when computing the
min-sum updates (in addition to the standard messages).
Conversely, if the absolute value of the analog syndrome
is above the cutoff, the standard min-sum rules are applied.
The SSMSA decoding process is visualized in Fig. 4(a)
and the detailed pseudocode is presented in Algorithm 2 in
Appendix C 4.

Analogously to BP, it is not guaranteed that SSMSA
converges. The algorithm tries to infer a decoding estimate
based on marginal probabilities, i.e., it tries to find the most
probable error given a syndrome in a given number of max-
imum steps. Hence, in case the algorithm terminates due to
reaching the maximum number of steps, one can in princi-
ple use the marginal probabilities the algorithm computed
up to termination in a postprocessing step to infer a decod-
ing estimate. However, postprocessing techniques were not
considered in Ref. [68].

Note that in SSMSA, soft syndromes are not directly
included in the parity-check matrix H (i.e., the factor graph
used for decoding is not altered), but are only used as an
additional parameter to compute the marginal probabili-
ties during the iterative decoding procedure. This means
that measurement errors will not be considered for pos-
sible fault locations that satisfy the syndrome in OSD
postprocessing, i.e., there are situations in which we are
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trying to solve for a syndrome that is not in the image of H .
In that case, it can happen that the “solution” with the high-
est error probability is not a solution of Eq. (15). This leads
to cases where OSD postprocessing does not give a sig-
nificant improvement over standard SSMSA decoding. In
the following section, we propose techniques that amend
this problem by ensuring that the factor graph is always
invertible, i.e., has full row rank.

IV. ANALOG TANNER GRAPH DECODING

In this section, we propose a novel decoding tech-
nique for quantum stabilizer codes using analog syndrome
information that is based on min-sum BP+OSD decod-
ing. We call this technique analog Tanner graph decoding
as it is based on the construction of a variant of the
standard Tanner graph that incorporates analog syndrome
information.

In Sec. IV C, we briefly review single-shot decoding
of quantum codes. Then, in Sec. IV C, we show how
the analog Tanner graph decoding can be adapted to be
used to decode single-shot quantum codes. The numerical
results in this section are obtained by standard Monte Carlo
decoding simulations, which are discussed in more detail
in Sec. G. Additionally, in Appendix D we discuss how the
proposed techniques can be adjusted to also include analog
information of the data qubits and not only of the syndrome
readout in similar architectures as the one we focus on in
the rest of this paper.

Given the Tanner graph of a code T = (VC ∪ VD, E),
we can directly incorporate analog information by adding
|VC| additional data nodes, called virtual (data) nodes, VV.
Each check node VC, is connected to a single virtual data
node through a single edge, as visualized in Fig. 4(b). The
virtual data node stores the probability that the check is in
error. In our protocol, this probability is derived from the
magnitude of the analog syndrome readout. We refer to the
modified Tanner graph as an analog Tanner graph.

In terms of parity-check matrices, building the ATG
amounts to appending an m× m identity matrix 1m to the
original parity-check matrix of the code:

Definition 1 (Analog check matrix). Given a parity-
check matrix H ∈ Fm×n

2 corresponding to the incidence
matrix of a Tanner graph T (H), the analog check matrix
HA has the following form:

HA := [H | 1m]. (16)

Clearly, T A constitutes a valid Tanner graph whose inci-
dence matrix is HA. Moreover, HA always has full rank.
Consequently, there always exists a solution to the syn-
drome equation, cf. Eq. (14). For decoding, the virtual
data nodes are initialized with the analog syndrome LLRs
given in Eq. (12). Note that this construction can be seen

as a generalization of data syndrome codes for standard,
hard (binary) syndromes [71–75], tailored to error mod-
els inspired by bosonic codes and their associated analog
syndrome information.

To decode using the ATG, we can now apply stan-
dard decoding approaches such as BP+OSD, making the
approach flexible to different decoding strategies and vari-
ations of the algorithm. If not stated otherwise, we refer
to decoding using the ATG with BP+OSD as analog Tan-
ner graph decoding. Note that the explicit inclusion of
virtual nodes that correspond to fault locations for mea-
surement errors eliminates the problems encountered with
SSMSA and the OSD postprocessing techniques men-
tioned at the end of Sec. III B. Moreover, even though
SSMSA with a cutoff of  = ∞ is conceptually similar to
ATD, the syndrome update rules in SSMSA (as discussed
in the previous section) and the fact that the information
is not directly incorporated into the factor graph used for
decoding, leads to significant performance discrepancies.

To investigate the decoding performance and compare
ATD to SSMSA(+OSD), we perform standard Monte
Carlo simulations to estimate the logical error rate for
increasing syndrome noise σ (and fixed data error rate
p = 0.05) on a family of lifted product (LP) codes. The
codes are taken from a code family defined in Ref. [24].
For more detail on the construction of codes via the lifted
product, we refer the reader to Sec. C 1 in the Appendix.
In Fig. 5(a), we compare the performance of SSMSA and
ATD in the absence of OSD postprocessing, i.e., only
BP is used for ATD (ATD+BP) and the original SSMSA
algorithm is used. Following the methodology of Ref. [68],
we fix the data error rate of the unbiased depolarizing noise
model to be p = 0.05 and vary the syndrome noise. The
strength of the syndrome noise is characterized by the stan-
dard deviation σ of the Gaussian noise channel as defined
in Sec. II C 2. From Fig. 5(a), it can be seen that ATD+BP
always outperforms SSMSA if the logical error rate is
limited by the data noise. We examined different cutoff
values for the SSMSA implementation and found that a
large value of  yields the best performance for the code
and noise parameter settings considered, but that there is
no significant performance difference between  = 100
and values  > 100. Additional discussions on different
decoder parameterizations are presented in Appendix F. In
particular, setting the cutoff for SSMSA to  = 0 (mean-
ing that the decoder does not take the analog syndrome
information into account) clearly leads to higher logical
subthreshold error rates.

In Fig. 5(b), the results of the same simulation setup
as in Fig. 5(a) but using OSD postprocessing for SSMSA
and ATD are shown. We observe that OSD always
improves the performance of ATD. However, OSD leads
to a reduced threshold when combined with SSMSA.
Furthermore, we observe higher logical error rates for
SSMSA-OSD when σ > 0.35, as well as the value of

020349-11



LUCAS BERENT et al. PRX QUANTUM 5, 020349 (2024)

0.1 0.2 0.3 0.4 0.5 0.6
σ

10−4

10−3

10−2

10−1

100

L
og

ic
al

E
rr

or
R

at
e

(a)

0.1 0.2 0.3 0.4 0.5 0.6
σ

(b)

d =
SSMSA (Γ = 0)
SSMSA (Γ = 5)
SSMSA (Γ = 100)
ATD

12 16 20

FIG. 5. Comparison of the SSMSA decoder with ATD for increasing syndrome noise σ on a family of lifted product codes with
distances d ∈ {12, 16, 20}, cf. Sec. C 1. The data error rate of the unbiased depolarizing noise model is fixed at p = 0.05. (a) Com-
parison of the original SSMSA implementation and ATD using BP (without OSD). (b) Comparison of SSMSA+OSD and ATD using
BP+OSD. The legend is shared between both panels and  indicates the cutoff value of the soft information (SI) SSMSA decoder. Note
that the case  = 0 corresponds to ignoring the analog information and, therefore, is equivalent to ordinary hard syndrome decoding.

the cutoff  becoming less relevant to the decoder
performance. This illustrates the possible issues that can
occur when combining SSMSA and postprocessing with-
out further modifications as discussed in the previous
subsection.

A. Comparison with SSMSA

The ATD method and SSMSA are conceptually simi-
lar, but differ in their implementations. First, we focus on
the SSMSA cutoff parameter , an input parameter that
the decoding performance explicitly depends on. The two
extreme values of  correspond to  = 0 and  = ∞. For
the former case, the syndrome is “trusted” and the analog
information is never taken into account. In this scenario,
the virtual updates are ignored. In the case where  = ∞,
the analog information is always taken into account. The
performance of the SSMSA algorithm is therefore related
to the choice of . In contrast, ATD does not have a cut-
off parameter: the soft information is incorporated directly
into the decoding graph and the amount of “trust” assigned
to the syndrome value is determined through the standard
MSA update rules.

Secondly, it is nontrivial to adapt SSMSA to more gen-
eral Tanner graph constructions that go beyond the case
of single-shot decoding. For example, SSMSA does not
extend directly to the case of time-domain decoding or
single-shot decoding with metachecks [44,45]. By com-
parison, the ATD decoder works out of the box in both
of these settings as it considers a different factor graph for
decoding.

Finally, when the magnitude of the analog information is
below the cutoff, , the SSMSA update rules can overwrite
the original analog syndrome information, [cf. Line 22 in
Algorithm 2]. The remaining SSMSA decoding iterations
then no longer have access to the initial anolog syndrome
information. In contrast, this scenario does not occur in

ATD, because the analog syndrome information is stored
explicitly in the nodes of the factor graph and the initial
values are used throughout the algorithm by definition of
the update rules. Hence, the initial analog syndrome infor-
mation remains accessible in all ATD decoding iterations.
As such, we argue that ATD is better positioned to make
full use of the anolog syndrome information as the infor-
mation propagates through the decoding graph explicitly.

B. Single-shot decoding with metachecks

The three-dimensional surface code is defined by three
parity-check matrices: HX , HZ , and MX . The first two are
the standard CSS code matrices that define the X and Z sta-
bilizers. The matrix MX defines a so-called metacode MX ,
which is designed to provide protection against noise in the
Z syndromes (i.e., X checks). More precisely, the meta-
code is defined so that all valid (nonerrored) Z syndromes
are in its code space. In other words, MX · sZ = 0, when
sZ = HX · eZ for all eZ ∈ Fn

2.
In Ref. [44], Quintavalle et al. defined the two-stage

single-shot decoder for the three-dimensional surface
codes and related homological product codes. The steps of
the two-stage single-shot decoding protocol are as follows:

(a) Stage 1, syndrome repair: measure the noisy syn-
drome s = sZ + se, where sZ is the perfect syndrome
and se is the syndrome error. Solve the meta-
code decoding problem: given the metasyndrome
sM = MX · s, find an estimate s′ for the noiseless
syndrome. If the metadecoding is successful, we
obtain a corrected syndrome sC = s+ s′ satisfying
MX · sC = 0.

(b) Stage 2, main code decoding: use sC to obtain the
decoding estimate e′Z by solving sC = HX · eZ .

Quintavalle et al. demonstrated that three-dimensional
surface codes can be decoded using an implementation
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of the two-stage protocol where the first stage uses a
minimum-weight perfect matching (MWPM) decoder and
the second stage a BP+OSD decoder.

