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ABSTRACT Reconfigurable intelligent surfaces (RISs) have received considerable attention in appli-
cations related to localization. However, operation in multi-path scenarios is challenging from both
complexity and performance perspectives. This study presents a two-stage low complexity method for
joint three-dimensional (3D) localization and synchronization using multiple RISs. Firstly, the received
signals are preprocessed, and an efficient deep learning architecture is proposed to initially estimate the
angles of departure (AODs) of the virtual line of sight paths from the RISs to the user. Then, a hybrid
asynchronous AOD time-of-arrival-based approach is proposed in the first stage to estimate an initial
guess of the position of the user equipment (UE). Finally, in the second stage, an optimization problem
is formulated to refine the position of the UE by effectively utilizing the estimated delays and the clock
offset. Our comparative study reveals that the proposed method outperforms the existing methods in
terms of accuracy and complexity. Notably, the proposed method showcases enhanced robustness against
multipath effects when compared to the state-of-the-art approaches.

INDEX TERMS 3D localization, deep learning, mmWave, reconfigurable intelligent surface,
synchronization.

I. INTRODUCTION

THE APPLICATION of localization technologies has
witnessed extensive adoption in various domains,

including wireless networks, disaster rescue, augmented real-
ity, and the Internet of Things (IoT) [1], [2]. Consequently,
there has been a growing interest in advancing localization
systems by leveraging innovative technologies over the
past few decades [3], [4], [5]. In the presence of noise-
corrupted sensor measurements, various approaches are
utilized to estimate the position of the source, encom-
passing time-of-arrival (TOA) [6], time-difference-of-arrival
(TDOA) [7], angle-of-arrival (AOA) [3], [4], angle-of-
departure (AOD), received-signal-strength (RSS) [8], [9],
and their hybrid counterparts [10]. Time-based measure-
ments rely on synchronization [4], [6], while RSS-based
measurements are subject to propagation effects [8]. Finally,
AOA- or AOD-based localization has been a focal point in

recent research [4], [11], [12], as it eliminates the need for
synchronization, thus expanding its applicability to a broader
range of scenarios [3], [4].

In 5G, accurate radio localization is achievable through the
utilization of a multitude of antennas and a large radio band-
width, combining AOA, AOD, and TDOA. Looking ahead
to 6G, radio localization is anticipated to become even more
ubiquitous, with the integration of reconfigurable intelligent
surfaces (RISs) [13]. RISs have attracted enormous interest,
mainly for their ability to overcome line-of-sight (LoS)
blockages in millimeter wave (mmWave) communications.
They are composed of multiple nearly passive metamaterials
and are poised to revolutionize the performance of wireless
applications. This includes enhancing capabilities in localiza-
tion and sensing through dynamic manipulation of the signal
propagation environment [12], [14]. RISs have emerged as a
pivotal tool in propelling cost-effective and energy-efficient
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approaches for optimizing wireless communication. By
modifying the characteristics of electromagnetic waves in
the environment, RISs enable significant improvements in
wireless communication performance [11], [12], [15], [16].
RIS-aided localization approaches leverage RISs to

actively manipulate multipath propagation, which enhances
the precision and robustness of localization systems,
extending the concept of multipath-aided localization
to RIS [17], [18], [19]. In [12], a closed-form least
squares (LS) based localization method is proposed for
three-dimensional (3D) localization. This method utilizes
partially connected receiving RISs and employs the pop-
ular subspace-based root multiple signal classification
(R-MUSIC) method for angle estimation. However, it is
worth noting that the R-MUSIC method requires a high
computation. In [19], a single RIS is utilized for localization,
with the base station (BS) receiving signals reflected by
the RIS for AOA and TOA estimation. The proposed
method involves an algorithm conducting two 1D searches
over the TOAs and one two-dimensional (2D) search over
the AODs, resulting in high computational complexity.
Additionally, due to the propagation path of the prob-
ing signal traversing through the BS-RIS-user equipment
(UE)-RIS-BS, significant signal attenuation is incurred.
Consequently, the method demonstrates limited accuracy,
particularly over longer ranges. The study in [20] achieves
environment mapping and user localization through array
signal processing and atomic norm denoising, utilizing two
RISs for channel parameter estimation. More recently, [21]
demonstrates that the absolute positions of UEs can be
estimated through the assistance of at least two RISs
and sidelink communication between the UEs, even in
the absence of BSs. In recent years, various maximum
likelihood (ML) based approaches have been proposed for
localization using RISs [11], [17], [22]. ML-based methods,
while asymptotically optimal, depend on a known signal
model at the receiver to achieve optimal performance. Thus
in the presence of multipath, due to the unknown number
of non-line-of-sight (NLoS) paths, ML methods have an
inconsistent performance. Moreover, the nonconvex nature of
ML estimators necessitates the use of iterative solvers, lead-
ing to significant computational demands at each iteration.
In [22], a semi-passive RIS is employed which utilizes the
MUSIC algorithm for AOA estimation. Subsequently, the
received sensor data is transformed into frequency-domain
sequences using discrete Fourier transform (DFT), enabling
the ML estimator to jointly estimate the TOA and the UE
related coefficient. Among ML methods, [17] also addresses
the synchronization using a single BS and a single RIS
in 2D scenarios. In particular, first, it proposes a relaxed
ML-based method (RML), which searches the uncertainty
environment to obtain an initial guess for both the location
of the UE and the clock offset for synchronization. Thus,
it depends on the dimensions of the environment, which
requires significant computation, especially in large 3D
environments. Next, it proposes a joint ML based method

(JML) that aims to optimize the ML estimator accurately.
This is achieved by utilizing the derivative-free Nelder-
Mead algorithm. However, when generalizing this method
to 3D muti-RIS scenarios, the algorithm is computationally
demanding and requires a high number of iterations to
converge.
A critical sub-problem in RIS-aided localization is

AOD estimation, which is necessarily performed in
beamspace. Although deep learning (DL) has been
applied for channel estimation or sensing in RIS-assisted
systems [23], [24], [25], to the best of our knowledge, our
work is among the first to utilize deep neural networks
(DNNs) for 2D-AOD estimation for RIS-assisted localization
and synchronization. Recent advancements in AOA estima-
tion have introduced DL methods, in order to deal with
various imperfections, low-SNR conditions, or multipath,
or to provide lower-complexity solutions than model-based
counterparts. In [26] a hierarchical DNN framework for
1D-AOA estimation is proposed, utilizing a multitask autoen-
coder and parallel multilayer perceptron (MLP) classifiers
for denoising and AOA classification across spatial sub-
regions. However, limitations in low-SNR conditions and
a lack of generalization to 2D scenarios are observed in
previous studies [27], [28]. A subsequent study in [27]
presents a deeper DNN architecture with three residual
blocks, relying heavily on computation for training and
output spectrum calculation. Both methods employ the
upper triangular elements of the correlation matrix as input
vectors, overlooking the 2D matrix structure and resulting
in suboptimal AOA performance due to lost features. Later
in [29], a two-stage method is introduced for 2D-AOA
estimation. Firstly, using a similar technique to [26], a
deep convolutional network (DCN) classifies 2D angles into
discrete subregions of the arrival plane. Subsequently, the
orthogonal matching pursuit algorithm estimates 2D angles
within each subregion. In [30], the authors introduce
a similar approach using MLP classifiers for 1D-AOA
estimation. Initially, they employ a full-row Toeplitz matrices
reconstruction (FTMR) algorithm to utilize all rows of the
sample covariance matrix (SCM), followed by computing
the sum of squares of these matrices. Utilizing the for-
ward/backward spatial smoothing (FBSS) technique, similar
to the MUSIC algorithm, they then perform eigenvalue
decomposition (EVD) to identify the noise subspace. The
resulting polynomial coefficients are used as features for the
MLP classifiers. Although this method reduces input size
compared to previous DL-based approaches, the integration
of FTMR, FBSS, and EVD significantly increases com-
putational demands. Moreover, [28] notes its performance
limitations in low-SNR scenarios. In [31], a convolutional
neural network (CNN) is proposed for 1D-AOA estimation,
utilizing the 2D covariance matrix as input. The CNN com-
prises four convolutional layers and three fully-connected
layers. However, it exhibits high computational complexity
due to its complex architecture. Recently, [32] proposed
a deep residual network (ResNet) utilizing raw in-phase
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(I) and quadrature (Q) components of the received signal
as input. However, its input is dependent on the number
of snapshots, limiting its generalizability. Additionally, the
increased depth of ResNets leads to higher complexity during
testing. Furthermore, [28] improves 2D-AOA estimation by
integrating attention mechanisms into CNNs, while [33]
investigates multi-source 2D-AOA estimation using uniform
circular arrays (UCAs) under receiver mobility. In all of
the aforementioned DL-based methods for AOA estimation,
scenarios involving multipath and RISs are not considered.
This paper addresses this issue by employing two techniques:
effective dataset generation taking into account the multipath
and the utilization of a less common loss function to mitigate
the impact of multipath on AOA (or AOD) estimation
performance.
The presence of multipath imposes requirements on

