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Abstract Recent advancements in artificial intel-
ligence and deep learning offer tremendous oppor-
tunities to tackle high-dimensional and challenging 
problems. Particularly, deep reinforcement learning 
(DRL) has been shown to be able to address opti-
mal decision-making problems and control complex 
dynamical systems. DRL has received increased 
attention in the realm of computational fluid dynam-
ics (CFD) due to its demonstrated ability to optimize 
complex flow control strategies. However, DRL algo-
rithms often suffer from low sampling efficiency 
and require numerous interactions between the agent 
and the environment, necessitating frequent data 
exchanges. One significant bottleneck in coupled 
DRL–CFD algorithms is the extensive data commu-
nication between DRL and CFD codes. Non-intrusive 
algorithms where the DRL agent treats the CFD envi-
ronment as a black box may come with the deficiency 
of increased computational cost due to overhead 
associated with the information exchange between 
the two DRL and CFD modules. In this article, a 
TensorFlow-based intrusive DRL–CFD framework is 
introduced where the agent model is integrated within 

the open-source CFD solver OpenFOAM. The inte-
gration eliminates the need for any external informa-
tion exchange during DRL episodes. The framework 
is parallelized using the message passing interface to 
manage parallel environments for computationally 
intensive CFD cases through distributed computing. 
The performance and effectiveness of the framework 
are verified by controlling the vortex shedding behind 
two and three-dimensional cylinders, achieved as a 
result of minimizing drag and lift forces through an 
active flow control mechanism. The simulation results 
indicate that the trained controller can stabilize the 
flow and effectively mitigate the vortex shedding.

Keywords Deep reinforcement learning · 
Computational fluid dynamics · OpenFOAM · 
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1 Introduction

Reinforcement learning (RL) is a category of machine 
learning methods designed for solving decision-mak-
ing and control problems. An RL algorithm involves 
an agent that learns to make decisions by interacting 
with an environment to achieve higher reward values. 
The agent’s learning process usually relies on a trial-
and-error procedure.

RL is a concept based on the Markov decision pro-
cess (MDP) that describes a state-action-reward pro-
cess. As shown in Fig. 1, the agent observes the state 
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of the environment at time t ( st ), makes a decision, 
and performs an action ( at ). Based on the performed 
action, the environment transitions to a new state 
( st+1 ) and provides a reward ( rt+1 ) signal to the agent 
that determines the quality of the taken action. The 
agent aims to learn a policy that maps the states of 
the environment to actions such that it can make opti-
mal decisions to maximize the expected return which 
is defined as the cumulative reward, often subject to 
discounting.

Deep reinforcement learning (DRL) is a combina-
tion of deep learning and RL. In DRL, a deep neu-
ral network (DNN) works as the agent and is trained 
to make optimal decisions. Recent advancements in 
artificial intelligence and deep learning enabled tack-
ling high-dimensional control and decision-making 
problems through DRL. It has been shown that DRL 
can perform immensely complicated cognitive tasks 
at a superhuman level, such as playing classical Atari 
games [1] or the game of Go [2]. Although RL has 
been an active research area for years, these recent 
breakthroughs made the DRL field much more striv-
ing and progress much faster.

DRL has been utilized in fluid mechanics for dif-
ferent purposes, for instance, training an autono-
mous glider [3], exploring swimming strategies of 
fish [4], controlling a fluid-directed rigid body [5], 
proposing shape optimization [6, 7], or active flow 
control (AFC) [8]. It is repeatedly shown that DNNs 
are able to learn complicated control strategies 
through RL, to reduce the drag and mitigate the vor-
tex shedding effects behind a 2D cylinder using two 
synthetic jets (such as Refs. [8, 9]). Other research-
ers utilized DNNs to find optimal strategies for 
active flow control through DRL. There have been 

successful attempts to stabilize the vortex shedding 
effects behind a 2D cylinder by using DRL through 
rotational oscillations in numerical simulations [10, 
11].

Beintema et  al. [12] sought a control mecha-
nism for a 2D Rayleigh–Bénard convection, and 
showed that DRL-based controls remarkably out-
perform linear approaches. Later, the methodology 
was applied to control flow over a 2D NACA air-
foil under weak turbulent conditions, and significant 
drag reduction and lift stabilization were achieved 
[13]. The application of DRL in fluid mechanics is 
not restricted to numerical simulations, and the fea-
sibility of discovering effective active flow control 
strategies in experimental fluid mechanics has also 
been demonstrated [14].

The RL methods typically exhibit a low sam-
pling efficiency, meaning that a large number of 
interactions between the environment and the agent 
are required to train a model. Often, thousands of 
such interactions are needed for the agent to learn to 
make near-optimal decisions. However, when apply-
ing RL to computational fluid dynamics (CFD) 
environments, a significant challenge arises due to 
the substantial amount of data exchange. Thereby, 
one of the main bottlenecks of DRL–CFD frame-
works remains the efficient data communications.

The DRL (agent) and CFD (environment) parts 
of such coupled algorithms are often implemented 
in separate programs, necessitating a communica-
tion interface for agent-environment interaction. 
A rather straightforward method to manage such 
communication is the “non-intrusive" approach, 
where the DRL code treats the CFD program as 
a black box, interacting with it without any direct 
integration.