A problem with the two-stage single-shot decoder is
that the syndrome repair stage is independent of the main
decoding stage. As a result, syndrome repair is always
prioritized over applying corrections to the data qubits,
even in situations where it would be more efficient to
apply a combined correction. Furthermore, in certain cir-
cumstances, the two-stage decoder is subject to a failure
mode whereby the syndrome repair step results in an
invalid “corrected” syndrome sC that is not in the image of
the parity-check matrix HX , such that sC /∈ ImHX . Quin-
tavalle et al. proposed a subroutine to handle such failure
modes, but this adds to the computational runtime of the
protocol [44].

Recently, Higgott and Breuckmann [45] proposed a
single-stage decoding protocol for single-shot QLDPC
codes that solves the problems mentioned earlier with
the two-stage decoder. In the following we drop sub-
scripts for simplicity and let H be a check matrix, and
M be the corresponding metacheck matrix. The single-
stage approach considers the decoding problem of a given
noisy syndrome s = He+ se and metasyndrome sM = Ms,
to find a minimum-weight estimate (e′, s′e), such that H M ·
(e′, s′e)

T = (s, sM )T, where

H M :=
(

H 1m
0 M

)
, (17)

is called the single-stage parity-check matrix. The single-
stage parity matrix combines both the decoding of the data
errors e and the syndrome errors se. This ensures that the
decoder uses the full information available to it, in contrast
to the two-stage decoder that processes the metasyndrome
and syndrome separately. Furthermore, note that the first
block row of Eq. (17) is full rank. This property guarantees
that all solutions are valid, meaning that the single-stage
decoder does not suffer from the failure mode that arises in
the two-stage decoding approach.

C. Analog single-shot decoding

We now discuss how ATD can be applied to improve
single-stage single-shot decoding and explore connections
between single-stage parity-check matrices and the ATG
construction. To begin, we first note that the single-stage
parity-check matrix of Eq. (17) is conceptually similar to
the analog parity-check matrix of Eq. (16): the single-stage
parity-check matrix simply introduces a particular set of
constraints described by the metacode MX . Note that, how-
ever, as these constraints are linear combinations of the top
full-rank block (H | 1m) of H M . Hence H M can be under-
stood as making the implicit meta constraints explicit in
the factor graph [76]. An example of a single-stage Tanner
graph is depicted in Fig. 6. From this sketch, it is evident

FIG. 6. Sketch of the analog single-stage Tanner graph based
on H M . The black checks, bits, and edges correspond to the Tan-
ner graph of the linear code H . The orange nodes are due to the
identity 1m in Eq. (17) and are initialized with the analog infor-
mation of the syndrome readout. The red nodes are due to the
metacode, i.e., the metacheck matrix M .

that this construction corresponds exactly to the structure
of the ATG together with additional (meta)check nodes
as defined by the metacode MX . If we incorporate the
metacode directly in the construction of the ATG, (simi-
lar to Ref. [45]), we construct the single-stage ATG, which
can be used to decode single-shot codes using analog
information.

Let us briefly review some details of the overall decod-
ing procedure. Consider an analog single-stage data syn-
drome s ∈ Rrz . To initialize the ATD, we threshold s to
a binary syndrome sb ∈ {0, 1}rz , which we use to decode.
Additionally, we use the analog syndrome values of s to
initialize the virtual nodes of the ATG, as in standard ATD.
Standard decoding algorithms such as BP+OSD can then
be applied to the resulting factor graph to obtain a decoding
estimate.

In order to investigate the decoding performance of
single-stage single-shot ATD decoding, we conduct sus-
tainable threshold simulations for a concatenated bosonic
3D toric code using a phenomenological noise model.
Single-shot error correction will generally leave some
residual error after the correction. The goal is to sup-
press the accumulation of this residual error to the point
at which it can be corrected in subsequent rounds. To this
end, we define the sustainable threshold for a single-shot
code as the physical error rate, psus-th, below which the
residual error remains constant and the quantum informa-
tion can be stored indefinitely by increasing the distance
of the code. More precisely, the sustainable threshold is
defined as

psus-th := lim
R→∞

pth(R), (18)

where pth(R) is the threshold for R rounds of noisy stabi-
lizer measurements.

To estimate psus-th numerically for the 3D toric
code, we estimate pth(R) for increasing values of R ∈
{0, 1, 2, 4, 8, . . . , 128} until the value pth(R) is constant, i.e.,
until the threshold does not decrease when
increasing the number of rounds R. Our simulation results
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are shown in Fig. 7(a). We see that under single-stage ATD
decoding, the 3D toric code has a sustained threshold of
9.9%. This improves by 2.8% on the sustained threshold of
7.1% obtained by Higgott and Breuckmann for the same
family of 3D toric codes, but using DV qubits and hard
syndromes [45]. The improved sustainable threshold we
observe highlights the benefits of considering analog infor-
mation in decoding. Figure 7(b) shows the threshold of
the 9.9% for concatenated bosonic 3D toric codes of size
L = {5, 7, 9, 11} after 128 noisy rounds of decoding.

We note that the sustainable thresholds we have found
could be further optimized by fine tuning the parameters
of the BP+OSD decoder. However, rather than showing
optimal improvements, the goal of this experiment is to
indicate the improvements that become possible by consid-
ering analog readout information. A more complete study
would additionally compare below-threshold error rates,
which are on this scale more relevant than the improve-
ment of the threshold. We will leave this question open
for future work, including a more detailed simulation
including circuit-level noise models.

Finally, we note that the check matrix defined in Eq. (17)
cannot be used in the SSMSA algorithm without signif-
icant modifications. The reason for this is that syndrome
errors are already included explicitly in Eq. (17), which can
a priori not be handled by SSMSA, since for SSMSA the
analog information is an input parameter and the algorithm
operates on the standard parity-check matrix of the code.
Moreover, the metachecks do not correspond to physi-
cal measurements, i.e., they do not have analog syndrome
information.

V. QUASI-SINGLE SHOT CODES

Even in the presence of strong noise bias, as in the
case of cat-LDPC architectures, both error species, X and

Z noise, must be corrected to achieve good overall logi-
cal fidelity [19]. When implementing one-sided single-shot
codes, such as the three-dimensional surface code, we can-
not rely solely on the single-shot side of the code to correct
errors.

To decode a quantum code that does not have the single-
shot property, multiple rounds of (noisy) syndrome mea-
surements must be performed so that the decoder infers
the presence of measurement noise [46–48,77]. Usually,
this process is referred to as repeated measurements or
time-domain decoding, since repeating stabilizer measure-
ments adds an additional time dimension when considering
the decoding instance. In this section, we investigate the
decoding of quantum codes under phenomenological noise
with repeated measurements in the presence of analog
information. To this end, in Sec. V A, we discuss overlap-
ping window decoding [48] that we generalize to decode
QLDPC codes over time in the presence of analog infor-
mation. Moreover, we elaborate on the relation between
the overlapping window method and the ATG construction
proposed in Sec. IV.

Motivated by the structure of 3D bosonic-LDPC code
architectures, we further propose a novel decoding proto-
col that we call w-quasi-single shot codes (w-QSS codes).
The main idea is to leverage noise bias and analog syn-
drome information (provided by bosonic-LDPC codes) to
demonstrate that only a small number w � d of repeated
syndrome measurement cycles suffices for the non-single-
shot check side to give an overall decoding protocol
with high logical fidelity for error rates sufficiently below
threshold.

The central result of this section is that we demonstrate
numerically that for the cat-3DSC with reasonable code
sizes (L = 11), the w-QSS protocol achieves a threshold
of approximately equal to 1.5% for the non-single-shot
side under phenomenological noise and that in the sub-
threshold regime, w = 3 suffices to match the decoding
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FIG. 7. Performance of single-shot analog Tanner graph decoding for 3D toric codes. (a) Sustainable threshold of the single-shot
side of 3D toric codes using ATD. The analog information increases the sustainable threshold of current state-of-the-art methods [45]
by almost 3%. The results labeled “hard syndrome” are due to Higgott and Breuckmann [45], while the “analog syndrome” results are
obtained with our ATD method. (b) Example of threshold determination after 128 rounds of decoding using toric codes with lattice
size L ∈ {5, 7, 9, 11}.
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performance of time-domain decoding with ∝ d repeated
measurements.

A. Analog overlapping window decoding for
QLDPC codes

To decode an [[n, k, d]]-quantum code under phenomeno-
logical noise, i.e., when the syndrome measurements are
noisy, we need to repeat the measurements several times
(usually at least d times) in order to handle the noisy
syndromes [47,48]. Generally, this leads to the dimension
of the decoding instance being increased by one, as the
time dimension is now also being considered. Hence, we
refer to this decoding problem as time-domain decoding.
For example, the decoding problem of a repetition code
under phenomenological noise leads to a two-dimensional
decoding problem, analogous to the two-dimensional sur-
face code under bit-flip noise. Similarly, the decoding
of the two-dimensional surface code over time leads to
a three-dimensional problem, analogous to decoding the
three-dimensional surface codes under bit-flip noise. We
make the connection between the proposed construction
of ATG, the decoding of quantum codes over time, and
the tensor product chain complexes explicitly and formally
argue that they are equivalent (cf. proposition 1).

Overlapping window decoding (OWD) was originally
introduced by Dennis et al. in Ref. [48] to decode quantum
surface codes over (finite) time. In OWD we divide the
collected syndrome history into w-sized regions, the first
two of which are sketched in Fig. 8. At any instance, the
decoder computes the correction for two regions, whereas
the older one is called “commit” and the newer one “tenta-
tive,” Rc, Rτ , respectively. A window encompasses a total
of w noisy syndrome measurements. For each decoding
round, the syndrome data of 2w rounds, i.e., two regions,
is used to find a recovery operation by applying a decoder.
However, only the correction for the first w rounds, i.e.,
for region Rc is applied (by projecting onto the final
time step of Rc and applying the recovery accordingly).
After applying the recovery, the region Rc can be dis-
carded, and only Rτ is kept. Then, in the next decoding
round, the same procedure is repeated using the previous
Rτ as the new commit region and the next w rounds as
the new temporary region, which is conceptually equiv-
alent to “sliding up” the 2w-sized decoding window one
step.

Dennis et al. argue for the two-dimensional surface
code that the number of time steps w should be cho-
sen proportionally to the distance of the code, w � d, to
ensure that the probability of introducing a logical oper-
ator is kept small. This method is needed to simulate
memory experiments over (a finite amount of) time, since
the last, perfect round of measurements (corresponding to
data qubit readout) may artificially increase the observed
threshold leading to the fact that doing fewer repetitions
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FIG. 8. Sketch of the overlapping window decoding method
of a repetition code as proposed in Ref. [48]. (a) A spacelike sin-
gle data qubit error, (b) a timelike error, (c) a space-time error,
(d) a space-time error that extends across the region boundary,
(e) a timelike error that extends into the next decoding round.
Note that the error (d) will only be partially corrected as it
extends over the boundary of the commit region. The inferred
correction will imply that all defects in the commit region are
removed, but will introduce a new defect in the tentative region
shown as a gray dot. Defects created in this way are referred to
as virtual defects [49] in the literature. An error purely resid-
ing in the tentative region will be considered during decoding
to infer a decoding estimate matching the syndrome, but will not
be corrected in the same round.

always performs better. This aspect has also been observed
in Ref. [78]. Additionally, overlapping window decoding
also corresponds to how a fault-tolerant quantum computer
will likely be decoded in practice [49].

