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Abstract

The development of quantum mechanics has drastically changed the perspective on how
we perceive the world. This has created a world that is now racing for the next new
quantum technology. Accompanying this racing is an explosion of technological ad-
vancements that have facilitated experimental studies of light and matter interactions
with unprecedented control down to the nanoscale. Improved experimental control and
resolution, as well as the demonstration of strong light-matter interactions in new plat-
forms, open the possibility of discovering unconventional phenomena that previously
have been overlooked. This thesis explores light and matter phenomena with identical
emitters of light and light confined in a cavity. The work is divided into two parts. The
first part looks at the correlations that can arise between two-level emitters and a cavity
field, and the complex behaviors arising from the competition between coherent driv-
ing, collective coupling, and dissipation. The second part revolves around the intriguing
properties of polaritons formed due to the interaction between a microcavity and the col-
lective bright mode in an array of harmonic nanoresonators, sustaining surface plasmon
modes. The effects of dissipation is an important recurring theme.

Keywords: Open Quantum Systems, Quantum Optics, Quantum Plasmonics, Cavity
QED, Collective effects, Nonequilibrium Critical Phenomena, Polaritons, Strong Cou-
pling, Ultrastrong Coupling, Tavis–Cummings model, Hopfield Model

i



ii



Acknowledgments

All the incredible people in my life have made this thesis possible.

My first acknowledgment goes to my patient supervisor, Göran Johansson. My
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Chapter 1
Introduction

The advancement of science can be seen as a feedback loop between three equally im-
portant units: (i) theoretical hypotheses and predictions, (ii) experimental realization
and observations, and (iii) new technology (generalization). Through bidirectional feed-
back, discoveries in one trigger new developments in the other two, and so, the wheel
of science widens our understanding of the world and revolutionizes the society we live
in.

A recent example of such cycle is the development of quantum mechanics at the
beginning of the twentieth century. Driven by an urge to understand experimental and
real-world observations, a new mathematical theory involving noncommuting operators
was formulated. This new mathematical formulation of physics, Quantum mechanics,
led to fundamental microscopic theories on the scale of single atoms and subatomic par-
ticles that revolutionized the basic understanding of the physics around us, and inspired
inventions such as the transistor and the laser, igniting an explosion of technological
advancements including the computer. Now, a century later, classical computation is
racing with the rapid developments of quantum computation to claim the first place
as the most powerful. And, generations are born that will learn and view the laws of
quantum mechanics as naturally as previous generations honored Newtonian mechan-
ics. Technological advancements have also facilitated studying quantum systems in a
completely new light with an unprecedented level of control. Therefore, exciting new
physics and innovations are expected in the near future.

The theoretical explorations presented in this thesis are inspired by recent experiments
with emitters of light interacting with light fields confined in an external structure, e.g.,
between two mirrors in what is called a cavity. Here, an emitter of light refers to any
material resonance with an optically active dipole transition that emits photons. This
includes everything from two-level atoms to excitons in quantum dots or molecules, or
to the collective motion of electrons in metallic nanoparticles. The systems of partic-
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1. Introduction

ular interest are systems where the interaction between the emitter and the light field
is strong, i.e., when nonperturbative methods are needed to describe the observed phe-
nomena accurately. The field of physics focusing on the quantum description of such
systems is known as cavity Quantum Electrodynamics (cavity QED) and it is the main
topic of the thesis.

The great technological progress in the last decades has facilitated experimental
studies of light and matter interactions between emitters and confined light with un-
precedented control down to the nanoscale. Following these rapid developments, the
research in this thesis has been developed along two parallel lines. The first line has
taken inspiration from experiments that have demonstrated the ability to strongly couple
small collections of two-level quantum emitters to a single cavity mode with incredible
precision of positions, joined by an ability to probe their collective state via coherent
driving fields. These experiments define a few-body regime of cavity QED that allows
for monitoring the correlations that arise between the emitters and the light field. This
line of research is also inspired by non-conventional cavity modes, such as plasmonic
nanoresonators, as platforms for cavity QED. The second line of research focuses on
strong and ultrastrong coupling with harmonic light emitters and also draws inspiration
from plasmonic nanoresonators. In this case, the nanoresonators act as emitters that can
be placed in cavities. This will lead to the formation of hybridized light-matter states
called polaritons. Polaritons are intriguing quasiparticles that have gained significant
attention due to their potential for engineering of new exotic properties, different from
the properties of the bare constituents.

In the current era of quantum technology, it has also become evident that interac-
tion with the environment is inevitable, no matter the attempts of shielding. In fact, the
shielding in itself can change the properties of the system, as in the Purcell effect where
the presence of two mirrors can change the radiative properties of a two-level atom.
Therefore, the works of this thesis concern open quantum systems that include the ef-
fect of environmental interactions. Until recently, the common notion has been that
this interaction typically induces decoherence, i.e., it destroys the quantum mechanical
properties of the system. However, as the understanding of these incoherent interactions
has grown, there are now many proposals for environmental engineering that harness in-
teractions with the environment. The works presented in this thesis continue along these
lines and showcase that the environment, indeed, plays an important role in stabilizing
the system in steady states with specific properties.
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1.1. WHAT IS LIGHT AND MATTER?

1.1 What is light and matter?
As light-matter interactions are central components in all the appended works, let’s start
this thesis with a discussion on what is light and matter.

Historically, the classical description of physics has made a clear distinction between
them: light is waves of electromagnetic radiation governed by Maxwell’s equations,
and matter is constituted by massive particles occupying space governed by Newton’s
laws. This distinction will agree with the intuitive picture of most readers of this the-
sis. The formulation of quantum mechanics changed this distinction by introducing
wave-particle duality. In the quantum mechanical picture, light and matter alike can
be ascribed to having wave and particle properties. In particular, quantum mechan-
ics introduces the concept of wave functions to describe the state of a system which,
for example, implies that states of matter also manifest interference effects. Moreover,
quantum mechanics introduces the photon as a bosonic elementary particle. The pho-
ton is a single quantum of light with a well-defined energy and is used to describe the
particle properties of light. The wave-particle duality fades the lines dividing light and
matter. Nevertheless, a common distinction is that light is described by photons, while
matter is not. Light-matter interaction, on the other hand, can blur the distinction be-
tween light and matter even further. Due to the formation of quasiparticles, new terms
such as photon-like and matter-like, as well as photon/matter components, are intro-
duced. Quasiparticles will be the topic of the next section which introduces the light-
matter quasiparticles known as polaritons. Polaritons are, in many aspects, important
for this thesis. Chapter 8 deals, for example, with the intriguing properties of plasmon-
microcavity polaritons. And, as will be clear from the following section, polaritons play
a fundamental role in this thesis both as a confined light-like mode and as a matter-like
resonance playing the role of an emitter.

1.2 Light-matter hybridization: Polaritons
First, let’s introduce the concept of quasiparticles. In simple words, a quasiparticle
is a particle that includes the effects of an interaction with one or many other parti-
cles. Typically, they are found by diagonalizing the matrix representation of the system
Hamiltonian including interactions. Then, knowing linear algebra, it is easy to see that
the new quasiparticle description will contain a mixture of the bare components enter-
ing the Hamiltonian. The word “bare” here is used to emphasize that the particle is
“un-dressed” by the interaction.

Polaritons are quasiparticles formed in a medium due to a strong interaction between
photons and an active dipole transition in the material. These quasiparticles represent
hybrid quantum systems that combine properties of both light and matter, often yielding
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1. Introduction

new intriguing characteristics. The most important types of dipole transitions for this
thesis are the dipole-modes of localized surface plasmon polaritons and the dipole tran-
sition of effective two-level systems, which are components of the light-matter systems
studied in this thesis. Plasmons are themselves quasiparticles formed due to interactions
in the free electron plasma of metallic structures. This demonstrates how a quasiparticle
description can reduce the physical description of the system by including the interac-
tion in “new” particles which will carry the relevant properties of the system and which
can interact with other elementary particles and quasiparticles in more complex com-
pound systems.

