
An efficient intrusive deep reinforcement learning framework for
OpenFOAM

Downloaded from: https://research.chalmers.se, 2024-07-01 00:43 UTC

Citation for the original published paper (version of record):
Salehi, S. (2024). An efficient intrusive deep reinforcement learning framework for OpenFOAM.
Meccanica, In Press. http://dx.doi.org/10.1007/s11012-024-01830-1

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

Vol.: (0123456789)
1 3

Meccanica
https://doi.org/10.1007/s11012-024-01830-1

RESEARCH

An efficient intrusive deep reinforcement learning
framework for OpenFOAM

Saeed Salehi

Received: 29 February 2024 / Accepted: 27 May 2024
© The Author(s) 2024

Abstract Recent advancements in artificial intel-
ligence and deep learning offer tremendous oppor-
tunities to tackle high-dimensional and challenging
problems. Particularly, deep reinforcement learning
(DRL) has been shown to be able to address opti-
mal decision-making problems and control complex
dynamical systems. DRL has received increased
attention in the realm of computational fluid dynam-
ics (CFD) due to its demonstrated ability to optimize
complex flow control strategies. However, DRL algo-
rithms often suffer from low sampling efficiency
and require numerous interactions between the agent
and the environment, necessitating frequent data
exchanges. One significant bottleneck in coupled
DRL–CFD algorithms is the extensive data commu-
nication between DRL and CFD codes. Non-intrusive
algorithms where the DRL agent treats the CFD envi-
ronment as a black box may come with the deficiency
of increased computational cost due to overhead
associated with the information exchange between
the two DRL and CFD modules. In this article, a
TensorFlow-based intrusive DRL–CFD framework is
introduced where the agent model is integrated within

the open-source CFD solver OpenFOAM. The inte-
gration eliminates the need for any external informa-
tion exchange during DRL episodes. The framework
is parallelized using the message passing interface to
manage parallel environments for computationally
intensive CFD cases through distributed computing.
The performance and effectiveness of the framework
are verified by controlling the vortex shedding behind
two and three-dimensional cylinders, achieved as a
result of minimizing drag and lift forces through an
active flow control mechanism. The simulation results
indicate that the trained controller can stabilize the
flow and effectively mitigate the vortex shedding.

Keywords Deep reinforcement learning ·
Computational fluid dynamics · OpenFOAM ·
Intrusive · Active flow control

1 Introduction

Reinforcement learning (RL) is a category of machine
learning methods designed for solving decision-mak-
ing and control problems. An RL algorithm involves
an agent that learns to make decisions by interacting
with an environment to achieve higher reward values.
The agent’s learning process usually relies on a trial-
and-error procedure.

RL is a concept based on the Markov decision pro-
cess (MDP) that describes a state-action-reward pro-
cess. As shown in Fig. 1, the agent observes the state

S. Salehi
Division of Fluid Dynamics, Department of Mechanics
and Maritime Sciences, Chalmers University
of Technology, Gothenburg, Sweden

S. Salehi (*)
Chalmers Industriteknik, Gothenburg, Sweden
e-mail: saeed.salehi@chalmers.se

http://crossmark.crossref.org/dialog/?doi=10.1007/s11012-024-01830-1&domain=pdf
http://orcid.org/0000-0002-2037-8284

 Meccanica

1 3
Vol:. (1234567890)

of the environment at time t (st), makes a decision,
and performs an action (at). Based on the performed
action, the environment transitions to a new state
(st+1) and provides a reward (rt+1) signal to the agent
that determines the quality of the taken action. The
agent aims to learn a policy that maps the states of
the environment to actions such that it can make opti-
mal decisions to maximize the expected return which
is defined as the cumulative reward, often subject to
discounting.

Deep reinforcement learning (DRL) is a combina-
tion of deep learning and RL. In DRL, a deep neu-
ral network (DNN) works as the agent and is trained
to make optimal decisions. Recent advancements in
artificial intelligence and deep learning enabled tack-
ling high-dimensional control and decision-making
problems through DRL. It has been shown that DRL
can perform immensely complicated cognitive tasks
at a superhuman level, such as playing classical Atari
games [1] or the game of Go [2]. Although RL has
been an active research area for years, these recent
breakthroughs made the DRL field much more striv-
ing and progress much faster.

DRL has been utilized in fluid mechanics for dif-
ferent purposes, for instance, training an autono-
mous glider [3], exploring swimming strategies of
fish [4], controlling a fluid-directed rigid body [5],
proposing shape optimization [6, 7], or active flow
control (AFC) [8]. It is repeatedly shown that DNNs
are able to learn complicated control strategies
through RL, to reduce the drag and mitigate the vor-
tex shedding effects behind a 2D cylinder using two
synthetic jets (such as Refs. [8, 9]). Other research-
ers utilized DNNs to find optimal strategies for
active flow control through DRL. There have been

successful attempts to stabilize the vortex shedding
effects behind a 2D cylinder by using DRL through
rotational oscillations in numerical simulations [10,
11].

Beintema et al. [12] sought a control mecha-
nism for a 2D Rayleigh–Bénard convection, and
showed that DRL-based controls remarkably out-
perform linear approaches. Later, the methodology
was applied to control flow over a 2D NACA air-
foil under weak turbulent conditions, and significant
drag reduction and lift stabilization were achieved
[13]. The application of DRL in fluid mechanics is
not restricted to numerical simulations, and the fea-
sibility of discovering effective active flow control
strategies in experimental fluid mechanics has also
been demonstrated [14].

The RL methods typically exhibit a low sam-
pling efficiency, meaning that a large number of
interactions between the environment and the agent
are required to train a model. Often, thousands of
such interactions are needed for the agent to learn to
make near-optimal decisions. However, when apply-
ing RL to computational fluid dynamics (CFD)
environments, a significant challenge arises due to
the substantial amount of data exchange. Thereby,
one of the main bottlenecks of DRL–CFD frame-
works remains the efficient data communications.

The DRL (agent) and CFD (environment) parts
of such coupled algorithms are often implemented
in separate programs, necessitating a communica-
tion interface for agent-environment interaction.
A rather straightforward method to manage such
communication is the “non-intrusive" approach,
where the DRL code treats the CFD program as
a black box, interacting with it without any direct
integration.

One example of such non-intrusive DRL–CFD
couplings is the DRLinFluids [15], a framework
designed to couple OpenFOAM with DRL programs.
However, a significant drawback of the framework
is that it heavily relies on Input/Output (I/O) opera-
tions. Each agent-environment interaction requires
interrupting and restarting the environment simula-
tion. The CFD simulation is stopped to read the newly
produced action by the agent and restarts to continue
to the next control step. The extensive I/O operations
severely reduce the efficiency, making it impractical
for realistic CFD applications with considerable com-
putational costs.

Fig. 1 Illustration of state, action, and reward sequence in the
interactions between the agent and environment within the
reinforcement learning algorithm

Meccanica

1 3
Vol.: (0123456789)

The communication burden between the agent and
the environment has been addressed more efficiently
through various methods [16–18].

Relexi [16] integrates TF-Agents with a high-order
spectral CFD code, FLEXI. The SmartSim [19] pack-
age was utilized to facilitate information exchange
between the DRL (TF-Agents) and CFD (Flexi) com-
ponents of the framework. It was shown that Relexi
could retain the scaling capabilities of the CFD code
for high-performance computing.