resolution. Resolution can be provided in the delay domain
(by the use of larger bandwidths) or in the angle domain
(by the use of larger arrays). Various array structures can
be used to provide 2D angle resolution, including uniform
planar arrays (UPA), circular arrays, conformal arrays, and L-
shaped arrays. While UPA structures have been more widely
considered in RIS-aided localization [11], [12], [14], [19],
[21], the advantages of other array topologies are given less
attention in previous studies. Linear arrays for RISs and BSs
have been recently considered in [34] for UE localization.
Recently, [35] introduced a novel circular RIS architecture
for precise environmental information acquisition and unique
decoupling of channel parameters for user localization, not
feasible with traditional UPA RIS topologies. Furthermore,
in [36], the authors suggest employing conformal metasur-
faces on vehicles’ bodies to alleviate blockage effects by
generating artificial reflections. This compensates for the
non-flat shape of the vehicle’s body using appropriate phase
patterns.
In this paper, we introduce RISs with L-shaped topolo-

gies which have several advantages over other topologies
including UPAs. First of all, for a given aperture (and thus
angular resolution) L-shaped arrays exhibit a significantly
reduced number of elements compared to UPAs [37], [38],
[39], [40]. Secondly, by employing L-shaped arrays, we can
decompose RIS elements into two symmetric ULAs. Thus,
the 2D-AOD estimation problem can be easily decomposed
into two simpler 1D-AOD estimation problems, which results
in a considerable reduction in computational complexity [38],
[39], [40], [41], compared to UPAs. For a given number of
elements, L-shaped arrays, thanks to their higher subarray
widths, have better AOD estimation performance compared
to UPAs, so there is no loss in terms of SNR.
In this paper, we consider the multi-RIS-aided localization

problem in a 3D complex multipath environment using L-
shaped RIS. We present a novel two-stage hybrid AOD/TOA
localization method aided by deep learning for joint user
localization and synchronization. The main contributions of
this work are as follows:

• A novel architecture for deep learning-based AOD
estimation: An efficient low-complexity deep learning-
based architecture is proposed to initially estimate the
AODs of the virtual line of sight (VLoS) paths between
the RISs and the UE. In contrast to existing DL-
based methods, our approach effectively addresses the
multipath effect, ensuring its robustness against this
phenomenon. For simplicity, in the rest of the paper,
this network is referred to as VNet.

• A low-complexity 3D localization routine: A novel low-
complexity two-stage method is proposed to estimate
the location and the clock offset of the UE in the
presence of a single BS and multiple RISs. In the
first stage (SG1), a hybrid asynchronous AOD/TOA-
based method is proposed to estimate the delays of
the received signals and an initial guess for the UE’s
position, using the proposed VNet and beamforming
techniques. Moreover, the clock offset is also estimated
in this stage. In the second stage (SG2), a hybrid
AOD/TOA-based optimization problem is formulated
to refine the estimated position in SG1. An efficient
iterative approach is proposed for solving this problem
using the estimated position from SG1 as the starting
point of the algorithm.

• Comprehensive complexity and performance analysis:
Our comparative study validates that the proposed
method shows more robustness against the multipath
effect compared to the existing methods. Moreover, our
complexity analysis demonstrates the superiority and
efficiency of the proposed method.

The rest of this paper is organized as follows. Section II
presents the system model and problem formulation.
Section III simplifies the signal model and defines some
key notations and metrics. Moreover, it details the design of
beamforming at the BS and RIS phase profiles. Section IV
introduces and investigates the details of the signal pre-
processing and the proposed VNet. Section V, presents the
details of the proposed two-stage method. Section VI carries
out extensive simulations to demonstrate the effectiveness
and efficiency of the proposed method. Finally, Section VII
concludes the paper.
Notations: Matrices are denoted by capital bold letters, such
as X, while vectors are represented by bold lowercase letters,
such as x. The submatrix Xu,v is defined as the selection
of rows indexed by u and columns indexed by v from the
matrix X. If : is used instead of u or v, it indicates the
selection of all rows or columns, respectively, from X. The
superscripts (.)T , (.)H and (.)−1 denote vector or matrix
transpose, hermitian, and inverse, respectively. [x1, . . . , xn]
shows the horizontal concatenation of the vectors x1, . . . , xn.
The notation diag(x) represents a diagonal matrix constructed
using the vector x as its diagonal. Similarly, diag(X) refers
to a vector composed of the diagonal elements of the matrix
X. For a matrix X whose elements are in dB, Xlin represents
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FIGURE 1. System model where the LoS path between the UE and BS is blocked.
The G RISs provide VLoS paths, useful for localization of the UE.

the linear values of X, where [Xlin]i,j = 10[X]i,j/10. The n×n
identity matrix is shown by In, and 1M denotes an M × 1
all ones vector. ‖X‖F and ‖x‖ show the Frobenius and l2
norms, respectively, and finally, A ⊗ B and A � B are the
Kronecker and Hadamard productions, respectively.

II. SYSTEM MODEL
As illustrated in Fig. 1, we consider a BS, G RISs, and a
UE in an indoor or outdoor environment. We aim to estimate
the UE location and clock offset in the presence of NLoS
paths using the downlink signal received from the BS via
established VLoS paths with RISs.

A. GEOMETRY MODEL
Both the BS and each of the G RISs are equipped with
an L-shaped array, comprising two orthogonal subarrays.
Specifically, one subarray is oriented in the elevation
direction (perpendicular to the ground), while the other is in
the azimuth direction (parallel to the ground). Let Mθ

b and
Mθ
g denote the number of elements in the elevation subarray

of the BS and the g-th RIS, respectively. Similarly, Mψ
b and

Mψ
g present the number of elements in azimuth subarrays.

Thus, the total of Mb = Mθ
b + Mψ

b and Mg = Mθ
g + Mψ

g

elements are utilized at the BS and the g-th RIS, respectively.
Moreover, pb ∈ R

3×1, prg ∈ R
3×1, and pu ∈ R

3×1 present
the position of the centers of the BS, the g-th RIS, and the
UE, respectively, where g = 1, . . . ,G. We assume that the
LoS path between the BS and UE is blocked. In addition,
scatter points (SPs) are utilized to model the NLoS paths
for the multipath effect as shown in Fig. 1.

In this work, it is assumed that the UE resides within the
far-field (FF) region relative to each RIS. According to [42],
the FF condition is met when the distance d between the
UE and any RIS surpasses

DF = 2D2/λ, (1)

with λ indicating the carrier wavelength and D specifying the
RIS’s aperture size, defined as the greatest distance between
any pair of elements on the RIS. This assumption will be
verified later when presenting the results.

B. SIGNAL MODEL
The BS communicates with the UE via G RISs by
transmitting orthogonal frequency division multiplexing
(OFDM) pilots over Ns subcarriers across Nt transmissions.
The subcarrier spacing, denoted by �f , can be determined by
�f = B/Ns, where B represents the bandwidth. In particular,
the t-th transmission over the n-th subcarrier is given by

yt[n] = √PhTt [n]f tst[n]+ vt[n], (2)

where st[n] ∈ C is the n-th component of the OFDM symbol
St ∈ C

Ns×1 in the t-th transmission, f t ∈ C
Mb×1 represents

the beamforming vector at the BS in the t-th transmission.
Moreover, P denotes the total transmitted power, vt[n] is the
zero-mean complex Gaussian noise with variance σ 2

v , and
ht[n] ∈ C

Mb×1 signifies the channel between the BS and UE
for the n-th subcarrier and t-th transmission. This channel
can be expressed as follows, assuming the LoS path between
the UE and BS is blocked

hTt [n] = hTb,u[n]+
G∑

g=1

hTrg,u[n]�g,tHb,rg [n], (3)

where hb,u[n] ∈ C
Mb×1 denotes the channel from the BS to

the UE, hrg,u[n] ∈ C
Mg×1 is the channel from the g-th RIS

to the UE, and �g,t ∈ C
Mg×Mg represents the phase control

coefficients of the g-th RIS during the t-th transmission for
which we adopt a commonly used model, as seen in prior
literature [17], [21], [34],

�g,t = diag

(
ejω

1
g,t , . . . , ejω

Mg
g,t

)
, (4)

where ωmg,t ∈ [0, 2π) is the amount of phase change by the
m-th element of the g-th RIS at the t-th transmission. In
addition, Hb,rg ∈ C

Mg×Mb denotes the channel from the BS
to the g-th RIS.