1.2.1 Plasmonic nanoresonators
When a slab of metal or a metal nanoparticle is illuminated with an incident electro-
magnetic wave, a collective oscillation of the free charge density can be excited due to
the interaction with the incident wave. As a result, the combined light-matter system
forms hybridized states containing both light and matter components. At the metal-
environment boundary, such a light-matter wave is closely related to a confined electro-
magnetic wave, similar to the internal field inside a cavity. This phenomenon is what is
referred to as surface plasmon polaritons or SPPs [1, 2] In contrast to normal cavities,
SPP modes have subwavelength confinement which can greatly enhance the interac-
tion with two-level quantum emitters. Therefore, these hybrid light-matter cavities have
gained a lot of attention recently for the realization of various phenomena in quantum
optics [3–7].

The close analogy to confined electromagnetic waves allows for the adaptation of
traditional cQED theory to these hybrid systems with SPP modes taking the roles of
cavity modes [4, 7–11]. Even so, the matter part of these hybrid cavities gives them
very different characteristics than traditional cavities. Besides breaking the diffraction
limit with subwavelength confinement of the light component, these hybrid cavities
have inherently broad line widths and are strongly dissipative [4]. This opens up for
investigation of quantum-optical phenomena in a new regime that is so far not well ex-
plored. Interestingly, even the unusual ultrastrong-coupling regime[12] appears suitable
for study with dissipative quantum systems [13–16].

So far, many observations of quantum-optical phenomena with plasmonic cavities
have been limited to Rabi splitting in the spectrum [3, 17, 17–20]. Yet, the character-
istic mode splitting referred to as Rabi splitting is equally well described by a classical
coupled-oscillator model [21, 22]. Some difficulties with measuring quantum effects
in these systems arise from the strong dissipation. For example, large power is needed
for saturation of the emitters, and ultra-short lifetimes complicate the observation of
nonclassical photon counting statistics. That being said, several works employing plas-
monic nanoresonators have demonstrated quantum effects. One early work is found in
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1.2. LIGHT-MATTER HYBRIDIZATION: POLARITONS

Ref. [23] which shows that plasmonic resonators can be used for transfer of entangled
photons. Later, Ref.[24] demonstrated robust transfer of quadrature-squeezed states
with SPPs in a gold waveguide. Another experiment measured single-molecule strong
coupling at room temperature with a plasmonic nanocavity [25]. More recently, there
have also been demonstrations of polariton condensation [26, 27].

Inspired by this new regime for quantum optics, our work in Paper A follows the
direction set by Refs. [23–25] and challenges the idea that large dissipation always de-
stroys quantum effects. By doing so, our explorations of the otherwise already well-
studied Tavis–Cummings model for an ensemble of two-level emitters in a cavity unveil
a nonlinear phenomenon under coherent driving that stands resilient to high cavity dis-
sipation. Localized surface plasmons are also key components in the study presented in
Paper D. There, they form plasmon-cavity polaritons with intriguing properties.

5
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Chapter 2
Basics of light-matter interaction: from
weak to ultrastrong coupling

After reading the introductory sections, it should be clear that the interaction between
light and matter is an integral part of this thesis. Therefore, this section will introduce
the basics of light-matter interaction and the different regimes categorized by coupling
strength.

2.1 Classical description
In a classical description, light-matter interaction is governed by the Lorentz force

F = q(E + v×B) (2.1)

acting on a charged particle with charge q moving with the velocity v in an electric
E and magnetic B field. While knowledge of the Lorentz force allows for deriving
equations of motion for the particle in an electromagnetic field, Maxwell’s equations
instead relate the electric and magnetic fields with a given distribution of the charge ρ
and current J densities in matter:

∇ · E =
ρ

ε0

, (2.2)

∇ ·B = 0, (2.3)

∇× E = −∂B
∂t
, (2.4)

∇×B = µ0

(
J + ε0

∂E

∂t

)
. (2.5)
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2. Basics of light-matter interaction: from weak to ultrastrong coupling

The use of the vacuum permittivity ε0 and permeability µ0 in these equations reflects the
fact that the material properties are included in the charge and current terms, describing
all charges and currents in the material explicitly. Due to the latter, these equations
can be applied to relate the electric and magnetic fields to the charges and currents
down to the atomic limit (within the boundaries of classical mechanics). Therefore, this
formulation is called the microscopic Maxwell’s equations.

To describe the propagation of light in large structures of matter, it is often conve-
nient to instead use the so-called macroscopic Maxwell’s equations. The macroscopic
Maxwell’s equations differentiate between free and bound charges and currents in the
material. This introduces two new fields: the displacement D and magnetic intensity
H fields, which are related to the electric and magnetic fields through the constitutive
equations

D = ε0E + P = ε0εrE, (2.6)
H = µ0B−M = µ0µrB. (2.7)

In this way, material properties due to induced electric dipoles and magnetic moments
bound in the material are included in terms of the polarization P and magnetization M
fields. In linear media, P and M depends linearly on E and B, respectively, making
it possible to express the D and H fields through the relative permittivity εr and per-
meability µr. Generally, a macroscopic matter component is necessary to validate the
underlying averaging of the microscopic processes that give rise to εr and µr. Hence, the
name “macroscopic” Maxwell’s equations. With the introduction of D and H, Eqs. (2.2)
and (2.5) above are replaced by the equations

∇ ·D = ρf , (2.8)

∇×H = Jf +
∂D

∂t
, (2.9)

where the index f is now introduced to denote the free charges and currents in the
material. An in-depth introduction to classical electrodynamics can be found in text-
books [28, 29].

The theoretical work of Paper D, led by A. Canales, employs a classical formulation
of light-matter interaction to study polaritons from the weak- to ultrastrong-coupling
regimes. In particular, a classical scattering matrix approach was used where the trans-
mission and reflection coefficients are obtained with an effective permittivity for the
nanoparticle arrays, found by fitting to numerical simulations of the reflection spectra.
The reflection spectra were, in turn, obtained from numerical solutions of the macro-
scopic Maxwell’s equations using tabulated experimental data for the relative permittiv-
ity εr in gold.
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2.2. QUANTUM DESCRIPTION

2.2 Quantum description
The physical picture underlying the construction of Maxwell’s equations and Lorentz
force law presented above is one about charged particles moving in potentials. Nat-
urally, this picture is shared with the quantum-mechanical formulation of light-matter
interactions, but the latter conversely relies on a Hamiltonian description with quantized
fields.

The light-matter Hamiltonian derives from a Lagrangian formulation [30], employ-
ing the minimal coupling replacement p → p − qA of the kinetic momentum for a
charged particle with charge q interacting with an electromagnetic field described by the
potential A. In the simple case of a single electron moving in a one-dimensional poten-
tial, that couples to a single confined electromagnetic mode, the minimal-coupling re-
placement gives the following light-matter Hamiltonian in the Coulomb gauge [30, 31]

HC =

[
pe + eA(xe)

]2

2me

+ V (xe) +Hf , (2.10)

where Hf denotes the bare electromagnetic field Hamiltonian. Equation (2.10) could,
e.g., describe a one-electron atom coupled to a single-mode cavity, where one elec-
tron has the predominant interaction with the field. Or, a complex many-particle sys-
tem where the effect of the other particles/surrounding medium can be described as a
one-dimensional potential in which the electron is moving. The square of the kinetic
momentum (p + eA)2 describes the particle’s kinetic energy including the interaction
with the electromagnetic field and is the source of the familiar light-matter interaction
term p ·A, and A2 term in the Coulomb gauge (∇ ·A = 0). Note that the correspond-
ing Hamiltonian in the dipole gauge is easily obtained with the Power-Zienau-Woolley
transformation [32].