One example of such non-intrusive DRL–CFD 
couplings is the DRLinFluids [15], a framework 
designed to couple OpenFOAM with DRL programs. 
However, a significant drawback of the framework 
is that it heavily relies on Input/Output (I/O) opera-
tions. Each agent-environment interaction requires 
interrupting and restarting the environment simula-
tion. The CFD simulation is stopped to read the newly 
produced action by the agent and restarts to continue 
to the next control step. The extensive I/O operations 
severely reduce the efficiency, making it impractical 
for realistic CFD applications with considerable com-
putational costs.

Fig. 1  Illustration of state, action, and reward sequence in the 
interactions between the agent and environment within the 
reinforcement learning algorithm
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The communication burden between the agent and 
the environment has been addressed more efficiently 
through various methods [16–18].

Relexi [16] integrates TF-Agents with a high-order 
spectral CFD code, FLEXI. The SmartSim [19] pack-
age was utilized to facilitate information exchange 
between the DRL (TF-Agents) and CFD (Flexi) com-
ponents of the framework. It was shown that Relexi 
could retain the scaling capabilities of the CFD code 
for high-performance computing.

Gym-preCICE [17] integrates OpenFOAM with 
DRL using the external package preCICE [20], which 
is an open-source coupling library for partitioned 
multi-physics simulations, to handle information 
exchange.

The non-intrusive strategy can even provide the 
possibility of coupling with commercial CFD soft-
ware where the code is not accessible. DRLFluent 
[21] exemplifies such a framework by coupling Ansys 
Fluent with a Python DRL program through the 
omniORB package.

The non-intrusive frameworks may occasionally be 
preferred in the realm of CFD, due to their simplic-
ity of implementation and lack of necessity to have 
access to and modify the CFD code. However, it’s 
important to recognize that such algorithms rely on a 
communication interface between the DRL agent and 
the CFD solver through a third-party package. While 
reliance on an external package can simplify imple-
mentation, it introduces challenges such as depend-
ency management and lack of control. Additionally, 
external communication interfaces may add computa-
tional overhead, leading to higher costs that are not 
easily measured.

On the contrary, an intrusive framework directly 
integrates the DRL agent within the CFD environ-
ment, eliminating the need for external information 
exchange. As an example of such a framework, drl-
Foam [22] couples a PyTorch-based DRL framework 
with OpenFOAM intrusively. The agent’s model 
is directly loaded inside OpenFOAM and thereby 
no external communication is needed during one 
episode.

The current article concerns introducing yet 
another intrusive DRL–CFD coupling framework 
for OpenFOAM. Similar to dlrFoam, the agent’s 
model is directly integrated within the CFD envi-
ronment, eliminating the need for external informa-
tion exchange. The agent’s action is generated within 

OpenFOAM while having access to the state (current 
flow field solution). A full DRL episode can be con-
ducted seamlessly and without any need to wait for 
data exchange. However, unlike drlFoam, the frame-
work relies on the TensorFlow-based DRL package 
Tensorforce [23]. Additionally, the parallelization 
of the current framework is done through Python’s 
implementation of Message Passing Interface (MPI), 
i.e., mpi4py [24] enabling the harnessing of distrib-
uted computing across multiple nodes of clusters, 
particularly advantageous for resource-intensive CFD 
cases.

A comprehensive explanation of the framework 
implementation and parallelization strategy is pro-
vided in Sect. 2. Section 3 tests and verifies the per-
formance of the framework on two test cases, namely, 
active flow control of vortex shedding behind two and 
three-dimensional cylinders. Finally, the conclusions 
are provided in Sect. 4.

2  Developed framework

The fundamental theories of the MDP and DRL are 
not explained for brevity, and the readers are referred 
to the literature for more information [25]. Therefore, 
the main focus of the current section is on the prac-
tical aspects of the implementation of the developed 
intrusive DRL–CFD coupling framework.

2.1  Intrusive DRL–CFD coupling

The DRL computations are performed using the 
open-source library Tensorforce [23] which is a Ten-
sorFlow-based library for applied RL. Particularly, 
the latest version of this library, namely Tensorforce 
0.6.5, is utilized. As explained in the previous sec-
tion, all the episodes’ computations and information 
exchange between the agent and the environment 
are carried out within OpenFOAM. Here, the term 
“intrusive" refers to the necessity of accessing and 
modifying the CFD program.

The DRL code initializes an agent model, which 
is then loaded into OpenFOAM to execute complete 
episodes. After a certain number of episodes, the 
state-action-reward sequence is sent back to the DRL 
code to update and calculate a new agent, based on 
the recorded experience, and the loop is continued.
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2.2  OpenFOAM implementation

The integration of the DRL agent within the Open-
FOAM can be carried out through implementation 
into various OpenFOAM library components such 
as physical or numerical models. In this article, one 
such implementation is explored that incorporates a 
DRL agent as an OpenFOAM boundary condition, as 
a proof of concept. The boundary condition supplies 
a fixed value inlet velocity, acting as a jet controller 
for active flow control within a fluid flow domain. 
At each control time step, the jet velocity magni-
tude is determined by the agent, which is a DNN. As 
explained previously, to minimize unnecessary infor-
mation exchange between the Python and C++ codes, 
the DNN is loaded directly into the implemented 
boundary condition. Here, the TensorFlow agent pol-
icy is loaded in the OpenFOAM boundary condition 
using the CppFlow library [26] that utilizes the Ten-
sorFlow C Application Programming Interface (API) 
to run the models.

To perform an action, the current state of the envi-
ronment should be evaluated. The state could be con-
sidered as any fundamental or derived properties of 
the flow field at any location. In the current imple-
mentation, users have the capability to specify both 
the monitored field and the corresponding locations.