Gym-preCICE [17] integrates OpenFOAM with
DRL using the external package preCICE [20], which
is an open-source coupling library for partitioned
multi-physics simulations, to handle information
exchange.

The non-intrusive strategy can even provide the
possibility of coupling with commercial CFD soft-
ware where the code is not accessible. DRLFluent
[21] exemplifies such a framework by coupling Ansys
Fluent with a Python DRL program through the
omniORB package.

The non-intrusive frameworks may occasionally be
preferred in the realm of CFD, due to their simplic-
ity of implementation and lack of necessity to have
access to and modify the CFD code. However, it’s
important to recognize that such algorithms rely on a
communication interface between the DRL agent and
the CFD solver through a third-party package. While
reliance on an external package can simplify imple-
mentation, it introduces challenges such as depend-
ency management and lack of control. Additionally,
external communication interfaces may add computa-
tional overhead, leading to higher costs that are not
easily measured.

On the contrary, an intrusive framework directly
integrates the DRL agent within the CFD environ-
ment, eliminating the need for external information
exchange. As an example of such a framework, drl-
Foam [22] couples a PyTorch-based DRL framework
with OpenFOAM intrusively. The agent’s model
is directly loaded inside OpenFOAM and thereby
no external communication is needed during one
episode.

The current article concerns introducing yet
another intrusive DRL–CFD coupling framework
for OpenFOAM. Similar to dlrFoam, the agent’s
model is directly integrated within the CFD envi-
ronment, eliminating the need for external informa-
tion exchange. The agent’s action is generated within

OpenFOAM while having access to the state (current
flow field solution). A full DRL episode can be con-
ducted seamlessly and without any need to wait for
data exchange. However, unlike drlFoam, the frame-
work relies on the TensorFlow-based DRL package
Tensorforce [23]. Additionally, the parallelization
of the current framework is done through Python’s
implementation of Message Passing Interface (MPI),
i.e., mpi4py [24] enabling the harnessing of distrib-
uted computing across multiple nodes of clusters,
particularly advantageous for resource-intensive CFD
cases.

A comprehensive explanation of the framework
implementation and parallelization strategy is pro-
vided in Sect. 2. Section 3 tests and verifies the per-
formance of the framework on two test cases, namely,
active flow control of vortex shedding behind two and
three-dimensional cylinders. Finally, the conclusions
are provided in Sect. 4.

2 Developed framework

The fundamental theories of the MDP and DRL are
not explained for brevity, and the readers are referred
to the literature for more information [25]. Therefore,
the main focus of the current section is on the prac-
tical aspects of the implementation of the developed
intrusive DRL–CFD coupling framework.

2.1 Intrusive DRL–CFD coupling

The DRL computations are performed using the
open-source library Tensorforce [23] which is a Ten-
sorFlow-based library for applied RL. Particularly,
the latest version of this library, namely Tensorforce
0.6.5, is utilized. As explained in the previous sec-
tion, all the episodes’ computations and information
exchange between the agent and the environment
are carried out within OpenFOAM. Here, the term
“intrusive" refers to the necessity of accessing and
modifying the CFD program.

The DRL code initializes an agent model, which
is then loaded into OpenFOAM to execute complete
episodes. After a certain number of episodes, the
state-action-reward sequence is sent back to the DRL
code to update and calculate a new agent, based on
the recorded experience, and the loop is continued.

 Meccanica

1 3
Vol:. (1234567890)

2.2 OpenFOAM implementation

The integration of the DRL agent within the Open-
FOAM can be carried out through implementation
into various OpenFOAM library components such
as physical or numerical models. In this article, one
such implementation is explored that incorporates a
DRL agent as an OpenFOAM boundary condition, as
a proof of concept. The boundary condition supplies
a fixed value inlet velocity, acting as a jet controller
for active flow control within a fluid flow domain.
At each control time step, the jet velocity magni-
tude is determined by the agent, which is a DNN. As
explained previously, to minimize unnecessary infor-
mation exchange between the Python and C++ codes,
the DNN is loaded directly into the implemented
boundary condition. Here, the TensorFlow agent pol-
icy is loaded in the OpenFOAM boundary condition
using the CppFlow library [26] that utilizes the Ten-
sorFlow C Application Programming Interface (API)
to run the models.

To perform an action, the current state of the envi-
ronment should be evaluated. The state could be con-
sidered as any fundamental or derived properties of
the flow field at any location. In the current imple-
mentation, users have the capability to specify both
the monitored field and the corresponding locations.

Since the agent policy model does not usually alter
throughout an entire DRL episode, it is loaded into
the boundary condition as a member function only
once inside the constructor of the class, as illustrated
in Listing 1. The input of the cppflow::model con-
structor is the address of the policy model stored in
the user-defined variable policyDirName_.

The agent action is computed by providing the
appropriate inputs to the DNN model and per-
forming a forward pass. The characteristics of the
required inputs and the generated output of the
saved model can be examined using TensorFlow’s
command-line interface tool. In Listing 2, the for-
ward pass of the model is depicted to generate an
action. The stateTensor contains the current
state of the environment, whereas the detTensor
is a boolean-type tensor specifying whether the
model should act deterministically (for the evalua-
tion) or stochastically (for the training), correspond-
ing to true and false cases, respectively. The DRL
agent model produces a Probability Distribution
Function (PDF) of action values. In the determinis-
tic mode, the mean of the PDF is utilized, while in
the stochastic mode, the action is randomly sampled
from the PDF.

Meccanica

1 3
Vol.: (0123456789)

In OpenFOAM, boundary conditions are typically
updated whenever the discretized equation matrices
are constructed, which occurs at every corrector loop
of the pressure–velocity coupling solver, within each
time step. This approach works well for most Open-
FOAM boundary conditions, where values remain
constant within each time step. However, during the
training phase of DRL, the agent acts non-determin-
istically to explore the action space effectively. Each
time the code runs the forward pass of the policy
model, it produces a different value. This means that
the controller jet velocity varies even within correc-
tor loops of a single time step. To address this issue,
and have a fixed boundary value during a single CFD
time step, the jet controller velocity is updated only
once the time index is updated, which happens at the
beginning of each time step. This ensures consistency

in the DRL training process within the OpenFOAM
framework.

Furthermore, OpenFOAM employs domain
decomposition to facilitate parallel processing,
which means that the boundary surface where the
agent policy is applied can potentially decompose
into different domains, with computations handled
by different processors. However, because of the
inherent randomness of the agent policy model,
each processor may end up with different boundary
values. To maintain consistency in boundary values
across different processors, the agent’s computa-
tions are performed only by the master processor,
and the new action is broadcast to other processors
without modification using the OpenFOAM’s inter-
processor communications stream (see Listing 3).

 Meccanica

1 3
Vol:. (1234567890)

The action value can vary significantly between
subsequent control time steps, which may cause
numerical instability. To mitigate this issue and
ensure numerical convergence, the previous action
value is linearly ramped up or down to the new
value. The jet velocity at CFD simulation time step
i is computed using

where index j indicates the index of the action time
step, while aj−1 and aj represent the previous (old) and
current (new) action values. �i is the ramping function
linearly varies from 0 to 1 during the ramping period.
The ramping period is a fraction of the action period
and can be chosen by the user.

Lastly, Listing 4 shows an example of the
required inputs for the implemented boundary con-
dition on the user side.

(1)Ui = aj−1 + �i(aj − aj−1),

It should be noted that the OpenFOAM’s imple-
mentation of the current framework is not limited to
the Tensorforce model and can operate with any Ten-
sorFlow-based DRL agent, such as TF-Agents.