So far, the principles introduced here are the same in the quantum mechanical
and classical descriptions of light-matter interactions. Indeed, the classical Maxwell-
Lorentz equations from the previous section can be derived from the minimal-coupling
Lagrangian. The quantum-mechanical description is attained after a canonical quanti-
zation of the dynamical variables, which in the light-matter case are the position of the
particle, the electromagnetic potential, and their conjugate momenta.

The (quantum) light-matter Hamiltonians of interest for this thesis are the famous
Tavis-Cummings and Hopfield Hamiltonians. The former describes the collective inter-
action between an ensemble of quantum emitters, modeled as two-level systems, and a
confined single-mode electromagnetic field under the dipole and rotating wave approx-
imations. The few-emitter limit of this Hamiltonian is the theoretical foundation for
Paper A-Paper C and it will be introduced in Chapter 4. The Hopfield Hamiltonian in-
stead describes the coupling between a bosonic material excitation and the electromag-
netic field. This Hamiltonian is introduced in Chapter 7 and is the center of attention

9



2. Basics of light-matter interaction: from weak to ultrastrong coupling

in the second part of the thesis that studies polaritons formed with the collective bright
mode in an array of plasmonic nanoparticles and a single-mode microcavity.

2.3 Different regimes of light and matter
coupling

The behavior of confined electromagnetic modes and resonant material excitations is
heavily influenced by the strength of their interaction. Consequently, terminology such
as weak, strong and ultrastrong has been coined to categorize the different observed
behaviors in terms of the light-matter coupling strength. The categorization is not as
straightforward as it may seem at first glance, however. During my Ph.D., I have en-
countered few other words with so many ambiguities about the connotation as the phrase
“strong coupling”. It seems that most light-and-matter scientists hold a clear idea of
strong coupling in their minds, and still, their use of the phrase so often implies dif-
ferent things. The source of the confusion is that the definition of strong coupling is
contextual. Certainly, losses and resolution are also important factors [21, 33–35].

This thesis is written in the context of modeling interacting light and matter systems.
From this perspective, the categorization is rather straightforward and directly relates to
the level of approximation made in the light-matter Hamiltonian. Taking the Hamilto-
nian as the foundation for the categorization instead of contextual observations gives
a natural ordering of the different regimes, going from weak to strong to ultrastrong.
The observations will, of course, be strongly tied to the predictions using a certain
Hamiltonian, but taking the modeling as the base for the categorization provides a more
transparent perspective on what physics underlies the expected characteristics of each
regime. This perspective, moreover, circumvents the contradictory ordering in highly
dissipative systems reaching ultrastrong coupling while not being in the conventional
strong-coupling regime due to large losses [15].

The categorization and the main characteristics of the different regimes can be exem-
plified with the quantum-Rabi model [36], including losses. The Rabi model describes a
two-level atom with transition frequency ω0 in a single-mode cavity with resonance fre-
quency ωc. Losses can be introduced in a microscopic picture using an open-quantum-
system approach, e.g., the Lindblad master equation, which will be discussed in more
detail in Chapter 3. Here, we satisfy with phenomenologically introducing photon loss
from the cavity with the decay rate κ, and spontaneous emission from the two-level atom
with the decay rate γ. This approach suffices for the current discussion. The parameter
governing the characterization is the light and matter coupling strength g. The system
is shown schematically in Fig. 2.1(a), and a summary of the different regimes and their
main characteristics are shown in Fig. 2.1(b)-(d).

10



2.3. DIFFERENT REGIMES OF LIGHT AND MATTER COUPLING

(d) Ultrastrong coupling

•

• Virtual excitations
• no RWA

(c) Strong coupling

•

• Rabi oscillations
• Rabi splitting
• RWA

(b) Weak coupling

•
• Purcell effect

(a)
Regimes of light and matter interactions

Figure 2.1: (a) Schematic illustration of a two-level system in a cavity with losses and its
main characteristics in the (b) weak-, (c) strong-, and (d) ultrastrong-coupling regimes.

2.3.1 Weak coupling
The system is in the weak-coupling regime when the cavity’s effect on the two-level
atom can be considered a small perturbation. In this regime, the bare eigenstates of
the two-level system are adequate to describe the system dynamics, and the effect of
the cavity is cavity-enhanced or prohibited spontaneous emission due to the Purcell
effect [37]. In a full quantum treatment, as is given by the Rabi Hamiltonian includ-
ing losses, this regime allows for adiabatic elimination of the cavity. In a microscopic
picture, the adiabatic elimination comes down to tracing out the cavity’s degrees of free-
dom, giving an effective model for the two-level atom only, including the cavity’s effects
as parameters. An example is the elimination of a near-resonant cavity which opens up
an extra decay channel for spontaneous emission. In this case, after tracing out the
cavity’s degrees of freedom, one finds the cavity-enhanced spontaneous emission rate
ΓP = γ[1 + 4g2/(γκ)] [38]. The permission of adiabatic elimination of the cavity sets
a practical condition for calculations which is κ� g, γ. This condition ensures that the
cavity’s linewidth can be approximated as a continuum of modes in the view of the two-
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2. Basics of light-matter interaction: from weak to ultrastrong coupling

level atom. Physically, the condition means that the cavity’s decay time is fast enough to
dissipate an excitation transferred from the two-level system before it can be reabsorbed
due to the light-matter coupling. Of course, one could also consider a reversed picture
where the matter part is the lossy constituent acting as a small perturbation on the light
mode.

2.3.2 Strong and ultrastrong coupling
The strong- and ultrastrong-coupling regimes are defined when the light and matter
interaction can no longer be considered perturbative. Building on the definition of weak
coupling stated above, this occurs when the probability for re-absorption of a photon
exchanged with the cavity becomes non-negligible within the effective relaxation time
of the system. At these coupling strengths, the effective model for the two-level system
without the cavity breaks down, and both the cavity and the two-level system need
to be included in the Hamiltonian for an accurate description of the dynamics. In this
description, the bare states are no longer approximate eigenstates of the system. Instead,
the light-matter interaction leads to the formation of dressed eigenstates – polaritons –
which mix the light and matter degrees of freedom. This is true in both the strong- and
ultrastrong-coupling regimes. From a modeling perspective, the difference between the
strong- and ultrastrong-coupling regimes is the approximations made in the light-matter
Hamiltonian.

In the dipole gauge, the Rabi Hamiltonian can be written as [39]

ĤRabi =
~ω0

2
σ̂z + ~ωc

(
â†â+ 1

2

)
+ i~g

(
â− â†

)
(σ̂− + σ̂+), (2.11)

where σ̂z, σ̂+, and σ̂− are Pauli operators describing the two-level system and â, â† are
the standard bosonic annihilation and creation operators for the cavity mode. For this
discussion, we are interested in the last term, which is the interaction part which de-
scribes the exchange of excitation between the cavity mode and the two-level system
with the coupling strength g.

