
CASPER: Carbon-Aware Scheduling and Provisioning for Distributed Web
Services

Downloaded from: https://research.chalmers.se, 2024-06-26 13:43 UTC

Citation for the original published paper (version of record):
Souza, A., Jasoria, S., Chakrabarty, B. et al (2023). CASPER: Carbon-Aware Scheduling and
Provisioning for Distributed Web Services. ACM International Conference Proceeding Series, 28
October 2023: 67-73. http://dx.doi.org/10.1145/3634769.3634812

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



CASPER: Carbon-Aware Scheduling and Provisioning for
Distributed Web Services

Abel Souza, Shruti Jasoria, Basundhara
Chakrabarty, David Irwin, Prashant Shenoy

University of Massachusetts Amherst
USA

Alexander Bridgwater, Axel Lundberg, Filip
Skogh, Ahmed Ali-Eldin

Chalmers University of Technology
Sweden

ABSTRACT
There has been a significant societal push towards sustainable prac-
tices, including in computing. Modern interactive workloads such
as geo-distributed web-services exhibit various spatiotemporal and
performance flexibility, enabling the possibility to adapt the loca-
tion, time, and intensity of processing to align with the availability
of renewable and low-carbon energy. An example is a web applica-
tion hosted across multiple cloud regions, each with varying car-
bon intensity based on their local electricity mix. Distributed load-
balancing enables the exploitation of low-carbon energy through
load migration across regions, reducing web applications carbon
footprint. In this paper, we present CASPER, a carbon-aware sched-
uling and provisioning system that primarily minimizes the car-
bon footprint of distributed web services while also respecting
their Service Level Objectives (SLO). We formulate CASPER as an
multi-objective optimization problem that considers both the vari-
able carbon intensity and latency constraints of the network. Our
evaluation reveals the significant potential of CASPER in achieving
substantial reductions in carbon emissions. Compared to baseline
methods, CASPER demonstrates improvements of up to 70% with
no latency performance degradation.

CCS CONCEPTS
• Computer systems organization→ Cloud computing; Spe-
cial purpose systems.
ACM Reference Format:
Abel Souza, Shruti Jasoria, Basundhara Chakrabarty, David Irwin, Prashant
Shenoy and Alexander Bridgwater, Axel Lundberg, Filip Skogh, Ahmed
Ali-Eldin. 2023. CASPER: Carbon-Aware Scheduling and Provisioning for
Distributed Web Services. In THE 14th international Green and Sustainable
Computing Conference (IGSC ’23), October 28–29, 2023, Toronto, ON, Canada.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3634769.3634812

1 INTRODUCTION
In recent years, the global focus on sustainability and environmen-
tal responsibility has brought renewable energy to the forefront
of the discussions on energy systems, leading to an increased fo-
cus on reducing the carbon footprint of cloud platforms in both
research and industry [16, 17, 29, 31, 38]. Although there has been

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IGSC ’23, October 28–29, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1669-0/23/10
https://doi.org/10.1145/3634769.3634812

0 5 10 15 20

Time (h)

0

100

200

300

400

500

600

A
vg

.
C

ar
b

on
In

te
n

si
ty

(g
.C

O
2
eq

/k
W

h
)

Singapore

Germany

France

Ohio/Virginia

California

Figure 1: Grid carbon intensity in 2022 across six distinct
cloud regions showing 6× spatial variations.
substantial progress in improving efficiency, today’s datacenter
infrastructures consume around three to five percent of electricity
worldwide and in ten years, five times as much [5, 15, 20]. These
estimations may be lower than reality, as the growth of computing
demand has been increasing exponentially for decades [7]. Cloud
datacenters have mainly relied on enhancements in energy effi-
ciency, which is unlikely to lead to significant reductions in carbon
emissions as modern datacenters have already achieved high levels
of optimization in energy efficiency. For instance, the Power Usage
Effectiveness (PUE), a measurement of the total operational effi-
ciency of most datacenters, is already near the optimal value of 1.0.
More importantly, thesse trends are positioning cloud platforms
as one of the largest contributors to global emissions [7]. There-
fore, while energy efficiency improvements are important, they will
be insufficient to counterbalance the rising energy consumption
from the rapidly growing demand for cloud services. To effectively
reduce carbon emissions, cloud platforms must shift their focus
towards low-carbon energy sources. This entails harnessing energy
derived from renewable sources such as wind, solar, hydro, nuclear,
geothermal, and other sustainable alternatives.

To reduce cloud platforms’ carbon emissions, many have sug-
gested leveraging computing workloads’ spatial and temporal flexi-
bility, which is often significant, to dynamically shift the location
and time of execution to better align with when and where low-
carbon energy is available. Yet, despite the prominence of such
simple carbon-aware spatiotemporal workload shifting as an ab-
stract idea, prior work has only quantified its benefits in specific
settings such as batch workloads. Web applications, in particular,
serve as an excellent case for exploring the untapped potential
of carbon-aware computing. These applications are typically dis-
tributed across multiple cloud servers located in different regions
worldwide. Traditional approaches reduce latency by forwarding
user requests to the geographically closest replica server, reducing

67

https://doi.org/10.1145/3634769.3634812
https://doi.org/10.1145/3634769.3634812
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3634769.3634812&domain=pdf&date_stamp=2024-05-29


IGSC ’23, October 28–29, 2023, Toronto, ON, Canada Souza. et al.

load times and offering a better user experience. On the other hand,
different cloud regions have varying carbon costs associated with
their electricity sources, leading to different carbon footprints for
user requests depending onwhich replica server services them. Con-
sequently, optimizing the scheduling of user requests with respect
to the carbon costs associated with different replicas presents an
intriguing opportunity to make web applications more sustainable.

