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ABSTRACT

The problem of joint direction-of-arrival estimation and distorted
sensor detection has received a lot of attention in recent decades.
Most state-of-the-art work formulated such a problem via low-rank
and row-sparse decomposition, where the low-rank and row-sparse
components were treated in an isolated manner. Such a formulation
results in a performance loss. Differently, in this paper, we entangle
the low-rank and row-sparse components by exploring their inherent
connection. Furthermore, we take into account the maximal distor-
tion level of the sensors. An alternating optimization scheme is pro-
posed to solve the low-rank component and the sparse component,
where a closed-form solution is derived for the low-rank component
and a quadratic programming is developed for the sparse compo-
nent. Numerical results exhibit the effectiveness and superiority of
the proposed method.

Index Terms— Direction-of-arrival (DOA) estimation, dis-
torted sensor detection, low-rank and sparse decomposition, quadratic
programming

1. INTRODUCTION

Direction-of-arrival (DOA) estimation is a crucial topic in array sig-
nal processing, with applications in radar, sonar, wireless commu-
nications, source localization, and so on [1–5]. Traditional DOA
estimation methods assume an ideal sensor array, but real arrays
often suffer from distortions due to various factors such as sensor
malfunctions and environmental effects. The traditional methods
degrade severely when the sensor array encounters gain and phase
uncertainty, which is one of the most common sensor distortions.

A significant body of research is dedicated to addressing dis-
torted or nonfunctional sensors [6–15]. In [6], a genetic algorithm
was employed for array failure correction. An alternative approach
is developed in [7], where a minimal resource allocation network
is utilized for DOA estimation during sensor array failure. No-
tably, this method demands training without failed sensors. In [8], a
Bayesian compressive sensing technique is introduced, but it man-
dates a noise-free array as a reference. Methods involving difference
co-array are explored in [9–11]. In particular, [9] proposed concept
where positions corresponding to failed sensors are replaced by vir-
tual sensors, mitigating the impact of sensor failure. However, this
approach does not hold when failed sensors occupy the array’s first
or last positions, or when malfunctions occur symmetrically, leading
to gaps in the difference co-array. On the other hand, [10] and [11]
constrain arrays to specific sparse structures, such as co-prime and
nested arrays. Another line of study requires pre-calibrated sensors,
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Fig. 1: Illustration of a sparsely distorted linear array, where the red
crosses denote distorted sensors.

well-documented over decades, see e.g., [12, 13]. These methods
rely on some calibrated sensor, which are time- and energy-intensive.

More recently, low-rank and row-sparse decomposition method
is proposed to solve the joint DOA estimation and distorted sensor
detection problem [16]. The limitation of this method lies in that
it deals with the low-rank and row-sparse matrices separately, and
however these two matrices are inherently connected. In this pa-
per, we investigate such an inherent connection, and moreover, we
consider the maximal distortion level of the sensors. A novel al-
gorithm is proposed to solve the low-rank and sparse components,
which is verified to have better performance than the method devel-
oped in [16].

2. SYSTEM MODEL AND PROBLEM STATEMENT

Suppose that a uniform linear array (ULA) of M sensors receives K
far-field narrowband signals from directions θ = [θ1, θ2, · · · , θK ]T.
The antenna array of interest is assumed to be randomly and sparsely
distorted by sensor gain and phase uncertainty (the number of dis-
torted sensors is smaller than M ). Further, we assume that the num-
ber of distorted sensors and their positions are unknown. Fig. 1 il-
lustrates the array model, where the green triangles stand for undis-
torted sensors and the red crosses refer to distorted ones. The red
crosses appear randomly and sparsely within the whole linear array.