Since the agent policy model does not usually alter 
throughout an entire DRL episode, it is loaded into 
the boundary condition as a member function only 
once inside the constructor of the class, as illustrated 
in Listing 1. The input of the cppflow::model con-
structor is the address of the policy model stored in 
the user-defined variable policyDirName_.

The agent action is computed by providing the 
appropriate inputs to the DNN model and per-
forming a forward pass. The characteristics of the 
required inputs and the generated output of the 
saved model can be examined using TensorFlow’s 
command-line interface tool. In Listing  2, the for-
ward pass of the model is depicted to generate an 
action. The stateTensor contains the current 
state of the environment, whereas the detTensor 
is a boolean-type tensor specifying whether the 
model should act deterministically (for the evalua-
tion) or stochastically (for the training), correspond-
ing to true and false cases, respectively. The DRL 
agent model produces a Probability Distribution 
Function (PDF) of action values. In the determinis-
tic mode, the mean of the PDF is utilized, while in 
the stochastic mode, the action is randomly sampled 
from the PDF.
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In OpenFOAM, boundary conditions are typically 
updated whenever the discretized equation matrices 
are constructed, which occurs at every corrector loop 
of the pressure–velocity coupling solver, within each 
time step. This approach works well for most Open-
FOAM boundary conditions, where values remain 
constant within each time step. However, during the 
training phase of DRL, the agent acts non-determin-
istically to explore the action space effectively. Each 
time the code runs the forward pass of the policy 
model, it produces a different value. This means that 
the controller jet velocity varies even within correc-
tor loops of a single time step. To address this issue, 
and have a fixed boundary value during a single CFD 
time step, the jet controller velocity is updated only 
once the time index is updated, which happens at the 
beginning of each time step. This ensures consistency 

in the DRL training process within the OpenFOAM 
framework.

Furthermore, OpenFOAM employs domain 
decomposition to facilitate parallel processing, 
which means that the boundary surface where the 
agent policy is applied can potentially decompose 
into different domains, with computations handled 
by different processors. However, because of the 
inherent randomness of the agent policy model, 
each processor may end up with different boundary 
values. To maintain consistency in boundary values 
across different processors, the agent’s computa-
tions are performed only by the master processor, 
and the new action is broadcast to other processors 
without modification using the OpenFOAM’s inter-
processor communications stream (see Listing 3).
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The action value can vary significantly between 
subsequent control time steps, which may cause 
numerical instability. To mitigate this issue and 
ensure numerical convergence, the previous action 
value is linearly ramped up or down to the new 
value. The jet velocity at CFD simulation time step 
i is computed using

where index j indicates the index of the action time 
step, while aj−1 and aj represent the previous (old) and 
current (new) action values. �i is the ramping function 
linearly varies from 0 to 1 during the ramping period. 
The ramping period is a fraction of the action period 
and can be chosen by the user.

Lastly, Listing  4 shows an example of the 
required inputs for the implemented boundary con-
dition on the user side.

(1)Ui = aj−1 + �i(aj − aj−1),

It should be noted that the OpenFOAM’s imple-
mentation of the current framework is not limited to 
the Tensorforce model and can operate with any Ten-
sorFlow-based DRL agent, such as TF-Agents.

2.3  Parallelization

The current framework was specifically designed 
to handle large-scale CFD applications on a cluster. 
Tensorforce package already offers parallel compu-
tations of the simultaneous environments through 
Python’s multiprocessing package. However, a key 
limitation of this implementation is that it does not 
inherently support distributed computing across mul-
tiple machines or nodes.

As a remedy, the parallelization procedure was 
reimplemented via Python’s implementation of MPI, 
mpi4py [24]. This allows the DRL training program 
to be executed on multiple nodes of a cluster via MPI, 
for instance:
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In this exemplary command, mpi4py launches five 
instances of the training program (i.e., processor0 
through processor4). Each instance independently 
executes a sequence of CFD simulations by spawning 
parallel OpenFOAM cases on multiple cores. While 
all processors are responsible for generating their 
own state-action-rewards sequences, only the master 
processor handles the DRL calculations. Therefore, 
all other processors send their corresponding state-
action-rewards sequences to the master processor 
through MPI communication. The master processor 
updates the agent based on DRL calculations, and 
then sends the updated agent to the rest of the pro-
cessors. This process continues iteratively until the 
training reaches the predefined maximum number of 
epochs.

The schematic diagram, shown in Fig. 2, provides 
an overview of the framework’s workflow. It visually 
illustrates the process described above, detailing how 
the training program operates across multiple proces-
sors, the role of the master processor in aggregating 
and updating data, and the communication between 
processors via MPI.

3  Case study

The performance of the developed DRL–CFD frame-
work is assessed using different numerical case 

studies. The first test case focuses on controlling vor-
tex shedding by reducing the drag of a two-dimen-
sional cylinder. The second test case is more compu-
tationally intensive and involves drag reduction of a 
three-dimensional confined cylinder.

It is worth mentioning that the current test cases 
were studied using OpenFOAM-v2112 and Tensor-
force 0.6.5.

3.1  Vortex shedding behind a 2D cylinder

Active flow control of the laminar vortex shedding 
behind a two-dimensional circular cylinder has been 
frequently used in the literature for examining the 
performance of DRL algorithms within CFD [9, 27]. 
The goal of the DRL would be to optimize a control 
mechanism to minimize the drag and lift forces and 
consequently eliminate the von Kármán vortex street 
phenomenon.