While renewable energy still continues to be unreliable due to
its dependence on natural factors, web applications can still benefit
from it without sacrificing performance. For instance, the inherent
fault tolerance achieved through replication and load-balancing
mechanisms can safeguard web applications against the intermit-
tency and unpredictability of renewable energy sources [23]. By
ensuring that replicas are spread across diverse regions and backed
by different energy sources, these applications can maintain high
availability while capitalizing on the potential of cleaner energy.
However, although cloud providers maintain the information about
the energy supply powering their servers, it is not readily available
at a software level to applications [29]. Consequently, resource pro-
visioners and load balancers cannot leverage this information to
optimize the carbon efficiency of web workloads. Providing these
systems with more visibility into the carbon footprint across data-
centers enable the design of heuristics to provision resources and
schedule workloads towards replicas with low carbon intensities
while respecting applications Service Level Objectives (SLOs).

As such, we present CASPER, a carbon-aware scheduler and provi-
sioner for distributed web applications. We assume a setting where
resource provisioning and load balancing ought to happen in con-
cert to minimize emissions while meeting application SLO targets.
This is formulated as a multi-objective optimization problem, ad-
dressing both the carbon footprint resulting from server provision-
ing and the latency caused by load balancing. We evaluate the
performance of spatial server provisioning and geo-distributed re-
quest scheduling for distributed web applications by implementing
CASPER as a Kubernetes scheduler and submitting it to a real web
workload. Our results highlight CASPER’s significant potential in
achieving considerable reductions in carbon emissions while meet-
ing all latency constrains. In comparison to baseline methods, our
approach demonstrates enhancements of up to 70%without compro-
mising latency performance. We release CASPER as an open-source
tool that can perform carbon optimizations for their distributed
web applications: https://github.com/carbonfirst/casper

2 BACKGROUND
This section provides background on the grid carbon intensity,
cloud model, and carbon-aware workload optimizations.

Carbon Intensity. The electric grid relies on a combination of gener-
ation sources to meet the demand for electricity, and include fossil
fuel-based generators using coal or natural gas, low-carbon sources
like hydro, wind, and solar, as well as non-carbon sources such
as nuclear. Since electricity demand fluctuates throughout the day
and follows diurnal patterns, the mix of generation sources and
their relative proportions also vary over time. It is worth noting
that renewable sources — such as wind and solar — are intermit-
tent, which further impacts the overall generation mix. The carbon

intensity (CI) of electricity supply, measured in grams of CO2 equiv-
alent per watt or g·CO2eq/kWh, represents the average weighted
carbon intensity of the generation sources used at any given mo-
ment. As fossil-based sources have high, and renewable sources
have low or zero carbon weights, the average CI depends on the
proportion of each source in the overall generation mix. Figure 1
illustrates the average carbon intensity of the grid electricity over
the 2022 period for six different geographical regions, revealing
significant variations across locations. On the vertical axis, the car-
bon intensity exhibits spatial variations between regions, while
the horizontal axis presents temporal variations within regions. As
shown, France has the lowest carbon-intensity due to its reliance
on nuclear power, while Germany and Singapore have the highest
intensities due to their reliance on fossil fuels. However, regions
like California and Germany have higher temporal variability due
to increasing penetration of renewables. These variations imply
that the carbon footprint of a job can vary by up to 40% depending
on whether it is executed during a high or low carbon-intensity
period. Moreover, they indicate that executing the same job in dif-
ferent cloud regions can lead to a 6-8x variation in emissions. This
underscores the potential for techniques that strategically schedule
workloads on clusters based on the current and projected carbon
intensity of grid electricity. While cluster managers can leverage
temporal variations by aligning job execution with low carbon pe-
riods [29, 36], we focus on exploiting spatial characteristics that
involves distributing workloads across regions with both low car-
bon intensity and sufficient latency performance. Finally, our work
concentrates on scheduling techniques aimed at reducing scope 2
emissions as defined by the GHG (Greenhouse Gas) protocol [26], in
which themajority of operational emissions are attributed to energy
consumption (including scope 1). We do not consider embodied
emissions (scope 3).

Workload Flexibility. The potential for a job to reduce emissions is a
function of its type – batch or interactive –, memory state, and the
network latency and bandwidth across locations. Additionally, there
may be regulatory constraints, such as HIPPA [3] and GDPR [12],
that prevent spatially shifting a job outside of a specific country,
region or jurisdiction. While batch jobs such as AI and machine
learning often have flexible completion times and can accommodate
temporal variations, interactive workloads have strict low-latency
requirements and limited temporal flexibility. This is especially true
inweb-services environments where requests pass throughmultiple
microservices before a response is produced. For instance, load
balancing tools enable modern workloads with the ability to shift
their execution location to minimize latency and improve service
availability [30]. These techniques workmostly withworkloads that
have lightweight memory states and which do not need to transfer
data around locations. In this study, we consider lightweight web-
requests – specifically HTTP requests –, that can be seamlessly
processed across various locations. These requests have latency
requirements that need to be limited within a maximum threshold.
Given that numerous services are highly optimized for latency,
minor deviations within a specified target are unlikely to impact
the overall user experience, and can enable the exercise of spatial
shifting to optimize for carbon.