Here, we define the strong-coupling regime as the regime where the rotating-wave
approximation (RWA) is permitted, thus, reducing the light-matter interaction part to1

ĤRWA = i~g
(
âσ̂+ − â†σ̂−

)
. (2.12)

The RWA takes the Rabi model to the familiar Jaynes–Cummings model [40, 41], for

1Going to a Heisenberg picture, it is easy to see that â†σ̂+ and âσ̂− will be fast-rotating with double
the frequency, while the other two terms âσ̂+ and â†σ̂− will be approximately stationary and, thus,
contribute significantly more to the dynamics of the system when g is not too large.
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2.3. DIFFERENT REGIMES OF LIGHT AND MATTER COUPLING

which the dressed eigenstates can be found analytically as

|n+〉 = sin (θn) |n, g〉+ cos (θn) |n− 1, e〉 , (2.13)
|n−〉 = cos (θn) |n, g〉 − sin (θn) |n− 1, e〉 , (2.14)

with 2θn = tan−1[
√
ng/(ω0 − ωc)]. Note that these strong-coupling dressed states are

excitation-number conserving and, in particular, the dressed ground state coincides with
the bare ground state |0, g〉. These properties are important for validating the use of the
standard Lindblad operators in a microscopic treatment of dissipation in the strong-
coupling regime. The corresponding eigenenergies,

~ωn,± =

(
n+

1

2

)
~ωc ±

~
2

√
(ω0 − ωc)2 + ng2, (2.15)

display the
√
n-anharmonicity of the Jaynes–Cummings model and the characteristic

vacuum Rabi splitting (ω1,+−ω1,−) = 2
√

(ω0 − ωc)2 + g2 at the single-excitation level.
Clearly, the strong-coupling description is sufficient to describe mode-splitting and

exchange of excitation between the light and matter modes. For this reason, the obser-
vation of these effects is commonly regarded as signatures of strong coupling. From a
modeling perspective, on the other hand, there are no hard limits defining the strong-
coupling regime as it is defined based on approximations whose breakdowns are ex-
pected to appear gradually and depend on the specific system and observable in mind.
As a guiding rule of thumb, the limit g < 0.1ωc, commonly found in the literature, can
be considered as an upper limit in the case of the Rabi model, as the eigenfrequencies
obtained with and without the RWA start to visibly deviate at that value in this model2.
Nevertheless, in Paper D, we demonstrated that the dissipative properties in a polari-
tonic system described by the Hopfield model can be much more sensitive to changes
in the light and matter coupling than the spectral properties. These results are discussed
in Chapter 8.

The definition of the ultrastrong-coupling regime naturally follows from the above
definition as the regime of coupling strengths where the RWA breaks down. One impor-
tant feature of this regime is that the dressed and bare ground states no longer coincide.
This occurs due to the inclusion of the fast-rotating terms âσ̂− and â†σ̂+ which removes
the excitation-number conserving symmetry inherent in the Janynes–Cummings Hamil-
tonian. Therefore, the dressed states, including the dressed ground state, will be mixed
with states containing different numbers of excitations. To see this, consider the so-
called Bloch-Siegert regime where g � ωc +ω0. In this regime, the ground state can be
found perturbatively as [42]

|G〉 = (1− Λ2/2) |0, g〉 − Λ |1, e〉+
√

2gΛ/(2ωc) |2, g〉 , (2.16)

2See, e.g., Fig. 2 in Ref. [12]
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2. Basics of light-matter interaction: from weak to ultrastrong coupling

to second order in Λ ≡ g/(ωc + ω0)3. This mixing of states with different excitation
numbers is the source of the debated virtual excitations in the ground state [12, 15]. This
non-excitation-conserving mixing also has implications for how to treat dissipation in
this regime. The standard Lindblad treatment used in the weak- and strong-coupling
regimes does not accurately induce transitions between the dressed eigenstates, which
can lead to surprising results. This will discussed more in Chapter 3.

The A2-term
The different regimes of light-matter coupling introduced in this section were ex-

emplified with a two-level system interacting with a single-mode cavity. The discussed
concepts, however, hold for many interacting light-matter systems stemming from a
minimal-coupling Hamiltonian analog to the single-particle version given in Eq. (2.10).
This includes the Hopfield model discussed in Chapter 7, and other systems where the
material component can be described by a quantized polarization field. Yet, it is im-
portant not to forget the Â2-term in the ultrastrong-coupling regime when a Coulomb
gauge formulation is employed. The Â2-term arises from squaring the kinetic momen-
tum in the Coulomb-gauge Hamiltonian shown in Eq. (2.10). Since the Â2-term will
be second-order in the electric charge, it can, in general, be neglected when consider-
ing a dipolar transition in the strong-coupling regime, but needs to be included in the
ultrastrong-coupling regime. The main effect of the Â2-term is to stabilize the dressed
eigenenergies as the coupling strength increases [12]. The Â2-term can also be absorbed
into the field modes by a Bogolioubov rotation, as will be done in Chapter 7. This leads
to a shift in the field resonance frequency, which generally is small under conditions
validating the RWA, thus, motivating its exclusion in this regime. The example with the
Rabi model above, on the other hand, is discussed in a dipole-gauge formulation. The
dipole-gauge formulation also has a square term, analog to the Â2-term in the Coulomb
gauge. But, in the dipole gauge, the square term contrarily emerges in the material po-
larization field. In the current example, this term corresponds to an x̂2-term which only
contributes with a constant shift of the two-level system’s eigenenergies [39], that don’t
change the transition frequency. Hence, this term was omitted.

2.3.3 Different perspectives on strong coupling
The introductory clause to this section indicated that losses and resolution have been
important factors behind inconsistent definitions of strong coupling. Inappropriately
mixing concepts from quantum optics and classical descriptions of light-matter interac-
tions is likely also a factor causing misconceptions. Above, a categorization based on
a quantum modeling perspective was provided as an alternative. The definitions given

3The dressed eigenstates of the Rabi model can also be found analytically [43], but the expressions
are complicated and provide little insight.
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2.3. DIFFERENT REGIMES OF LIGHT AND MATTER COUPLING

from this perspective deliberately avoid limits in terms of specific parameters. Instead,
the level of approximations going into the light-matter interaction model is employed
as a basis for the categorization. This approach emphasizes that the different regimes of
light-matter interactions are contextual in the sense that the specific parameters of each
platform and the specific observables determine the appropriateness of approximations.
This way of differentiating between the different regimes provides a natural ordering
going from weak to strong to ultrastrong coupling.

While the discussion about this categorization was made explicit by studying the
quantum-Rabi model, the introduced concepts also transfer to other interacting light-
matter systems that can be described by a light-matter interaction Hamiltonian on the
form in Eq. (2.10). For example, systems where the material component can be de-
scribed by a quantized polarization field [38], as demonstrated by Hopfield [44]. Much
of the concepts also transfer to classical systems that can be described in terms of quan-
tized fields, even though the displayed physics is essentially classical. The quantum
mechanical description can then provide insights into the underlying processes that give
rise to certain behaviors by offering means to turn on and off approximations, such as the
RWA, which is not possible in a formulation based on Maxwell’s equations. However,
the direct adoption of quantum-optical concepts in a classical context should be avoided
without a proper analysis of the underlying Hamiltonian, as has been noted in several
areas of polaritonics [45, 46]. It should also be noted, that the perspective provided
above is a quantum-optical perspective where the level of approximations governs what
effects can be explained. From a classical perspective, these approximations have no
meaning, as the solutions of Maxwell’s equations do not make those distinctions. Most
of the observations above – Purcell effect, mode splitting, and exchange of excitations
– can equally well be described by classical models [21, 38] that inherently include all
effects of the light-matter interaction through Maxwell’s equations.

The rest of this subsection is dedicated to broadcasting two other perspectives on
strong coupling that are relevant to this thesis. Both of them provide context to the dis-
cussion on decay rates in Paper D and Chapter 8. Let’s begin with the strong-coupling
limit ΩR > (κ + γ)/2 adopted in Paper D. This limit is defined in terms of the effec-
tive “Rabi” splitting 4, ΩR ≡ (ωeff,+ − ωeff,−), where ωeff,± are the effective polaritonic
resonances including the effects of losses 5 . The reasoning behind this strong-coupling
limit is that two distinct spectral peaks should be resolved. This generally occurs when
the mode-splitting is larger than the average decay rate (κ+ γ)/2, which approximately

4Quotation marks are used here as the Rabi model is not needed to observe mode splitting, but the
terminology is still used as it is customary in many areas of nanophotonics.