The configuration of the under-investigation test 
case is illustrated in Fig.  3. As seen in Fig.  3a, two 
synthetic jets are considered on the top and bottom of 
the cylinder as the actuators of the controller, whose 
flow rates are decided by the DRL algorithm. The cyl-
inder is assumed unconfined, and placed at the center 
of the computational domain (shown in Fig. 3b). The 
domain is considered large enough to minimize the 
effect of boundary conditions. The Reynolds number 
of the flow field, based on the inlet velocity and the 
cylinder diameter, is Re = U∞D∕� = 100.

Fig. 2  High-level archi-
tecture of the implemented 
framework
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3.1.1  CFD framework and verification

The transient incompressible Navier–Stokes equa-
tions are solved on a collocated mesh using Open-
FOAM. Temporal derivatives are discretized employ-
ing the implicit second-order backward scheme [28]. 
The transient flow is simulated using a non-dimen-
sional time step of Δt = 10−2 . All time units are 
normalized via the characteristic timescale D∕U∞ . 
The convective terms are discretized using the 

second-order linear scheme to minimize the numeri-
cal diffusion.

The pressure is linked to the velocity field through 
the PIMPLE pressure correction algorithm, combin-
ing SIMPLE [29] and PISO [30] algorithms. A maxi-
mum of eight outer correction and two inner correc-
tion loops are performed at each time step to ensure 
proper convergence. The residual of 10−4 is employed 
as a stopping criterion for the outer correction loop.

A spatially uniform fixed velocity boundary condi-
tion is applied on the inlet of the domain, while the 
outlet boundary condition is set to constant static 
pressure. The top and bottom boundaries are con-
sidered free-slip walls, while a no-slip condition is 
imposed on the cylinder.

The dependence of the numerical results on mesh 
resolution is assessed here through a mesh study, 
considering five computational meshes with varying 
levels of density. For each mesh, a baseline (uncon-
trolled) vortex shedding simulation is conducted. 
Drag coefficient, lift coefficient, and shedding Strou-
hal number, defined by

are examined and compared to the reported val-
ues in the literature [31] for verification and valida-
tion. Here, FD , FL , and f are the drag force, lift force, 
and fundamental frequency of the shedding phe-
nomenon, respectively. As presented in Table  1, the 
results exhibit a converging trend with mesh refine-
ment. Considering the relative errors (calculated with 
respect to the reference values), mesh Level 4 is cho-
sen for the DRL computations.

(2)

CD =
FD

1

2
�U2

∞
D
, CL =

FL

1

2
�U2

∞
D
, St =

fD

U∞

Fig. 3  Configuration of the 2D environment flow field, bound-
aries, the agent actuators, and the locations of the probes (blue 
circles) to sense the environment state

Table 1  Mesh 
independence study and 
validation of the 2D vortex 
shedding case

 Level  N
cells

Drag ( C
D
) Lift ( C

L
) Strouhal number ( St)

Mean Error (%) RMS Error (%) Value Error (%)

1 7.18 × 10
3 1.401 0.05 0.189 21.33 0.1733 1.96

2 1.48 × 10
4 1.417 1.23 0.209 13.08 0.1733 1.96

3 2.41 × 10
4 1.424 1.69 0.216 10.01 0.1733 1.96

4 3.69 × 10
4 1.427 1.91 0.219 8.83 0.1733 1.96

5 6.46 × 10
4 1.428 2.02 0.218 9.27 0.1733 1.96

Ref. [31] – 1.40 – 0.240 – 0.170 –
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3.1.2  Configuration of the DRL training

The controller actuators are considered as two syn-
thetic jets with the angle of �jet = 10◦ (see Fig.  3a). 
These jets are capable of injecting or suctioning a uni-
form flow in the normal direction. The sum of veloci-
ties on the synthetic jets is set to zero, U1 + U2 = 0 . 
This implies that the drag reduction is achieved 
through indirect active flow control, rather than by 
injecting momentum in the axial direction to allevi-
ate the separation zone. The maximum jet flow rate 
is considered to be 10% of the flow rate encountering 
the cylinder, i.e., Qj,max = 0.1U∞D.

The state of the environment is characterized by 
99 probes arranged uniformly within the vortex shed-
ding region, in an array of 11 × 9 spanning the range 

of 0.55 ≤ x∕D ≤ 8 and −1.25 ≤ y∕D ≤ 1.25 . The 
location of the probes is illustrated by blue circles in 
Fig. 3b. The pressure field is sensed by these probes 
and the resulting vector of 99 pressure values is fed 
back to the DRL agent as the current state of the 
environment.

The DRL algorithm strives to find a control law 
that maximizes the expected cumulative reward. 
Hence, to minimize drag and lift forces, the reward 
function is formulated as

Here, ⟨⋅⟩ denotes the moving-averaged value over a 
complete shedding period. ⟨CD⟩baseline is a constant 
and represents the time-averaged drag coefficient of 

(3)r = ⟨CD⟩baseline − ⟨CD⟩ − �⟨�CL�⟩.

Fig. 4  History of a episodes’ return (undiscounted sum of rewards) and b drag coefficient variation throughout the training simula-
tion

Fig. 5  History of normal-
ized 2D PDF of action 
values during the training 
simulation
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the baseline (uncontrolled) case and is calculated at 
1.427 (Table 1). Including this constant in the reward 
function facilitates relative comparison with the base-
line case. A successful drag reduction results in a pos-
itive reward, while failure to do so yields a negative 
reward for the algorithm. Incorporating the lift coef-
ficient into the reward function not only accelerates 
the convergence of training but also mitigates the risk 
of encountering extreme solutions with significant 
lift oscillations. The � specifies the importance of the 
lift coefficient in the reward function and is chosen 
� = 0.2 in this study.