Let us at this point fix some terminology: the window
size w is the number of syndrome measurement records
in a single window, i.e., the total size of the two regions
is given by |Rc| + |Rτ | = 2w. A single round of decod-
ing takes 2w noisy syndrome measurements into account,
however, due to the sliding nature of the decoding window,
n rounds of decoding correspond to (n+ 1)w syndrome
measurements. We refer to time-domain decoding, where
the number of repetitions is proportional to the distance of
the code as standard decoding. To apply this method to
arbitrary QLDPC codes, we first propose the construction
of the 3D analog Tanner graph, i.e., the decoding graph
over time for time-domain decoding.

Given the Tanner graph of a QLDPC code T (C), we
first create copies of T and introduce an additional set
of bit nodes between pairs of checks between consecutive
copies of T , and an additional set of bit nodes for the last
copy of T . These correspond exactly to timelike errors on
syndrome nodes. The construction is sketched in Fig. 9.
Algebraically, the multiround parity-check matrix H̃ , i.e.,
the incidence matrix of the multiround Tanner graph can
be defined as follows.
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FIG. 9. Overlapping window decoding for QLDPC codes
(arbitrary Tanner graphs). The individual Tanner graphs of a code
described by the parity-check matrix H are “glued” together by
the orange syndrome nodes that correspond to timelike (mea-
surement) errors. A single decoding round with window size w
involves 2w measurements, but only corrections in the first w are
committed, see also Fig. 8.

Definition 2 (Multiround parity-check matrix and Tan-
ner graph). Given an m× n parity-check matrix H , the
r-multi-round parity-check matrix is defined as

H̃ := (
Hdiag | 1sdiag

)
(19)

=

⎛
⎜⎜⎜⎜⎝

H 0 0 . . . 1m
H 0 . . . 1m 1m

H 0 . . . 1m 1m
. . . . . .
H 0 0 1m 1m

⎞
⎟⎟⎟⎟⎠ ,

(20)

where Hdiag is a block-diagonal matrix with r diagonal
block entries, and 1sdiag has a step-diagonal form, consist-
ing of m× m identity matrices.

Hence, H̃ is an LDPC code whose parity-check matrix
consists of copies of H with additional bit nodes between
pairs of checks. It is easy to see that this code is LDPC
(with respect to the number of repetitions) since the vertex
degree for each check is increased by (at most) 2, indepen-
dent of the number of repetitions. As an example, consider
the multiround (analog) Tanner graph and the correspond-
ing multiround check matrix depicted in Fig. 1(f), which
corresponds to an instance of a multiround parity-check
matrix (and Tanner graph) for a repetition code over two
rounds.

We show that the construction of the multiround Tan-
ner graph for r rounds of syndrome measurement can
be described as the tensor product chain complex of the
chain complex corresponding to the QLDPC code C and
the chain complex of (a slight variant of) the r-repetition
code R:

Proposition 1 (Informal statement). The r-multi-round
parity-check matrix H̃ of C is equivalent to the check
matrix of the tensor product code R⊗ C.

The proof is elementary and follows from the chain
complex tensor product; we refer the reader to Appendix B
for more details. Note that this highlights that the con-
struction is equivalent to “stacking” the ATG constructed
from H and connecting the virtual nodes between pairs
of checks. This gives a straightforward correspondence
between ATGs and phenomenological check matrices and
allows us to directly apply ATD to H̃ .

The overall procedure for multiround decoding with
analog information can be summarized as follows. First,
from the parity-check matrix H build the r-multi-round
check matrix H̃ (corresponding to the multiround analog
Tanner graph). Second, use the virtual nodes (correspond-
ing to timelike data nodes in standard models) to incorpo-
rate analog syndrome information. And finally, apply the
ATD decoder on H̃ .

Note that recently and independently, BP+OSD has been
used to decode (single-shot) LDPC codes under a circuit-
level noise model [35,40]. The proposed overlapping win-
dow approach we outline in this work differs in that it
also considers analog information in the decoding. Addi-
tionally, our methods apply to QLDPC codes in general
and do not rely upon codes with a special code structure.
Furthermore, recently and independently in Ref. [79], the
authors considered decoding of LDPC codes under discrete
phenomenological noise using a check-matrix construction
equivalent to our definition of the multiround parity-check
matrix. However, they do not employ overlapping window
decoding.

B. Quasi-single shot decoding

In the previous section, we discussed how ATD can be
used together with multiround (analog) parity-check matri-
ces to decode under phenomenological noise with analog
information. In this section, we propose a novel proto-
col based on these techniques that lowers the overhead
induced by repeated measurements.

In the w-QSS protocol, we assume a QLDPC code where
one side is single-shot and the other side is not—inducing
the need for at least d repeated measurements (or a num-
ber of repeated measurements proportional to the distance
of the code) in the presence of noisy syndromes, where
d is the distance of the non-single-shot side. This applies,
for instance, to three-dimensional surface codes, which we
use as representatives in the following. The single-shot
side of the code can be decoded using analog single-stage
decoding discussed in Sec. IV C. Complementarily, a slight
generalization of the analog overlapping window decod-
ing (OWD) as described in Sec. V A is used to decode the
non-single-shot side of the code. The overall protocol is
straightforward:

(1) Choose a w � d. Intuitively, w controls the num-
ber of noisy syndrome measurements to conduct for the
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FIG. 10. Performance of the w-quasi-single shot protocol using the three-dimensional surface codes under phenomenological bit-
flip noise with analog syndrome readout. The non-single-shot side is decoded using minimum-weight perfect matching. (a) Word error
rate after 32 decoding rounds as a function of the phenomenological error rate for various window size values w. (b) Below threshold
scaling of the word error rate after 32 decoding rounds for various window size values w. The results suggest that it is sufficient to
repeat the stabilizer measurement a finite number of times independent of the code distance L when incorporating analog information
into the decoder.

non-single-shot side. In other words, w is the window size
for overlapping window decoding.

(2) On the single-shot side of the code, we apply the
usual analog single-shot decoding procedure, where in
each time step we do a syndrome measurement and infer a
recovery operation.

(3) For the non-single-shot side, we do w time steps
of repeated measurements and then decode (using analog
OWD).

Without analog information, by restricting the number of
syndrome measurements to w the effective distance of the
code is lowered to w. For instance, consider a code that has
dX = 4, dZ = 16 where the X side is single-shot. Then, set-
ting w = 4 effectively reduces dZ to 4 because, in the time
dimension, logical errors can be of weight 4 only. This is
apparent when considering the multiround Tanner graph
used for decoding over time as a tensor product with a rep-
etition code. If we have dZ = 16 and do 16 rounds of noisy
syndrome measurements, the repetition code protecting the
system from “timelike” errors has distance 16, but when
restricting to w repetitions, we essentially cut the repeti-
tion code in time to a shorter version, thereby lowering the
distance along the time dimension.

To investigate the performance of the proposed pro-
tocol numerically, we simulate three-dimensional surface
codes under phenomenological (cat) noise for lattice sizes
L = 5 to L = 11 and compare different choices of w ver-
sus the standard approach of taking a number of repeated
measurements proportional to the distance. Note that, to
conduct numerical simulations for repeated measurements
we need to conduct multiple rounds of decoding to avoid
overestimation of the threshold [78] (cf. Sec. V A). Since
the non-single-shot side of this code can be decoded with
matching-based algorithms, we use PyMatching [80,81]

for decoding. The threshold behavior and the subthresh-
old scaling for 32 decoding rounds are shown in Fig. 10.
We discuss the decay of logical fidelity later on in Fig. 11.
The main findings are as follows.

(a) For w = 2 we observe an increase in logical error
rate for L = 11 for error rates around the threshold,
however, the subthreshold suppression for lower
error rates performs as for the standard time-domain
decoding as shown in Fig. 10(b).

(b) w = 3 is enough to match the results of standard
time-domain decoding (for the investigated code
sizes and error rates).

(c) For w = 1 the protocol does not work.
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FIG. 11. Comparison of the decrease of decoding success of
the 3-QSS decoding (w = 3) versus the standard time-domain
decoding (w = L) for an increasing number of decoding rounds
and subthreshold physical error rates using the L = 13 three-
dimensional surface codes under phenomenological noise.
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As a byproduct, we obtain a threshold of the non-single-
shot side of the 3DSC under phenomenological noise of
approximately equal to 1.66%. In Appendix F we also
present 3DSC threshold estimates for the case where only
the hard syndrome information is available. We find that
the threshold is approximately equal to 1.26%. To the best
of our knowledge, these are the first numeric threshold
estimates for the non-single-shot side of the 3DSC.

Let us make some more detailed remarks on the results.
First, the results indicate that w = 2 for the L = 11 code
leads to a worse threshold, indicating a limitation of the
protocol in this aspect. However, the subthreshold scaling
(which is actually relevant in practice) still shows that the
2-QSS protocol provides sufficient error suppression while
lowering the number of syndrome measurement rounds
from 11 to 2, inducing a fraction of the time overhead to
implement the overall QEC protocol. Secondly, increas-
ing the QSS window size w by 1 already significantly
improves the achieved logical error rate. With w = 5 we
do not find statistically significant differences from w = L
for the code sizes considered. Lastly, we note that even for
much smaller error rates, we did not find a threshold for
w = 1.

C. Discussion

For a QLDPC code that requires time-domain decod-
ing, the effective distance is proportional to the number
of repeated syndrome measurements. Thus, taking only a
small number w � d of syndrome measurements is equiv-
alent to lowering the effective code distance (along the time
dimension) to w. However, we show numerically that for
reasonable code sizes and choices of the QSS window size
w, the logical error rate of the overall protocol is equiv-
alent to the standard approach of performing (at least) d
repeated measurements due to the additional information
acquired from the analog syndrome.

Although our numerical results suggest that w can be
chosen as a constant independent of the code size for suffi-
ciently small physical error rates, it is reasonable to assume
that for larger code sizes (i.e., in the limit n →∞), the
logical error rate for the QSS protocol diverges from the
logical error rate obtainable from standard time-domain
decoding (i.e., with a number of rounds proportionally
to the code size) and will possibly result in an error
floor set by timelike errors. However, this gap in error
suppression between the QSS protocol and the standard
protocol quickly diminishes if the physical error rate is suf-
ficiently below the threshold, as can be seen by inspecting
Fig. 10(b). For example, for perr = 0.009, w = 2 gives a
significantly higher word error rate than the larger choices
of w, but for smaller error rates, e.g., perr = 0.005, the dis-
crepancy with standard time-domain decoding is reduced.
Thus, overall the main learning is that we observe that
for sufficiently small physical error rates, i.e., error rates

sufficiently below threshold, the w-QSS protocol can give
logical error rates that are equivalent to standard time-
domain decoding.