68

https://github.com/carbonfirst/casper


CASPER: Carbon-Aware Scheduling and Provisioning for Distributed Web Services IGSC ’23, October 28–29, 2023, Toronto, ON, Canada

Carbon Intensity

Workload

CAP

Region 1 Region N

CAS

Balancing

Pr
ov

is
io

ni
ng

User Requests

For
eca

sts

SLOs

CASPER

Figure 2: CASPER: CAP and CAS provision and coordinate user
workloads.

3 SYSTEM DESIGN AND IMPLEMENTATION
This section outlines the design and architecture of CASPER, along
with its key components.

3.1 Architecture
CASPER is designed as a modular system that can be integrated into
any existing distributed resource manager. Figure 2 illustrates the
overall system architecture, highlighting its two main components:
the Carbon-Aware Provisioner (CAP) and the Carbon-Aware Sched-
uler (CAS). CASPER includes various components for interfacing
with interactive jobs, such as the resource manager, monitoring,
and the carbon-aware load-balancing and scheduling policies.

Carbon-Aware Provisioner. CAP acts as an intelligent provi-
sioner that analyzes the inter-regional network latency, the region’s
(variable) carbon intensity, and the expected application’s workload.
Besides reducing carbon, CAP provides operators with an impor-
tant estimator: the optimal number of servers needed in each region
such that the expected workload is correctly handled for each time
period and lowest carbon intensity. This intuition leads us to for-
malize this provisioning problem as a multi-objective formulation.

min
𝑥

𝛼
∑︁
𝑗

𝐼 𝑗

∑︁
𝑖

𝑥𝑖 𝑗 + (1 − 𝛼)
∑︁
𝑗

𝑠 𝑗 (1a)

s.t.
∑︁
𝑖

𝑥𝑖 𝑗 ≤ 𝑠 𝑗𝑐 𝑗 (1b)∑︁
𝑗

𝑠 𝑗 ≤ 𝐾 (1c)

𝑥𝑖 𝑗
(
ℓ𝑖 𝑗 − 𝐿

)
≤ 0 (1d)∑︁

𝑖, 𝑗

𝑥𝑖 𝑗 = E[𝜆𝑖 ],∀𝑖, 𝑗 (1e)

𝛼 ∈ [0, 1] (1f)
𝑥 𝑗𝑠 𝑗 = 0 (1g)
𝑥𝑖 𝑗 , 𝑠 𝑗 ∈ Z≥0 (1h)

Parameter Description

𝑥𝑖 𝑗 Requests redirected from region 𝑖 to region 𝑗

𝑥 𝑗 Requests not sent to region 𝑗

𝑠 𝑗 Number of servers in region 𝑗

𝑛 Number of regions R
𝐼 𝑗 Carbon intensity in region 𝑗

𝛼
Normalized weight for the carbon intensity
(in relation to number of servers 𝑠 𝑗 )

𝜆𝑖 Incoming request rate at region 𝑖

ℓ𝑖 𝑗 Expected latency from region 𝑖 to 𝑗

𝑐 𝑗 Resource capacity of region 𝑗 (in # of requests)

𝐿𝑖 Maximum tolerated latency for a request

𝐾 Maximum number of servers across all locations

𝑡 𝑗 Number of requests submitted to region 𝑗

Table 1: List of parameters used by CAP.
We present CAP’s formulation in Equation 1, and Table 1 describes
all of its parameters. All indices 𝑖, 𝑗 represent the set of available re-
gions R for resource allocation, request processing and redirection
capacities. We let 𝑥 𝑗 ∈ { 0, 1 } be the variable that represents re-
quests that are not sent to a region 𝑗 , i.e.,

∑
𝑗 𝑥𝑖 𝑗 = 0. This constraint

effectively means that if it is anticipated that region 𝑗 won’t receive
any requests, there should be no server allocation in that region.
Moreover, 𝑥𝑖 𝑗 represents the optimal count of requests from region
𝑖 that is redirected to region 𝑗 , while 𝑠 𝑗 is the number of servers
provisioned in region 𝑗 to handle incoming requests. Eq. 1a aims
to minimize both the total carbon footprint of executing requests
(Eq. 1b) and the cumulative number of servers 𝑠 𝑗 across all regions
(Eq. 1c) such that the minimum latency target is guaranteed (Eq.
1d). Finally, the following assumptions are made. First, the problem
is defined within the scope of minimizing carbon emissions while
simultaneously adhering to application latency constraints. Second,
since we consider cloud datacenters, we ignore issues regarding
resource limits, although we do include a maximum amounr of
servers (Eq. 1c) that CASPER can provision. We also assume the
load-balancers communication latency across regions (as seen in
Figure 2) is negligible when compared to the requests’ average
service (processing) times. Finally, the provisioner uses forecasts
for carbon intensity [24] and hourly workload request rates that
are expressed in terms of expected arrivals in region 𝑖 (Eq. 1e).