The non-dimensional action time step, i.e., the 
time between two consecutive actions, is con-
sidered ΔTaction = 0.4 to ensure the execution of 
approximately 15 actions at each shedding period. 
As explained in Sect. 2, in order to avoid numerical 
instability from abrupt changes in the agent’s action, 
the jet value is linearly varied from the previous to 
new values. The ramping period is considered half 
of the action time, ΔTramp = 0.2 . Each episode con-
sists of 400 actions, resulting in an episode period of 
Tepisode = 160 . It’s worth noting that all episodes initi-
ate from a unique saturated shedding flow condition.

The agent is trained by the Proximal Policy Opti-
mization (PPO) [32] algorithm to maximize the 
expected return. The policy (actor) and value (critic) 
models are represented by DNNs with similar archi-
tectures. Each DNN is a fully connected network 
comprised of input, two dense hidden, and output lay-
ers. Specifically, each hidden layer contains 64 neu-
rons activated by the hyperbolic tangent ( tanh ) activa-
tion function.

In training mode, the policy network generates a 
Gaussian distribution from which the utilized action 
value of the actuator is sampled, allowing for proba-
bilistic decision-making that facilitates exploration. 
Conversely, in the evaluation mode, the network pro-
duces a deterministic action which is the mean of 
the distribution, to maximize the exploitation of the 
learned policy. Additionally, the value network pro-
vides the state value which is necessary for calculat-
ing advantage estimates during the training.

The DRL framework is designed to execute mul-
tiple episodes in parallel. In this setup, a batch size 
of five episodes is utilized, meaning that five CFD 
simulations run simultaneously during each itera-
tion of the DRL algorithm. These parallel episodes 
share the same policy model. Upon completion of the 
batch, the recorded data, including states, actions, and 
rewards, is collected via MPI communications and 
stored for subsequent training.

It was observed that incorporating data from previ-
ous batches in the training phase leads to more sta-
ble convergence. Consequently, the policy and value 
models are trained using data from the most recent 25 
episodes.

The training is performed through the stochastic 
gradient descent method, utilizing the Adam opti-
mizer algorithm. The learning rates of the policy 
and value networks are considered 0.0005 and 0.001, 
respectively. The rewards are discounted using the 
factor of 0.99 while the policy ratio is clipped with a 
ratio of 0.2. More information about the details of the 
studied test case is presented in Appendix A.

Fig. 6  Variation of drag 
and lift coefficients for the 
uncontrolled (baseline) 
and DRL controlled cases. 
The controlling mechanism 
starts at T = 0
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3.1.3  Training results

The simulation is performed using 250 iterations of 
the DRL algorithm (250 epochs). Considering the 
parallel CFD batches, the DRL agent is trained based 
on data collected from a total of 1250 CFD simula-
tion episodes.

The history of the episodes’ return (undiscounted 
sum of rewards in an episode) is plotted against the 
episode number in Fig.  4a. The values of the paral-
lel environments are concatenated sequentially, pro-
viding a comprehensive view of the returns across all 
episodes. The variation indicates a smooth conver-
gence throughout the whole simulation. The control-
ler reaches convergence after around 800 episodes, 

and return values do not seem to change considerably 
with further iterations.

The variation of the drag coefficient, averaged over 
the second half of each episode, along with its cor-
responding standard deviation range, is illustrated in 
Fig.  4b. Initially, there is a notable variation in the 
drag coefficient due to the agent’s high exploration, 
which gradually decreases as the simulation con-
verges and the policy becomes less stochastic.

Figure  5 displays the evolution of the nor-
malized 2D probability distribution function 
( PDF∕max(PDF) ) of all action values over the entire 
episode throughout the training process. In the initial 
stages of training, when the policy is less mature, it 
explores a wide range of actions, resulting in a broad 
variation of drag coefficients. However, as the agent 

Fig. 7  Comparison of vor-
ticity contours ( �z ) in the 
baseline (uncontrolled) and 
controlled cases at T = 200

Fig. 8  Comparison 
of velocity magnitude 
contours in the steady sym-
metry (top) and unsteady 
controlled (bottom) cases. 
The solid gold line repre-
sents the Ux = 0 iso-surface 
illustrating the recirculation 
region behind the cylinder
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becomes more experienced, it refines the policy 
in favor of higher rewards, which leads to reduced 
exploration in the action values. As depicted, the nor-
malized 2D PDF of action values progressively nar-
rows over the course of training. This shift towards 
a more deterministic policy reflects the agent’s 
improved understanding of the environment and 
its ability to consistently select actions that lead to 
favorable outcomes. It is noteworthy that although the 
PDF range decreases substantially, a certain degree of 

exploration is maintained throughout the whole train-
ing process.

After the convergence of the training process, the 
trained policy is utilized in deterministic mode to per-
form a single-episode simulation, evaluating the per-
formance of the learned model.