It would be interesting to investigate this aspect analyt-
ically for an LDPC code family. For instance, it is rea-
sonable to assume that depending on the LLRs (weights)
used for decoding one can argue that if the weights are
w = O(1) using hard information decoding and are
increased to �w by using analog information, one can
reduce the number of repetitions by a factor of � without
affecting the logical error rate significantly, i.e., obtain an
L/�-QSS protocol. We leave further analytic investigation
of this manner open for future work. Note that the inves-
tigated codes are already well beyond the capabilities of
near- to midterm hardware, and thus we argue that our
numerical results are valid for “practical sizes.”

It is crucial to note that for the QSS protocol, the noise-
biased error model is vital. The main reason is that in
this setting, the bulk of the decoding is offloaded onto the
single-shot component of the 3DSC, while the QSS pro-
tocol carries a much lighter load. This is also important
due to the asymmetric thresholds of the 3STC for pure
bit- and phase-flip noise, of approximately 1.5% and 10%,
respectively, which leads to the fact that the overall thresh-
old of the code p th

err is limited by bit-flip errors. However,
according to Eq. (9), already a small bias of ηZ ≈ 10 will
distribute the error-correction load equally, and any bias
ηZ � 10 will result in an effective bit-flip error rate pX
that is well below the threshold of the QSS protocol if the
overall error rate is perr < 10%.

Although we are currently limited to simulations with
codes of size L ≤ 11 and physical error rates perr around
the threshold (due to the impracticality of conducting
numerical experiments with larger codes), we argue that
codes of such size are already reasonable for practical rele-
vance due to good error suppression on the single-shot side
of the code [44]. However, for a more quantitative anal-
ysis, circuit-level noise model simulations are required.
We expect circuit-level simulations will decrease observed
thresholds by a factor of 4–8×. This estimate is consis-
tent with the numerical results of Pattison et al., where
two-dimensional surface codes were decoded under ana-
log circuit-level noise [78]. Pattison et al. also proposed
a generalization of the standard circuit-level noise model
to include analog measurements to simulate surface code
decoding under realistic noise assumptions. Since the gen-
eralization to circuit-level noise encompasses several non-
trivial questions such as the design of syndrome extraction
circuits and the derivation of exact cat qubit noise models,
we leave this task open for future work. Nonetheless, we
discuss several challenges in more detail in Sec. VI.

To verify that the QSS protocol does not lead to a
decrease of the logical error rate (and the threshold) for
an increasing number of decoding rounds, we conducted
sustained threshold simulations, i.e., threshold simulations
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for an increasing number of decoding rounds. However,
due to the saturation of the logical error rates in the numer-
ical results, we are only able to obtain a lower bound on the
threshold, which decreases with the number of decoding
rounds. Therefore, we provide additional results, shown in
Fig. 11, which demonstrate that the decay of the decod-
ing success (logical success rate) for a number of decoding
rounds scales equivalently for the QSS protocol compared
to the standard time-domain decoding, where the number
of syndrome extraction rounds is w = L (i.e., proportional
to the distance) for physical error rates below the obtained
threshold lower bounds. Despite the fact that this result
constitutes a weaker statement than a sustained threshold
estimate, it indicates that the performance of the QSS pro-
tocol is equivalent to standard time-domain decoding even
for an increasing number of decoding rounds.

Moreover, we emphasize that while our simulations
indicate that the QSS protocol works in a memory exper-
iment, it is an open question whether this is also the
case for a setting in which fault-tolerant logical gates are
implemented. Another feature that could potentially affect
decoding performance is the presence of so-called fragile
boundaries, as discussed in Ref. [76].

VI. TOWARDS THREE-DIMENSIONAL
CONCATENATED CAT CODES

In this section, we discuss roads towards building a
fault-tolerant quantum computer based upon stabilized cat
qubits concatenated with the three-dimensional surface
code. To this end, we will elaborate on several open ques-
tions and challenges along that road. We begin by recalling
some properties of stabilized cat qubits.

A. Stabilized cat codes

The cat code encodes logical (qubit) information within
a two-dimensional subspace of the infinite-dimensional
Hilbert space of a harmonic oscillator with Hilbert space
L(R2). This qubit subspace is represented by the span
{|α〉 , |−α〉} of two quasiorthogonal coherent state vectors
|±α〉 , α ∈ C [82] (in the sense that for large values of |α|,
they approximate an orthogonal pair of state vectors arbi-
trarily well). The nonorthogonality of this basis does not
pose a problem for the definition of the orthogonal qubit
space, and one defines the Hadamard-dual basis codewords
|±〉cat as two-component Schrödinger cat state vectors,
i.e.,

|±〉cat = N±(|α〉 ± |−α〉), (21)

which are orthogonal state vectors, and

N 2
± := 1/(2(1± e−2|α|2)) (22)

is the normalization factor [83]. Then, the logical, compu-
tational state vectors are obtained as

|0〉cat =
1√
2
(|+〉cat + |−〉cat) = |+α〉 + O(e−2|α|2),

(23)

|1〉cat =
1√
2
(|+〉cat + |−〉cat) = |−α〉 + O(e−2|α|2),

(24)

and the approximations |0〉cat ≈ |α〉 and |1〉cat ≈ |−α〉
become arbitrarily accurate for |α|2 →∞.

The cat code space is not stable under noise channels
that typically affect the physical realizations of harmonic
oscillators—dominated by energy relaxation reflected by
losses and dephasing. Thus, any logical information will
eventually leak outside of the code space and will be unre-
coverable. However, through engineered interactions, it is
possible to stabilize the code space through appropriate
confinement schemes. While various different confinement
schemes, such as Kerr stabilization [84], dissipative sta-
bilization [85], and combined methods [86], exist, they
share similar principles. First, to overcome energy relax-
ation, one actively pumps energy into the system through
engineered (two-photon) drives. Then, an actual “confine-
ment” term is added that separates the cat qubit manifold
from the rest of the energy spectrum. To ensure a two-fold
degenerate ground state of the system, these engineered
interactions must be symmetric with respect to the sub-
stitution â �→ −â, where â is the bosonic annihilation
operator satisfying the canonical commutation relation
[â, â†] = 1 [87].

Stabilization through some confinement interaction
ensures that if leakage occurs, the state will relax back to
the code space. As a result, stabilized cat codes allow for
arbitrary suppression of bit-flip noise under realistic oscil-
lator noise models [88] [17,58], as we will illustrate in the
case of single-photon losses below. However, the confine-
ment does not protect against logical cat qubit Z errors on
the code space, which may occur directly through oscil-
lator decoherence, such as phase flips caused by energy
relaxation, or indirectly if a noise channel leads to tempo-
rary leakage out of the code space, e.g., caused by thermal
noise.

The time evolution of a single-mode quantum system
undergoing single-photon loss is well described by the
Lindblad master equation [89,90],

∂

∂t
ρ̂ = κD[â]ρ̂ = κ

2
(
2âρ̂â† − â†âρ̂ − ρ̂â†â

)
, (25)

where κ > 0 is the single-photon loss rate and ρ̂ is the
density operator describing the state of the system. Here,
the first term leads to quantum jumps, whereas the lat-
ter two terms generate a non-Hermitian evolution that
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leads to energy relaxation. One can calculate the leading-
order estimates for the cat qubit phase- and bit-flip error
rates through the Knill-Laflamme conditions [91,92] for
the oscillator error Ê1 ∝ √κ â. The task reduces to the
following transition matrix elements:

κ|〈+α|â|−α〉|2 = κ|α|2e−4|α|2 , (26)

κ|〈+|â|−〉cat|2 = κ|α|2 tanh
(|α|2) ≈ κ|α|2, (27)

which shows that the ratio of bit- to phase-flip errors is
exponentially suppressed, i.e., px/pz ∼ e−4|α|2 , yielding an
effective biased-noise error channel for the outer code.
We note that exponential suppression (in |α|2) of bit-flip
errors comes at the cost of linearly increasing the phase-
flip rate. Although this will limit the extent to which one
can increase α before pz exceeds the threshold of the
concatenated code, we emphasize that the recently intro-
duced stabilized squeezed-cat qubit allows one to suppress
bit-flip errors without increasing the phase-flip errors [93].

To benefit from a biased-noise error channel, it is impor-
tant that the noise bias can be sustained even during gate
operations. It has been shown that this is possible for
stabilized cat qubits due to the complex-valued displace-
ment amplitude α, which contributes additional degrees
of freedom and in this way allows the realization of the
two-qubit CNOT gate in a bias-preserving way by perform-
ing (conditioned) rotations that exchange |α〉 and |−α〉.
During this rotation, the bias is preserved, and a topo-
logical phase is added to the dual-basis codewords, i.e.,
|+〉cat �→ |+〉cat and |−〉cat �→ |−〉cat [17,58]. In a
circuit-level noise model the ratio of single-photon losses
and confinement rate is an important parameter that relates
effective encoded cat qubit Pauli error rates to physi-
cal noise parameters, see, e.g., Refs. [14,17,19] for more
details.

Finally, performing a logical Z measurement can be
done, for example, by performing a nondemolition cat
quadrature readout [12], which distinguishes the two
coherent state vectors |+α〉 and |−α〉, see also Fig. 1(b).
Due to the finite variance of coherent states, such a mea-
surement will be inherently imprecise because of their
continuous distribution in quantum phase space. However,
one can incorporate this analog information into the decod-
ing stages of the outer code, for example, by assigning
higher error likelihoods to states that have measurement
outcome xm ≈ 0. Importantly, the resolvability of the cat
qubit computational state vectors |0/1〉cat is given by
the overlap of the two states that scales as approximately
e−2|α|2 and thus assignment errors become exponentially
suppressed with the size of the stabilized cat qubit.

B. Open questions

We highlight that an immediate open question, indepen-
dent from any experimental realization, is the verification

of our decoding protocols in a more realistic noise model,
i.e., in the presence of circuit-level noise and the deter-
mination of thresholds in these cases. One might expect a
reduction in threshold (roughly) proportional to the stabi-
lizer weight, due to additional fault locations that occur in
the syndrome extraction circuit, impacting the non-single-
shot side of the code more strongly than the single-shot
side, which have stabilizers of weights 6 and 4, respec-
tively. However, this will not cause a fundamental issue, as
the bias of the stabilized cat qubits can be tuned such that
the code performance is effectively limited by the threshold
of the single-shot code. Regarding syndrome extraction,
very recent work suggests that the ordering of operations in
the syndrome extraction circuit does not affect the effective
distance of the code, see Ref. [94].