The array observation can be written as

y(t) = Γ̆As(t) + n(t) = (I+ Γ)As(t) + n(t),

where t = 1, 2, · · · , T denotes the time index, T is the total
number of available snapshots, s(t) ∈ CK and n(t) ∈ CM

are signal and noise vectors, respectively. The steering matrix
A = [a(θ1),a(θ2), · · · ,a(θK)] ∈ CM×K has steering vectors as
columns, where the steering vector a(θk) is a function of θk, for
k = 1, 2, · · · ,K. In addition, Γ̆ ≜ I + Γ indicates the electronic
sensor status (either perfect or distorted), where I is the M × M
identity matrix, and Γ is a diagonal matrix with its main diagonal,
γ = [γ1, γ2, · · · , γM ]T, being a sparse vector, i.e., Γ = diag{γ}.
Specifically, for m = 1, 2, · · · ,M ,

γm

{
= 0, if the mth sensor is perfect,
̸= 0, if the mth sensor is distorted.

The non-zero γm ∈ C denotes the sensor gain and phase error. We
assume that the sensor error is within some level, that is, |Re(γm)| ≤



γmax and |Im(γm)| ≤ γmax, where Re(·) and Im(·) denote the real
and imaginary parts of a complex variable, respectively, and γmax

is the maximal sensor distortion error (for both real and imaginary
parts) and it is known based on prior information.

Collecting all the available T (T > M in general) snapshots
into a matrix, we have

Y = (I+ Γ)AS+N, (1)

where Y = [y(1),y(2), · · · ,y(T )] ∈ CM×T is the measurement
matrix, S = [s(1), s(2), · · · , s(T )] ∈ CK×T is the signal matrix,
and N = [n(1),n(2), · · · ,n(T )] ∈ CM×T is the noise matrix.
Given the array measurements Y, our task is to jointly estimate the
incoming directions of all emitting signals and detect the distorted
sensors within the array. Note that the number of distorted sensors
is small, but unknown, and their positions are unknown as well.

3. PROPOSED METHOD

By defining Z ≜ AS and using Γ = diag{γ}, (1) becomes:

Y = Z+ diag{γ}Z+N, (2)

where Z ∈ CM×T is a low-rank matrix of rank K (in general K <
min{M,T}). The problem to be solved is formulated as

min
Z,γ

{
1
2
∥Y−Z−diag{γ}Z∥2F + λ1Rank{Z}

+λ2(∥Re(γ)∥0 + ∥Im(γ)∥0),
(3a)

s.t. |Re(γm)|≤γmax, |Im(γm)|≤γmax, m = 1, 2,· · ·,M, (3b)

where λ1 > 0 and λ2 > 0 are two tuning parameters, ∥·∥F, Rank{·},
and ∥ · ∥0 are the Frobenius norm, rank function, and ℓ0 norm, re-
spectively. Note that both Re(γ) and Im(γ) have sparsity structure.

3.1. Convex relaxation

The rank function and the ℓ0 norm are non-convex, which are usually
replaced by their convex surrogates, i.e., the nuclear norm and ℓ1
norm, respectively. Therefore, Problem (3) becomes:

min
Z,γ

{
1
2
∥Y−Z−diag{γ}Z∥2F + λ1∥Z∥∗

+λ2(∥Re(γ)∥1 + ∥Im(γ)∥1),
(4a)

s.t. |Re(γm)| ≤ γmax, |Im(γm)| ≤ γmax, ∀m, (4b)

where ∥ · ∥∗ and ∥ · ∥1 stand for the nuclear norm and ℓ1 norm,
respectively. In order to handle the non-smoothness of the nuclear
norm, we introduce a smoothing parameter µ [17]. That is, Problem
(4) is transferred to

min
Z,γ

{
1
2
∥Y−Z−diag{γ}Z∥2F + λ1∥[Z, µI]∥∗

+λ2(∥Re(γ)∥1 + ∥Im(γ)∥1),
(5a)

s.t. |Re(γm)| ≤ γmax, |Im(γm)| ≤ γmax, ∀m. (5b)

We propose to solve Z and γ in an iterative fashion as follows.