3.2 Carbon Aware Scheduler

A B C

𝑟1, 𝑗 𝑟2, 𝑗 𝑟3, 𝑗

(a) CAS Balancing

𝑟𝑖, 𝑗 =

∑
𝑖 𝑥𝑖 𝑗∑

𝑖

∑
𝑗 𝑥𝑖 𝑗

𝑡 𝑗

(b) Weight Factors

Figure 3: Illustration of CAS and weight calculation.

Figure 3 shows how the Carbon Aware Scheduler (CAS) distributes
requests between regions 𝑥𝑖 𝑗 , which denotes the load of requests
that need to be redirected from region 𝑖 to 𝑗 . It uses a vector as
shown by Equation 3(b) to model each region 𝑟 ’s weight, following
the timely estimates obtained from CAP (e.g., hourly). We imple-
ment CAS as a load-balancer module in CASPER, whereas local

69



IGSC ’23, October 28–29, 2023, Toronto, ON, Canada Souza. et al.

Geographical Region AWS Region

California US-West-1

Virginia US-East-1

Ohio US-East-2

Germany EU-Central-1

France EU-West-3

Singapore AP-SouthEast-2

Table 2: AWS Regions used in the evaluation.
incoming requests are redistributed across all regions according
to their proportional weights. More importantly, CAS ensures that
unforeseen workload events — e.g., load spikes, not accounted for
in CAP’s optimization — are effectively handled as best as possible.

3.3 Implementation
CASPER is implemented as a Kubernetes (K8S) scheduler with 𝑠 <
𝐾 workers, each representing a cloud region. Each deployment
comprises of a single K8S pod that runs the application. A prototype
has been developed to emulate the operations of a Wikipedia-like
service across six distinct AWS regions, as detailed in Table 2. These
regions are selected as the closest regions to the original Wikimedia
servers [14].

CAP. CASPER’s provisioner is developed using Python, while the
optimizations are solved using the PuLP library [25], an interface
to the Coin-or branch and cut (CBC) solver [28]. The region wise
server deployment array obtained as an output of CAP is used
to scale the size of each regions using server collected metrics.
Additionally, CAP computes the optimal request distributionmatrix,
which is forwarded to CAS.

CAS. The scheduler coordinates a set of load balancers, one per-
region, to implement its logic. It timely forwards incoming requests
to the appropriate regions following the weights derived in the
CAP’s optimal request distribution matrix. Traefik [35] is used to
establish the cluster’s load balancer layer, creating a HTTP proxy
for every region to receive and forward requests by routing the
traffic to one of the corresponding backend regions based on the
hourly weights calculated by CAP.

4 EVALUATION
In this section, we first discuss the real-world application, workload,
carbon, and network traces that are utilized to evaluate CASPER.
Then, we discuss the policies briefly introduced in the previous
section. Finally, we demonstrate and quantify the trade-offs between
carbon savings and latency performance for various targets.

4.1 Setup
Infrastructure. CASPER runs on Ubuntu Linux 20.04, and it consists
of a control plane and worker nodes. The cluster compromises 16
servers with 16-cores Intel Xeon processors and 32GB of memory.
Each node runs a Kubernetes deployment representing one region.
For intra-cluster communication, an overlay network is created
using Flannel [6].

Application. To evaluate CASPER, we deploy Kiwix [9], a platform
to host and distribute compressed versions of the Wikipedia [10].
Specifically, we load Kiwix with the pre-built version of the German

Wikipedia from May 2023, which comprises a total of 32 GB of
content [11]. Requests are directed through the CAS load balancer,
which interconnects all nodes in the cluster via a HTTP port.

Carbon Intensity. Figure 1 illustrates the carbon intensity data for
all the aforementioned geographical regions (Table 2) at an hourly
granularity. This data has been collected from Electricity Maps [8]
for 2022.

Workload andNetworkTraces. Weuse theWikimedia’s dataset [13]
covering six datacenters across the USA, Europe, and Asia. For each
region, the dataset includes the request rates (requests per-second)
and datacenter hourly utilization covering 2022. Since two of the
AWS regions do not match those from Wikimedia’s – i.e., Nether-
landas and Texas –, we select the two closest AWS regions i.e.,
Germany and Ohio (Table 2). Average latency data (in milliseconds)
across all AWS regions are obtained from Cloudping [1] for 2022.

Telemetry. Each region’s load-balancer exports their service-level
metrics, specifically the total count of HTTP requests served by
each endpoint and their associated service time. To calculate the
carbon cost of request execution, this metric is multiplied by the
region’s current hour’s carbon intensity.

Policies. We conduct a comprehensive evaluation of CASPER through-
out the entire year of 2022. The parameters for CAP are set as fol-
lows: 𝑛 = 6 (representing the AWS regions), 𝛼 = 0.5 (equal weights
to both carbon and latency costs), 𝑐 𝑗 = 100 (one server can han-
dle up to 1k requests), and 𝐾 = 500 (global maximum number of
servers). We also introduce several variations in the values of 𝐿𝑖
(see below), which establish the maximum acceptable latency for
each request. CAP runs at the beginning of every hour to determine
the provisioning of servers at each location. The CAS weights are
then calculated based on the output of CAP. To assess the system’s
performance, we execute a real workload simulation spanning 24
hours. Metrics are collected at 10-minute intervals and aggregated
at the end of each hour. We conduct evaluations using the following
policies:
(1) Latency. This simulation serves as the baseline scenario with-

out any carbon optimization, where requests are solely served
based on the lowest latency, i.e., locally in the originating region,
without any load balancing.