Syndrome extraction based on cat qubits requires bias-
preserving CNOT gates, which have not been demonstrated
in experiments for stabilized cat qubits so far. There-
fore, currently, our estimates for achievable error rates
with such gates rely upon theoretical models as proposed,
for instance, in Ref. [14] for Kerr-cats and Ref. [19] for
dissipative cats. These references also detail the implemen-
tation of all other required Clifford operations and Pauli
measurements required for the two-dimensional surface
code. As there is no fundamental difference in the type
of gates required for syndrome extraction in the three-
dimensional case, we refer the interested reader to the
aforementioned articles.

A

A

B

B

Data Ancilla Interconnect TSV

FIG. 12. Sketch of the possible three-dimensional surface
code architecture. The grid on the left shows a single two-
dimensional layer of data and auxiliary cat qubits arranged with
nearest-neighbor connectivity achieved through in-plane inter-
connects that activate the interaction between the data and aux-
iliary qubits. Through-silicon-vias (TSVs) connect multiple such
layers together, one connecting to the layer above, the other to the
layer below. The layers are stacked in an ABAB pattern (right),
where the difference between A and B is that the placement of
data and auxiliary qubits is interchanged.
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C. Conceptional architecture

One could imagine a possible hardware implementation
in superconducting circuits as an extension of the proposals
in Refs. [14,19], stacking the proposed two-dimensional
layouts in a vertical direction in an alternating ABAB pat-
tern as illustrated in Fig. 12. Vertical coupling between
chips can be achieved through small form factor supercon-
ducting through-silicon-vias (TSVs) [95–97]. Although
state-of-the-art fabrication techniques currently do not
achieve stacking of more than a few layers, the use of TSVs
in superconducting circuits is a recent development that
will likely mature rapidly in the future [98]. Conceptually,
even only a few layers can yield a useful three-dimensional
surface code when the noise bias is large enough. The rea-
son is that for the rectangular cubic lattice of spatial extend
Lx, Ly , and Lz, the effective code distances dX and dZ are
given by [44]

dX = min{Lx, Ly , Lz}, (28)

dZ = min{LxLy , LyLz, LzLx}. (29)

VII. CONCLUSION

Recently, there has been progress in the realization
of bosonic codes that increase the lifetime of encoded
quantum information. Additionally, the discovery of good
QLDPC codes [25–29] motivates the development of
decoding protocols for concatenated bosonic-LDPC codes.
These protocols should consider the analog information
inherent to the measurement of continuous-variable quan-
tum states.

In this paper, we contribute to this task by present-
ing methods that feed the analog information obtained
during bosonic syndrome measurements into belief prop-
agation and matching decoders. In particular, we show
how to decode analog syndromes for single-shot codes that
are obtained from higher-dimensional hypergraph prod-
uct constructions. We also consider codes that are not
single shot and thus require repeated stabilizer measure-
ments over time in general. We introduce analog Tanner
graph decoding as a way of naturally incorporating analog
syndrome information directly into the decoding graph.

To support and numerically assess our decoding meth-
ods, we consider the three-dimensional surface code as
a test case. Our simulations are performed using a phe-
nomenological noise model inspired by bosonic cat code
qubits. We find that our analog Tanner graph decod-
ing methods lead to a significantly enhanced sustainable
single-shot threshold for the three-dimensional surface
code. Furthermore, we show that accounting for analog
information from bosonic syndrome measurements can
reduce the number of repetitions required for time-domain
decoding. We demonstrate this explicitly by incorporating
analog Tanner graph methods into an overlapping win-
dow decoder for the non-single-shot component of the

three-dimensional surface code. For the case of the L = 13
three-dimensional surface code, we show that it suffices to
decode with a window size of w = 3. This is a considerable
reduction in the time overhead compared to the case of dis-
crete syndrome decoding where the window size must be
equal to the code distance, i.e., w = 13. We argue that this
renders the three-dimensional surface code w-quasi-single
shot.

To further boost the development of concatenated
bosonic-LDPC codes, we provide open-source software
tools for all proposed techniques. With these tools, we
hope to emphasize the importance of open-source software
and to inspire further research interest into concatenated
bosonic codes.

We note that our numerical experiments are performed
using a phenomenological noise model. A natural fol-
lowup to this work will be to further verify the potential
of analog Tanner graph decoding under a more realis-
tic circuit-level noise model and to investigate the QSS
protocol and the use of analog information in general ana-
lytically using appropriate metrics [99]. Moreover, it is
an interesting question as to whether other decoders for
(3D) QLDPC codes, such as the recently introduced “p-flip
decoder” [100] or the three-dimensional tensor network
decoder [101], can be modified to incorporate analog infor-
mation into the decoding process. Finally, it would also be
interesting to investigate the performance of analog Tanner
graph decoding for other codes, such as three-dimensional
subsystem codes [65,102].

This paper has focused on quantum memories. A
remaining open problem concerns the questions as to
whether analog information can be used to improve
decoding performance during the implementation of fault-
tolerance logical gates, e.g., during lattice surgery. Such
investigations will require a detailed analysis of the phys-
ical architecture used to realize the bosonic qubits. For
instance, a necessary requirement will be that the qubits
support bias-preserving two-qubit gates [58].
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APPENDIX A: F2 HOMOLOGY

CSS codes are equivalent to three-term chain complexes
of binary vector spaces. A chain complex of vector spaces
(C•, ∂•) is a sequence of vector spaces and linear maps

(C•, ∂•) = . . . Ci+1
∂i+1−−→ Ci

∂i−→ Ci−1
∂i−1−−→ . . . , (A1)

with the property

∂i∂i+1 = 0, ∀i. (A2)

The linear maps ∂i are called boundary maps or boundary
operators. It is standard to define the spaces of cycles Zi
and boundaries Bi as

Zi := ker ∂i ⊆ Ci, (A3)

Bi := im ∂i+1 ⊆ Ci. (A4)

Since Eq. (A2) implies that Zi ⊆ Bi, we can define the
quotient

Hi(C•) := Zi/Bi, (A5)

which is called the ith homology group of the chain
complex.

By inverting the arrows in Eq. (A1), i.e., transposing
the corresponding linear maps, we obtain the dual notion
called co-chain complex

C• := . . . Ci+1
∂�i←− Ci

∂�i−1←−− Ci−1 . . . , (A6)

and completely analogous definitions for co-boundaries
Bi := im ∂�i−1, co-cycles Zi := ker ∂�i , and the co-homology
group Hi(C•) = Zi/Bi.

By using a three-term subcomplex of a chain complex

Ci+1
∂i+1−−→ Ci

∂i−→ Ci−1, (A7)

a CSS code can be obtained by setting

H T
Z = ∂i+1, (A8)

HX = ∂i, (A9)

whereby the CSS condition from Eq. (2) is fulfilled by
definition. We can now reason about a code in the language
of chain complexes and their homology.

The group generated by the Z-type stabilizers SZ corre-
spond to the boundaries Bi and the Z-type Pauli operators
that commute with all X -type stabilizers correspond to the
cycles Zi. Analogously, SX = Bi and the X -type Paulis
commuting with the Z-type stabilizers correspond to the
co-cycles Zi. The Z-type logical operators correspond to
elements of the homology group Hi and the X -type logical
operators to the cohomology group Hi.

Note that a linear classical code is a two-term chain
complex where the boundary operators map between the
space of checks and the code space.

Using the language of homology, codes can be con-
structed by taking the product of two chain complexes
[25–27,103]. The tensor product [104] of two two-term

chain complexes C1
∂C

1−→ C0 and D1
∂D

1−→ C0, each corre-
sponding to a classical code, gives a three-term chain
complex C⊗ D defined as

C1 ⊕ D1
∂2−→ C1 ⊕ D0 ⊗ C0 ⊕ D1

∂1−→ C0 ⊗ D0, (A10)

where the boundary maps are defined as

∂2 =
(

∂C
1 ⊗ 1

1⊗ ∂D
1

)
, (A11)

∂1 =
(
∂C

1 ⊗ 1 | 1⊗ ∂D
1

)
. (A12)

Applying the tensor product to higher-dimensional chain
complexes gives a quantum code with higher-dimensional
elements.

For example, the repetition (ring) code can be seen
as a collection of vertices connected by edges in pairs.
The tensor product of two repetition codes then describes
a two-dimensional object with faces, edges, and vertices
that correspond to the two-dimensional surface code, as
illustrated in Fig. 13. Analogously, the three-dimensional
surface codes [42] can be obtained as a tensor product of
a two-dimensional surface code with a repetition code cor-
responding to a four-term chain complex (cf. Ref. [39])
as

C3
∂3−→ C2

∂2−→ C1
∂1−→ C0. (A13)
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FIG. 13. The two-dimensional surface code obtained from the
tensor-product complex of two repetition codes.

Example 2 (Three-dimensional surface code from
repetition codes). Consider the three-repetition code
R : C1 → C0 with check matrix

Hrep =
⎛
⎝1 1 0

0 1 1
1 0 1

⎞
⎠ . (A14)

A two-dimensional surface code can be obtained by tak-
ing S = R⊗ R. By taking the tensor product with R again,
we obtain a three-dimensional surface code, i.e., a three-
dimensional lattice S3D = S ⊗ R, as sketched in Fig. 3.

Depending on whether we choose period boundary con-
ditions—i.e., a ring code or a repetition code as “seed
code”—or not, we obtain the following code parameters
of the three-dimensional surface codes. Note that the three-
dimensional surface codes with periodic boundaries is also
called three-dimensional toric code (3DTC),

(a) 3DSC: [[2L(L− 1)2 + L3, 1, dX = L2, dZ = L]],
(b) 3DTC: [[3L3, 3, dX = L2, dZ = L]].

Note that, instead of placing X checks on faces and Z
checks on vertices, some works consider an assignment
with swapped checks.

APPENDIX B: PROOF OF PROPOSITION 1

Here, we argue that the construction of the multiround
parity-check matrix H̃ (cf. Definition 2) for r rounds of
syndrome measurement can be described as the tensor
product of the chain complex of the code C and the chain
complex of a (slight variant of the) r-repetition code R.

The statement is quite straightforward given existing
results on product-code constructions and hence the result
follows from basic notions from graph theory and homo-
logical algebra. However, technically, it is a priori not
clear that this matches our multiround Tanner graph con-
struction, thus to make these correspondences concrete, we
present the result formally in the following.