3.1.1. Update of Z

Firstly, we solve Z with a fixed γ, i.e.,

min
Z

1

2
∥Y− (I+ diag{γ})Z∥2F+λ1∥[Z, µI]∥∗. (6)

The derivative of the objective function in (6) with respect to Z is
given as: −DHY+DHDZ+ λ1PZ, where D ≜ I+ diag{γ} and

P ≜
(
ZZH + µ2I

)− 1
2 . By setting the derivative to zero, we obtain

Z =
(
DHD+ λ1P

)−1

DHY. (7)

3.1.2. Update of γ

Then, we solve γ with a fixed Z, i.e.,

min
γ

1

2
∥g −Φγ∥22 + λ2(∥Re(γ)∥1 + ∥Im(γ)∥1), (8a)

s.t. |Re(γm)| ≤ γmax, |Im(γm)| ≤ γmax, ∀m, (8b)

with ∥ · ∥2 being the ℓ2 norm, where we have used the equation:
vec{ADB} = (BT ⊙ A)d with D = diag{d} and ⊙ being the
Khatri-Rao product. In addition, in (8), we define g ≜ vec{Y−Z}
and Φ ≜ ZT ⊙ I, with vec{·} being the vectorization opertation.

Since g = Re(g) + ȷIm(g) with ȷ =
√
−1, and similar for Φ

and γ, we rewrite (8) as

min
γ


1
2
∥Re(g)− Re(Φ)Re(γ) + Im(Φ)Im(γ)∥22

+ 1
2
∥Im(g)− Re(Φ)Im(γ)− Im(Φ)Re(γ)∥22

+λ2(∥Re(γ)∥1 + ∥Im(γ)∥1),

(9a)

s.t. |Re(γm)| ≤ γmax, |Im(γm)| ≤ γmax, ∀m. (9b)

The above problem is a linearly constrained LASSO problem,

min
γ̄

1

2
∥ḡ − Φ̄γ̄∥22 + λ2∥γ̄∥1, s.t.

{
γ̄ ≤ γmax1,

−γ̄ ≤ γmax1,
(10)

where ḡ=[Re(g); Im(g)], Φ̄=[Re(Φ),−Im(Φ); Im(Φ),Re(Φ)],
γ̄ = [Re(γ); Im(γ)], and 1 is an all-one vector. Note that quadratic
programming (QP) is a simple and efficient method for solving
constrained LASSO problems [18]. We proceed to solve (10) by
formulating it as a QP [18]: Let us first split γ̄ into positive and
negative parts as γ̄ = γ̄+− γ̄−. If γ̄m ≥ 0, then γ̄+

i = γ̄i, γ̄
−
i = 0;

else, γ̄−
i = |γ̄i|, γ̄+

i = 0. Then, Problem (10) becomes

min
γ̄+,γ̄−

1

2
∥ḡ − Φ̄(γ̄+ − γ̄−)∥22 + λ21

T(γ̄+ + γ̄−), (11a)

s.t.

{
γ̄+ ≤ γmax1, γ̄

+ ≥ 0,

γ̄− ≤ γmax1, γ̄
− ≥ 0.

(11b)

Problem (11) can be efficiently solved by the existing QP solvers,
such as quadprog function in MATLAB [19].

3.1.3. Overall algorithm for solving Z and γ

By iteratively updating Z and γ using (7) and (11), respectively,
until convergence, we solve Problem (5). The proposed algorithm
is summarized in Algorithm 1, where subscript ·(k) stands for the
corresponding variable in the kth iteration, ϵ is a small scalar and
kmax is a large scalar, used to terminate the algorithm. Besides, in
Line 6 of Algorithm 1, we define f(Z,γ) ≜ 1

2
∥Y−Z−diag{γ}Z∥2F+

λ1∥[Z, µI]∥∗+λ2∥γ∥1.
It is worth highlighting the differences between the proposed

method and our previous work [16] as follows. (i) In [16], we used a
row-sparse matrix, say V, to interpret the information introduced by
the distorted sensors, and this matrix is treated independently from
the noise-free matrix Z. This results in loss of making use of the
inherent relation between Z and V. Differently, in this paper, we
formulate the row-sparsity information as V = diag{γ}Z, and thus
we have taken into account the inherent relation between Z and V.
(ii) In contrast to [16], we have considered the prior information on
the maximal distortion level of the sensors in this work.