2.3 Parallelization

The current framework was specifically designed
to handle large-scale CFD applications on a cluster.
Tensorforce package already offers parallel compu-
tations of the simultaneous environments through
Python’s multiprocessing package. However, a key
limitation of this implementation is that it does not
inherently support distributed computing across mul-
tiple machines or nodes.

As a remedy, the parallelization procedure was
reimplemented via Python’s implementation of MPI,
mpi4py [24]. This allows the DRL training program
to be executed on multiple nodes of a cluster via MPI,
for instance:

Meccanica

1 3
Vol.: (0123456789)

In this exemplary command, mpi4py launches five
instances of the training program (i.e., processor0
through processor4). Each instance independently
executes a sequence of CFD simulations by spawning
parallel OpenFOAM cases on multiple cores. While
all processors are responsible for generating their
own state-action-rewards sequences, only the master
processor handles the DRL calculations. Therefore,
all other processors send their corresponding state-
action-rewards sequences to the master processor
through MPI communication. The master processor
updates the agent based on DRL calculations, and
then sends the updated agent to the rest of the pro-
cessors. This process continues iteratively until the
training reaches the predefined maximum number of
epochs.

The schematic diagram, shown in Fig. 2, provides
an overview of the framework’s workflow. It visually
illustrates the process described above, detailing how
the training program operates across multiple proces-
sors, the role of the master processor in aggregating
and updating data, and the communication between
processors via MPI.

3 Case study

The performance of the developed DRL–CFD frame-
work is assessed using different numerical case

studies. The first test case focuses on controlling vor-
tex shedding by reducing the drag of a two-dimen-
sional cylinder. The second test case is more compu-
tationally intensive and involves drag reduction of a
three-dimensional confined cylinder.

It is worth mentioning that the current test cases
were studied using OpenFOAM-v2112 and Tensor-
force 0.6.5.

3.1 Vortex shedding behind a 2D cylinder

Active flow control of the laminar vortex shedding
behind a two-dimensional circular cylinder has been
frequently used in the literature for examining the
performance of DRL algorithms within CFD [9, 27].
The goal of the DRL would be to optimize a control
mechanism to minimize the drag and lift forces and
consequently eliminate the von Kármán vortex street
phenomenon.

The configuration of the under-investigation test
case is illustrated in Fig. 3. As seen in Fig. 3a, two
synthetic jets are considered on the top and bottom of
the cylinder as the actuators of the controller, whose
flow rates are decided by the DRL algorithm. The cyl-
inder is assumed unconfined, and placed at the center
of the computational domain (shown in Fig. 3b). The
domain is considered large enough to minimize the
effect of boundary conditions. The Reynolds number
of the flow field, based on the inlet velocity and the
cylinder diameter, is Re = U∞D∕� = 100.

Fig. 2 High-level archi-
tecture of the implemented
framework

 Meccanica

1 3
Vol:. (1234567890)

3.1.1 CFD framework and verification

The transient incompressible Navier–Stokes equa-
tions are solved on a collocated mesh using Open-
FOAM. Temporal derivatives are discretized employ-
ing the implicit second-order backward scheme [28].
The transient flow is simulated using a non-dimen-
sional time step of Δt = 10−2 . All time units are
normalized via the characteristic timescale D∕U∞ .
The convective terms are discretized using the

second-order linear scheme to minimize the numeri-
cal diffusion.

The pressure is linked to the velocity field through
the PIMPLE pressure correction algorithm, combin-
ing SIMPLE [29] and PISO [30] algorithms. A maxi-
mum of eight outer correction and two inner correc-
tion loops are performed at each time step to ensure
proper convergence. The residual of 10−4 is employed
as a stopping criterion for the outer correction loop.

A spatially uniform fixed velocity boundary condi-
tion is applied on the inlet of the domain, while the
outlet boundary condition is set to constant static
pressure. The top and bottom boundaries are con-
sidered free-slip walls, while a no-slip condition is
imposed on the cylinder.

The dependence of the numerical results on mesh
resolution is assessed here through a mesh study,
considering five computational meshes with varying
levels of density. For each mesh, a baseline (uncon-
trolled) vortex shedding simulation is conducted.
Drag coefficient, lift coefficient, and shedding Strou-
hal number, defined by

are examined and compared to the reported val-
ues in the literature [31] for verification and valida-
tion. Here, FD , FL , and f are the drag force, lift force,
and fundamental frequency of the shedding phe-
nomenon, respectively. As presented in Table 1, the
results exhibit a converging trend with mesh refine-
ment. Considering the relative errors (calculated with
respect to the reference values), mesh Level 4 is cho-
sen for the DRL computations.

(2)

CD =
FD

1

2
�U2

∞
D
, CL =

FL

1

2
�U2

∞
D
, St =

fD

U∞

Fig. 3 Configuration of the 2D environment flow field, bound-
aries, the agent actuators, and the locations of the probes (blue
circles) to sense the environment state

Table 1 Mesh
independence study and
validation of the 2D vortex
shedding case

 Level N
cells

Drag (C
D
) Lift (C

L
) Strouhal number (St)

Mean Error (%) RMS Error (%) Value Error (%)

1 7.18 × 10
3 1.401 0.05 0.189 21.33 0.1733 1.96

2 1.48 × 10
4 1.417 1.23 0.209 13.08 0.1733 1.96

3 2.41 × 10
4 1.424 1.69 0.216 10.01 0.1733 1.96

4 3.69 × 10
4 1.427 1.91 0.219 8.83 0.1733 1.96

5 6.46 × 10
4 1.428 2.02 0.218 9.27 0.1733 1.96

Ref. [31] – 1.40 – 0.240 – 0.170 –

Meccanica

1 3
Vol.: (0123456789)

3.1.2 Configuration of the DRL training

The controller actuators are considered as two syn-
thetic jets with the angle of �jet = 10◦ (see Fig. 3a).
These jets are capable of injecting or suctioning a uni-
form flow in the normal direction. The sum of veloci-
ties on the synthetic jets is set to zero, U1 + U2 = 0 .
This implies that the drag reduction is achieved
through indirect active flow control, rather than by
injecting momentum in the axial direction to allevi-
ate the separation zone. The maximum jet flow rate
is considered to be 10% of the flow rate encountering
the cylinder, i.e., Qj,max = 0.1U∞D.

The state of the environment is characterized by
99 probes arranged uniformly within the vortex shed-
ding region, in an array of 11 × 9 spanning the range

of 0.55 ≤ x∕D ≤ 8 and −1.25 ≤ y∕D ≤ 1.25 . The
location of the probes is illustrated by blue circles in
Fig. 3b. The pressure field is sensed by these probes
and the resulting vector of 99 pressure values is fed
back to the DRL agent as the current state of the
environment.

The DRL algorithm strives to find a control law
that maximizes the expected cumulative reward.
Hence, to minimize drag and lift forces, the reward
function is formulated as

Here, ⟨⋅⟩ denotes the moving-averaged value over a
complete shedding period. ⟨CD⟩baseline is a constant
and represents the time-averaged drag coefficient of

(3)r = ⟨CD⟩baseline − ⟨CD⟩ − �⟨�CL�⟩.