(2) Carbon-L Policies. These runs focus on carbon optimization
with various latency 𝐿 threshold guarantees, ranging from 20
to 500ms. This approach involves a trade-off in terms of per-
formance, as requests can be redirected as long as the latency
requirements remain below 𝐿 ms.
These implementations strictly followMediawiki’s operations, in

particular the Latency policy that adheres to their stringent latency
requirements [14]. Among the carbon-aware policies, we set one
with threshold of 𝐿 = 500 ms as it represents the most flexible re-
sponse time across all regions. In this particular setting, the carbon
cost of execution is minimized by irrestrictive redirections that can
reach very distant, lower carbon regions capable of accommodating
the redirected requests.

Workload Generation. A sample of the workload is represented
in Figure 4(a), with incoming requests in all regions. Each hour is
divided into timesteps, and the request rate for each timestep is

70



CASPER: Carbon-Aware Scheduling and Provisioning for Distributed Web Services IGSC ’23, October 28–29, 2023, Toronto, ON, Canada

0 5 10 15 20

Time (h)

0.0

2.0

4.0

6.0

8.0

R
ec

ei
ve

d
R

eq
u

es
ts

N
u

m
b

er

×103

ap-southeast-2

eu-central-1

eu-west-3

us-east-1

us-east-2

us-west-1

0 5 10 15 20

Time (h)

0.0

2.0

4.0

6.0

8.0

×103

ap-southeast-2

eu-central-1

eu-west-3

us-east-1

us-east-2

us-west-1

0 5 10 15 20

Time (h)

0.0

2.0

4.0

6.0

8.0

×103

ap-southeast-2

eu-central-1

eu-west-3

us-east-1

us-east-2

us-west-1

Latency Carbon-20 Carbon-100 Carbon-400 Carbon-500

Policy

0.0

0.2

0.4

0.6

0.8

1.0

R
es

ou
rc

e
P

ro
vi

si
on

in
g

(N
or

m
al

iz
ed

)

ap-southeast-2

eu-central-1

eu-west-3

us-east-1

us-east-2

us-west-1

(a) Latency (b) Carbon-20 (c) Carbon-500 (d) Resource Utilization
Figure 4: Redirection rate (a, b and c) and resource provisioning per-region and policies (d): Provisioning tends to increase in
greener nearby regions.

selected from a set of values that follow an exponential distribution.
Parameters to generate the distributions are selected such that
the upper limit of the generated values is approximately 1.5× the
request rate for the hour.

4.2 Results
Effects on Request Redirection. Figures 4(a)-(c) present work-
load redirection results for Latency, Carbon-20, and Carbon-500. As
shown in Figure 1, Zone "eu-west-3" (France) has the lowest car-
bon intensity, followed by "us-west-1" (California), "us-east-[1,2]"
(Ohio/Virginia), "eu-central-1" (Germany), and "ap-southeast-2"
(Singapore). Figure 4(a) simply shows the original workload, where
no redirection happens. Notably in Figure 4(b), due to close prox-
imity and low carbon intensity, CASPER redirects as many requests
as possible from Germany towards France. And due to the latency
constrains (20ms), Ohio and Virginia cannot induce savings. This
behavior is more evident in 4(c): As the latency constraint is re-
laxed (500ms), France and California receive as many requests as
possible from all regions. However, eu-west-3 reaches capacity at
various moments, triggering CASPER to forward load to California
(us-west-1).

Latency Carbon-20 Carbon-100 Carbon-400 Carbon-500

Policy

0

50

100

150

200

L
at

en
cy

(m
s)

0 5 10 15 20

Time (h)

0

50

100

150

200

250

L
at

en
cy

(m
s)

Latency

Carbon-20

Carbon-100

Carbon-400

Carbon-500

(a) Average Latency (b) Hourly Latency

Latency Carbon-20 Carbon-100 Carbon-400 Carbon-500

Policy

0

100

200

300

400

500

600

700

C
ar

b
on

E
m

is
si

on
s

(g
.C

O
2
E

q)

0 5 10 15 20

Time (h)

0

200

400

600

800

A
ve

ra
ge

C
ar

b
on

E
m

is
si

on
s

(g
C
O

2
E
q)

Latency

Carbon-20

Carbon-100

Carbon-400

Carbon-500

(c) Average Emissions (d) Hourly Emissions
Figure 5: Latency and carbon tradeoffs across policies.

Effects on Resource Provisioning. Figure 4(d) illustrates the re-
source provisioning across the six AWS regions. The Latency policy

represents the original provisioning with no redirections. As the
latency constraints increase, the CASPER initiates re-provisioning of
servers from the German ("eu-central-1") region to France due to its
lower carbon and lower network latency. Under Carbon-100, a sig-
nificant portion of the Ohio and Virginia workloads are redirected
exclusively to France, as the 100ms latency requirement can be
fulfilled. It is worth noting that requests originating from Singapore
are only directed to greener locations under the Carbon-400 policy.
This limitation arises from the end-to-end latency from Singapore
to any other region surpassing the 100ms threshold. Moreover,
the capacity in France reaches its limit under the Carbon-400 pol-
icy, prompting redirections towards California, in addition to few
towards Germany to meet the latency requirements.