Algorithm 1 Proposed algorithm for solving Problem (5)

Input : Y ∈ CM×T , λ1, λ2, µ, ϵ, kmax

Output : Ẑ ∈ CM×T , γ̂ ∈ CM

Initialize: Z(0) ← Zinit, γ(0) ← γinit, k ← 0

1: while k < kmax do
2: compute D=I+ diag{γ(k)} and P=(Z(k)Z

H
(k) + µ2I)−

1
2

3: update Z(k+1) as Z(k+1) =
(
DHD+ λ1P

)−1
DHY

4: update γ(k+1) by solving (11)
5: k ← k + 1

6: break← |f(Z(k),γ(k))−f(Z(k−1),γ(k−1))|
|f(Z(k),γ(k))|

≤ ϵ

7: end while
8: Ẑ← Z(k), γ̂ ← γ(k)

3.1.4. Selection of hyper-parameters

Note that µ should be as small as possible in order not to change
the original problem, i.e., (4). One efficient method is that we start
with a proper value for µ and decrease its value at each iteration
via µ(k+1) = αµ(k), with α < 1. In our simulations, we start with
µ(0) = 1 and α = 0.95.

The tuning parameters λ1 and λ2 can be determined by apply-
ing, e.g., the cross-validation (CV) method [20], on (6) and (8), re-
spectively. However, since we have to apply the CV once per iter-
ation, this will result in a super high computational complexity. In-
stead, we adopt the two-dimensional search strategy as introduced
in [16] (details can be found in [16] and are omitted for brevity
herein). In our simulations, we set λ1 = 2 and λ2 = 0.2.

3.2. DOA estimation and distorted sensor detection

3.2.1. DOA estimation

Denote the estimates of Z and γ as Ẑ and γ̂, respectively, and once
they are obtained, they can be used for DOA estimation and distorted
sensor detection. Note that Z = AS can be viewed as a noise-free
data model. DOAs can be found via subspace-based methods, such
as multiple signal classification (MUSIC), whose spatial spectrum
is calculated as P (θ) = 1

aH(θ)(I−LLH)a(θ)
[21]. The singular value

decomposition of Ẑ is given by Ẑ = LΣRH, where the columns
of L and R contain the left and right orthogonal base vectors of Ẑ,
respectively, and Σ is a diagonal matrix whose diagonal elements are
the singular values of Ẑ arranged in a descending order. We assume
the number of sources, i.e., K, is known, and then the DOAs are
determined by searching for the K largest peaks of P (θ).

3.2.2. Distorted sensor detection

The number and positions of distorted sensors can be determined by
the magnitude of the entries of γ̂. Algorithm 2 presents a strategy for
detecting the distorted sensors. In words, we sort the modules of γ̂ in
an ascending order and obtain γ̃. We define the difference of the first
two entries of γ̃ as d = γ̃(2) − γ̃(1). Next, for i = 3, 4, · · · ,M ,
we compute γ̃(i) − γ̃(i − 1) and compare it with a threshold, say
h, of large value (we set h = 10d in our simulations in Section 4):
if it is larger than or equal to h, we set ifail = i and break the for
loop; if it is less than h, we have ifail = M + 1. Finally, the number
of distorted sensors is obtained as Mfail = M − ifail + 1, and the
corresponding sensors are the distorted sensors.

Algorithm 2 Detection of distorted sensors

Input : γ̂ ∈ CM , h
Output: Mfail

calculate γ̃ = sort(|γ̂|, ‘ascend’)
calculate d = γ̃(2)− γ̃(1) and assign ifail = M + 1

1: for i = 3, 4, · · · ,M do
2: if γ̃(i)− γ̃(i− 1) ≥ h then
3: ifail = i and break the for loop
4: end if
5: end for
6: Mfail ←M − ifail + 1
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Fig. 2: Convergence behavior of the proposed algorithm and the
IRLS algorithm in [16].