Let us introduce some additional notation. We consider
a two-dimensional space X as the generalization of a graph
(a one-dimensional space) with the i-cells, Xi, denoting
sets of the i-dimensional elements, i.e., 0-cells are vertices,

1-cells are edges, 2-cells are faces, and 3-cells are volumes.
Analogously to graphs, the incidence matrices ∂i of X are
defined as

∂X
i ∈ FXi

2 , (∂X
i )v,w = 1 ⇐⇒ v ∼ w, (B1)

where v ∼ w denotes that v is incident to w.
Given a two-dimensional space X , the cellular chain

complex C•(X ) is defined as the chain complex whose vec-
tor spaces Ci have the i cells, Xi, as basis and boundary
maps ∂i that map an i cell to the formal sum of (i− 1)

cells at its boundary, e.g., an (edge) to the vertices at its
boundary

C• = C2(X ) → C1(X ) → C0(X ), (B2)

where we may identify Ci(X ) = FXi
2 , i.e., Ci(X ) is the

vector space spanned by i cells in X , and the boundary
operators correspond exactly to the incidence matrices of
the i space. Given two graphs (one-dimensional spaces)
X , Y, their Cartesian product X × Y is a two-dimensional
space Z whose elements are

Z0 = X0 × Y0, (B3)

Z1 = X0 × Y1

∐
X1 × Y0, (B4)

Z2 = X1 × Z1, (B5)

where the coproduct
∐

is the disjoint sum of sets. The
incidence matrices of Z are then given as

∂Z
1 = (1X0 ⊗ ∂Y

1 | ∂X
1 ⊗ 1Y0) ∈ FZ1

2 , (B6)

∂Z
2 =

(
∂X

1 ⊗ 1Y1
1X1 ⊗ ∂Y

1

)
∈ FZ2

2 . (B7)

Note that this is equivalent to considering the cellular chain
complexes C•(X ) and D•(Y) and constructing the tensor
product complex

C•(X )⊗ D•(Y). (B8)

Since C•(X ), D•(Y) come with bases X0, X1 and Y0, Y1, the
bases of C•(X )⊗ D•(Y) correspond exactly to the spaces
obtained by the Cartesian product X × Y and by order-
ing the Cartesian products, the matrices of the boundary
operators ∂Z

i are exactly the Kronecker products of the cor-
responding matrices ∂X

i , ∂Y
i , hence the boundary map of the

tensor product complex are exactly the incidence matri-
ces of the Cartesian product and we can identify C•(X )⊗
D•(Y) = C•(X × Y). Having the notation in place we can
formulate the statement:

Proposition 2 (Formal version of Proposition 1). Let
C• be a three-term chain complex corresponding to a CSS
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QLDPC code C and let R• = R1
R−→ R0, be a chain complex

whose boundary map R corresponds to the r× r matrix

R =
(

1 0 . . . 0
R′

)
,

where R′ is the (r− 1)× r check matrix of the r-repetition
code. Then, the r-multi-round parity check matrix H̃ of C
is equivalent to the boundary map of the tensor product
complex R• ⊗ C•.

Proof. Since the code is CSS we focus on a single check
side (i.e., the underlying graph of the space) in the follow-
ing. Let H ∈ Fm×n

2 be the parity-check matrix of one side
of the code C, i.e.,

C1
H−→ C0.

The tensor product chain complex is

R1 ⊗ C1
∂2−→ R0 ⊗ C1 ⊕ R1 ⊗ C0

∂1−→ R0 ⊗ C0, (B9)

where the boundary maps are given by

∂2 =
(
1R ⊗ H
R⊗ 1H

)
, (B10)

∂1 = (1R ⊗ H | R⊗ 1H ) . (B11)

Since qubits are placed on 1 cells, the check matrix given
by ∂1 is the one that is relevant.

Viewing C•, R• as cellular chain complexes, it is clear
that the basis elements of the 1 cells correspond exactly to
Y0 × X1

∐
Y0 × X1, where Yi, Xi are the bases of the i-cells

of R and C, respectively, and ∂1 is exactly the incidence
matrix of the underlying 1 complex.

Hence, by the definition of the Kronecker product, the
resulting check matrix has the form

∂1 =

⎛
⎜⎜⎝

H 1H
H 1H 1H

. . . . . .
H 1H 1H

⎞
⎟⎟⎠ . (B12)

Thus, ∂1 = H̃(C). Since the edge-vertex incidences are
given by ∂1 in the corresponding graph whose edges
can be identified with the bases R0 × C1

∐
R1 × C0, and

whose vertices can be identified with R0 × C0, the prod-
uct graph obtained is equivalent to the multiround Tanner
graph T̃ . �

Note that to match Definition 2 exactly, we consider a
slightly altered check matrix R compared to the standard

repetition code. For example, the check matrix of the four-
repetition code is

R4-rep =
⎛
⎝1 1 0 0

0 1 1 0
0 0 1 1

⎞
⎠ , (B13)

the version we consider is

R =

⎛
⎜⎝

1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1

⎞
⎟⎠ , (B14)

as this accounts for the fact that the first layer of checks
is only connected to a single layer of timelike bit nodes.
Note that the code spaces of the matrices defined above
are not equivalent, since for the repetition code from
Eq. (B13) the all-ones vector is the only nontrivial code-
word (1, 1, 1, 1) ∈ ker(R4-rep), but for the considered vari-
ant defined in Eq. (B14) we have (0, 1, 1, 1) ∈ ker(R). One
could equivalently consider the standard repetition code
matrix and then project the final boundary map such that
the respective identity block entry is mapped to 0.

APPENDIX C: IMPLEMENTATION DETAILS

In this section, we present details concerning the code
used to conduct the numerical experiments presented in
this paper. In Sec. C 1 we review the QLDPC code fam-
ily used in Sec. IV. Section C 2 reviews the conversion
between analog syndrome noise and bitwise syndrome
noise channels used in Sec. IV. In Sec. C 3 to Sec. C 5
we review details on belief-propagation decoding and the
proposed implementations of ATD and SSMSA.

1. Nontopological code constructions

In this section, we give details on the construction of the
codes used for numerical evaluations.

a. Lifted product codes

For the simulations presented in Sec. III, we use a family
of lifted product (LP) codes [27,41]. The construction of
lifted product codes is described below. Algebraically, an
[[n, k, d]] LP code can be obtained from the tensor product
of a base matrix B that corresponds to a classical quasi-
cyclic LDPC code [105] with its conjugate transpose B∗.
The concrete instances of the family used are constructed
from the base matrices Bd for distance d from Appendix A
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in Ref. [24] and are given as

B12 =
⎛
⎝0 0 0 0 0

0 2 4 7 11
0 3 10 14 15

⎞
⎠ , (C1)

B16 =
⎛
⎝0 0 0 0 0

0 4 5 7 17
0 14 18 12 11

⎞
⎠ , (C2)

B20 =
⎛
⎝0 0 0 0 0

0 2 14 24 25
0 16 11 14 13

⎞
⎠ , (C3)

to obtain the code instances with parameters

(a) [[544, 80, d ≤ 12]],
(b) [[714, 100, d ≤ 16]],
(c) [[1020, 136, d ≤ 20]].

To construct the code instances in software, we use the
LDPC library by Roffe [106]. The parity-check matrices
are provided in the GitHub repository [107].

2. Syndrome noise model conversion

To compare decoding approaches that consider analog
or hard syndrome errors, the syndrome noise model under
consideration needs to be compatible. This means we need
to be able to compare (and convert) the strength of the ana-
log syndrome noise to the hard syndrome noise and vice
versa. The analog information decoder considers Gaussian
syndrome noise ei ∼ N (0, σ 2). When dealing with syn-
drome bits si ∈ {−1,+1}, we want to convert this into an
error channel for hard syndrome noise that is equivalent,
i.e.,

ei flips the syndrome ⇐⇒
{

ei > 1 if si = −1,
ei < 1 if si = +1.

(C4)

To satisfy the conditions in Eq. (C4) define the syndrome
error rate psyndr as

psyndr =
⎧⎨
⎩

1√
2πσ 2

∫ −1
−∞ e−x2/2σ 2

dx if si = +1,
1√

2πσ 2

∫∞
1 e−x2/2σ 2

dx if si = −1.
(C5)

By symmetry of the Gaussian distribution, this gives
equivalent error probabilities for both cases, which can be
derived readily by substituting x �→ −x,

1√
2πσ 2

∫ −1

−∞
e−x2/2σ 2

dx = 1
2

Erfc
(

1√
2σ 2

)
, (C6)

where x �→ Erfc(x) is the complementary error function.
For given psyndr the solution is

σ =
√

2
−1

Erfc−1(2psydr)
=

√
2
−1

Erf−1(1− 2psydr)
, (C7)

where x �→ Erfc−1(x) is the inverse of the complementary
error function and Erf−1(x) the inverse of the error func-
tion. This allows us to relate the discrete qubit and (analog)
cat qubit error models in a one-to-one correspondence.

3. Belief propagation

Both the SSMSA decoder proposed in Ref. [68] and our
ATD method are based on belief propagation (BP), which
is a decoding algorithm that has been adapted from clas-
sical (LDPC) codes to quantum codes [41,69,108]. In this
section, we briefly review the main aspects of BP using
minimum-sum update rules relevant to our methods. We
refer the reader to the literature in the field for a more
in-depth discussion, for instance, Refs. [41,70]. Since we
focus on CSS codes that can be seen as a combination of
two classical linear codes, we focus on a single check side
in the following.

Given a syndrome s = H · e, the objective of the
decoder is to find the most likely error e. In practice,
this amounts to finding a minimum (Hamming) weight
estimate ε for the error, i.e.,

ε = argmaxePr(e|s).

In an independent identically distributed (IID) noise
model, ε can be computed bitwise by computing the
marginal probabilities

Pr(ei) =
n∑
i

Pr(e1, e2, . . . , êi = 1, ei+1, . . . , en|s), (C8)

where the hat êi indicates that the variable is left out, i.e.,
summation over all variables except ei.

The goal of BP is to compute these probabilities in an
iterative way by using the natural factorization given by
the Tanner graph of the code (also called the factor graph
in this context). The marginals Pr(ei) are then used to infer
an estimate ε by setting

ε =
{

1 if Pr(ei) ≥ 0.5,
0 otherwise.

(C9)

Belief propagation computes marginals using an iterative
message-passing procedure, where in each iteration, a mes-
sage is sent from each node to its neighbors. The messages
constitute sets of “beliefs” on the probabilities to be com-
puted. The value of the messages depends on the syndrome
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ALGORITHM 1. Hard syndrome belief-propagation (MSA)
with serial scheduling.

and the bit-error channel. In this work, we use a serial
schedule to compute BP marginals. Our implementation
is outlined in Algorithm 1 and is described below.

In the first step of BP decoding, the values of the bit
nodes bj are initialized to the log-likelihood ratios (LLRs)
λi of the error channel

λi := log
(

1− p
p

)
. (C10)

In every iteration, each check node i sends messages to
neighboring bit nodes j ∈ N (i), denoted as μi,j . The value
of the check-to-bit message μi,j is computed as a function
of the syndrome γi and the incoming bit-to-check messages
vi,j ′ as

α · sgn(γi) ·
∏

j ′∈N (i)\{j }
sgn(νi,j ′) · min

j ′∈N (i)\{j }
|νi,j ′ |. (C11)

The factor α ∈ R is called the scaling factor [109]. The
bit-to-check node messages νj ,i are computed as

μj ,i := λj +
∑

i′∈N (j )\i
μi′,j .