Effects on Carbon and Latency. Figures 5(a)-(d) present a com-
parative analysis of all policies. Figures 5(a) and (c) clearly illustrate
the primary tradeoff of CASPER, wherein the relaxation of latency
constraints leads to an increased potential for emissions reduction.
The Latency policy, despite achieving an average response time as
low as 6ms, exhibits the highest carbon emissions due to requests
remaining localized in high-intensity regions such as Germany and
Singapore. Notably, Carbon-20 demonstrates that even small relax-
ations in latency constraints can result in a 25% carbon reductions.
Carbon-100 achieves a 37% reduction, while Carbon-400 reaches
a point of diminishing returns with a 70% reduction, similar to
Carbon-500 which represents an unrestricted carbon optimization
scenario. Moreover, Figures 5(b) and (d) display the hourly varia-
tions in average latency and emissions, respectively. In comparison
to the Latency policy, Carbon-20 shows a minimal increase in la-
tency of 6ms while simultaneously reducing emissions. Carbon-100
through Carbon-500 exhibit latency increases ranging from 5-16×,
although delivering the most substantial reductions. Finally, it is
important to note that results would change with other 𝛼 values.
This is primarily due to the fact that CASPERwould redirect requests
differently due to the trade-off between carbon emissions and the
number of servers needed to satisfy latency SLOs. Specifically, as 𝛼
increases, CASPER would redirect more requests to greener regions
at the cost of latency because this would reduce the number of
servers in browner regions. In contrast, as 𝛼 decreases, CASPER
would prioritize latency, opting to handle requests locally despite
the carbon costs of setting additional servers.
5 RELATEDWORK
Recent efforts have concentrated on harnessing the flexibility in
energy demand for diverse workloads to diminish their carbon

71



IGSC ’23, October 28–29, 2023, Toronto, ON, Canada Souza. et al.

footprint by leveraging the temporal and spatial flexibility of com-
puting [4, 16, 17, 21, 22, 27, 29, 32, 33, 36, 38]. Treehouse [2] pro-
poses a software-centric approach to reduce the carbon intensity
of datacenter computing by making energy and carbon visible at
the application layer. CADRE focuses on carbon-aware data repli-
cation to reduce overall carbon footprint, while leveraging load
flexibility and interactions with the electricity market to minimize
carbon emissions [39]. [37] investigates the potential of shifting
computational workloads to less carbon-intensive periods based
on the fluctuating carbon intensity of energy supply. [19] intro-
duces a low-carbon extension to the Kubernetes scheduler, sorting
cloud regions by carbon intensity and migrating workloads to re-
gions with low carbon cost. However, the proposed framework is
evaluated primarily for batch jobs. On the other hand, numerous
works have employed integer programming techniques to devise
new techniques for low-carbon scheduling [34]. Carbon-aware geo-
distributed scheduling is particularly relevant for Machine Learning
(ML) workloads requiring long periods of execution [18]. [40] pro-
poses Cucumber, an admission control policy that leverages load
and energy forecasting techniques to determine scheduling strate-
gies to use renewables. Unlike the previous works, CASPER is the
first framework that seamlessly integrates server provisioning and
request scheduling for a geo-distributed web application, with a
particular focus on interactive web requests.
6 CONCLUSION AND FUTUREWORK
This paper introduced CASPER, a carbon-aware scheduler and pro-
visioner designed for distributed web applications. At the heart
of CASPER lies a multi-objective optimization that minimizes both
resources and latency, introducing a novel method to control the
load balancing of web applications. We observe substantial savings
in the carbon footprint, reaching up to 70% with controllable and
negligible losses in performance while meeting all SLOs. CASPER
represents a crucial advancement in carbon-aware schedulers for
distributed and geo-distributed applications. Further analysis and
exploration of additional spatiotemporal carbon-aware strategies
are warranted to enhance the system’s efficiency. As a potential
avenue for future work, the implementation of auto-scaling policies
that continuously monitors resource utilization across regions to
dynamically adapt allocations could be explored.

ACKNOWLEDGMENTS
We thank the reviewers for their valuable comments, which im-
proved the quality of this paper, and Electricity Maps for access
to their carbon-intensity data. This research is supported by NSF
grants 2211302, 2211888, 2213636, 2105494, and Army contract
W911NF-17-2-0196.

REFERENCES
[1] Matt Adorjan. 2017. CloudPing. www.cloudping.co.
[2] Thomas Anderson, Adam Belay, Mosharaf Chowdhury, Asaf Cidon, and Irene

Zhang. 2023. Treehouse: A case for carbon-aware datacenter software. ACM
SIGENERGY Energy Informatics Review 3, 3 (2023), 64–70.

[3] HIPAA Compliance Assistance. 2003. Summary of the hipaa privacy rule. Office
for Civil Rights (2003).

[4] Noman Bashir, Tian Guo, Mohammad Hajiesmaili, David Irwin, Prashant Shenoy,
Ramesh Sitaraman, Abel Souza, and Adam Wierman. 2021. Enabling Sustainable
Clouds: The Case for Virtualizing the Energy System. In Proceedings of the ACM
Symposium on Cloud Computing (SoCC ’21). Association for Computing Machin-
ery, New York, NY, USA, 350–358. https://doi.org/10.1145/3472883.3487009

[5] Gary Cook and David Pomerantz. 2015. Clicking clean: A guide to building the
green Internet. Greenpeace International, Tech. Rep. (2015).