5Expressions for the effective polaritonic resonance frequencies ωeff,±, which will be shifted com-
pared to the bare frequencies due to the losses, can be found phenomenologically using a non-Hermitian
Hamiltonian for two lossy coupled modes, see below. The same effective expressions for the resonances
also show up in analytical calculations of the optical spectrum for spontaneous emission through the sides
of the cavity in the quantum-Rabi model discussed above [38].
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2. Basics of light-matter interaction: from weak to ultrastrong coupling

describes the polaritonic line widths in the strong-coupling regime. However, this limit
is not fundamental and, in many situations, it is possible to observe two spectral peaks
emerging before this point, as was demonstrated in Paper D6.

Another perspective, which is consistent with our observations in Paper D, is pro-
vided by a non-Hermitian Hamiltonian formulation of two couled modes including
losses. This approach is often employed phenomenologically in the strong-coupling
community, but can also be derived from a Lindblad-master-equation approach by ne-
glecting quantum jumps [47], see Section 3.4. Adopting the notation from the Rabi
model above, but now for a generic light mode and material resonance, the matrix rep-
resentation of a non-Hermitian-Hamiltonian description of the two coupled modes is
given by

Heff = ~

(
ωc − iκ2 g

g ω0 − iγ2

)
. (2.17)

This effective Hamiltonian coincides with the matrix representations of the non-Hermitian
Hamiltonians derived from the Lindblad master equation in the cases of a two-mode
Hopfield model within the RWA, and the Jaynes–Cummings model at the single-excitation
level. The eigenfrequencies of the Hamiltonian (2.17) are complex. Their real parts cor-
respond to resonances and their imaginary parts correspond to decay. At zero detuning,
ωc = ω0, the eigenfrequencies are given by

ωeff,± = ω0 − i
κ+ γ

4
±
√
g2 −

(
γ − κ

4

)2

. (2.18)

The expression under the square root displays that the eigenfrequencies will have an
exceptional point [48, 49] at g2 =

[
(γ − κ)/4

]2. Below this point, the real parts of the
two solutions are degenerate as the square root is purely imaginary. This degeneracy is
lifted at the exceptional point, and two different resonances can be observed.

Clearly, this result demonstrates another perspective on the emergence of two dis-
tinct spectral modes, that is based on the topology of the effective Hamiltonian and
not the resolution of the measurement. If the existence of two distinct spectral modes is
taken as the signature of strong coupling, this perspective gives the strong-coupling limit
g ≥ |γ − κ|/4, which is less restrictive than the limit based on resolution, stated above.
This strong-coupling limit can also be related to the strong-coupling definition given in
the example with the Rabi model. The connection is made via the non-Hermitian de-
scription of dissipation obtained by neglecting quantum jumps in the Lindblad master
equation. The effective Hamiltonian given in Eq. (2.17) only coincides with the latter
in the RWA. Thus, if one wants an explicit strong-coupling condition in terms of the
losses, the limit presented here is a good candidate, even though the visibility of the

6See supplementary material, Figs. S5 and S6. Available at https://doi.org/10.1515/nanoph-2023-
0492.
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2.3. DIFFERENT REGIMES OF LIGHT AND MATTER COUPLING

(d) Ultrastrong coupling(c) Strong coupling

(b) Above the exceptional point(a) Weak coupling

Figure 2.2: Eigenenergies in the complex-frequency plane are found as the poles of
a classical scattering matrix. (a) At weak coupling strengths, there is a clear distinc-
tion between the photonic and plasmonic modes. (b) At the exceptional point, the real
part of the trajectories split, demonstrating the appearance of two separate polaritonic
resonances. (c),(d) At strong and ultrastrong coupling, there is a clear separation be-
tween the branches. The figure is adapted from Paper D [14] and the pole search was
performed by A. Canales.

spectral modes close to the exceptional point can be limited, depending on the specific
parameters of the studied system.

The non-Hermitian Hamiltonian description is a semiclassical approach to strong-
coupling. In Paper D, A. Canales provided a classical analog to this description by
performing an analysis of the poles to a classical scattering matrix in the complex-
frequency plane. However, in contrast to the non-Hermitian Hamiltonian description,
the scattering-matrix approach does not make any approximations on the regime of
light-matter coupling, such as the RWA, nor is it introduced phenomenologically. The
scattering matrix relates the incoming and scattered fields after the incoming field in-
teracts with the system. In the complex-frequency plane, the real part of these poles
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2. Basics of light-matter interaction: from weak to ultrastrong coupling

corresponds to resonances and the imaginary part to decay, ω̃ = ω − iγ. Her results,
adapted from Paper D, are shown in Fig. 2.2 and they display that the degeneracy of
the resonances at zero detuning (δω = 0 in Fig. 2.2) in the weak coupling regime, is
lifted above the exceptional point g > |γ − κ|/4. Thus, her results advocate a strong-
coupling limit, which is in agreement with the non-Hermitian Hamiltonian description
and is suitable in contexts where the light-matter system can be described classically.
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Chapter 3
Open quantum systems

An open quantum system is a description of a quantum system that includes the inter-
action with the environment in which the system is embedded. The fundamental idea of
an open-quantum-system description is a separation of all possible degrees of freedom
into a few representing the system of interest, and “all the rest” representing the envi-
ronment. After this separation, the principle is to derive effective equations of motion
for the system’s degrees of freedom, including the effects of the environmental degrees
of freedom entering as parameters. This way, a probabilistic description of the time
evolution of an otherwise large or, possibly, infinite physical system becomes tractable.
How the derivation is carried out and the resulting equations of motion depend on the
physical setting, and the methods used vary between different fields of research.

The effects of the environment are central themes in all the appended papers. In
this work and all the appended papers, the well-established Lindblad master-equation
formalism [50] is used. This formalism is the standard approach for treating weak inter-
action with the environment in cavity QED setups. The formalism is well explained in
many textbooks on quantum optics [51–53]. Therefore, only the guiding principles and
main approximations will be introduced. This will be done in Section 3.1. Section 3.2
will introduce the concepts of local and global environments, and Section 3.3 discusses
different master equations suitable for the ultrastrong-coupling regime. Lastly, Section 3.4
briefly discuss the relation between Lindblad master equations and non-Hermitian Hamil-
tonians.

3.1 The Lindblad master equation
The Lindblad master equation treats the effects of the environment perturbatively and
describes the dynamics of the reduced density matrix ρ̂S for the system after tracing
out the environmental degrees of freedom. The standard master equation in quantum
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3. Open quantum systems

optics is obtained by modeling the environment as a reservoir of harmonic oscillators,
representing the electromagnetic vacuum, and performing the Born and Markov ap-
proximations, as well as the rotating wave approximation [51–53]. The result of the
derivation is an equation for the time evolution of the system’s density matrix ρ̂S which
includes the effects of the environment as parameters. In the appended papers, we have
additionally considered systems where thermal fluctuations can be neglected. Ther-
mal fluctuations can, for example, be neglected at optical frequencies or at cryogenic
temperatures. Neglecting thermal fluctuations gives a master equation in the following
form,

˙̂ρS(t) = − i
~

[
ĤS, ρ̂S(t)

]
+ Γ

(
L̂ρ̂S(t)L̂† − 1

2

{
L̂†L̂, ρ̂S(t)

})
. (3.1)

Here, the first term describes unitary evolution with the system Hamiltonian ĤS (includ-
ing Lamb shifts) and the second and third terms describe incoherent evolution due to
interaction with the environment. The inverse of Γ provides the characteristic timescale
for the incoherent dynamics which is governed by the Lindblad jump operators L̂. These
operators are defined by the system operators involved in the system-environment inter-
action. A common example is single-photon loss with the annihilation operator for a
leaky cavity mode.