It is well known that BP computes only the marginals
Pr(ei) exactly on factor graphs that are trees (in a single
step). In the more general setting, where the graph contains
loops, the computed marginals are approximate [110]. To
check for termination of the iterative procedure, we use the
marginals and Eq. (C9) to infer an estimate ε from the cur-
rently computed marginals and check if ε is valid for the
given syndrome. i.e., if s = H · ε the solution ε is valid. If
ε is valid, the BP algorithm terminates and ε is returned as
the decoding estimate.

We use the BP+OSD implementation provided in the
LDPC2 package by Roffe et al. available on Github [111].

4. Soft-syndrome MSA

The SSMSA algorithm is essentially equivalent to BP
as sketched in Algorithm 1 with some alterations. Instead
of the hard syndrome vector s, the input is an analog
syndrome vector s̃, whose corresponding LLR vector is
denoted γ [cf. Eq. (12)]. The initialization and bit-to-check
messages are computed equivalently. For computing the
check-to-bit messages, the analog syndrome γ is taken into
account. If the syndrome value is below a predefined cutoff
value  that models the reliability of the syndrome infor-
mation, the syndrome information is treated as unreliable
and the messages μc,b are instead computed as

μc,b :=
{

minb′∈N (c)\b(|νb′,c|) if |γc| > ,
minb′∈N (c)\b(|νb′,c|, |γc|) otherwise.

(C12)

Note that there is a case in which Algorithm 2 erases the
analog syndrome information. This occurs when the abso-
lute value of the analog syndrome is smaller than the value
of all incoming messages of the check node c, and the sign
of the incoming messages matches the sign of the syn-
drome. From Line 22 of Algorithm 2, we see that in this
case the analog syndrome value is overwritten and thus
lost.

Our implementation of the SSMSA decoder is made
publicly available in the LDPC2 package [111].

5. Analog Tanner graph decoder

In analog Tanner graph decoding, we use the Tanner
graph of the code T to construct the analog Tanner graph.
This allows us to directly incorporate the analog syndrome
information in virtual nodes in the Factor graph.
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ALGORITHM 2. Soft-Syndrome MSA.

In the initialization phase of the ATD decoder, BP sets
the values λi, i ∈ [n] of all bit nodes in the factor graph to

λi = log
(

1− p
p

)
, i ∈ [n]. (C13)

To ensure that we initialize the values of the analog nodes
λn+j , j ∈ [m] with the value of the analog syndrome γj , we

derive the error channel probabilities p ′i from Eq. (C13)

p ′i =
1

eγi + 1
. (C14)

Thus we set

p ′n+j =
1

eγj + 1
, j ∈ [m] (C15)

for the analog nodes to ensure that after the initialization
phase of BP the bit nodes are initialized with the LLRs,
and the virtual nodes with the analog syndrome (i.e., the
LLR) values.

APPENDIX D: OBTAINING ANALOG
INFORMATION FOR DATA QUBITS AND

CONCATENATED GKP CODES

One might raise the question as to whether it is possi-
ble to include more analog information in the decoding
graph, e.g., by considering analog values associated with
qubits (data nodes in the factor graph used for decoding)
as well. The answer to this question is positive under the
assumption that one performs active error correction on the
bosonic qubit. In the considered phenomenological noise
model that is inspired by stabilized cat qubits, this is not the
case as the cat qubit is autonomously protected by the engi-
neered stabilization mechanism as discussed in Sec. VI A.
We emphasize that in a gate-based scheme, it is not pos-
sible to perform active error correction on cat qubits, i.e.,
measure their stabilizers, as cat codes cannot be described
as a stabilizer code in the conventional sense. Fundamen-
tally, this is due to the nonexistence of a phase operator in
the harmonic oscillator Hilbert space.

Although in some cases, for example, dissipative stabi-
lized cat qubits, information about certain types of errors
can also be obtained by continuously monitoring the buffer
mode that is used to implement the dissipation mechanism
[112], doing so with sufficiently high reliability seems to
be a task of similar complexity as implementing a QEC
protocol. Another way of incorporating qubit analog infor-
mation into the decoding graph requires a changing the
computing paradigm from a gate-based scheme to the
measurement-based scheme in which qubits are explicitly
measured. The measured value will be real valued and its
magnitude can be used to assign LLR to that specific qubit.

However, if the bosonic code is actively corrected in
some way, one can use this information in the decoder as
well. A straightforward example is the single-mode GKP
code as it is a stabilizer code with generators given by the
displacements in phase space R2

〈SX := e2i
√

π p̂ , SZ := e−2i
√

π x̂〉, (D1)
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where p̂ and x̂ are the momentum and position operators of
the harmonic oscillators. Here,

e2i
√

π p̂ = D(−
√

2(1, 0)T), e−2i
√

π x̂ = D(
√

2(0, 1)T)

(D2)

with

D(ξ) := exp
(
−i
√

2πξT(p̂ ,−x̂)T
)

(D3)

being the single-mode shift operator, generating shifts in
phase space by ξ ∈ R2. One can measure the stabilizer gen-
erators using Steane-type error correction, which requires
auxiliary GKP qubits [23]. Assuming the availability of
noiseless auxiliary qubits, the Steane-type error correction
determines the shift error the data qubit has undergone
modulo. This means that shift errors up to a magnitude
of at most

√
π/2 can be corrected, while shift errors that

have a larger magnitude typically lead to logical errors in
the GKP qubit subspace. Suppose that the measurement
yields an outcome xm for the x-quadrature shifts. Then, if
|xm mod

√
2π | ≈ 0 it is unlikely that this qubit has under-

gone a logical GKP error if we assume as above that shift
errors follow a Gaussian distribution xm ∼ N (0, σ 2) with
mean zero and variance σ 2. However, if |xm mod

√
2π | ≈√

π/2, a logical GKP qubit error is significantly more
likely. Thus, it is possible to quantify this likelihood and
use it to also initialize the data nodes of the decoding
graph [black circles in Figs. 1(d)–1(f)] with analog infor-
mation and then apply ATD to decode. See also Fig. 14
for a visualization of the likelihood function in analogy to
Fig. 1(c).

APPENDIX E: CONCATENATED MULTIMODE
GKP AND ROTATION SYMMETRIC BOSONIC

CODES

In a measurement-based setting, analog information can
be extracted through teleportation-based Knill-type error
correction [113]. This works also for multimode instances
of the GKP code [114–116]. Generally, one can think of
multimode encodings beyond single-mode encodings in
terms of displacement operators

D(ξ) := exp
{
−i
√

2πξTJ (p̂1, . . . , p̂m,−x̂1, . . . ,−x̂m)T
}

(E1)

in phase space R2m×2m of m bosonic modes, with

J :=
[

0 1m
−1m 0

]
. (E2)

Then one can generally define a stabilizer group of a GKP
code in terms of displacements

〈D(ξ1), . . . , D(ξ2m)〉, (E3)

−1/2 −1/4 0 1/4 1/2
xm/
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π
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FIG. 14. Obtaining analog information from GKP data qubits.
The main panel shows the GKP qubit error probability condi-
tioned on the measurement outcome xm for different values of
noise strength σ . Detecting a value xm close to zero corresponds
to a small error probability for any value of σ , while the error
probability for measurement outcomes closer to the “decision
boundaries” ±√π/2 are highly dependent on the assumed noise
channel and its variance σ 2. The inset shows a sketch of the dis-
tribution of measurement outcomes xm for two different values of
σ and the dashed lines indicate the decision boundaries.

where ξ1, . . . , ξ2m ∈ R2m×2m are linearly independent and
we have that ξT

i J ξj ∈ Z for all i, j . This defines a sta-
bilizer group isomorphic to a lattice [116]. In this way,
one obtains multimode information in the syndrome mea-
surements. For this reason, the methods introduced here
also contribute to the question of how to decode GKP
codes. In a similar way, one can consider large classes
of alternative bosonic codes known as rotation symmet-
ric bosonic codes [117,118]. Both our decoding techniques
and software tools are easily adapted to incorporate analog
information for the data qubits, as explained above.

APPENDIX F: ADDITIONAL RESULTS

In this section, we present additional simulation results
for various parameter settings of the considered decoder
implementations. We also present results for the phe-
nomenological threshold of the three-dimensional toric
code (i.e., the 3DSC with period boundaries).

1. Phenomenological noise threshold of the
three-dimensional toric code

As a by-product of our QSS simulations, we obtain a
threshold of the non-single-shot side of the 3DTC under
phenomenological noise of ≈1.26% and ≈1.66% using
hard syndromes (HS) and analog syndromes (AS), respec-
tively. The corresponding threshold plots are shown in
Fig. 15. This generalizes recent code capacity results pre-
sented in Ref. [57]. Here, we simulated a pure bit-flip noise
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FIG. 15. Phenomenological noise threshold of the three-
dimensional toric code. The logical error rates are obtained by
simulating a pure bit-flip noise model with pdata

err = psynd
err . The

syndrome is collected in 2L measurement rounds of which the
last one is noiseless. We decode using minimum weight perfect
matching that yields a threshold at approximately equal to 1.26%
and approximately equal to 1.66% using the hard syndrome (HS)
and the analog syndrome (AS), respectively.

model with pdata
err = psynd

err . Measurement results are col-
lected over 2L rounds and then decoded using minimum-
weight perfect matching. For the case of hard syndromes,
the noise from the syndrome is added as discussed in
Sec. II C 2. This ensures the effective error channel for
hard syndromes is the same as that for analog syndromes.
We use the PyMatching implementation of minimum-
weight-perfect matching [80,81] as the decoder for these
simulations.

2. BP parameter optimization

Since there are various parameters that allow one to fine
tune the BP+OSD implementation, we conducted a set of
numerical experiments to determine which parameter set-
ting performs the best in the scenario considered. However,
note that for this work we focus on techniques and methods
rather than low-level optimizations in general. Hence, the
presented numerical results are generally implementation
dependent and most likely prone to further optimization
and fine tuning.

In summary, the conducted numerical experiments
demonstrate that there can be quite significant differences
in decoding performance (in terms of achieved logical
error rate, threshold, number of BP iterations, and elapsed
time) depending on the BP+OSD parameters, most notably
the chosen BP scaling factor α (cf. Sec. C 3) and the OSD
method.

The main findings are that OSD-cs with a scaling factor
α = 0.5 to α = 0.6 perform best. Furthermore, concern-
ing the SSMSA implementation, we find that a cutoff of
 = 5 performs the best for the considered lifted product
code family. For readers interested in more detailed results,

we refer to the GitHub repository [107], where we present
detailed simulation results.