[6] CoreOS. 2016. Flannel. https://github.com/flannel-io/flannel.
[7] Peter J. Denning and Ted G. Lewis. 2017. Exponential Laws of Computing Growth.

Commun. ACM 60, 1 (January 2017), 54–65.
[8] ElectricityMap. 2022. ElectricityMap. https://electricitymaps.com/.
[9] Emmanuel Engelhart and Renaud Gaudin. 2007. Kiwix. https://kiwix.org.
[10] Emmanuel Engelhart, Tommi Makitalo, and Manuel Schneider. 2016. openZIM.

https://openzim.org.
[11] Emmanuel Engelhart, Tommi Makitalo, and Manuel Schneider. 2023. Latest

Wikipedia zim dump. https://download.kiwix.org/zim/wikipedia/.
[12] European Parliament and Council of the European Union. 2016. Regulation (EU)

2016/679 of the European Parliament and of the Council. https://data.europa.eu/
eli/reg/2016/679/oj.

[13] Wikimedia Foundation. 2023. Wikimedia’s Grafana installation. https://grafana.
wikimedia.org/.

[14] Wikimedia Foundation. 2024. Wikimedia infrastructure. https://wikitech.
wikimedia.org/wiki/Wikimedia_infrastructure.

[15] C. Garcia. 2022. AKCP, The Real Amount of Energy A Data Center Uses. https:
//www.akcp.com/blog/the-real-amount-of-energy-a-data-center-use/.

[16] Udit Gupta, Mariam Elgamal, Gage Hills, Gu-Yeon Wei, Hsien-Hsin S. Lee, David
Brooks, and Carole-Jean Wu. 2022. ACT: Designing Sustainable Computer
Systems with an Architectural Carbon Modeling Tool. In Proceedings of the 49th
Annual International Symposium on Computer Architecture. 784–799.

[17] Udit Gupta, Young Geun Kim, Sylvia Lee, Jordan Tse, Hsien-Hsin S. Lee, Gu-Yeon
Wei, David Brooks, and Carole-Jean Wu. 2021. Chasing Carbon: The Elusive
Environmental Footprint of Computing. In HPCA. ACM.

[18] Kawsar Haghshenas, Brian Setz, and Marco Aiello. 2022. CO2 Emission Aware
Scheduling for Deep Neural Network Training Workloads. In 2022 IEEE Inter-
national Conference on Big Data (Big Data). 1542–1549. https://doi.org/10.1109/
BigData55660.2022.10020544

[19] Aled James and Daniel Schien. 2019. A low carbon kubernetes scheduler. In 6th
International Conference on ICT for Sustainability, ICT4S 2019 (CEUR Workshop
Proceedings, Vol. 2382). CEUR-WS. 6th International Conference on ICT for
Sustainability, ICT4S 2019 ; Conference date: 10-06-2019 Through 14-06-2019.

[20] Nicola Jones. 2018. How to stop data centres from gobbling up the world’s
electricity. Nature 561, 7722 (2018), 163–167.

[21] Adam Lechowicz, Nicolas Christianson, Jinhang Zuo, Noman Bashir, Mohammad
Hajiesmaili, Adam Wierman, and Prashant Shenoy. 2024. The Online Pause and
Resume Problem: Optimal Algorithms and AnApplication to Carbon-Aware Load
Shifting. In Proceedings of the ACM on Measurement and Analysis of Computing
Systems (SIGMETRICS 2024). ACM, New York, NY, USA, 35 pages.

[22] Liuzixuan Lin and Andrew A Chien. 2023. Adapting Datacenter Capacity for
Greener Datacenters and Grid. In Proceedings of the ACM International Conference
on Future Energy Systems (e-Energy). ACM, New York, NY, USA, 200–213.

[23] Diptyaroop Maji, Ben Pfaff, Vipin PR, Rajagopal Sreenivasan, Victor Firoiu,
Sreeram Iyer, Colleen Josephson, Zhelong Pan, and Ramesh K Sitaraman. 2023.
Bringing Carbon Awareness to Multi-cloud Application Delivery. In Proceedings
of the 2nd Workshop on Sustainable Computer Systems. 1–6.

[24] Diptyaroop Maji, Prashant Shenoy, and Ramesh K Sitaraman. 2022. CarbonCast:
multi-day forecasting of grid carbon intensity. In Proceedings of the 9th ACM
International Conference on Systems for Energy-Efficient Buildings, Cities, and
Transportation. 198–207.

[25] Stuart Mitchell, Michael OSullivan, and Iain Dunning. 2011. PuLP: a linear
programming toolkit for python. The University of Auckland, Auckland, New
Zealand 65 (2011).

[26] Green Gas House Protocol. 2024. GHG Protocol Scope 2 Guidance. https://
ghgprotocol.org/scope-2-guidance.

[27] Ana Radovanović, Ross Koningstein, Ian Schneider, Bokan Chen, Alexandre
Duarte, Binz Roy, Diyue Xiao, Maya Haridasan, Patrick Hung, Nick Care, Saurav
Talukdar, Eric Mullen, Kendal Smith, MariEllen Cottman, and Walfredo Cirne.
2023. Carbon-Aware Computing for Datacenters. IEEE Transactions on Power
Systems 38, 2 (2023), 1270–1280.