Fig. 4 History of a episodes’ return (undiscounted sum of rewards) and b drag coefficient variation throughout the training simula-
tion

Fig. 5 History of normal-
ized 2D PDF of action
values during the training
simulation

 Meccanica

1 3
Vol:. (1234567890)

the baseline (uncontrolled) case and is calculated at
1.427 (Table 1). Including this constant in the reward
function facilitates relative comparison with the base-
line case. A successful drag reduction results in a pos-
itive reward, while failure to do so yields a negative
reward for the algorithm. Incorporating the lift coef-
ficient into the reward function not only accelerates
the convergence of training but also mitigates the risk
of encountering extreme solutions with significant
lift oscillations. The � specifies the importance of the
lift coefficient in the reward function and is chosen
� = 0.2 in this study.

The non-dimensional action time step, i.e., the
time between two consecutive actions, is con-
sidered ΔTaction = 0.4 to ensure the execution of
approximately 15 actions at each shedding period.
As explained in Sect. 2, in order to avoid numerical
instability from abrupt changes in the agent’s action,
the jet value is linearly varied from the previous to
new values. The ramping period is considered half
of the action time, ΔTramp = 0.2 . Each episode con-
sists of 400 actions, resulting in an episode period of
Tepisode = 160 . It’s worth noting that all episodes initi-
ate from a unique saturated shedding flow condition.

The agent is trained by the Proximal Policy Opti-
mization (PPO) [32] algorithm to maximize the
expected return. The policy (actor) and value (critic)
models are represented by DNNs with similar archi-
tectures. Each DNN is a fully connected network
comprised of input, two dense hidden, and output lay-
ers. Specifically, each hidden layer contains 64 neu-
rons activated by the hyperbolic tangent (tanh) activa-
tion function.

In training mode, the policy network generates a
Gaussian distribution from which the utilized action
value of the actuator is sampled, allowing for proba-
bilistic decision-making that facilitates exploration.
Conversely, in the evaluation mode, the network pro-
duces a deterministic action which is the mean of
the distribution, to maximize the exploitation of the
learned policy. Additionally, the value network pro-
vides the state value which is necessary for calculat-
ing advantage estimates during the training.

The DRL framework is designed to execute mul-
tiple episodes in parallel. In this setup, a batch size
of five episodes is utilized, meaning that five CFD
simulations run simultaneously during each itera-
tion of the DRL algorithm. These parallel episodes
share the same policy model. Upon completion of the
batch, the recorded data, including states, actions, and
rewards, is collected via MPI communications and
stored for subsequent training.

It was observed that incorporating data from previ-
ous batches in the training phase leads to more sta-
ble convergence. Consequently, the policy and value
models are trained using data from the most recent 25
episodes.

The training is performed through the stochastic
gradient descent method, utilizing the Adam opti-
mizer algorithm. The learning rates of the policy
and value networks are considered 0.0005 and 0.001,
respectively. The rewards are discounted using the
factor of 0.99 while the policy ratio is clipped with a
ratio of 0.2. More information about the details of the
studied test case is presented in Appendix A.

Fig. 6 Variation of drag
and lift coefficients for the
uncontrolled (baseline)
and DRL controlled cases.
The controlling mechanism
starts at T = 0

Meccanica

1 3
Vol.: (0123456789)

3.1.3 Training results

The simulation is performed using 250 iterations of
the DRL algorithm (250 epochs). Considering the
parallel CFD batches, the DRL agent is trained based
on data collected from a total of 1250 CFD simula-
tion episodes.

The history of the episodes’ return (undiscounted
sum of rewards in an episode) is plotted against the
episode number in Fig. 4a. The values of the paral-
lel environments are concatenated sequentially, pro-
viding a comprehensive view of the returns across all
episodes. The variation indicates a smooth conver-
gence throughout the whole simulation. The control-
ler reaches convergence after around 800 episodes,

and return values do not seem to change considerably
with further iterations.

The variation of the drag coefficient, averaged over
the second half of each episode, along with its cor-
responding standard deviation range, is illustrated in
Fig. 4b. Initially, there is a notable variation in the
drag coefficient due to the agent’s high exploration,
which gradually decreases as the simulation con-
verges and the policy becomes less stochastic.

Figure 5 displays the evolution of the nor-
malized 2D probability distribution function
(PDF∕max(PDF)) of all action values over the entire
episode throughout the training process. In the initial
stages of training, when the policy is less mature, it
explores a wide range of actions, resulting in a broad
variation of drag coefficients. However, as the agent

Fig. 7 Comparison of vor-
ticity contours (�z) in the
baseline (uncontrolled) and
controlled cases at T = 200

Fig. 8 Comparison
of velocity magnitude
contours in the steady sym-
metry (top) and unsteady
controlled (bottom) cases.
The solid gold line repre-
sents the Ux = 0 iso-surface
illustrating the recirculation
region behind the cylinder

 Meccanica

1 3
Vol:. (1234567890)

becomes more experienced, it refines the policy
in favor of higher rewards, which leads to reduced
exploration in the action values. As depicted, the nor-
malized 2D PDF of action values progressively nar-
rows over the course of training. This shift towards
a more deterministic policy reflects the agent’s
improved understanding of the environment and
its ability to consistently select actions that lead to
favorable outcomes. It is noteworthy that although the
PDF range decreases substantially, a certain degree of

exploration is maintained throughout the whole train-
ing process.

After the convergence of the training process, the
trained policy is utilized in deterministic mode to per-
form a single-episode simulation, evaluating the per-
formance of the learned model.

In order to provide a reference value for drag
reduction, a steady simulation considering the top
half of the domain using a symmetry boundary con-
dition was performed. As explained in the literature
[33], the mean drag consists of contributions from

Fig. 9 Assessing robust-
ness of the trained control-
ler by exposing it to dif-
ferent flow conditions that
are not experienced in the
training phase. The figure
illustrates the variation of
the drag coefficient when
the controller activates at
non-saturated shedding
conditions

Fig. 10 Configuration of
the 3D environment flow
field, boundaries, and the
agent actuators

Meccanica

1 3
Vol.: (0123456789)

two components: the steady symmetrical flow (base
flow) and the oscillations of the vortex shedding [33].
The drag contribution from the base flow cannot be
reduced at a fixed Reynolds number, and a control-
ler can only decrease the contribution from the vortex
shedding [34]. Therefore, the base symmetry flow can
serve as a reference value for evaluating the control-
ler’s performance. In this particular test case, the base
flow drag coefficient is calculated CD,sym = 1.20.

Figure 6 compares the variation of drag and lift
coefficients for both the baseline (uncontrolled) and
controlled cases. It is evident that both forces reduce
significantly as a result of the designed control-
ler. The drag coefficient reduces by around 16% and

reaches the value observed in the symmetry simula-
tion (base flow), indicating that the DRL algorithm
has reached the global minimum and completely
removed the contribution of the vortex shedding to
the drag while maintaining a close to zero RMS of
the lift coefficient.