C. CHANNEL MODEL
The tandem channel ht[n] comprises three parts: the channel
from BS to UE hb,u[n], the channel from BS to RIS Hb,rg [n]
and the channel from RIS to UE hrg,u[n]. These are detailed
next.

1) BS-UE CHANNEL

Based on the geometric channel model [43], since the LoS
channel between the BS and UE is blocked, the first tandem
channel hb,u[n] is defined as follows assuming the presence
of Ib,u SPs located at {p(i)b,u}Ib,ui=1 affecting this channel:

hb,u[n] =
Ib,u∑

i=1

α
(i)
b,ue
−j2πτ(i)b,un�f ab

(
�d(i)
b,u

)
, (5)

where α(i)b,u = ρ
(i)
b,ue

jϕ(i)b,u is the complex gain between BS

and UE through the i-th SP, with ρ(i)b,u and ϕ(i)b,u denoting its

modulus and phase components. τ (i)b,u represents the delay
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FIGURE 2. Definitions of AODs from RISs and from the BS and AOAs at the RISs.

from BS to UE via the i-th SP up to a clock offset δ, which
can be obtained as follows

τ
(i)
b,u =

‖pb − p(i)b,u‖ + ‖p(i)b,u − pu‖
c

+ δ, (6)

where c is the speed of light. In (5), ab(.) ∈ C
Mb×1 denotes

the BS array steering vector. With the assumption that
the element located at the origin of the array belongs to
the elevation subarray, this vector is defined as follows for
the elevation (θ) and spatial angle (ψ) pair � = [θ, ψ]T :

ab(�) =
[
1, ejkd cos(θ), . . . , ejk

(
Mθ
b−1

)
d cos(θ),

ejkd cos(ψ), . . . , ejkM
ψ
b d cos(ψ)

]T
, (7)

where k = 2π/λ denotes the wave number with λ = c/fc
being the wavelength and fc the carrier frequency, and d is
the distance between any two adjacent elements. The spatial
angle is split into �d(i)

b,u = [θd
(i)

b,u , ψ
d(i)
b,u ]T , where θd

(i)

b,u is the

elevation AOD, and ψd(i)
b,u denotes the spatial AOD with

respect to the x-axis of the array, which are shown in Fig. 2.
It is important to highlight that the latter differs from the
actual azimuth angle. Specifically, the relationship between
the spatial angle ψ and the elevation and azimuth pair
(θ, φ) is given by cos(ψ) = sin(θ) cos(φ). The geometric
relationships of the angles θd

(i)

b,u and ψd(i)
b,u with the positions

of the BS, UE, and SPs are presented as follows:

θd
(i)

b,u = arccos

⎛

⎜⎝

[
p(i)b,u;b

]

3

‖p(i)b,u;b‖

⎞

⎟⎠, ψd(i)
b,u = arccos

⎛

⎜⎝

[
p(i)b,u;b

]

1

‖p(i)b,u;b‖

⎞

⎟⎠,

(8)

where p(i)b,u;b = RTb (p
(i)
b,u− pb) denotes the coordinates of the

i-th SP with respect to the local coordinate system of the
BS. Here, Rb ∈ R

3×3 depicts the rotation matrix defining
the orientation of the BS.

2) BS-RIS CHANNEL

Assuming LoS path between BS and RISs, the second
tandem channel Hb,rg [n] is defined as

Hb,rg [n] = αb,rge−j2πτb,rg n�f arg
(
�a
b,rg

)
aTb
(
�d
b,rg

)
, (9)

where αb,rg = ρb,rgejϕb,rg is the complex gain between BS
and the g-th RIS, with ρb,rg and ϕb,rg being its modulus
and phase components, respectively. Here, τb,rg expresses
the delay between the g-th RIS and the BS as τb,rg =
‖pb − prg‖/c. The g-th RIS steering vector arg(.) ∈ C

Mg×1

is defined similarly to (7) as

arg(�) =
[

1, ejkd cos(θ), . . . , e
jk
(
Mθ
g−1

)
d cos(θ)

,

ejkd cos(ψ), . . . , ejkM
ψ
g d cos(ψ)

]T
. (10)

Here, �a
b,rg
= [θab,rg , ψ

a
b,rg

]T and �d
b,rg
= [θdb,rg , ψ

d
b,rg

]T , as
illustrated in Fig. 2, denote the AOAs and AODs from the
BS to the g-th RIS, respectively. θab,rg , θ

d
b,rg

are the elevation

AODs, and ψa
b,rg

, ψd
b,rg

correspond to the spatial angles with
respect to the x-axis of the array, which are defined similar
to (8) as

θab,rg = arccos

⎛

⎜⎝

[
pb;rg

]

3

‖pb;rg‖

⎞

⎟⎠, θdb,rg = arccos

⎛

⎜⎝

[
prg;b

]

3

‖prg;b‖

⎞

⎟⎠,

(11)

ψa
b,rg = arccos

⎛

⎜⎝

[
pb;rg

]

1

‖pb;rg‖

⎞

⎟⎠, ψd
b,rg = arccos

⎛

⎜⎝

[
prg;b

]

1

‖prg;b‖

⎞

⎟⎠,

(12)

where prg;b = RTb (prg − pb) and pb;rg = RTg (pb − prg), with
Rg ∈ R

3×3 being the rotation matrix corresponding to the
orientation of the g-th RIS.

3) RIS-UE CHANNEL

Assuming the presence of Irg,u SPs affecting the channel
from the g-th RIS to UE, the third tandem channel hrg,u[n]
in (3) is defined as

hrg,u[n] = αrg,ue−j2πτrg,un�f arg
(
�d
rg,u

)

+
Irg,u∑

i=1

α(i)rg,ue
−j2πτ(i)rg,un�f arg

(
�d(i)
rg,u

)
, (13)

in which �d
rg,u = [θdrg,u, ψ

d
rg,u]T denotes the elevation and

spatial (with respect to x-axis) AODs of the LoS path from
the g-th RIS to the UE, defined similarly to (11). In addition,
αrg,u = ρrg,ue

jϕrg,u is the complex channel gain between

the g-th RIS and the UE. The notation α(i)rg,u = ρ
(i)
rg,ue

jϕ(i)rg,u

is defined similarly, which corresponds to the i-th SP with
position p(i)rg,u ∈ R

3×1. �d(i)
rg,u = [θd

(i)

rg,u, ψ
d(i)
rg,u]T is defined as

the AODs from the g-th RIS to p(i)rg,u, obtained in a similar
manner to (11). In (13), τrg,u is the delay between the g-th
RIS and the UE up to a clock offset δ,

τrg,u =
‖pu − prg‖

c
+ δ. (14)
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Similarly, τ (i)rg,u denotes the NLoS delay between the g-th
RIS and the UE through the i-th SP,

τ (i)rg,u =
‖p(i)rg,u − prg‖ + ‖pu − p(i)rg,u‖

c
+ δ. (15)

It is noteworthy that in (14) and (15), the inclusion of
the clock offset δ, addresses synchronization discrepancies
specifically between the BS and the UE. Importantly, since
the RISs operate passively, they inherently do not introduce
any clock offset.
Moreover, it is important to note that while the detection

and estimation of NLoS paths (i.e., SP locations) have
the potential to enhance system performance, the realized
improvement is limited by the considerable path loss
associated with these paths and the fact that the number
of such paths is a priori unknown [21]. In this study,
similar to [17], [21], [34], we interpret these NLoS paths
as interference. Unlike conventional methodologies, our
proposed method neither ignores nor attempts to estimate
or detect these paths and thus, we do not estimate the
numbers Ib,u or {Irg,u}Gg=1. Instead, as shown in Section IV-B,
it leverages machine learning techniques to intelligently
mitigate the impact of NLoS paths.

III. PRELIMINARIES: METRICS AND PHASE PROFILE
DESIGN
In this section, the signal model and beamforming models
are further elaborated and specialized, in order to simplify
the processing.