[28] Matthew J Saltzman. 2002. COIN-OR: an open-source library for optimization.
Programming languages and systems in computational economics and finance
(2002), 3–32.

[29] Abel Souza, Noman Bashir, Jorge Murillo, Walid Hanafy, Qianlin Liang, David
Irwin, and Prashant Shenoy. 2023. Ecovisor: A Virtual Energy System for Carbon-
Efficient Applications. In ASPLOS. ACM, New York, NY, USA, 252–265.

[30] Abel Souza, Alessandro Vittorio Papadopoulos, Luis Tomas, David Gilbert, and
Johan Tordsson. 2018. Hybrid adaptive checkpointing for virtual machine fault
tolerance. In 2018 IEEE International Conference on Cloud Engineering (IC2E). IEEE,
12–22.

[31] Emma Strubell, Ananya Ganesh, and Andrew McCallum. 2020. Energy and
Policy Considerations for Modern Deep Learning Research. In AAAI Conference
on Artificial Intelligence (AAAI). ACM, New York, NY, USA, 13693–13696.

[32] Thanathorn Sukprasert, Abel Souza, Noman Bashir, David Irwin, and Prashant
Shenoy. 2023. Quantifying the Benefits of Carbon-Aware Temporal and Spatial

72

www.cloudping.co
https://doi.org/10.1145/3472883.3487009
https://github.com/flannel-io/flannel
https://electricitymaps.com/
https://kiwix.org
https://openzim.org
https://download.kiwix.org/zim/wikipedia/
https://data.europa.eu/eli/reg/2016/679/oj
https://data.europa.eu/eli/reg/2016/679/oj
https://grafana.wikimedia.org/
https://grafana.wikimedia.org/
https://wikitech.wikimedia.org/wiki/Wikimedia_infrastructure
https://wikitech.wikimedia.org/wiki/Wikimedia_infrastructure
https://www.akcp.com/blog/the-real-amount-of-energy-a-data-center-use/
https://www.akcp.com/blog/the-real-amount-of-energy-a-data-center-use/
https://doi.org/10.1109/BigData55660.2022.10020544
https://doi.org/10.1109/BigData55660.2022.10020544
https://ghgprotocol.org/scope-2-guidance
https://ghgprotocol.org/scope-2-guidance


CASPER: Carbon-Aware Scheduling and Provisioning for Distributed Web Services IGSC ’23, October 28–29, 2023, Toronto, ON, Canada

Workload Shifting in the Cloud. arXiv preprint arXiv:2306.06502 (2023).
[33] Seyedali Tabaeiaghdaei, Simon Scherrer, Jonghoon Kwon, and Adrian Perrig.

2023. Carbon-Aware Global Routing in Path-Aware Networks. In Proceedings
of the ACM International Conference on Future Energy Systems (e-Energy). ACM,
New York, NY, USA, 144–158.

[34] Samuel Trevino-Martinez, Rapinder Sawhney, and Oleg Shylo. 2022. Energy-
carbon footprint optimization in sequence-dependent production scheduling. Ap-
plied Energy 315 (2022), 118949. https://doi.org/10.1016/j.apenergy.2022.118949

[35] Emile Vauge. 2016. Traefik. https://traefik.io/traefik/.
[36] Philipp Wiesner, Ilja Behnke, Dominik Scheinert, Kordian Gontarska, and Lauritz

Thamsen. 2021. Let’s Wait Awhile: How Temporal Workload Shifting Can
Reduce Carbon Emissions in the Cloud. In Proceedings of the 22nd International
Middleware Conference (Middleware). ACM, New York, NY, USA, 260–272.

[37] Philipp Wiesner, Ilja Behnke, Dominik Scheinert, Kordian Gontarska, and Lauritz
Thamsen. 2021. Let’s wait awhile: How temporal workload shifting can reduce
carbon emissions in the cloud. In Proceedings of the 22nd International Middleware
Conference. 260–272.

[38] Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani,
Kiwan Maeng, Gloria Chang, Fiona Aga, Jinshi Huang, Charles Bai, et al. 2022.
Sustainable AI: Environmental Implications, Challenges and Opportunities. Pro-
ceedings of Machine Learning and Systems 4, 795–813.

[39] Zichen Xu, Nan Deng, Christopher Stewart, and Xiaorui Wang. 2015. Cadre:
Carbon-aware data replication for geo-diverse services. In 2015 IEEE International
Conference on Autonomic Computing. IEEE, 177–186.

[40] Siyue Zhang, Minrui Xu,Wei Yang Bryan Lim, and Dusit Niyato. 2023. Sustainable
AIGC Workload Scheduling of Geo-Distributed Data Centers: A Multi-Agent
Reinforcement Learning Approach. arXiv:2304.07948 [cs.AI]

73

https://doi.org/10.1016/j.apenergy.2022.118949
https://traefik.io/traefik/
https://arxiv.org/abs/2304.07948

	Abstract
	1 Introduction
	2 Background
	3 System Design and Implementation
	3.1 Architecture
	3.2 Carbon Aware Scheduler
	3.3 Implementation

	4 Evaluation
	4.1 Setup
	4.2 Results

	5 Related Work
	6 Conclusion and Future Work
	Acknowledgments
	References