Figure 7 compares the contours of vorticity (�z)
behind the cylinder for the uncontrolled (baseline)
and controlled cases after reaching a quasi-stationary
condition (at T = 200). The controller has effectively
eliminated the vortex shedding. Additionally, Fig. 8
compares the velocity magnitude contours of the con-
trolled case with the symmetry base flow. The size
and the shape of the recirculation region (shown with

Table 2 Mesh
independence study and
validation of the 3D vortex
shedding case

 Level N
cells

Drag (C
D
) Lift (C

L
) Strouhal number

(St)

Mean Error (%) RMS Error (%) Value Error (%)

1 1.58 × 10
5 1.1593 6.422 0.1620 40.25 0.1667 9.91

2 3.20 × 10
5 1.1841 4.424 0.1892 30.17 0.1833 0.90

3 6.33 × 10
5 1.1976 3.332 0.2089 22.93 0.1833 0.90

4 1.32 × 10
6 1.2090 2.414 0.2234 17.56 0.1833 0.90

5 2.56 × 10
6 1.2143 1.989 0.2309 14.81 0.1833 0.90

6 5.64 × 10
6 1.2188 1.619 0.2378 12.23 0.1833 0.90

7 1.13 × 10
7 1.2207 1.469 0.2402 11.37 0.1833 0.90

Ref. [35] 6.77 × 10
6 1.2389 – 0.271 – 0.1850 –

Fig. 11 History of a episodes’ return (undiscounted sum of rewards) and b drag coefficient variation throughout the training simula-
tion

 Meccanica

1 3
Vol:. (1234567890)

a gold contour line) suggest that the controller has
been able to provide a similar regime to the ideally
stable flow field. This similarity implies achieving the
maximum possible drag reduction.

The robustness of the trained controller agent is
evaluated by assessing its performance across vari-
ous flow conditions. In this study, an uncontrolled
flow field is initialized at T = 0 , beginning with an
ideally stable state derived from the steady symmetry
condition. Subsequently, the controller is activated at
different time instances, i.e., T = 0 , 85, 90, 100, 110,
120, and 130. Notably, all of these activation times
precede the attainment of a saturated quasi-stationary
state in vortex shedding, which seems to occur around
T = 140 . It is important to note that during the train-
ing phase, the agent was exposed to episodes initiated
from the fully saturated shedding. Thus, the initial
flow conditions encountered by the controller in this
robustness analysis were not included during train-
ing. Nevertheless, as depicted in Fig. 9, the control-
ler effectively stabilizes these conditions, ultimately

reaching fully stable states for all starting times,
underscoring its robustness.

3.2 Vortex shedding behind a confined 3D cylinder

The second investigated test case involves a circu-
lar cylinder symmetrically placed within a planar
channel. The configuration of the geometry is pre-
sented in Fig. 10. The cylinder blockage ratio is
D∕H = 1∕5 , where H is the height of the channel
and D is the diameter of the cylinder. The chan-
nel’s spanwise depth is W = 8D . The channel inlet
is 12.5D upstream of the cylinder, whereas the out-
let is at 35D downstream. The flow configuration is
chosen based on the previously published studies
[35, 36].

The inlet velocity distribution follows the fully
developed laminar channel flow (Posiseuille flow)
which has the parabolic profile of

Fig. 12 History of normal-
ized 2D PDF of action
values during the training
simulation

Fig. 13 Variation of drag
and lift coefficients for the
uncontrolled (baseline)
and DRL controlled cases.
The controlling mechanism
starts at T = 0

Meccanica

1 3
Vol.: (0123456789)

where Uc is the centerline inlet velocity. The Reynolds
number, based on centerline velocity and cylinder
diameter, is Re = UcD∕� = 150 . The flow field in this
regime is known to remain two-dimensional, meaning
no gradient exists in the spanwise direction. The tran-
sition to three-dimensional flow is reported to occur
within the interval of 180 < Re < 210 [35–37].

The outlet boundary condition is considered as
fixed pressure and velocity is computed using a
zero-gradient condition. Following Kanaris et al.
[35], a zero-gradient condition was also applied to
the side boundaries. They argued that the Neumann
condition captures the details of the instabilities
more accurately than the periodic condition. For
additional information about the test case under
consideration, readers are referred to Ref. [35].

(4)Uinlet = Uc

[
1 −

(
y

H∕2

)2
]
,

3.2.1 CFD framework and verification

The numerical aspects of the adopted CFD frame-
work are similar to the previous test case presented in
Sect. 3.1.1 and won’t be repeated here.

The mesh dependency of the results is studied
using seven different mesh resolutions, and the results
are validated against the reference data of Kanaris
et al. [35]. Data presented in Table 2 indicate a satis-
factory convergence with mesh refinement. The pre-
diction of the drag coefficient and Strouhal number is
notably accurate, whereas, similar to the 2D case, the
lift coefficient exhibits a higher level of error. Despite
the finest mesh yielding the most precise results,
mesh Level 3, comprising 6.33 × 105 cells, is chosen
for the DRL analysis. The decision is made as a com-
promise between accuracy and efficiency, particularly
given the extensive cost of DRL computations requir-
ing hundreds of transient CFD simulations.

Fig. 14 Illustration of ver-
tical structures of the DRL-
controlled case through
�
2
 iso-surfaces at different

times. The iso-surfaces are
colored by the streamwise
vorticity (�x), indicating
three-dimensional effects

 Meccanica

1 3
Vol:. (1234567890)

3.2.2 Configuration of the DRL training

The core elements of the DRL framework remain
similar to those in the 2D scenario presented in
Sect. 3.1.2, and thus only the differences are elabo-
rated here. As mentioned above, despite the three-
dimensional flow configuration, the flow regime is
two-dimensional. Thereby, the controller actuators,
shown in Fig. 10a, are considered as two synthetic

jet slots with uniform velocity in the spanwise
direction. The opening angle of the jets is �jet = 10◦ .
Similar to the previous test case, the maximum jet
flow rate is considered to be 10% of the flow rate
encountering the cylinder.

315 pressure probes are utilized to sense
the environment state. They are arranged uni-
formly downstream the cylinder, in an array of
9 × 5 × 7 , spanning the range of 0.55 ≤ x∕D ≤ 8 ,
−1.25 ≤ y∕D ≤ 1.25 , and −4 ≤ z∕D ≤ 4 . The probes
are not shown in Fig. 10b for simplicity.

The � factor in the reward function was chosen
0.1, demonstrating smoother convergence character-
istics. The non-dimensional action time is considered
ΔTaction = 0.375 to ensure 15 actions at each shedding
period, while the ramping period is ΔTramp = 0.15 .
The time units are normalized by the timescale D∕Uc.

3.2.3 Training results

The agent is trained using 180 epochs, with each
epoch comprising five episodes, resulting in a total of
900 unsteady CFD simulations.

The history of the undiscounted return, in Fig. 11a,
reveals a pronounced increase within the initial 50
episodes (corresponding to the first 10 epochs). Nev-
ertheless, the rate of convergence decreases rapidly,
indicating that achieving further enhancements in

Fig. 15 Time evolution of
the spanwise component of
velocity, Uz, on the mid-
plane between the channel
walls

Fig. 16 Computational costs of the current intrusive frame-
work and an I/O-based non-intrusive alternative with the num-
ber of cores. The y-axis represents the cost of a single-episode
simulation of the 3D confined cylinder in core hours

Meccanica

1 3
Vol.: (0123456789)

controller performance necessitates a significantly
greater number of episodes. The training process
appears to have reached convergence within 800 epi-
sodes, with the return values plateauing thereafter.

Similarly, the drag history (Fig. 11b), averaged
over the second half of the CFD simulation, shows
a sudden drop in the first 50 episodes, followed by
a phase of slow convergence. It seems that the drag
coefficient reaches a plateau after 400 episodes,
with no further decrease. However, the return graph
continues to show a gradual increase beyond this
point, indicating that the controller primarily strug-
gles with minimizing fluctuations in the lift coef-
ficient (not depicted here for brevity). The normal-
ized 2D PDF of action values, depicted in Fig. 12,
shows that the policy maintains a high level of
exploration until 600 episodes, after which explo-
ration decreases, shifting towards exploitation to
reach convergence. This contrasts with the 2D case
(Fig. 5), where action exploration decreases much
earlier, highlighting the more challenging nature of
the 3D case.