A. SIGNAL SIMPLIFICATION
In this section, we simplify the signal model and derive
equations that will be used in the following sections. By
substituting (5), (9) and (13) into (3), the expression is
simplified to the following compact form:

hTt [n] =
Ib,u∑

i=1

α
(i)
b,u

[
d
(
τ
(i)
b,u

)]

n
aTb
(
�d(i)
b,u

)
(16)

+
G∑

g=1

[
αrg
[
d
(
τrg
)]
n
aTrg

(
�d
rg,u

)
�g,targ

(
�a
b,rg

)
aTb
(
�d
b,rg

)
(17)

+
Irg ,u∑

i=1

α(i)rg

[
d
(
τ (i)rg

)]

n
aTrg

(
�d(i)
rg,u

)
�g,targ

(
�a
b,rg

)
aTb
(
�d
b,rg

)
⎤

⎦,

where αrg = αrg,uαb,rg and τrg = τrg,u + τb,rg denote the
total complex gain and the total delay between the BS and
UE through the g-th RIS, respectively. The delay steering
vector d(.) ∈ C

Ns×1 is defined as

d(τ ) =
[
1, e−jξ1τ , . . . , e−jξNs−1τ

]T
, (18)

where ξn = 2πn�f . Similarly, the notations α(i)rg = α(i)rg,uα(i)b,rg
and τ (i)rg = τ (i)rg,u + τ (i)b,rg are defined for the i-th SP between
the g-th RIS and UE. We can express

aTrg

(
�d
rg,u

)
�g,targ

(
�a
b,rg

)
= bTrg

(
�d
rg,u,�

a
b,rg

)
ωg,t, (19)

where ωg,t = diag(�g,t) and the notation brg(., .) ∈ C
Mg×1

is defined as

brg(�1,�2) = arg(�1)� arg(�2), (20)

for �1 = [θ1, ψ1]T and �2 = [θ2, ψ2]T . For simplicity,
in the rest of the paper, we assume that st[n] = 1 for all
t = 1, . . . ,Nt and n = 1, . . . ,Ns. After simplifying (16)
using (19) and substituting the simplified equation into (2),
and stacking all NsNt received signals over all Nt transmis-
sions and Ns subcarriers, we obtain the matrix Y ∈ C

Ns×Nt
as

Y =
G∑

g=1

X(g)VLoS

︸ ︷︷ ︸
XVLoS

+
Ib,u∑

i=1

X(b,i)NLoS +
G∑

g=1

Irg,u∑

i=1

X(g,i)NLoS

︸ ︷︷ ︸
XNLoS

+V, (21)

where X(g)VLoS and X(g,i)NLoS are the noise-free received VLoS
and i-th SP NLoS signals through the g-th RIS, respectively,
and X(b,i)NLoS denotes the i-th NLoS signal from the BS to UE
through the i-th SP. Moreover, V ∈ C

Ns×Nt denotes the noise
matrix with elements [V]n,t = vt[n]. X(g)VLoS can be obtained
as

X(g)VLoS =
√
Pαrgd

(
τrg
)
bTrg

(
�d
rg,u,�

a
b,rg

)
Wg

× diag
(
aTb
(
�d
b,rg

)
F
)
, (22)

with Wg = [ωg,1, . . . ,ωg,Nt ], F = [f1, . . . , fNt ]. In (21)

X(g,i)NLoS is defined similarly to X(g)VLoS in (22), corresponding

to the i-th SP from the g-th RIS to UE. Finally, X(b,i)NLoS can
be represented as

X(b,i)NLoS =
√
Pα(i)b,ud

(
τ
(i)
b,u

)
aTb
(
�d(i)
b,u

)
F. (23)

The signal-to-noise ratio (SNR) and the line-of-sight to
multipath ratio (LMR) metrics are defined as follows:

SNR = ‖XVLoS‖2F
‖V‖2F

, LMR = ‖XVLoS‖2F
‖XNLoS‖2F

. (24)

These terms will be used in Section VI to evaluate the
performance of the proposed method.

B. BEAMFORMING AND RIS PHASE PROFILE DESIGN
In order to cover the environment around the RISs, based
on [44], [45], [46], an optimized choice of codebooks for
phase profiles {Wg}Gg=1 in terms of improving the received
signal power at the UE, is the DFT matrix Wg, whose (i, j)-
th elements is given by [Wg]i,j = ϕ

(j−1)(i−1)
g , 1 ≤ ∀i, j ≤

Mg,and ϕg = e−j2π/Mg for g = 1, . . . ,G.
Regarding BS beamforming design, we recall that the LoS

path between the BS and UE is assumed to be blocked
(see Fig. 1). So in this paper we use VLoS paths between
BS and the UE established by RISs for joint localization
and synchronization. Since the locations of the BS and
RISs pb and {prg}Gg=1 are known beforehand, the angles
{�a

b,rg
,�d

b,rg
}Gg=1 are also known. Thus, we design the BS
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beamforming matrix F using the optimal directional beam-
forming to concentrate the power P towards individual RISs,
which maximizes the SNR at the RISs [17], [34]. Hence,
the codebook F ∈ C

Mb×G for designing the beamforming
matrix F is chosen as

F =
[
a∗b
(
�d
b,r1

)
, . . . , a∗b

(
�d
b,rG

)]
. (25)

Hence, using the codebooks Wg and F, the BS beamform-
ing matrix F and RIS phase profiles {Wg}Gg=1 are designed
as follows:

F = 1√
MbNt

[[F]:,1 ⊗ 11×M1, . . . ,
[F]:,G ⊗ 11×Mg

]
,

(26)

[
Wg
]

:,t =
{[Wg

]
:,(t−Lg−1)

, Lg−1 + 1 ≤ t ≤ Lg
0 (absorption mode), otherwise,

where Lg =∑g
g′=1 Mg for g = 1, . . . ,G with L0 = 0. Hence

for each subcarrier, the total number of transmissions is
equal to Nt =∑G

g=1 Mg. In (26), each beamforming vector
is divided by a factor of

√
Mb to normalize the vectors

and ensure that the total transmitted power remains constant
throughout the entire period. Moreover, we divide each
vector by

√
Nt to satisfy the condition tr(FFH) = 1. Only

Mg beams with indices Lg−1 + 1 ≤ t ≤ Lg are concentrated
towards the g-th RIS. Thus, almost no power is received
from other samples at the UE from the BS through the g-th
RIS. Thus, for t ≤ Lg−1 or Lg + 1 ≤ t, the g-th RIS is
configured in absorption mode to prevent signal scattering.
In conclusion to this section, we emphasize that the

focus of this paper is on a downlink scenario. In this
framework, all methodologies proposed in the subsequent
sections are specifically designed for autonomous operation
at the UE level, for instance within a mobile device.
The beamforming designs in (26) ensures compatibility
with scenarios involving multiple UEs. As a result, our
proposed approach supports independent implementation at
each UE, thereby enabling personalized 3D localization and
synchronization based on the signals each device receives.

IV. PROPOSED VNET AOD ESTIMATION
For clarity and systematic presentation, the proposed method
is divided into sequential stages. In the first stage, the
received signal Y, as defined in (21), undergoes preprocess-
ing to yield G matrices, which are provided to VNet, to yield
AOD estimates. The subsequent positioning and refinement
stages are deferred to Section V.

A. GENERATING THE VNET INPUT
First, Y from (21) is partitioned into G submatrices Yg ∈
C
Ns×M(g)

as

Yg = [Y]:,(Lg−1+1):Lg , g = 1, . . . ,G. (27)

According to the designed RIS phase profiles in (26), the
g-th RIS only reflects in Mg transmissions with indices t =
Lg−1 + 1, . . . ,Lg. Thus, Yg can be obtained as:

Yg =
√
Pαrgd

(
τrg
)
bTrg

(
�d
rg,u,�

a
b,rg

)
Wg diag

(
ug
)

+
Irg,u∑

i=1

√
Pα(i)rg d

(
τ (i)rg

)
bTrg

(
�d(i)
rg,u,�

a
b,rg

)
Wg diag

(
ug
)

+
Ib,u∑

i=1

√
Pα(i)b,ud

(
τ
(i)
b,u

)
u(i)g + Vg, (28)

where Vg = [V]:,(Lg−1+1):Lg , and

ug = aTb
(
�d
b,rg

)
Fg, u(i)g = aTb

(
�d(i)
b,u

)
Fg (29)

where Fg = [F]:,(Lg−1+1):Lg = [F]:,g ⊗ 11×Mg . Hence,
according to BS precoder design in (25) and (26), we deduce
that diag(ug) = √Mb/NtIMb and u(i)g = βi1TMg