3.3. Complexity analysis

The computational cost of the proposed Algorithm 1 mainly comes
from the inverse operation for solving Z and the QP solver for solv-
ing γ, which both are O(M3) [22]. Therefore, the total computa-
tional cost of Algorithm 1 is NiterO(M3), where Niter is the total
number of iterations. Note that the cost of the iteratively reweighted
least squares (IRLS) method [16] is NirlsO(M3), where Nirls denotes
the number of IRLS iterations.

4. SIMULATIONS

4.1. Simulation scenario and performance indicators

We consider a ULA of M = 8 sensors, 3 of which at random posi-
tions are distorted, K = 2 signals from ±10◦, signal-to-noise ratio
SNR = 10 dB, and T = 100 snapshots. The sensor gain and phase
errors are randomly generated by drawing from uniform distribu-
tions on [0, 10] and [−10◦, 10◦], respectively.

The objective function values versus number of iterations are
used as a metric for convergence behavior of the algorithms. Be-
sides, we use the root-mean-squared-error (RMSE) and resolution
probability (ResProb) to evaluate the DOA estimation performance,
and the success detection rate (DetRate) to evaluate the performance
of detecting distorted sensors. These three metrics are calculated via:

RMSE =
√

1
QK

∑Q
q=1

∑K
k=1(θ̂k,q − θk), ResProb = Nsucc/Q,

and DetRate = Ndetec/Q, where Q is the number of Monte-Carlo
runs, θ̂k,q denotes the DOA estimate of the kth source in the qth trial,
Nsucc denotes the number of trials where maxk |θ̂k−θk| ≤ 0.5◦, and
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Ndetec is the number of trials where all distorted sensors are correctly
found. In our simulations, Q = 1000, ϵ = 10−12, and kmax = 100.

4.2. Simulation results and discussion

4.2.1. Convergence analysis

First of all, we check the convergence behavior of the proposed al-
gorithm and the IRLS algorithm [16]. The objective function values
versus number of iterations are plotted in Fig. 2. It can be seen that
both algorithms converge, and the IRLS converges faster than the
proposed algorithm.

4.2.2. Performance as a function of SNR

The RMSE and ResProb of the methods versus SNR are depicted in
Figs. 3 (left) and 4 (left), respectively, with T = 100. The traditional
Cramér–Rao bound (CRB) with known sensor errors [23] is plotted
as a benchmark. Note that the curve labelled as “MUSIC-Known” is
the MUSIC with exact knowledge of the distorted sensors. It is seen
that the singular value thresholding (SVT) [24] and MUSIC have
bad performance even when the SNR becomes large. The acceler-
ated proximal gradient (APG) [25], alternating direction method of
multipliers (ADMM) [26], IRLS [16], and the proposed algorithm
perform well. When the SNR increases, their RMSEs decrease and
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their ResProbs increase up to 1. Moreover, the proposed algorithm
outperforms the other state-of-the-art methods in terms of RMSE
and ResProb. The result of detecting distorted sensors is plotted in
Fig. 5 (left), from which we see that the ADMM performs the best
in terms of DetRate, followed by the proposed algorithm.

4.2.3. Performance as a function of T

The RMSE and ResProb of the methods versus number of snapshots
are plotted in Figs. 3 (right) and 4 (right), respectively, with SNR =
0 dB. The results demonstrate a better performance of the proposed
algorithm compared with the SVT, APG, ADMM, and IRLS. On the
other hand, the results of DetRate are presented in Fig. 5 (right). It
is again seen that the ADMM has the best performance in terms of
DetRate, followed by the proposed algorithm.

5. CONCLUSION

The problem of joint direction-of-arrival (DOA) estimation and dis-
torted sensor detection has been formulated under the framework
of low-rank and row-sparse decomposition. The inherent connec-
tion between the low-rank and row-sparse components has been in-
vestigated and the maximal sensor distortion level has been taken
into account. An alternating optimization method was proposed for
solving the low-rank and sparse components, where a closed-form
solution was derived for the low-rank component and a quadratic
programming was developed for the sparse component. The pro-
posed method was shown to outperform our previous work where
the inherent connection was not explored. Simulation results demon-
strated that the proposed method has excellent performance in DOA
estimation and distorted sensor detection.
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