The Born and Markov approximations
The derivation of the Lindblad master equation is performed with an undamped

quantum system that is interacting weakly with a large environment, acting as a reservoir
where information and energy from the system can be dissipated. The total system-
reservoir Hamiltonian is

Ĥ = ĤS + ĤR + ĤSR, (3.2)

where ĤS and ĤR describe the bare system and reservoir, and ĤSR decsribe the system-
reservoir interaction. In quantum optics, the environment is commonly modeled as
a large reservoir of harmonic oscillators, representing the continuum of modes in the
vacuum electromagnetic environment. Though, other types of reservoirs are also possi-
ble [51]. It is, however, not important to specify the system and reservoir Hamiltonians
explicitly to derive the general form of the Lindblad master equation, which in the in-
teraction picture is written as

˙̃ρS(t) = − 1

~2

∫ t

0

dt′ TrR

{[
H̃SR(t),

[
H̃SR(t′), ρ̃S(t)⊗ ρ̂R

]]}
. (3.3)

Here, the hats ‘ˆ’ on the operators are replaced with tildes ‘˜’ to indicate interaction-
picture operators and the reduced density matrix ρ̂R for the reservoir is introduced.
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3.1. THE LINDBLAD MASTER EQUATION

Equation (3.3) is derived in the second-order Born-Markov approximation, starting from
the interaction picture Liouville-von Neumann equation:

˙̃ρSR(t) = − i
~

[
H̃SR(t), ρ̃SR(t)

]
. (3.4)

The Liouville-von Neumann equation is the analog of the Schrödinger equation for the
density matrix and here it describes the time evolution of the total system-reservoir
density matrix ρ̃SR.

To make the Born- and Markov- approximations, it is important that the system-
reservoir interaction is weak so that the effects of the environment can be treated per-
turbatively. In the second-order Born approximation, the weak interaction allows for
neglecting terms higher than second-order in H̃SR. It is also assumed that the reser-
voir is large (in comparison to the amount of dissipation, governed by the interaction
strength), so the reservoir’s statistical properties are only marginally affected by the in-
teraction. The latter allows for taking the state of the reservoir ρ̃R to be approximately
the same at all times, ρ̃R(t) ≈ ρ̂R. In the Markov approximation, it is assumed that the
weak interaction allows for a separation of time scales, where the information that leaks
out from the system is spread in the environment on a time scale that is much faster than
the rate at which the information leaks out. In the derivation of the master equation, this
assumption allows for making the replacement ρ̃(t′)→ ρ̃(t) in the integral Kernel. This
replacement has the physical interpretation that the reservoir is memoryless in the sense
that information leaks out from the system irreversibly and cannot be fed back to the
system through the system-reservoir interaction.

The rest of the derivation, going from the general form in Eq. (3.3) to the standard
Lindblad form master equation in Eq. (3.1), depends entirely on the specific system
and reservoir. This is the cumbersome part of the derivation, involving the expansion
of the commutator, evaluating reservoir correlation functions, and solving the resulting
integrals. It is a good exercise to go through the math, but the standard derivation for
common systems in cavity QED, including a lossy cavity, spontaneous emission from
a two-level system, and collective dissipation from an ensemble of two-level systems,
can be found in textbooks [52, 53] and is therefore not included here. Instead, the next
section will discuss the concepts of local and global environments, which are important
for modeling compound quantum systems but are often not explicitly discussed.
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3.2 Local and global environments in com-
plex quantum systems

Equation (3.1) above shows the Lindblad master equation for a single quantum sys-
tem interacting, e.g., with the electromagnetic vacuum. To describe dissipation in the
light-matter systems studied in this thesis, we need to extend this equation to com-
pound quantum systems consisting of multiple subsystems. Dissipation for compound
quantum systems can be treated in a local or global picture. In the local picture, each
subsystem interacts independently with its local environment while, in the global pic-
ture, they interact collectively with a common global environment. The two scenarios
are shown schematically in Fig. 3.1 and the two different types of master equations gen-
erated by these pictures are given in Eqs. (3.5) and (3.7) below. The two pictures can
be combined to describe complex quantum systems composed of several different types
of subsystems. For example, collective interaction with a common surrounding vacuum
and local internal losses.

The local master equation in Eq. (3.5) has the same form as the standard master
equation presented in Eq. (3.1), but now contains a sum over the local jump operators
for the N subsystems. This treatment of local dissipation is motivated if the interaction
between the subsystems is not too strong, as the local jump operators induce transitions
between the bare states. An alternative approach to treating local dissipation, suitable
for increasingly large coupling strengths as in the ultrastrong-coupling regime, is given
below in Section 3.3.

Local master equation:

˙̂ρS(t) = − i
~

[
ĤS, ρ̂S(t)

]
+

n∑

i=1

Γi

(
L̂iρ̂S(t)L̂†i −

1

2

{
L̂†i L̂i, ρ̂S(t)

})
. (3.5)

(3.6)

The master equation for n subsystems interacting with a global environment is given
in Eq. (3.7). Due to the interaction with the same environment, the Lindblad term now
mixes jump operators L̂i and L̂j for different subsystems with indices i and j. The phys-
ical interpretation of this mixing is that the global environment generates a dissipative
coupling between the subsystems. The famous superradiance effect [54] demonstrates
how such dissipative coupling can build up correlations between the subsystems that
drastically change their behavior.

Global master equation:

˙̂ρS(t) = − i
~

[
ĤS, ρ̂S(t)

]
+

n∑

i,j=1

Γij

(
L̂iρ̂S(t)L̂†j −

1

2

{
L̂†jL̂i, ρ̂S(t)

})
. (3.7)
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(b) Global dissipation(a) Local dissipation

Figure 3.1: Dissipation in an interacting compound system ĤS = ĤS1 + ĤS2 + ĤS3

can be (a) local, or (b) global. Local dissipation generally breaks collective symmetries
of compound systems. Global dissipation, on the other hand, can create correlations
between the subsystems due to the collective interaction with the same reservoir.

3.3 Losses in ultrastrongly coupled sys-
tems

The standard approach to model losses in a coupled system is to derive a local master
equation, considering transitions between the bare, uncoupled states in each subsys-
tem. This approach works well in most situations when the coupling is weak or strong.
However, as the coupling strength increases, this treatment breaks down and can lead to
erroneous predictions of measurable excitations in the ground state. The reason for the
failure of the standard approach is that the coupling between the two subsystems cannot
be treated perturbatively in the ultrastrong-coupling regime. Thus, the ground state of
the bare system is not necessarily the dressed ground state of the coupled system, as
demonstrated in Eq. (2.16) in the discussion on light-matter coupling regimes. Since
the standard approach gives jump operators that induce transitions between the bare
states, this approach fails to bring the system to the dressed ground state. Consequently,
the standard master equation can predict excitations in the ground state, even at zero
temperature [42]. The large spectral separation of the modes in the ultrastrong coupling
regime also challenges the white noise approximation of the standard master equation.

A correct treatment of dissipation in ultrastrongly coupled systems should contrar-
ily generate jump operators that induce transitions between the dressed states. A suit-
able master equation for this purpose was derived for the open Quantum-Rabi model
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Light Matter

(b) Arbitrary coupling strength

Matter
environment

Photonic
environment

Matter

Matter
environment

Light

Photonic
environment

(a) Weak and strong coupling

Figure 3.2: Illustration of two approaches to describe dissipation in compound quantum
systems with local environments such as the coupled light-matter systems considered in
this thesis. (a) When the interaction of the coupled system can be treated perturbatively,
it is often justified to describe dissipation for the bare subsystems separately. (b) As the
coupling strength increases, it becomes important to describe the interaction with the
environment by the dressed eigenmodes of the system.

in Ref. [42]. Their derivation is based on first expressing the bare system operators
in the (local) system-reservoir interaction Hamiltonian in terms of the dressed eigen-
states of the coupled system, and then proceeding according to the standard Lindblad
master equation derivation. Figure 3.2 shows a schematic illustration of the differences
between the two approaches.