The trained controller is then evaluated in the
deterministic mode. The comparison of the drag
and lift coefficients between the uncontrolled base-
line and controlled scenarios is illustrated in Fig. 13.
Both coefficients experience an initial notable reduc-
tion due to the implemented controller. However,
unlike the previous 2D case study, the drag coefficient
begins to rise after T = 75 , accompanied by the grad-
ual increase in the fluctuations of the lift coefficient,
although still maintaining levels lower than those
observed in the uncontrolled case.

In order to further assess the imperfect drag
reduction, the vortical structures of the controlled
flow field are studied. Figure 14 illustrates the �2
criterion iso-surfaces colored by the streamwise
component of vorticity (�x) to signify the stream-
wise rotation of the flow structures. At T = 0 , the
uncontrolled flow field shows strong yet two-dimen-
sional vortex shedding with near-zero streamwise
rotations.

The effectiveness of the controller actions is high-
est at T = 50 , at which time the minimum drag and lift
coefficients were also observed previously. The vor-
tex shedding is significantly diminished at this time,
and the flow field is entirely two-dimensional. How-
ever, as time progresses, the flow becomes increas-
ingly unstable and transitions to a three-dimensional

state characterized by significant streamwise rotation
at T = 200 . The three-dimensionality of the flow is
the direct effect of the implemented actuators, with-
out which the flow would have remained two-dimen-
sional. Nevertheless, it’s worth noting that the jet
slots, providing uniform injection or suction veloc-
ity in the spanwise direction, are not anticipated to
effectively control or diminish any three-dimensional
effects. Potentially, diminishing the three-dimen-
sionality of the flow field could be achieved through
a more sophisticated actuator capable of providing
non-uniform jet velocities in the spanwise direction.
Exploring such possibilities can be regarded as a sub-
ject for future investigation.

The initial indication of transitioning to three-
dimensionality is usually evident in the amplifica-
tion of the spanwise velocity (Uz) [35]. This is inves-
tigated in Fig. 15 which displays the contours of the
spanwise velocity for the controlled case on the mid-
plane between the channel walls. The spanwise veloc-
ity remains negligible at T = 50 , after which signifi-
cant growth is visible in the Uz contours, indicating
increasing three-dimensionality of the flow over
time. By T = 200 , the three-dimensional instability
becomes apparent right after the cylinder, triggered
by the jet actuation.

3.3 Computational efficiency

The computational efficiency of the developed
intrusive algorithm is assessed in this section. To
facilitate comparison, an I/O-based non-intrusive
DRL–CFD framework was developed, similar to
DRLInFluids [15], and its computational cost for
one complete DRL episode, with 400 actions, was
compared to the intrusive alternative. A series of
simulations was performed using parallel process-
ing with different numbers of cores.

As expected, Fig. 16 indicates that the compu-
tational cost (core hours) of an episode using the
intrusive framework is significantly lower compared
to I/O-based non-intrusive algorithms. The cost of
the non-intrusive option appears to grow exponen-
tially with the number of cores due to the extensive
increase in of I/O operations.

As mentioned in the introduction, the non-
intrusive paradigm is not limited to I/O operations,
and more efficient non-intrusive alternatives are
also proposed in the literature such as direct MPI

 Meccanica

1 3
Vol:. (1234567890)

communications (e.g., [16, 17]). Evaluating and
benchmarking the efficiency of different non-intrusive
and intrusive coupling DRL–CFD methods would
yield valuable insights. However, this task is beyond
the scope of the current article and is considered for
future research.

4 Conclusion

An efficient intrusive TensorFlow-based DRL–CFD
framework was introduced in this study. The idea
was to integrate the DRL agent within the CFD

solver, rather than having an external DRL mod-
ule that needs to communicate with the CFD envi-
ronment. The CFD computations were performed
using the open-source CFD solver OpenFOAM.
The framework was parallelized using Python’s
MPI implementation, mpi4py, to handle the simul-
taneous calculation of computationally intensive
environments through distributed computing on the
clusters. As a proof of concept, the DRL agent was
integrated within an OpenFOAM boundary condi-
tion that acts as a jet actuator for performing active
flow control within a fluid flow domain. The inher-
ent randomness of the agent’s policy in the training

Table 3 The main
hyperparameters and
numerical details of the
PPO algorithm and test
cases

Parameter Value Comment

PPO hyperparameters
Actor architecture (64 × 64) 2 fully connected layers
Critic architecture (64 × 64) 2 fully connected layers
Activation function tanh Both actor and critic
Discount factor 0.99 –
Optimizer Adam Both actor and critic
Actor learning rate 5 × 10

−4 –
Critic learning rate 1 × 10

−3 –
Clipping parameter 0.2 –
Batch size full –
Cylinder 2D
Reynolds number Re = U∞D∕� = 100 Based on inlet velocity
No. epochs 250 –
Parallelized environments 5 –
Total No. episodes 1250 –
CFD time step 0.01 Normalized with D∕U∞

Action time step 0.4 Normalized with D∕U∞

Action ramping period 0.2 Normalized with D∕U∞

No. actions per episode 400 –
No. CPUs per episode 10 –
Total cost (core hours) ∼ 6.2 k –
Cylinder 3D
Reynolds number Re = UcD∕� = 150 Based on centerline velocity
No. epochs 180 –
Parallelized environments 5 –
Total No. episodes 900 –
CFD time step 0.015 Normalized with D∕U

c

Action time step 0.375 Normalized with D∕U
c

Action ramping period 0.15 Normalized with D∕U
c

No. actions per episode 400 –
No. CPUs per episode 64 –
Total cost (core hours) ∼ 50 k –

Meccanica

1 3
Vol.: (0123456789)

mode poses challenges in the pressure–velocity
coupling algorithm and parallel processing, which
need to be carefully addressed.

The performance of the developed framework was
examined by controlling vortex shedding through
drag reduction of two and three-dimensional flow
configuration. In both cases, the agent was trained
through the PPO algorithm considering two DNNs
for the policy and value models.

The 2D scenario demonstrated smooth training
convergence, with the trained controller achieving
optimal drag reduction by completely eliminating
the vortex shedding contribution to the drag. How-
ever, the 3D vortex shedding presented a more com-
plex challenge. Although the geometry of the flow
configuration was 3D, the uncontrolled flow field
remained two-dimensional with no gradients in the
spanwise direction. Nevertheless, the implemen-
tation of jet actuation induced three-dimensional
instabilities. Consequently, the controller, which was
designed based on the two-dimensional flow assump-
tion, proved suboptimal for controlling the induced
three-dimensional flow dynamics. The efficiency of
the developed intrusive framework was compared to
an I/O-based non-intrusive alternative that revealed
remarkable efficiency improvement. Evaluating and
benchmarking the efficiency of other non-intrusive
alternatives is regarded as a future work.

Acknowledgements The research presented was carried out
as a part of the “Swedish Centre for Sustainable Hydropower
- SVC”. SVC has been established by the Swedish Energy
Agency, Energiforsk and Svenska kraftnät together with Luleå
University of Technology, Uppsala University, KTH Royal
Institute of Technology, Chalmers University of Technology,
Karlstad University, Umeå University and Lund University,
svc. energ iforsk. se.