/
√
MbNt,

where βi = aTb (�
d(i)
b,u)a

∗
b(�

d
b,rg
) denotes the gain of the BS

array at the direction of the i-th SP. Observe that βi depends
on the number of BS array elements Mb and the position of
the i-th SP. We assume that the SPs are not located on the
LoS paths between the BS and RISs, so that |βi| becomes
negligible, especially for larger Mb. Hence, we conclude
that the SPs between the BS and UE approximately do not
interfere with the VLoS paths (though they will be included
in the simulations). On the contrary, since the phase profiles
of RISs are designed to illuminate the space in front of
them uniformly, the SPs between RISs and UE are more
likely to interfere with the VLoS paths at the receiver. Our
proposed deep learning-based AOD estimator explained in
Section IV-B2, meticulously considers these SPs to mitigate
their impact.
Next, the LS estimates of the channels are obtained by

multiplying
√
MgW−1

g
1 by the right side of (28) as

X̂g =
√
PMgMb/Ntαrgd

(
τrg
)
bTrg

(
�d
rg,u,�

a
b,rg

)

+
Irg,u∑

i=1

√
PMgMb/Ntα

(i)
rg d
(
τ (i)rg

)
bTrg

(
�d(i)
rg,u,�

a
b,rg

)

+ Ib,u,g + V′g, (30)

where Ib,u,g is the (small) interference term stemming from
hb,u[n]. Moreover, V′g =

√
MgVgW−1

g denotes the noise
matrix after LS estimation with zero-mean and the same
covariance matrix σ 2

v IMg as Vg. This LS estimation has a
complexity of O(NsM2

g) for the g-th RIS. Subsequently, since
the AOAs �a

b,rg
are known by the UE, we multiply (30) by

the matrix diag(a∗rg(�
a
b,rg
)) to eliminate the dependency of

X̂g on �a
b,rg

, which results the following calibrated signal:

X̂
c
g =

√
PMgMb/Ntαrgd

(
τrg
)
aTrg

(
�d
rg,u

)

1SinceWg is a DFT matrix, W−1
g = 1

Mg
WH

g . For simplicity, the scalar
√
Mg is also multiplied to keep the variance of the noise, unchanged after

the LS estimation.
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+
Irg,u∑

i=1

√
PMgMb/Ntα

(i)
rg d
(
τ (i)rg

)
aTrg

(
�d(i)
rg,u

)

+ Icb,u,g + V′′g, (31)

which is done with complexity O(NsMg) for the g-th RIS.
In (31), V

′′
g = V′g diag(a∗rg(�

a
b,rg
)) denotes the calibrated

noise matrix with zero-mean and the covariance matrix of
σ 2
v IMg .

B. THE PROPOSED VNET
Although (31) represents a conventional model for
angle/delay estimation, this paper diverges from traditional
methods by introducing a deep learning-based approach
designed to mitigate interference impact with lower complex-
ity. Specifically designed to excel in challenging scenarios
characterized by low-SNR, low-LMR conditions, and prox-
imity of SPs to the UE, the proposed approach addresses
these complexities effectively, as will be verified later in
Section VI in comparison to existing methods.
This section proposes a low-complexity deep learning

structure to obtain an initial estimate of the VLoS AODs
{�d

rg,u}Gg=1 which will be refined in the subsequent sections.

1) VNET INPUT

Recall from (10), that the first Mθ
g elements of arg(�

d
rg,u)

solely depend on the elevation AOD θdrg,u and the rest

Mψ
g elements only depend on the spatial AOD ψd

rg,u.

Hence X̂
c
g can be partitioned into two submatrices X̂

θ

g =
[X̂

c
g]1:Mθ

g ,:
X̂
ψ

g = [X̂
c
g]
(Mθ

g+1):(Mθ
g+Mψ

g ),:
. To eliminate the

dependency of these two submatrices on unknown vari-
ables {αrg , τrg , α(i)rg , τ (i)rg }, we compute the sample covariance
matrix (SCM) as follows:

R̂
θ

g =
1

Ns
X̂
θT

g X̂
θ∗
g

= Pgarg,θ
(
θdrg,u

)
aHrg,θ

(
θdrg,u

)
+ Cθg,I + R̂θg,v, (32)

where arg,θ (.) = [arg(.)]1:Mθ
g ,:
, and the first term, dom-

inated by power, depends on the elevation AOD θdrg,u.

Additionally, R̂
θ

g,v is the SCM of the noise covariance matrix

Rθg,v = σ 2
v IMθ

g
, and Cθg,I ∈ C

Mθ
g×Mθ

g denotes all remaining

interference terms. In addition, Pg = PMgMbρ
2
rg/Nt rep-

resents the overall gain of the g-th VLoS path through
the g-th RIS. Similar notations, such as R̂

ψ

g , arg,ψ (.) =
[arg(.)]((Mθ

g+1):Mg),:, C
ψ
g,I , R

ψ
g,v and R̂

ψ

g,v are defined accord-
ingly. Since the neurons in neural networks only take real
values, we decompose the complex-valued SCMs R̂

θ

g and R̂
ψ

g

into their real and imaginary parts, yielding tensors Rθ
g ∈

R
Mθ
g×Mθ

g×2 and Rψ
g ∈ R

Mψ
g ×Mψ

g ×2 that can be represented as
two-channel images. Moreover, Rθ

g and Rψ
g are normalized

to reduce the input variability and sensitivity of the network
as follows:

Rθ
g =

[
�{R̂θg}; 

{
R̂
θ

g

}]

‖R̂θg‖F
, Rψ

g =
[
�
{
R̂
ψ

g

}
; 

{
R̂
ψ

g

}]

‖R̂ψg ‖F
.

(33)

The resulting normalized tensors are then fed into the
proposed network. The overall complexity order of the
derivations for equations (32) and (33) can be expressed as
O(((Mθ

g )
2 + (Mψ

g )
2)Ns).

2) VNET ARCHITECTURE

As presented in (33), the input of the proposed VNet
depends on the number of elements in each subarray of RISs.
Therefore, a separate neural network must be trained for
subarrays with a different number of elements. To simplify
the exposition, in the rest of the paper, we assume that all
subarrays in the RISs, whether horizontal or vertical, have
the same number of elements, i.e., M = Mθ

g = Mψ
g for g =

1, . . . ,G. This assumption is made without loss of generality
and can be relaxed in practice by defining separate networks
for different subarray configurations.
The proposed architecture of VNet is illustrated in Fig. 3.

It consists of Q distinct subnetworks with identical structures,
each responsible for predicting the AODs for a different
region of the output scope (i.e., non-overlapping ranges of
angles). The primary reason for considering Q subnetworks
instead of a single network is to enable generalization
and scalability with low complexity. By employing this
technique, which is also used in [30], [47], we can seam-
lessly expand the angle scope by incorporating a new
subnetwork, without the necessity of retraining existing
networks. Conversely, for a more targeted angle scope, we
can efficiently focus on the corresponding subnetworks.

• Input: The input is shared across all Q subnetworks.
The input is denoted by R and is either R(g)

θ or R(g)
ψ .

• Layers: Given the input in (33), the output of the q-th
subnetwork is given by

g(q) = o(q)
(
d(q)

(
l(q)
(
f (q)2

(
f (q)1 (R)

))))
. (34)

The functions f (q)1 (.) and f (q)2 (.) denote the outputs of
convolutional layers followed by a batch normalization
layer and a rectified linear unit (ReLU) layer used as
an activation function. The function l(q)(.) is a flatten
layer, and the functions d(q)(.) and o(q)(.) present the
fully connected layers (or dense layer), which construct
the classification part of the network.

• Output: The output g(q) is of length K and relates to
the desired output angle scope (denoted by [ϕ(q)min, ϕ

(q)
max],

where ϕ presents either elevation (θ) or spatial (ψ)
AODs) and resolution r, so that K = (ϕ

(q)
max −

ϕ
(q)
min)/(Q · r).
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FIGURE 3. Proposed architecture for the VNet, including Q parallel branches, each
covering a specific range of AODs.

To obtain the overall output of the VNet, the outputs
of all Q subnetworks are concatenated as follows: g =[
g(1)

T
, . . . , g(Q)

T
]T ∈ R

QK×1
+ .