Expressed explicitly for an arbitrary subsystem interacting with its environment via
the operator (ŝ+ ŝ†), the projected operators going into the derivation are

∑

j,k

cjk |j〉〈k| ≡ 〈j|ŝ+ ŝ†|k〉 |j〉〈k| (3.8)

where |j〉 and |k〉 are eigenstates to the ultrastrongly coupled system. In the derivation
of Ref. [42], they further use the conservation of parity inherent in the Rabi model and
the secular approximation. The latter assumes each transition k → j to be spectrally
well separated from all other transitions k′ → j′. Taken together, these properties lead
to jump operators for effective two-level systems constituted by the parity-allowed tran-
sitions between rungs in the dressed-state ladder of the Rabi model. Their result is a
dressed-state master equation, written in a general form for n interacting subsystems in
Eq. (3.9) below. Lambshifts are absorbed into the Hamiltonian ĤS .
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Dressed master equation within the secular appr.:

˙̂ρS(t) = − i
~

[
ĤS, ρ̂S(t)

]
+
∑

n

∑

j,k>j

Γjkn D
[
ĉjk
]
ρ̂S. (3.9)

In Eq. (3.9), the first sum is over the n subsystems, |j〉 and |k〉 are dressed eigenstates
of the system, and the superoperator D

[
ĉjk
]
· = ĉjk · ĉ†jk − 1

2

{
ĉ†jkĉjk, ·

}
is the Lindblad

dissipator with the jump operators ĉjk ≡ |j〉〈k|. The corresponding decay rates are given
by

Γjkn = γn(ωjk)| 〈j|ŝ+ ŝ†|k〉 |2 (3.10)

with γn(ω) = 2πDn(ω)|κn(ω)|2, where Dn(ω) in the density of states, and κn(ω) the
frequency-dependent coupling strength to the environment. At the bare resonance fre-
quency ωn, γn(ωn) = γn gives the bare decay rate in the uncoupled system. The evalua-
tion of the decay rate at the transition frequencies ωjk requires the reservoir to be locally
flat around the transition ωjk. This corresponds to a local white noise approximation.

The secular approximation is very restrictive and has limited application to systems
without large anharmonicity. Another approach is to consider the opposite limit: har-
monic transitions. This limit is suitable, e.g., for coupled bosonic modes, whose dressed
eigenstates also exhibit a harmonic spectrum. The result of a derivation analog to the
one in Ref. [42], but now assuming harmonic transition frequencies ωjk = ωm, with
ωm being the resonance frequencies of the dressed modes, gives the harmonic dressed-
state master equation for n interacting modes presented in Eq. (3.11). The assumption
ωjk = ωm relaxes the restriction of independent two-level transitions in the secular
approximation, to transitions along harmonic ladders with frequencies ωm. In the lat-
ter situation, it is only important that the harmonic dressed modes are well separated
spectrally, such that |ωm − ωm′| � 1 for m 6= m′.

Dressed master equation within the harmonic appr.:

˙̂ρS(t) = − i
~

[
ĤS, ρ̂S(t)

]
+

∑

m=dressed

∑

n=bare

γn(ωm)D[ĉnm]ρ̂S. (3.11)

Here, the indices n and m denote the bare and dressed modes, respectively. As in
the previous case, γn(ω) = 2πDn(ω)|κn(ω)|2 is evaluated at the dressed resonance
frequency ωm, and it corresponds to the bare decay rate γn, when evaluated at ωn. The
jump operators are defined as

ĉnm =
∑

j,k>j

εjk=~ωm

〈j|ŝn + ŝ†n|k〉 |j〉〈k| , (3.12)

25



3. Open quantum systems

where |j〉 and |k〉 are dressed eigenstates of the system, and ŝn, ŝ†n are the system op-
erators involved in the system-environment interaction with the nth bare mode. The
dressed states can be found numerically, which would also give the operators ĉnm. On
the other hand, assuming coupled bosonic modes, the master equation (3.11) can be
reduced to Eq. (3.13).

Dressed master equation for bosonic modes.:

˙̂ρS(t) = − i
~

[
ĤS, ρ̂S(t)

]
+

∑

m=dressed

∑

n=bare

Γn(ωm)D[ĉm]ρ̂S. (3.13)

This reduction uses the fact that n bilinearly coupled bosonic modes, described by a
Hamiltonian that is at most quadratic, can be diagonalized analytically1 and will present
m = n dressed bosonic modes in the diagonal basis. The jump operators ĉm can,
therefore, be identified as the bosonic annihilation operators for the dressed modes and
they are related to the ĉnm operators via the relationship

ĉnm = cnmĉn, (3.14)

where the coefficients cnm are defined as

cnm ≡ 〈0,m|ŝn + ŝ†n|1,m〉 , (3.15)

with |0,m〉, and |1,m〉 being dressed states with 0 and 1 excitations in the mth dressed
mode. In Eq. (3.13), the coefficients cnm are absorbed in the decay rates

Γn(ωm) = γn(ωm)|cnm|2. (3.16)

The cnm can be found numerically, or be expressed in terms of the transformation coef-
ficients that diagonalize the system Hamiltonian. In the context of the Hopfield model,
the transformation coefficients are the so-called Hopfioeld-coefficients.

The interpretation of the dissipation term in Eq. (3.13) is that each dressed mode
will experience an effective decay rate that is the interference between all the bare decay
rates. Depending on the coefficients cnm, the effective decay of the dressed modes will
experience loss, gain, or remain neutral with respect to the average decay rates of the
system. All this will be made explicit in Chapter 8, where the bosonic master equation
(3.13) is applied to a two-mode Hopfield model in the ultrastrong coupling regime.

The harmonic approximation is similarly restrictive to the secular approximation but
favors harmonicity instead of anharmonicity. Therefore, its application to non-harmonic
dressed modes should be carefully considered. A more general master equation that
could be applied to hybrid systems, that are neither harmonic nor appropriate for the

1These are the conditions for a bosonic Bogoliubov transformation, see Chapter 7 for more details.
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3.4. EFFECTIVE NON-HERMITIAN HAMILTONIANS

secular approximation has been proposed in Ref. [55]. This generalized master equa-
tion provides a suitable tool, e.g., for studying the transitions from weak to strong, to
ultrastrong, to deepstrong coupling, where the transition changes in character from an-
harmonic to harmonic, depending on the coupling strength. However, it suffers from
not providing simple and transparent expressions for the decay process and often needs
numerical filtering to deal with oscillating terms that do not converge [56]. Deepstrong
coupling has not been introduced here as this coupling regime is irrelevant to this thesis.
The interested reader can read about it in, e.g., Ref. [57].

As a final note, the two approaches: secular and harmonic approximations, are anal-
ogous to the Lindblad master-equation derivation for a single two-level system and a
single cavity, respectively, but performed with the projected operators given in Eq. (3.8)
instead of the bare operators.

Before we move on to the results part of this thesis, the connections between the
Lindblad master equation and a non-Hermitian Hamiltonian formulation for systems
including losses will be briefly discussed.