The computations were enabled by resources provided by
the National Academic Infrastructure for Supercomputing
in Sweden (NAISS) at NSC and C3SE partially funded by
the Swedish Research Council through grant agreement no.
2022-06725.

Finally, the supports from the organizing committee of the
18th OpenFOAM Workshop is greatly appreciated.

Funding Open access funding provided by Chalmers Univer-
sity of Technology. The funding was provided by the “Swed-
ish Centre for Sustainable Hydropower - SVC”. SVC has been
established by the Swedish Energy Agency, Energiforsk and
Svenska kraftnät together with Luleå University of Technol-
ogy, Uppsala University, KTH Royal Institute of Technology,
Chalmers University of Technology, Karlstad University, Umeå
University and Lund University,svc.energiforsk.se.

Availability of data and materials The developed frame-
work and the presented case studies are found open-source at
the GitHub repository: https:// github. com/ saleh isaeed/ Tenso
rforc eFoam.

Declarations

Ethical approval Not applicable.

Appendix: Simulations details

The main hyperparameters of the employed PPO
algorithm as well as the numerical parameters of both
verification test cases are presented in Table 3.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Crea-
tive Commons licence, and indicate if changes were made. The
images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit
http://creativecommons.org/licenses/by/4.0/.

References

 1. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J,
Bellemare MG, Graves A, Riedmiller M, Fidjeland AK,
Ostrovski G, Petersen S, Beattie C, Sadik A, Antonoglou
I, King H, Kumaran D, Wierstra D, Legg S, Hassabis D
(2015) Human-level control through deep reinforcement
learning. Nature 518(7540):529–533. https:// doi. org/ 10.
1038/ natur e14236

 2. Silver D, Schrittwieser J, Simonyan K, Antonoglou Huang
A, Guez A, Hubert T, Baker L, Lai M, Bolton A, Chen Y,
Lillicrap T, Hui F, Sifre L, Driessche G, Graepel T, Has-
sabis D (2017) Mastering the game of Go without human
knowledge, vol 550. Nature Publishing Group. https:// doi.
org/ 10. 1038/ natur e24270

 3. Reddy G, Celani A, Sejnowski TJ, Vergassola M (2016)
Learning to soar in turbulent environments. Proc Natl

https://svc.energiforsk.se/
https://svc.energiforsk.se/
https://github.com/salehisaeed/TensorforceFoam
https://github.com/salehisaeed/TensorforceFoam
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270

 Meccanica

1 3
Vol:. (1234567890)

Acad Sci USA 113(33):4877–4884. https:// doi. org/ 10.
1073/ pnas. 16060 75113

 4. Verma S, Novati G, Koumoutsakos P (2018) Efficient
collective swimming by harnessing vortices through
deep reinforcement learning. Proc Natl Acad Sci USA
115(23):5849–5854. https:// doi. org/ 10. 1073/ pnas. 18009
23115

 5. Ma P, Tian Y, Pan Z, Ren B, Manocha D (2018) Fluid
directed rigid body control using deep reinforcement
learning. ACM Trans Graph 37(4):1–11. https:// doi. org/
10. 1145/ 31975 17. 32013 34

 6. Lee XY, Balu A, Stoecklein D, Ganapathysubramanian
B, Sarkar S (2018) Flow shape design for microfluidic
devices using deep reinforcement learning. CoRR arXiv:
1811. 12444

 7. Viquerat J, Rabault J, Kuhnle A, Ghraieb H, Larcher A,
Hachem E (2021) Direct shape optimization through deep
reinforcement learning. J Comput Phys. https:// doi. org/ 10.
1016/j. jcp. 2020. 110080

 8. Rabault J, Kuchta M, Jensen A, Réglade U, Cerardi N
(2019) Artificial neural networks trained through deep
reinforcement learning discover control strategies for
active flow control. J Fluid Mech 865:281–302. https://
doi. org/ 10. 1017/ jfm. 2019. 62

 9. Li J, Zhang M (2022) Reinforcement-learning-based con-
trol of confined cylinder wakes with stability analyses. J
Fluid Mech 932:44. https:// doi. org/ 10. 1017/ jfm. 2021.
1045

 10. Xu H, Zhang W, Deng J, Rabault J (2020) Active flow
control with rotating cylinders by an artificial neu-
ral network trained by deep reinforcement learning.
J Hydrodyn 32(2):254–258. https:// doi. org/ 10. 1007/
s42241- 020- 0027-z

 11. Tokarev M, Palkin E, Mullyadzhanov R (2020) Deep
reinforcement learning control of cylinder flow using
rotary oscillations at low Reynolds number. Energies
13(22):1–11. https:// doi. org/ 10. 3390/ en132 25920

 12. Beintema G, Corbetta A, Biferale L, Toschi F (2020)
Controlling Rayleigh–Bénard convection via reinforce-
ment learning. J Turbul 21(9–10):585–605. https:// doi.
org/ 10. 1080/ 14685 248. 2020. 17970 59

 13. Wang Y-Z, Mei Y-F, Aubry N, Chen Z, Wu P, Wu W-T
(2022) Deep reinforcement learning based synthetic
jet control on disturbed flow over airfoil. Phys Fluids
34(3):033606. https:// doi. org/ 10. 1063/5. 00809 22

 14. Fan D, Yang L, Wang Z, Triantafyllou MS, Karniadakis
GE (2020) Reinforcement learning for bluff body active
flow control in experiments and simulations. Proc Natl
Acad Sci USA 117(42):26091–26098. https:// doi. org/
10. 1073/ pnas. 20049 39117

 15. Wang Q, Yan L, Hu G, Li C, Xiao Y, Xiong H, Rabault
J, Noack BR (2022) Drlinfluids: an open-source python
platform of coupling deep reinforcement learning and
openfoam. Phys Fluids 34(8):081801. https:// doi. org/ 10.
1063/5. 01031 13

 16. Kurz M, Offenhäuser P, Viola D, Resch M, Beck A (2022)
Relexi—a scalable open source reinforcement learning
framework for high-performance computing. Soft Impacts
14:100422. https:// doi. org/ 10. 1016/j. simpa. 2022. 100422

 17. Shams M, Elsheikh AH (2023) Gym-precice: reinforce-
ment learning environments for active flow control.

SoftwareX 23:101446. https:// doi. org/ 10. 1016/j. softx.
2023. 101446

 18. Guastoni L, Rabault J, Schlatter P, Azizpour H, Vinuesa
R (2023) Deep reinforcement learning for turbulent drag
reduction in channel flows. Eur Phys J E 46(4):27. https://
doi. org/ 10. 1140/ epje/ s10189- 023- 00285-8

 19. Partee S, Ellis M, Rigazzi A, Shao AE, Bachman S,
Marques G, Robbins B (2022) Using machine learning at
scale in numerical simulations with SmartSim: an applica-
tion to ocean climate modeling. J Comput Sci 62:101707.
https:// doi. org/ 10. 1016/j. jocs. 2022. 101707

 20. Chourdakis G, Davis K, Rodenberg B, Schulte M, Simonis
F, Uekermann B, Abrams G, Bungartz H, Cheung Yau L,
Desai I, Eder K, Hertrich R, Lindner F, Rusch A, Sashko
D, Schneider D, Totounferoush A, Volland D, Vollmer
P, Koseomur O (2022) preCICE v2: a sustainable and
user-friendly coupling library [version 2; peer review:
2 approved]. Open Research Europe. https:// doi. org/ 10.
12688/ openr eseur ope. 14445.2