3) VNET LOSS FUNCTION

We use one-hot binary vectors for the labels of the training
dataset. These vectors have exactly one non-zero element,
corresponding to the true AOD of the VLoS path. To reduce
the impact of NLoS paths and thus to down-weight the
contribution of the zero classes in the loss function, we
employ an asymmetric loss function (ASL) [48] which
generalizes the commonly used binary cross-entropy (BCE).
For the output g ∈ R

QK with the ground truth label y ∈ R
QK ,

the total classification loss is defined as

LASL(g, y) =
QK∑

l=1

L(gl, yl), where (35)

L(g, y) = −y(1− g)γ+ log(g)− (1− y)gγ−ε log(1− gε)
where gε = max(0, g − ε), for a small ε > 0, and the
parameters γ+ and γ− serve as positive and negative focusing
parameters, respectively. The dynamic adjustment in the loss
function via the parameters ε, γ+, γ− allows for reduced
emphasis on simple classes.2 Note that when γ+ = γ− =
ε = 0, ASL reverst to BCE.

4) VNET DATASET GENERATION STRATEGY

The proposed VNet outputs the desired angle scope
[ϕmin, ϕmax] for either the elevation AOD (θ) or spatial AOD
(ψ), where ϕ denotes the AOD. This interval is evenly
divided into Z = QK grid points to obtain the vector ϕ =
[ϕ1, . . . , ϕZ]T , as explained in the previous section. For
simplicity, a single network is trained to estimate both the
elevation (θ) and spatial (ψ) AODs due to their symmetry.
Hence, we assume that ϕmin and ϕmax are determined based
on the minimum and maximum values of these AODs.
Each of the signals X̂

θ

g and X̂
ψ

g , defined in Section IV-B1
(obtained from (31)), represents a single-input multiple-
output (SIMO) system with multiple subcarriers and a linear

2 This formulation enables the network to mitigate the impact of easily
classified zero classes in two ways. Initially, adjusting parameters such as
γ+ ≥ 0 and γ− > 0 softens the impact of easy classes (g � 0.5) in the
loss function. Subsequently, the introduction of the shift parameter ε ≥ 0
imposes a stricter threshold, discarding very easy classes (g ≤ ε) as outlined
in [48].

Algorithm 1 Proposed Dataset Generation for Training VNet
Inputs: ϕ, �, �diff, χ , I, τmin, τmax, Ns
Output: Dataset D with corresponding labels L

1: Define empty lists D,L.
2: for n� = 1 : N� do
3: for z = 1 : Z do
4: Choose I and χ from I and χ , randomly.
5: Generate I + 1 random unit modulus complex

numbers c0, . . . , cI (|ci| = 1).
6: Choose a random delay τ0 ∈ [τmin, τmax].
7: XLoS←

√
�n�,linc0a(ϕz)dT(τ0)

8: �NLoS ← �n� − χ (in dB)
9: Choose I random values �(1), . . . , �(I) from

the interval [�NLoS − �diff
2 , �NLoS + �diff

2 ], with
the sum �NLoS, and store them in �NLoS.

10: Choose I random values τ1, . . . , τI uniformly
from [τmin, τmax], and store them in τNLoS.

11: Choose I random values ϕ(1), . . . , ϕ(I) from
[ϕmin, ϕmax], and store them in ϕNLoS.

12: A← [c1a(ϕ(1), . . . , cIa(ϕ(I))], (based on (36))
D← [d(τ1), . . . , d(τI)], (based on (18))

13: XNLoS ← A
√

diag(�NLoS,lin)D
T

14: Generate a standard complex Gaussian noise
matrix V ∈ C

M×Ns .
15: V←√MNsV/‖V‖F
16: Y← XLoS + XNLoS + V
17: Obtain R ∈ R

M×M×2 based on (32) and (33).
18: Define the one-hot label y ∈ {0, 1}Z such that

[y]z = 1 and [y]i = 0 for i �= z.
19: Append R and y to D,L, respectively.

array comprising M elements at the receiver, operating in
the presence of multipath and noise. Hence, to generate
training data, as detailed in Algorithm 1, we propose this
equivalent interpretation to generate a LoS SIMO signal with
a random delay and an AOD ϕz (line 7), in the presence
of multipath (line 13) and noise (line 15) with the correct
statistical properties. We outline our proposed approach as
follows:

• [�min, �max] is defined to denote the desired SNR range
(in dB). This range is evenly divided into N� values to
obtain the vector � = [�1, . . . , �N� ]T , with �1 = �min
and �N� = �max.

• [χmin, χmax] presents the desired LMR range, and it is
divided evenly into Nχ values to obtain the vector χ =
[χ1, . . . , χNχ ]T , where χ1 = χmin and χNχ = χmax.

• Let I = [I1, . . . , INI ]
T be a set of possible values for the

number of SPs between one of RISs and UE denoted
by I ∈ {Ir1,u, . . . , IrG,u}. It is important to note that for
a fixed LMR, higher values of I correspond to smaller
power levels for each NLoS path. As a result, fewer
NLoS paths (I) leads to more intricate scenarios.

• Let � ∈ � and χ ∈ χ be the selected SNR and LMR
for a specific data sample during dataset generation,
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and I ∈ I be the number of NLoS paths in this data
sample.

• Based on the definitions of SNR and LMR in (24),
the total SNR of the I NLoS paths can be obtained as
�NLoS = � − χ (in dB). The SNR of each of these
I NLoS paths might differ. To handle this, we define
�diff, and select the SNR of NLoS paths randomly in
the interval [� − �diff/2, � + �diff/2] such that their
sum equals �NLoS.

• let τmin and τmax denote the minimum and maximum
delay between the BS and the UE through RISs.

The proposed training dataset generation for VNet is
detailed in Algorithm 1. The notation a(ϕ) refers to the
steering vector of a generic subarray with M elements:

a(ϕ) =
[
1, ejkd cos(ϕ), . . . , ejk(M−1)d cos(ϕ)

]T
. (36)

V. POSITIONING AND REFINEMENT
From the 2D-AODs from each RIS, the position can be
recovered. With the estimated position, the clock offset can
be estimated and all parameters can be refined. We proceed
in two stages.

A. STAGE 1 – COARSE ESTIMATION
1) POSITION ESTIMATION

Let {�̌d
rg,u}Gg=1 denote the estimated elevation and spatial

AODs by the VNet. For g = 1, . . . ,G, define �g to represent
the line passing through the center prg of the g-th RIS with
unit direction ug ∈ R

3×1 specified by the estimated AODs

�̌
d
rg,u. For an arbitrary point v ∈ R

3×1, the sum of squared
distances from the lines �1, . . . , �G is obtained as:

S(v) =
G∑

g=1

‖v− prg‖22 −
G∑

g=1

(
v− prg

)T
uguTg

(
v− prg

)

=
G∑

g=1

(
v− prg

)T(
I3 − uguTg

)(
v− prg

)
. (37)

After setting the gradient of S(v) to zero, the point p̌u that
minimizes S(v) can be obtained with complexity O(G) as:

p̌u =
⎡

⎣
G∑

g=1

(
I3 − uguTg

)
⎤

⎦
†

G∑

g=1

(
I3 − uguTg

)
prg . (38)

2) CLOCK OFFSET ESTIMATION

Next, all the delays are estimated. Using (38), the delay
between the BS and the UE without considering the clock
offset, can be obtained as:

τ̂rg,s =
‖pb − prg‖ + ‖p̌u − prg‖

c
, (39)

where the subscript s emphasizes not taking clock offset into
account. Based on (39), the uncertainty regions {Ig}Gg=1 for
the delays {τrg}Gg=1 can be defined as Ig = [τ̂rg,s + δmin −
τε, τ̂rg,s+δmax+τε], where δmin and δmax are lower and upper

bounds of the clock offset δ. Moreover, τε denotes a small
constant to determine the margin of error. Subsequently, we
obtain estimates of the delay steering vectors {d(τrg)}Gg=1
using (31),

d̂
(
τrg
) = X̂

c
ga
∗
rg

(
�̌
d
rg,u

)
, (40)

which has a complexity O(GNsM). Next, using the beam-
forming technique, the delays {τrg}Gg=1 are estimated as:

τ̂rg = argmax
τ∈Ig

dH(τ )d̂
(
τrg
)
, (41)

which is solved by a simple line search with complexity
O(GNIgNs), considering NIg grid points. Using the estimated
UE position p̂u and the estimated delays {τ̂rg}Gg=1 in the
first stage, based on (14), we estimate the clock-offset δ as
follows:

δ̂ = 1

G

G∑

g=1

(
τ̂rg −

‖prg − pb‖ + ‖prg − p̂u‖
c

)
. (42)

3) FINE GRID 2D AOD ESTIMATION FOR IMPROVED
COARSE POSITIONING

Since the proposed VNet uses a relatively coarse grid
for computational complexity reasons, the positioning
performance in (37) will be limited by this coarse grid. To
refine the AOD estimation and the corresponding position
estimate, we proceed as follows.
First, from (31), the LS estimate of the array steering

vector arg(�
d
rg,u) is obtained as

ârg
(
�d
rg,u

)
= X̂

cT

g d
∗(τ̂rg

)
, (43)

with complexity O(GNsM), which is then used to refine the
estimations of the elevation and azimuth AODs {�d

rg,u}Gg=1

θ̂drg,u = argmax
θ

aH(θ)
[
ârg
(
�d
rg,u

)]

1:M
,

φ̂drg,u = argmax
ψ

aH(ψ)
[
ârg
(
�d
rg,u

)]

(M+1):2M
, (44)

which are again 1D searches with overall complexity
O(G(N� + N�)M), considering N� and N� grid points for
θ and ψ , respectively.
Next, the estimated UE location p̌u is updated by

employing (38) once again, this time using the refined AODs

{φ̂drg,u}Gg=1. This yields the updated location estimate p̂u.