In order to provide a reference value for drag 
reduction, a steady simulation considering the top 
half of the domain using a symmetry boundary con-
dition was performed. As explained in the literature 
[33], the mean drag consists of contributions from 

Fig. 9  Assessing robust-
ness of the trained control-
ler by exposing it to dif-
ferent flow conditions that 
are not experienced in the 
training phase. The figure 
illustrates the variation of 
the drag coefficient when 
the controller activates at 
non-saturated shedding 
conditions

Fig. 10  Configuration of 
the 3D environment flow 
field, boundaries, and the 
agent actuators
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two components: the steady symmetrical flow (base 
flow) and the oscillations of the vortex shedding [33]. 
The drag contribution from the base flow cannot be 
reduced at a fixed Reynolds number, and a control-
ler can only decrease the contribution from the vortex 
shedding [34]. Therefore, the base symmetry flow can 
serve as a reference value for evaluating the control-
ler’s performance. In this particular test case, the base 
flow drag coefficient is calculated CD,sym = 1.20.

Figure  6 compares the variation of drag and lift 
coefficients for both the baseline (uncontrolled) and 
controlled cases. It is evident that both forces reduce 
significantly as a result of the designed control-
ler. The drag coefficient reduces by around 16% and 

reaches the value observed in the symmetry simula-
tion (base flow), indicating that the DRL algorithm 
has reached the global minimum and completely 
removed the contribution of the vortex shedding to 
the drag while maintaining a close to zero RMS of 
the lift coefficient.

Figure  7 compares the contours of vorticity ( �z ) 
behind the cylinder for the uncontrolled (baseline) 
and controlled cases after reaching a quasi-stationary 
condition (at T = 200 ). The controller has effectively 
eliminated the vortex shedding. Additionally, Fig.  8 
compares the velocity magnitude contours of the con-
trolled case with the symmetry base flow. The size 
and the shape of the recirculation region (shown with 

Table 2  Mesh 
independence study and 
validation of the 3D vortex 
shedding case

 Level  N
cells

Drag ( C
D
) Lift ( C

L
) Strouhal number 

( St)

Mean Error (%) RMS Error (%) Value Error (%)

1 1.58 × 10
5 1.1593 6.422 0.1620 40.25 0.1667 9.91

2 3.20 × 10
5 1.1841 4.424 0.1892 30.17 0.1833 0.90

3 6.33 × 10
5 1.1976 3.332 0.2089 22.93 0.1833 0.90

4 1.32 × 10
6 1.2090 2.414 0.2234 17.56 0.1833 0.90

5 2.56 × 10
6 1.2143 1.989 0.2309 14.81 0.1833 0.90

6 5.64 × 10
6 1.2188 1.619 0.2378 12.23 0.1833 0.90

7 1.13 × 10
7 1.2207 1.469 0.2402 11.37 0.1833 0.90

Ref. [35] 6.77 × 10
6 1.2389 – 0.271 – 0.1850 –

Fig. 11  History of a episodes’ return (undiscounted sum of rewards) and b drag coefficient variation throughout the training simula-
tion
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a gold contour line) suggest that the controller has 
been able to provide a similar regime to the ideally 
stable flow field. This similarity implies achieving the 
maximum possible drag reduction.

The robustness of the trained controller agent is 
evaluated by assessing its performance across vari-
ous flow conditions. In this study, an uncontrolled 
flow field is initialized at T = 0 , beginning with an 
ideally stable state derived from the steady symmetry 
condition. Subsequently, the controller is activated at 
different time instances, i.e., T = 0 , 85, 90, 100, 110, 
120, and 130. Notably, all of these activation times 
precede the attainment of a saturated quasi-stationary 
state in vortex shedding, which seems to occur around 
T = 140 . It is important to note that during the train-
ing phase, the agent was exposed to episodes initiated 
from the fully saturated shedding. Thus, the initial 
flow conditions encountered by the controller in this 
robustness analysis were not included during train-
ing. Nevertheless, as depicted in Fig. 9, the control-
ler effectively stabilizes these conditions, ultimately 

reaching fully stable states for all starting times, 
underscoring its robustness.

3.2  Vortex shedding behind a confined 3D cylinder

The second investigated test case involves a circu-
lar cylinder symmetrically placed within a planar 
channel. The configuration of the geometry is pre-
sented in Fig.  10. The cylinder blockage ratio is 
D∕H = 1∕5 , where H is the height of the channel 
and D is the diameter of the cylinder. The chan-
nel’s spanwise depth is W = 8D . The channel inlet 
is 12.5D upstream of the cylinder, whereas the out-
let is at 35D downstream. The flow configuration is 
chosen based on the previously published studies 
[35, 36].

The inlet velocity distribution follows the fully 
developed laminar channel flow (Posiseuille flow) 
which has the parabolic profile of

Fig. 12  History of normal-
ized 2D PDF of action 
values during the training 
simulation

Fig. 13  Variation of drag 
and lift coefficients for the 
uncontrolled (baseline) 
and DRL controlled cases. 
The controlling mechanism 
starts at T = 0
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where Uc is the centerline inlet velocity. The Reynolds 
number, based on centerline velocity and cylinder 
diameter, is Re = UcD∕� = 150 . The flow field in this 
regime is known to remain two-dimensional, meaning 
no gradient exists in the spanwise direction. The tran-
sition to three-dimensional flow is reported to occur 
within the interval of 180 < Re < 210 [35–37].

The outlet boundary condition is considered as 
fixed pressure and velocity is computed using a 
zero-gradient condition. Following Kanaris et  al. 
[35], a zero-gradient condition was also applied to 
the side boundaries. They argued that the Neumann 
condition captures the details of the instabilities 
more accurately than the periodic condition. For 
additional information about the test case under 
consideration, readers are referred to Ref. [35].

(4)Uinlet = Uc

[
1 −

(
y

H∕2

)2
]
,

3.2.1  CFD framework and verification

The numerical aspects of the adopted CFD frame-
work are similar to the previous test case presented in 
Sect. 3.1.1 and won’t be repeated here.