APPENDIX G: NUMERICAL SIMULATION
DETAILS

In this section, we discuss the implementation details of
numerical simulations and the main techniques used. Since
we focus on CSS codes using depolarizing (biased) noise
without correlations, we decode X and Z errors separately
(that implies that a Y error on a qubit q is treated as X
and Z error on q). To determine the logical error rate of
an [[n, k, d]] single-shot code, decoder combination in the
considered phenomenological (cat qubit) noise model, we
use the following procedure:

(1) Sample an error vector e ∈ Fn
2 (bitwise and depen-

dent on the error channel.
(2) Compute the syndrome s = H · e.
(3) Sample and apply a syndrome error es ∈ Fm

2 to
obtain the noisy syndrome ŝ.

(4) Apply (analog) single-stage decoding to obtain an
estimate ε.

(5) Check if r = ε + e is a logical.

The sample run is successful if r is not a logical opera-
tor (i.e., the correction induced a stabilizer, which does not
alter the encoded logical information).

We apply a similar procedure to estimate the logical
error rate for a code and decoder combination when apply-
ing the (analog) overlapping window method to decode
over time with multiple syndrome measurements. To simu-
late decoding in R rounds of noisy syndrome measurement,
we first compute R noisy syndromes and then apply over-
lapping window decoding as described in the main text
to obtain a single sample. We repeat this procedure for a
maximum number of samples N .

The logical X and Z error rate pX /Z
� is the fraction of

failed runs nfail for N total samples

pX /Z
� := nfail

N
. (G1)

The error bars eX /Z are computed by

e2
X /Z = (1− p�)

p�

N
. (G2)

The simulations are terminated if the maximum number of
samples N is reached, or if the errors fall below a certain
precision cutoff determined by the ratio of the error bar
value and the logical error rate, which we set to 10−1.

To give a better comparison of logical error rates for
codes that encode a different number of logical qubits k,
we use the word error rate (WER) for codes with k > 1,
which intuitively can be understood as logical error rate
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per logical qubit. The WER pw is computed as

pw = 1− (1− p�)
1/k−1. (G3)

We can use the methods described above to obtain a thresh-
old pth estimation by computing the logical error rates
for code instances of a code family with increasing dis-
tance and increasing physical error rate and then estimating
where the graphs cross. We use a standard approach based
on a finite-size scaling regression analysis [57,119,120].

To this end, we perform a quadratic fit on the logical
error rate data obtained by numerical experiments. Let pth
be the threshold physical error rate we want to determine,
μ > 0 a parameter called the critical exponent, and define
the rescaled physical error rate

x := (p − pth) · d1/μ, (G4)

which is x = 0 at p = pth. We use x to fit the simulation
data to the following quadratic ansatz �(p , d)

�(p , d) := ax2 + bx + c, (G5)

where a, b, and c are coefficients of the quadratic ansatz
and are parameters to be determined by fitting the data.
Note that �(p , d) is only a valid approximation near p =
pth, therefore only data points close to this region were used
to compute the fit. Given this ansatz, we use the logical
error rates p� [cf. Eq. (G1)] to obtain the free parame-
ters (pth, μ, a, b, c) by computing a fit using the minimized
mean square error.

Note that, since we focus on CSS codes, where the X
and Z decoding is done separately (assuming noncorrelated
errors), we need to compute the combined logical error
rates from the separate experimental data. Given a X and Z
logical error rates pX

� , pZ
� from numerical experiments, we

compute the combined logical error rate p� as

p� := pX
� · (1− pZ

� )+ pZ
� · (1− pX

� )+ pX
� · pZ

� . (G6)

Moreover, the corresponding errors are computed using
standard methods for propagation of uncertainty. i.e., we
use the variance formula [121]

s2
f :=

(
∂f
∂x

)2

s2
x +

(
∂f
∂y

)2

s2
y +

(
∂f
∂z

)2

s2
z + · · ·, (G7)

where sf is the standard deviation of f , and sk the standard
deviation of k ∈ {x, y, z, . . .}. To be concrete, we apply the
formula above to the separately computed errors ex, ez, to
obtain the overall error e with

e2 := e2
x · (1− ez)

2 + e2
z · (1− ex)

2. (G8)

APPENDIX H: OPEN-SOURCE SOFTWARE

All our techniques are available in the form of open-
source software available on GitHub [107] as part of
the Munich Quantum Toolkit (MQT) and partly in the
LDPC2 package [111]. With the proposed software, we
hope to provide a set of useful tools for analog informa-
tion decoding and to emphasize the need for open-source
implementations to foster public review, reproducibility,
and extendability.

[1] C. D. Bruzewicz, J. Chiaverini, R. McConnell, and
J. M. Sage, Trapped-ion quantum computing: Progress
and challenges, Appl. Phys. Rev 6, 021314 (2019).

[2] D. J. Wineland, Nobel lecture: Superposition, entangle-
ment, and raising Schrödinger’s cat, Rev. Mod. Phys. 85,
1103 (2013).

[3] M. H. Devoret and R. J. Schoelkopf, Superconducting cir-
cuits for quantum information: An outlook, Science 339,
1169 (2013).

[4] G. Burkard, T. D. Ladd, A. Pan, J. M. Nichol, and J. R.
Petta, Semiconductor spin qubits, Rev. Mod. Phys. 95,
025003 (2023).

[5] L. Henriet, L. Beguin, A. Signoles, T. Lahaye,
A. Browaeys, G.-O. Reymond, and C. Jurczak, Quan-
tum computing with neutral atoms, Quantum 4, 327
(2020).

[6] A. Deshpande, P. Niroula, O. Shtanko, A. V. Gorshkov, B.
Fefferman, and M. J. Gullans, Tight bounds on the conver-
gence of noisy random circuits to the uniform distribution,
PRX Quantum 3, 040329 (2022).

[7] D. Stilck França and R. García-Patrón, Limitations of opti-
mization algorithms on noisy quantum devices, Nat. Phys.
17, 1221 (2021).

[8] P. T. Cochrane, G. J. Milburn, and W. J. Munro, Macro-
scopically distinct quantum-superposition states as a
bosonic code for amplitude damping, Phys. Rev. A 59,
2631 (1999).

[9] D. Gottesman, A. Kitaev, and J. Preskill, Encoding a qubit
in an oscillator, Phys. Rev. A 64, 012310 (2001).

[10] N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Leghtas,
B. Vlastakis, Y. Liu, L. Frunzio, S. M. Girvin, L. Jiang,
M. Mirrahimi,
M. H. Devoret, and R. J. Schoelkopf, Extending the life-
time of a quantum bit with error correction in supercon-
ducting circuits, Nature 536, 441 (2016).

[11] V. V. Sivak, A. Eickbusch, B. Royer, S. Singh, I.
Tsioutsios, S. Ganjam, A. Miano, B. L. Brock, A. Z.
Ding, L. Frunzio, S. M. Girvin, R. J. Schoelkopf, and
M. H. Devoret, Real-time quantum error correction
beyond break-even, Nature 616, 50 (2023).

[12] A. Grimm, N. E. Frattini, S. Puri, S. O. Mundhada,
S. Touzard, M. Mirrahimi, S. M. Girvin, S. Shankar, and
M. H. Devoret, Stabilization and operation of a Kerr-cat
qubit, Nature 584, 205 (2020).

[13] R. Lescanne, M. Villiers, T. Peronnin, A. Sarlette, M. Del-
becq, B. Huard, T. Kontos, M. Mirrahimi, and Z. Leghtas,

020349-30

https://doi.org/10.1063/1.5088164
https://doi.org/10.1103/RevModPhys.85.1103
https://doi.org/10.1126/science.1231930
https://doi.org/10.1103/RevModPhys.95.025003
https://doi.org/10.22331/q-2020-09-21-327
https://doi.org/10.1103/PRXQuantum.3.040329
https://doi.org/10.1038/s41567-021-01356-3
https://doi.org/10.1103/PhysRevA.59.2631
https://doi.org/10.1103/PhysRevA.64.012310
https://doi.org/10.1038/nature18949
https://doi.org/10.1038/s41586-023-05782-6
https://doi.org/10.1038/s41586-020-2587-z


ANALOG INFORMATION DECODING... PRX QUANTUM 5, 020349 (2024)

Exponential suppression of bit-flips in a qubit encoded in
an oscillator, Nat. Phys. 16, 509 (2020).

[14] A. S. Darmawan, B. J. Brown, A. L. Grimsmo, D. K.
Tuckett, and S. Puri, Practical quantum error correction
with the XZZX code and Kerr-cat qubits, PRX Quantum
2, 030345 (2021).

[15] J. P. Bonilla Ataides, D. K. Tuckett, S. D. Bartlett, S. T.
Flammia, and B. J. Brown, The XZZX surface code, Nat.
Commun. 12, 2172 (2021).

[16] K. Tiurev, P.-J. H. S. Derks, J. Roffe, J. Eisert, and J.-M.
Reiner, Correcting non-independent and non-identically
distributed errors with surface codes, Quantum 7, 1123
(2023).

[17] J. Guillaud and M. Mirrahimi, Repetition cat qubits
for fault-tolerant quantum computation, Phys. Rev. X 9,
041053 (2019).

[18] J. Guillaud and M. Mirrahimi, Error rates and resource
overheads of repetition cat qubits, Phys. Rev. A 103,
042413 (2021).

[19] C. Chamberland, K. Noh, P. Arrangoiz-Arriola, E. T.
Campbell, C. T. Hann, J. Iverson, H. Putterman, T. C.
Bohdanowicz, S. T. Flammia, A. Keller, G. Refael, J.
Preskill, L. Jiang, A. H. Safavi-Naeini, O. Painter, and F.
G. Brandão, Building a fault-tolerant quantum computer
using concatenated cat codes, PRX Quantum 3, 010329
(2022).

[20] F.-M. L. Régent, C. Berdou, Z. Leghtas, J. Guillaud, and
M. Mirrahimi, High-performance repetition cat code using
fast noisy operations, Quantum 7, 1198 (2023).

[21] M. P. Stafford and N. C. Menicucci, Biased Gottesman-
Kitaev-Preskill repetition code, Phys. Rev. A 108, 052428
(2023).

[22] C. Vuillot, H. Asasi, Y. Wang, L. P. Pryadko, and
B. M. Terhal, Quantum error correction with the toric
Gottesman-Kitaev-Preskill code, Phys. Rev. A 99, 032344
(2019).

[23] K. Noh and C. Chamberland, Fault-tolerant bosonic quan-
tum error correction with the surface–Gottesman-Kitaev-
Preskill code, Phys. Rev. A 101, 012316 (2020).

[24] N. Raveendran, N. Rengaswamy, F. Rozpędek, A. Raina,
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