B. STAGE 2 – REFINED POSITION ESTIMATION
The first stage, although providing a consistent estimation,
does not fully exploit the location information embedded
in the estimated delays {τ̂rg}Gg=1 and the clock offset δ̂. To
address this issue, first, we estimate the distance Rg between
the center of the g-th RIS and the UE as R̂g = c(τ̂rg −
δ̂) − ‖prg − pb‖, where τ̂rg and δ̂ are the estimated values
for the delay through the g-the RIS and the clock-offset,
respectively. Similar to Section V-A, the lines {�g}Gg=1 are
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defined using the refined AODs {φ̂drg,u}Gg=1. Moreover, let Sg
denote the sphere with the center prg and radius R̂g for g =
1, . . . ,G. In the absence of noise, all the lines {�g}Gg=1 and
spheres {Sg}Gg=1 pass through the UE’s position. Motivated
by this fact, we exploit this geometric model by using the
estimated AODs, delays, and the clock offset to refine the
UE’s position. To this end, we find a point whose sum of
squared distances from the lines and the nearest point on the
surface of spheres is minimum. The optimization problem
can be written as follows:

p̃u = argmin
pu∈R3

⎡

⎣
G∑

g=1

(
pu − prg

)T(
I3 − uguTg

)(
pu − prg

)

+
G∑

g=1

(
‖pu − prg‖ − R̂g

)2

⎤

⎦, (45)

where the first term is accounted for the distances from the
lines, explained in Section V-A, and the term |‖pu−prg‖−R̂g|
denotes the minimum distance between the point pu and the
surface of the sphere Sg. In general, the problem (45) is non-
convex, and thus it may have multiple optimal solutions, and
the specific solution obtained depends on the initial guess
of the optimization algorithm. To address this issue, we use
the previously estimated UE location p̂u in the first stage as
the initial point for gradient descent, with

∇pu f (pu) = 2
G∑

g=1

(
I3 − uguTg

)(
pu − prg

)

+ 2
G∑

g=1

[
1− R̂g
‖pu − prg‖

](
pu − prg

)
, (46)

where f (.) denotes the objective function in (45). The
resulting order complexity is O(GNSG2), where NSG2 is the
number of gradient descent iterations until convergence.

VI. SIMULATION RESULTS AND DISCUSSION
In this section, we evaluate the performance of the proposed
joint 3D localization and synchronization scheme for RIS-
assisted mmWave systems through numerical simulations.

A. SIMULATION SETUP
The considered RIS-assisted mmWave system consists of
one BS, two RISs, and a single UE with default system
parameters presented in Table 1. Some of these parameters
may change in different simulations. Moreover, to ensure
that the FF condition is met, according to (1) and Table 1,
and the fact that the maximum distance between two
elements in the considered L-shaped RIS configuration is
D = √M2 + (M − 1)2λ/2 we have DF ≈ 2.25m. The UE
position is selected to ensure a minimum distance of DF
from the RIS centers, satisfying this condition.
The parameters for training the proposed VNet

(Algorithm 1) and the constants in the two-stage proposed

TABLE 1. System parameters.

TABLE 2. Proposed method parameters.

FIGURE 4. RMSE of the VNet and the state-of-the-art methods versus SNR and LMR.

localization method are presented in Table 2. Despite the
selected SNR and LMR range specified in Table 2 and a
fixed value of Ns = 200 for training VNet, it will be observed
that the VNet generalizes for higher SNRs and LMRs, as
well as a wide range of Ns.

B. BASELINES AND METRICS
We evaluate the 2D-AOD estimation performance in terms
of the root mean squared error (RMSE) of the proposed
VNet against several baselines, namely:
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• Classical R-MUSIC [49]: This method utilizes the
roots of the characteristic equation derived from the
eigenvalues of the SCM to estimate the AODs.

• Roots-spectrum network (RSNet) [30]: As explained
in Section I, this method utilizes FTMR followed by
FBSS technique, and then performs EVD to extract
noise subspace features for its proposed network’s input,
which are used to estimate the MUSIC-like spatial
spectrum.

• VNet using the classical BCE loss function: To demon-
strate the effectiveness of ASL, we employ the same
VNet structure with BCE loss function.

We evaluate the localization performance of the SG1
estimator (from Section V-A) and SG2 estimator (from
Section V-B) in terms of the RMSE against the following
baselines:

• The approach from [11], [12], which relies on R-
MUSIC AOD estimation and LS position estimation.

• The convergent iterative method (CIM) from [4],
which only performs positioning from AOD estimations.
Hence, for a fair comparison, we combine it with the
proposed VNet.

• RML and JML proposed in [17], which are direct
positioning methods as they compute the position
estimate directly from the observed waveforms. RML is
a grid-based approach, while JML is based on a gridless
Nelder-Mead algorithm.

The system models used in these baselines may differ
from our considered system model. Therefore, for a fair
comparison, certain modifications and generalizations have
been made to adapt these methods to our system.

C. RESULTS AND DISCUSSION
1) RESULTS OF THE PROPOSED VNET

Fig. 4(a) compares the RMSE results for a fixed LMR =
3 dB, and Fig. 4(b), shows the results in terms of LMR
for a fixed SNR = −5 dB. For Fig. 4(a), at each SNR
the number of 100 data samples are generated for every
angle θ ∈ [45◦, 135◦] (with step 0.5◦), resulting the total
of 18000 Monte Carlo samples for each SNR. A similar
process is done for Fig. 4(b). It can be seen that the proposed
VNet outperforms the state-of-the-art methods such as R-
MUSIC, especially in low-SNR and low-LMR regimes. The
results also highlight the benefit of the proposed loss function
over BCE. This superiority stems from the VNet’s ability to
mitigate interference effectively.
The pseudospectra of the proposed VNet, RSNet, and

VNet trained with BCE are depicted in Fig. 5 for varying
SNR and LMR values, with the number of subcarriers set
to Ns = 200. Due to the ASL function (defined in (35)),
the proposed method exhibits nonzero outputs at other
AODs, especially in low-SNR and low-LMR scenarios. This
behavior, driven by the ASL, enables VNet to focus more
on the dominant VLoS path, resulting in sharper peaks at
the true AODs compared to when trained using BCE loss.

FIGURE 5. Spectrum plots for two test data samples for different SNR and LMR
values.

Notably, R-MUSIC and RSNet underperform in low-SNR
and low-LMR regimes.

2) COMPARISON WITH UPA

To demonstrate the superiority of L-shaped arrays over
UPAs, we compare their RMSE results in this section. For
2D-AOD estimation with UPAs, we utilize 2D-MUSIC. To
this end it is sufficient to utilize X̂

c
g from (31) to derive

the SCM, following (32), for input generation. Subsequently,
EVD is performed to obtain MUSIC spectra. Let Mt repre-
sent the total number of elements in the corresponding RIS.
In this experiment, we consider two scenarios with Mt = 16
and Mt = 36, respectively. We assume the true elevation and
azimuth AOD pair to be (θ, φ) = (99.416◦, 120.528◦). For
each scenario, we employ 1D-MUSIC twice for an L-shaped
array with M = Mt/2 for 2D-AOD estimation. For UPAs,
we utilize 2D-MUSIC for direct 2D-AOD estimation. Fig. 6
illustrates the RMSE results across SNR ∈ [−14, dB, 2, dB ]
for a fixed LMR = 10, dB using 1000 data samples at
each SNR. As anticipated, the larger aperture of L-shaped
arrays results in more precise estimations compared to
UPAs. This highlights the effectiveness of L-shaped arrays in
decomposing 2D-AOD estimation into two simpler 1D-AOD
tasks while achieving superior accuracy. Consequently, L-
shaped arrays offer enhanced AOD estimation performance,
albeit requiring larger subarray widths.