 21. Mao Y, Zhong S, Yin H (2023) Drlfluent: a distributed
co-simulation framework coupling deep reinforcement
learning with ansys-fluent on high-performance comput-
ing systems. J Comput Sci 74:102171. https:// doi. org/ 10.
1016/j. jocs. 2023. 102171

 22. Weiner A (2024) drlFoam. GitHub repository. https://
github. com/ OFDat aComm ittee/ drlfo am

 23. Kuhnle A, Schaarschmidt M, Fricke K (2017) Tensor-
force: a TensorFlow library for applied reinforcement
learning. GitHub repository. https:// github. com/ tenso
rforce/ tenso rforce

 24. Dalcin L, Fang Y-LL (2021) mpi4py: Status update after
12 years of development. Comput Sci Eng 23(4):47–54.
https:// doi. org/ 10. 1109/ MCSE. 2021. 30832 16

 25. Sutton RS, Barto AG (2018) Reinforcement learning: an
introduction. MIT Press, Cambridge

 26. Izquierdo S (2019) CppFlow: Run TensorFlow models
in C++ without installation and without Bazel. GitHub
repository. https:// doi. org/ 10. 5281/ zenodo. 71076 18

 27. Rabault J, Kuhnle A (2019) Accelerating deep reinforce-
ment learning strategies of flow control through a multi-
environment approach. Phys Fluids 10(1063/1):5116415

 28. Jasak H (1996) Error analysis and estimation for the finite
volume method with applications to fluid flows. PhD the-
sis, Imperial College London

 29. Patankar SV, Spalding DB (1972) A calculation pro-
cedure for heat, mass and momentum transfer in three-
dimensional parabolic flows. Int J Heat Mass Transf
15(10):1787–1806. https:// doi. org/ 10. 1016/ 0017-
9310(72) 90054-3

 30. Issa RI (1986) Solution of the implicitly discretised fluid
flow equations by operator-splitting. J Comput Phys
62(1):40–65. https:// doi. org/ 10. 1016/ 0021- 9991(86) 90099-9

 31. Muddada S, Patnaik BSV (2010) An active flow control
strategy for the suppression of vortex structures behind
a circular cylinder. Eur J Mech B Fluids 29(2):93–104.
https:// doi. org/ 10. 1016/j. eurom echflu. 2009. 11. 002

 32. Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O
(2017) Proximal policy optimization algorithms. arXiv
preprint arXiv: 1707. 06347

https://doi.org/10.1073/pnas.1606075113
https://doi.org/10.1073/pnas.1606075113
https://doi.org/10.1073/pnas.1800923115
https://doi.org/10.1073/pnas.1800923115
https://doi.org/10.1145/3197517.3201334
https://doi.org/10.1145/3197517.3201334
http://arxiv.org/abs/1811.12444
http://arxiv.org/abs/1811.12444
https://doi.org/10.1016/j.jcp.2020.110080
https://doi.org/10.1016/j.jcp.2020.110080
https://doi.org/10.1017/jfm.2019.62
https://doi.org/10.1017/jfm.2019.62
https://doi.org/10.1017/jfm.2021.1045
https://doi.org/10.1017/jfm.2021.1045
https://doi.org/10.1007/s42241-020-0027-z
https://doi.org/10.1007/s42241-020-0027-z
https://doi.org/10.3390/en13225920
https://doi.org/10.1080/14685248.2020.1797059
https://doi.org/10.1080/14685248.2020.1797059
https://doi.org/10.1063/5.0080922
https://doi.org/10.1073/pnas.2004939117
https://doi.org/10.1073/pnas.2004939117
https://doi.org/10.1063/5.0103113
https://doi.org/10.1063/5.0103113
https://doi.org/10.1016/j.simpa.2022.100422
https://doi.org/10.1016/j.softx.2023.101446
https://doi.org/10.1016/j.softx.2023.101446
https://doi.org/10.1140/epje/s10189-023-00285-8
https://doi.org/10.1140/epje/s10189-023-00285-8
https://doi.org/10.1016/j.jocs.2022.101707
https://doi.org/10.12688/openreseurope.14445.2
https://doi.org/10.12688/openreseurope.14445.2
https://doi.org/10.1016/j.jocs.2023.102171
https://doi.org/10.1016/j.jocs.2023.102171
https://github.com/OFDataCommittee/drlfoam
https://github.com/OFDataCommittee/drlfoam
https://github.com/tensorforce/tensorforce
https://github.com/tensorforce/tensorforce
https://doi.org/10.1109/MCSE.2021.3083216
https://doi.org/10.5281/zenodo.7107618
https://doi.org/10.1016/0017-9310(72)90054-3
https://doi.org/10.1016/0017-9310(72)90054-3
https://doi.org/10.1016/0021-9991(86)90099-9
https://doi.org/10.1016/j.euromechflu.2009.11.002
http://arxiv.org/abs/1707.06347

Meccanica

1 3
Vol.: (0123456789)

 33. Protas B, Wesfreid JE (2002) Drag force in the open-loop
control of the cylinder wake in the laminar regime. Phys
Fluids 14(2):810–826. https:// doi. org/ 10. 1063/1. 14326 95

 34. Bergmann M, Cordier L, Brancher J-P (2005) Optimal
rotary control of the cylinder wake using proper orthog-
onal decomposition reduced-order model. Phys Fluids
17(9):097101. https:// doi. org/ 10. 1063/1. 20336 24

 35. Kanaris N, Grigoriadis D, Kassinos S (2011) Three
dimensional flow around a circular cylinder confined in a
plane channel. Phys Fluids 23(6):064106. https:// doi. org/
10. 1063/1. 35997 03

 36. Camarri S, Giannetti F (2010) Effect of confinement
on three-dimensional stability in the wake of a circular

cylinder. J Fluid Mech 642:477–487. https:// doi. org/ 10.
1017/ S0022 11200 99923 45

 37. Barkley D, Henderson RD (1996) Three-dimensional flo-
quet stability analysis of the wake of a circular cylinder.
J Fluid Mech 322:215–241. https:// doi. org/ 10. 1017/ S0022
11209 60027 77

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional
affiliations.

https://doi.org/10.1063/1.1432695
https://doi.org/10.1063/1.2033624
https://doi.org/10.1063/1.3599703
https://doi.org/10.1063/1.3599703
https://doi.org/10.1017/S0022112009992345
https://doi.org/10.1017/S0022112009992345
https://doi.org/10.1017/S0022112096002777
https://doi.org/10.1017/S0022112096002777

	An efficient intrusive deep reinforcement learning framework for OpenFOAM
	Abstract
	1 Introduction
	2 Developed framework
	2.1 Intrusive DRL–CFD coupling
	2.2 OpenFOAM implementation
	2.3 Parallelization

	3 Case study
	3.1 Vortex shedding behind a 2D cylinder
	3.1.1 CFD framework and verification
	3.1.2 Configuration of the DRL training
	3.1.3 Training results

	3.2 Vortex shedding behind a confined 3D cylinder
	3.2.1 CFD framework and verification
	3.2.2 Configuration of the DRL training
	3.2.3 Training results

	3.3 Computational efficiency

	4 Conclusion
	Acknowledgements
	Appendix: Simulations details
	References