The mesh dependency of the results is studied 
using seven different mesh resolutions, and the results 
are validated against the reference data of Kanaris 
et al. [35]. Data presented in Table 2 indicate a satis-
factory convergence with mesh refinement. The pre-
diction of the drag coefficient and Strouhal number is 
notably accurate, whereas, similar to the 2D case, the 
lift coefficient exhibits a higher level of error. Despite 
the finest mesh yielding the most precise results, 
mesh Level 3, comprising 6.33 × 105 cells, is chosen 
for the DRL analysis. The decision is made as a com-
promise between accuracy and efficiency, particularly 
given the extensive cost of DRL computations requir-
ing hundreds of transient CFD simulations.

Fig. 14  Illustration of ver-
tical structures of the DRL-
controlled case through 
�
2
 iso-surfaces at different 

times. The iso-surfaces are 
colored by the streamwise 
vorticity (�x ), indicating 
three-dimensional effects
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3.2.2  Configuration of the DRL training

The core elements of the DRL framework remain 
similar to those in the 2D scenario presented in 
Sect. 3.1.2, and thus only the differences are elabo-
rated here. As mentioned above, despite the three-
dimensional flow configuration, the flow regime is 
two-dimensional. Thereby, the controller actuators, 
shown in Fig. 10a, are considered as two synthetic 

jet slots with uniform velocity in the spanwise 
direction. The opening angle of the jets is �jet = 10◦ . 
Similar to the previous test case, the maximum jet 
flow rate is considered to be 10% of the flow rate 
encountering the cylinder.

315 pressure probes are utilized to sense 
the environment state. They are arranged uni-
formly downstream the cylinder, in an array of 
9 × 5 × 7 , spanning the range of 0.55 ≤ x∕D ≤ 8 , 
−1.25 ≤ y∕D ≤ 1.25 , and −4 ≤ z∕D ≤ 4 . The probes 
are not shown in Fig. 10b for simplicity.

The � factor in the reward function was chosen 
0.1, demonstrating smoother convergence character-
istics. The non-dimensional action time is considered 
ΔTaction = 0.375 to ensure 15 actions at each shedding 
period, while the ramping period is ΔTramp = 0.15 . 
The time units are normalized by the timescale D∕Uc.

3.2.3  Training results

The agent is trained using 180 epochs, with each 
epoch comprising five episodes, resulting in a total of 
900 unsteady CFD simulations.

The history of the undiscounted return, in Fig. 11a, 
reveals a pronounced increase within the initial 50 
episodes (corresponding to the first 10 epochs). Nev-
ertheless, the rate of convergence decreases rapidly, 
indicating that achieving further enhancements in 

Fig. 15  Time evolution of 
the spanwise component of 
velocity, Uz, on the mid-
plane between the channel 
walls

Fig. 16  Computational costs of the current intrusive frame-
work and an I/O-based non-intrusive alternative with the num-
ber of cores. The y-axis represents the cost of a single-episode 
simulation of the 3D confined cylinder in core hours
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controller performance necessitates a significantly 
greater number of episodes. The training process 
appears to have reached convergence within 800 epi-
sodes, with the return values plateauing thereafter.

Similarly, the drag history (Fig.  11b), averaged 
over the second half of the CFD simulation, shows 
a sudden drop in the first 50 episodes, followed by 
a phase of slow convergence. It seems that the drag 
coefficient reaches a plateau after 400 episodes, 
with no further decrease. However, the return graph 
continues to show a gradual increase beyond this 
point, indicating that the controller primarily strug-
gles with minimizing fluctuations in the lift coef-
ficient (not depicted here for brevity). The normal-
ized 2D PDF of action values, depicted in Fig. 12, 
shows that the policy maintains a high level of 
exploration until 600 episodes, after which explo-
ration decreases, shifting towards exploitation to 
reach convergence. This contrasts with the 2D case 
(Fig.  5), where action exploration decreases much 
earlier, highlighting the more challenging nature of 
the 3D case.

The trained controller is then evaluated in the 
deterministic mode. The comparison of the drag 
and lift coefficients between the uncontrolled base-
line and controlled scenarios is illustrated in Fig. 13. 
Both coefficients experience an initial notable reduc-
tion due to the implemented controller. However, 
unlike the previous 2D case study, the drag coefficient 
begins to rise after T = 75 , accompanied by the grad-
ual increase in the fluctuations of the lift coefficient, 
although still maintaining levels lower than those 
observed in the uncontrolled case.

In order to further assess the imperfect drag 
reduction, the vortical structures of the controlled 
flow field are studied. Figure  14 illustrates the �2 
criterion iso-surfaces colored by the streamwise 
component of vorticity ( �x ) to signify the stream-
wise rotation of the flow structures. At T = 0 , the 
uncontrolled flow field shows strong yet two-dimen-
sional vortex shedding with near-zero streamwise 
rotations.

The effectiveness of the controller actions is high-
est at T = 50 , at which time the minimum drag and lift 
coefficients were also observed previously. The vor-
tex shedding is significantly diminished at this time, 
and the flow field is entirely two-dimensional. How-
ever, as time progresses, the flow becomes increas-
ingly unstable and transitions to a three-dimensional 

state characterized by significant streamwise rotation 
at T = 200 . The three-dimensionality of the flow is 
the direct effect of the implemented actuators, with-
out which the flow would have remained two-dimen-
sional. Nevertheless, it’s worth noting that the jet 
slots, providing uniform injection or suction veloc-
ity in the spanwise direction, are not anticipated to 
effectively control or diminish any three-dimensional 
effects. Potentially, diminishing the three-dimen-
sionality of the flow field could be achieved through 
a more sophisticated actuator capable of providing 
non-uniform jet velocities in the spanwise direction. 
Exploring such possibilities can be regarded as a sub-
ject for future investigation.