3) RESULTS OF THE PROPOSED TWO-STAGE METHOD

In order to show that the proposed method can attain optimal
performance, we will first consider results without NLoS
paths. This allows us to compare it to the CRLB. Then, we
will add multipath to show the robustness of the proposed
method.
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FIGURE 6. Comparing AOD estimation performance of L-shaped arrays with UPAs
with the same number of array elements Mt .

FIGURE 7. Localization RMSE versus SNR without NLoS interference.

Fig. 7 shows localization RMSE values of the UE com-
pared to the state-of-the-art methods. In this experiment,
we assume that there are no NLoS paths (i.e., Irg,u =
0, Ib,u = 0). Note that since the CIM algorithm assumes
that the estimates of AODs are available at the receiver,
we use the AODs obtained from the proposed VNet. We
can make several observations. First of all, SG2 operates
close to the CRLB for SNRs greater than −14 dB, and as
the SNR increases, the gap between the RMSE and the
CRLB decreases. In the absence of multipath effect, JML
eventually reaches the theoretical bound CRLB at SNRs
exceeding −10 dB. Consistent with its nature as a grid-
based approach, the RML method saturates at −12 dB. In the
low-SNR regime, SG1 demonstrates superior performance
compared to the LS and CIM methods.
In the next experiment, we compare the performance

of the methods in the presence of multipath in Fig. 8.
Consider a challenging scenario with Ir1,u = Ir2,u = 4 SPs
between RISs and UE with same3 positions p(1)r1,u = p(1)r2,u =
[40, 50, 0]T , p(2)r1,u = p(2)r2,u = [60, 50, 0]T , p(3)r1,u = p(3)r2,u =
[60, 45, 0]T , p(4)r1,u = p(4)r2,u = [50, 50, 5]T , selected close to
the true position of the UE. Moreover, we assume Ib,u = 3
SPs between BS and UE with positions p(1)b,u = [35, 55, 2]T ,

p(2)b,u = [30, 40, 0]T and p(3)b,u = [25, 50, 1]T . We observe that
across two LMR values (LMR ∈ 5, 10, dB) the proposed
SG2 outperforms existing methods, especially in low-SNR
scenarios. In the presence of NLoS paths, the performance
of the ML-based JML method degrades with lower LMR

3In general, SPs may have different locations for each RIS, and some
of them may be common among multiple RISs. Here, for simplicity, we
assume the same set of SPs for both RISs.

FIGURE 8. Localization RMSE results in the presence of NLoS paths.

values, but as LMR increases, its results converge toward the
scenario without multipath. SG1 consistently outperforms LS
and CIM methods across the entire SNR range.
As shown in Figs. 7 and 8, the proposed approach out-

performs existing methods under the challenging conditions
of low-SNR and low-LMR regimes, achieving accuracy
within a minimal gap from the theoretically optimal solution.
Importantly, as detailed in Section VI-D, this superior
performance is accompanied by a significant reduction in
computational complexity, particularly when contrasted with
ML-based methodologies.

4) PROPOSED METHOD SCALABILITY

In this section, we conduct simulations to demonstrate the
scalability of the proposed method in different scenarios.
First, we analyze the performance with respect to the number
of subcarriers Ns and the number of elements M per RIS
subarray. It is noteworthy that the same VNet is used to
obtain the result across Ns. However, since the input depends
on M, we train a separate network for each value of M
to obtain the results. The training process utilizes the same
parameters as outlined in Table 2.

Fig. 9 illustrates the localization RMSE results across
different numbers of subcarriers Ns ∈ [50, 400] and Fig. 10
for different number of elements M ∈ [10, 30] for different
SNR values. The results across Ns are obtained using a
fixed number of antennas M = 15, while the results for
different values of M are obtained using a fixed value of
Ns = 200. 5000 Monte Carlo trials are used for each Ns
and M. The position of the UE is fixed at pu = [48, 51, 1]T ,
and we provide the CRLB values, assuming that there are
no NLoS paths. From Fig. 9, it is evident that the proposed
VNet, although trained only for Ns = 200, demonstrates
excellent generalization across different values of Ns. In
addition, both stages SG1 and SG2 in the proposed method
showcase improvement with higher Ns and SNR. The results
of SG2 approach the CRLB values, and the gap between
them diminishes for higher values of Ns or SNR. Similar
observations can be drawn from Fig. 10. The RMSE value
also improves with a higher number of elements deployed in
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FIGURE 9. Localization RMSE for different numbers of subcarriers.

FIGURE 10. Localization RMSE for different numbers of RIS elements.

TABLE 3. Complexity comparison of AOD estimators.

each subarray of the RISs, demonstrating robustness across
different values of Ns and M.

D. COMPLEXITY ANALYSIS
In this section, we provide a complexity analysis of the
proposed methods and compare them to the state-of-the-art
methods. Our focus will be on inference only, not training.

1) COMPLEXITY OF AOD ESTIMATORS

Table 3 summarizes the complexities of the proposed VNet
and existing methods. It includes the order of complexity for
signal pre-processing (column 2), exact FLOPs calculated
(column 3), and average total time for angle estimation on
the central processing unit (CPU) (column 4). The results
demonstrate the computational advantage of our VNet.

2) DETAILED COMPLEXITY ANALYSIS OF THE
PROPOSED TWO-STAGE METHOD

The order complexities of various components of our method
are detailed in Table 4, with corresponding explanations

TABLE 4. Complexity analysis of the proposed method.

provided in relevant sections. The term O(FM2) denotes the
simplified complexity of the VNet, where F is a constant
derived from the network architecture.4

Hence, by focusing on the dominant part, the overall
complexity of the proposed method is given by O(GNsM2),
which refers to the LS channel estimation and the compu-
tations of the SCMs in (32). In all simulations, the number
of iterations NSG2 required was between 3 and 11 iterations
with an average of 6.35.

3) OVERALL COMPLEXITY COMPARISON

Table 5 compares the order of complexities of the proposed
method with the state-of-the-art ones and also the average
amount of time required for each method. It should be noted
that only the proposed method and the ML-based RML and
JML can estimate the clock offset. Unlike RML and JML, the
proposed method is environment-independent. Since RML
is grid-based, it requires a 3D search in the uncertainty
environment. In all simulations in this paper, we considered
an environment where the horizontal coordinates (x, y) are
between 35 and 65 and the vertical (z) are between 0 and
6 for these two methods. We divide each dimension with
grid length of 1.5 meter resulting a grid mesh of dimensions
(Nx,Ny,Nz) = (21, 21, 5) for RML. We use NFFT = 512
for the RML method’s FFT computation, as in [17]. In our
3D scenario, NNM, representing the Nelder-Mead algorithm’s
iterations in JML, averages 235.65 iterations, peaking at 287.
This contrasts with the simpler 2D scenario in [17], where
only up to 30 iterations were reported.

VII. CONCLUSION
In this study, we investigated the problem of 3D localization
and synchronization of a UE in the presence of a single
BS and multiple L-shaped RISs, in a multipath environment.
A novel 2D-AOD estimator was proposed, leveraging the
RISs’ high angular resolution. The proposed method relies
on deep learning and can effectively operate in multipath
environments while being agnostic of the geometric config-
uration of RISs, UE, and BS. In addition, a novel hybrid

4By solely considering the number of multiplications, a general approx-
imation for the count of floating-point operations (FLOPs) [50] can be

derived as F = O(QM0
∑Nc

i=1 n
(i−1)
c n(i)c q(i)

2 + Q
∑Nf

j=1 Lj−1Lj). which
applies to an arbitrary network comprising Q identical parallel subnetworks,
each consisting of Nc convolution layers and Nf fully-connected layers.

Here, M0 denotes the length of the input and L0 = M0q
(Nc)2 is the length

of the output of the flatten layer. Also, Lj represents the number of cells
in the j-th fully connected layer.
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TABLE 5. Overall computational complexity comparison.

AOD/TOA-based two-stage method was proposed, which
effectively utilizes the 2D-AOD estimates and combines
them to efficiently obtain TOA estimates as well as a
UE position estimate. Extensive simulations showed that
the proposed method significantly outperforms the state-of-
the-art methods, and closely approaches the CRLB values
in various scenarios. Moreover, the results revealed that
the proposed method demonstrates more robustness against
NLoS paths. Furthermore, the complexity analysis reveals
that the proposed method necessitates considerably fewer
computations compared to previous studies.
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