The initial indication of transitioning to three-
dimensionality is usually evident in the amplifica-
tion of the spanwise velocity ( Uz ) [35]. This is inves-
tigated in Fig. 15 which displays the contours of the 
spanwise velocity for the controlled case on the mid-
plane between the channel walls. The spanwise veloc-
ity remains negligible at T = 50 , after which signifi-
cant growth is visible in the Uz contours, indicating 
increasing three-dimensionality of the flow over 
time. By T = 200 , the three-dimensional instability 
becomes apparent right after the cylinder, triggered 
by the jet actuation.

3.3  Computational efficiency

The computational efficiency of the developed 
intrusive algorithm is assessed in this section. To 
facilitate comparison, an I/O-based non-intrusive 
DRL–CFD framework was developed, similar to 
DRLInFluids [15], and its computational cost for 
one complete DRL episode, with 400 actions, was 
compared to the intrusive alternative. A series of 
simulations was performed using parallel process-
ing with different numbers of cores.

As expected, Fig.  16 indicates that the compu-
tational cost (core hours) of an episode using the 
intrusive framework is significantly lower compared 
to I/O-based non-intrusive algorithms. The cost of 
the non-intrusive option appears to grow exponen-
tially with the number of cores due to the extensive 
increase in of I/O operations.

As mentioned in the introduction, the non-
intrusive paradigm is not limited to I/O operations, 
and more efficient non-intrusive alternatives are 
also proposed in the literature such as direct MPI 
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communications  (e.g., [16, 17]). Evaluating and 
benchmarking the efficiency of different non-intrusive 
and intrusive coupling DRL–CFD methods would 
yield valuable insights. However, this task is beyond 
the scope of the current article and is considered for 
future research.

4  Conclusion

An efficient intrusive TensorFlow-based DRL–CFD 
framework was introduced in this study. The idea 
was to integrate the DRL agent within the CFD 

solver, rather than having an external DRL mod-
ule that needs to communicate with the CFD envi-
ronment. The CFD computations were performed 
using the open-source CFD solver OpenFOAM. 
The framework was parallelized using Python’s 
MPI implementation, mpi4py, to handle the simul-
taneous calculation of computationally intensive 
environments through distributed computing on the 
clusters. As a proof of concept, the DRL agent was 
integrated within an OpenFOAM boundary condi-
tion that acts as a jet actuator for performing active 
flow control within a fluid flow domain. The inher-
ent randomness of the agent’s policy in the training 

Table 3  The main 
hyperparameters and 
numerical details of the 
PPO algorithm and test 
cases

Parameter Value Comment

PPO hyperparameters
Actor architecture (64 × 64) 2 fully connected layers
Critic architecture (64 × 64) 2 fully connected layers
Activation function tanh Both actor and critic
Discount factor 0.99 –
Optimizer Adam Both actor and critic
Actor learning rate 5 × 10

−4 –
Critic learning rate 1 × 10

−3 –
Clipping parameter 0.2 –
Batch size full –
Cylinder 2D
Reynolds number Re = U∞D∕� = 100 Based on inlet velocity
No. epochs 250 –
Parallelized environments 5 –
Total No. episodes 1250 –
CFD time step 0.01 Normalized with D∕U∞

Action time step 0.4 Normalized with D∕U∞

Action ramping period 0.2 Normalized with D∕U∞

No. actions per episode 400 –
No. CPUs per episode 10 –
Total cost (core hours) ∼ 6.2 k –
Cylinder 3D
Reynolds number Re = UcD∕� = 150 Based on centerline velocity
No. epochs 180 –
Parallelized environments 5 –
Total No. episodes 900 –
CFD time step 0.015 Normalized with D∕U

c

Action time step 0.375 Normalized with D∕U
c

Action ramping period 0.15 Normalized with D∕U
c

No. actions per episode 400 –
No. CPUs per episode 64 –
Total cost (core hours) ∼ 50 k –



Meccanica 

1 3
Vol.: (0123456789)

mode poses challenges in the pressure–velocity 
coupling algorithm and parallel processing, which 
need to be carefully addressed.

The performance of the developed framework was 
examined by controlling vortex shedding through 
drag reduction of two and three-dimensional flow 
configuration. In both cases, the agent was trained 
through the PPO algorithm considering two DNNs 
for the policy and value models.

The 2D scenario demonstrated smooth training 
convergence, with the trained controller achieving 
optimal drag reduction by completely eliminating 
the vortex shedding contribution to the drag. How-
ever, the 3D vortex shedding presented a more com-
plex challenge. Although the geometry of the flow 
configuration was 3D, the uncontrolled flow field 
remained two-dimensional with no gradients in the 
spanwise direction. Nevertheless, the implemen-
tation of jet actuation induced three-dimensional 
instabilities. Consequently, the controller, which was 
designed based on the two-dimensional flow assump-
tion, proved suboptimal for controlling the induced 
three-dimensional flow dynamics. The efficiency of 
the developed intrusive framework was compared to 
an I/O-based non-intrusive alternative that revealed 
remarkable efficiency improvement. Evaluating and 
benchmarking the efficiency of other non-intrusive 
alternatives is regarded as a future work.
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