3.4 Effective non-Hermitian Hamiltonians
Equation (3.1) presented the standard master equation for a single quantum system ex-
periencing dissipation due to the interaction with its local environment with the oper-
ator L̂. The effects of the environment through the so-called jump operators L̂ can be
divided into nonunitary dissipation and quantum jumps [58]. The two categories are
governed by the anticommutator and the jump term L̂ρ̂S(t)L̂† in Eq. (3.1), respectively.
As the name suggests, the latter is responsible for what is called a quantum jump, i.e, an
abrupt change in the system’s state due to dissipation. The effect can be thought of as
a measurement-like action of the environment on the state of the system. On the other
hand, the dissipative part describes the continuous and irreversible loss of information,
energy, and coherence to the macroscopic environment. This effect is easy to see if one
groups the anticommutator term with the Hamiltonian contribution. In that case, these
two terms define a non-Hermitian Hamiltonian Ĥeff = Ĥs− i~Γ

2
L̂†L̂ [47] and the master

equation (3.1) can be written as

˙̂ρS(t) = − i
~

[
Ĥeff ρ̂S(t)− ρ̂S(t)Ĥ†eff

]
− ΓL̂ρ̂S(t)L̂†. (3.17)

If the effects of quantum jumps can be neglected, the evolution of the system is solely
provided by Ĥeff . This assumption is often made in quantum optics at weak-excitation
conditions when quantum jumps are rare. The effective Hamiltonian can also be used
for modeling post-selection schemes. A pedagogical explanation of the connections
between evolution with non-Hermitian Hamiltonians and the full quantum dynamics
described by master equations on Lindblad form can be found in Ref. [59].
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For this thesis, the connection between the master equation and an effective non-
Hermitian Hamiltonian brings context to the classical modeling of decay discussed in
Paper D. In the field of nanophotonics, and especially in polaritonics, it is common to
model the effects of dissipation by non-Hermitian Hamiltonians of the form defined
above. The non-Hermitian Hamiltonian in Eq. (2.17) presents one explicit example for
two coupled modes. This approach to including the effects of dissipation is, in many
situations, sufficient to describe the phenomena observed experimentally. However, it
is important to know the microscopic origin of Ĥeff to understand its validity.

Our work in Paper D demonstrated that the commonly used non-Hermitian-Hamiltonian
approach for two coupled modes with losses, fails to describe the polaritonic linewidths.
Even in the – conventional – strong-coupling regime [g > (κ + γ)/2], where it is of-
ten deemed appropriate. While the non-Hermitian Hamiltonian from Eq. (2.17) predicts
linewidth averaging with equal linewidths at zero detuning between the coupled modes,
our results in Paper D demonstrated a linewidth asymmetry at zero detuning that re-
mained in the strong-coupling regime. The error in the predictions of the non-Hermitian
Hamiltonian arises because of the light-matter interaction terms that are neglected in a
strong-coupling treatment. This error is circumvented in Paper D by employing a trans-
fer matrix method that, building on the solutions of Maxwell’s equations, inherently
includes all effects of the light-matter interaction. To see how the error arises due to
an incorrect description of dissipation in the coupled system, a description that allows
for distinguishing the contribution of different terms in the light-matter interaction is
needed. The quantum model of the polaritonic decay rates given in Chapter 8 pro-
vides such a description based on the Lindblad formalism outlined here. The results of
Chapter 8 demonstrate that the linewidth averaging predicted with the non-Hermitian
Hamiltonian description is only found within the RWA approximation. This is not sur-
prising as the non-Hermitian Hamiltonian (2.17) would only be obtained from a Lind-
blad master equation formulation when the RWA is applied. Thus, this example not
only highlights the importance of knowing the approximations going into the modeling
but also that the definition of strong-coupling in terms of the losses can be misleading.
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Part I
Identical two-level emitters

The first part of this thesis focuses on small ensembles of identical two-level emitters in-
teracting with a single-mode cavity. “Two-level emitter” is a collection term for emitters
of light that can be modeled as a two-level system, including two-level atoms, artificial
atoms, ions, excitonic molecules, and quantum dots. Historically, large ensembles of
two-level atoms attracted attention due to intriguing cooperative phenomena such as
superradiance [54, 60]. Over the last decade, this interest has renewed, but now in a
few-emitter regime. Recent experiments have demonstrated an unprecedented level of
control of individual emitters in various platforms, including neutral atoms [61, 62], ar-
tificial atoms [63, 64], ions [65], molecules [66–68], and quantum dots [69]. This allows
for testing of the fundamental differences between a single and many emitters, as well
as monitoring of cooperative effects in a controlled setup.

For this thesis, we are interested in the experiments that have demonstrated the abil-
ity to strongly couple small collections of emitters to a single cavity mode. These
systems are well described by the Tavis–Cummings model, which is introduced in
Chapter 4. In particular, Chapter 5 takes inspiration from strong coupling with plas-
monic nanoresonators playing the role of the cavity [20, 25, 68–71]. This chapter
summarizes the main findings of Paper A and the follow-up draft, Paper B. Chapter 6
contrarily studies cooperative phenomena in high-quality cavities [72–78], which is the
topic of Paper C.

Hey, why did you
ignore that guy?Photon
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Chapter 4
The Tavis–Cummings model

The Tavis–Cummings model is a version of the Dicke model [60] for an ensemble of
non-interacting identical emitters interacting with a common radiation field. Dicke’s
work highlighted the importance of treating a gas of radiating two-level atoms as a
collective ensemble in this situation. As a result of not treating the atoms individ-
ually, a coherent spontaneous emission effect known as superradiance [54] could be
shown. Hence, these works pioneered modern research on cooperative phenomena in
light-matter platforms [79]. In 1968, about a decade after Dicke’s work, Tavis and
Cummings solved the Hamiltonian of N identical two-level emitters interacting with
a single-mode radiation field in the RWA [80]. Therefore, modern literature normally
refers to the Dicke model for the light-matter Hamiltonian with N two-level emitters
without making the RWA and the Tavis–Cummings model for the same Hamiltonian
but with the RWA.

The Tavis–Cummings Hamiltonian in the dipole gauge can be written as

Ĥtc = ~ωcâ†â+
N∑

i=1

[
~ω0σ̂+iσ̂−i + ~g

(
â†σ̂−i + âσ̂+i

)]
. (4.1)

The operators â and â† are annihilation and creation operators for the cavity mode with
resonance frequency ωc, and the operators σ̂+i and σ̂−i are the Pauli raising and lowering
operators, respectively, for the ith two-level emitter with transition frequency ω0. The
last term in Eq. (4.1) describes the dipole interaction between the cavity and emitters
with the individual coupling strength ~g = −µeqE0, with µeg = µ∗eg = 〈g|σ̂−i + σ̂+i|e〉
being the emitters’ transition dipole moment, and E0 being the amplitude of the cavity
field. Normally, the dipole interaction depends on the particles’ positions. Here, we
assume this coupling can be controlled deterministically. Alternatively, the emitters are
localized in a small area compared to the cavity mode. With equal interaction rates g, the
structure of the interaction term in the Tavis-Cummings Hamiltonian [Eq. (4.1)] leads
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4. The Tavis–Cummings model

to the collective interaction strength gcol =
√
Ng between the cavity and the collective

bright mode of the emitter ensemble.
The Hamiltonian (4.1) is written in terms of Pauli operators for the individual two-

level emitters. This formulation historically comes from describing spin-1
2

particles in
magnetic fields [81]. Later, it was shown that any ensemble of non-interacting two-level
systems, perturbed by an external field, obeys the same unitary transformations [82].
Followingly, the framework related to the addition of spins and total angular momen-
tum states [83, 84] can be applied to generic two-level systems that are not necessarily
spin systems. Employing the collective pseudospin operators, the Tavis–Cummings
Hamiltonian in Eq. (4.1) can equivalently be written as,

Ĥtc,col = ~ωcâ†â+
~ω0

2
Ŝz + ~g

(
âŜ+ + âŜ−

)
, (4.2)

where the collective operators are defined as

Ŝk =
N∑

i=1

1

2
σ̂k, k = {x, y, z}, (4.3)

Ŝ± =
N∑

i=1

σ̂±. (4.4)

The collective pseudospin operators obey the angular momentum commutation relations[
Ŝi, Ŝj

]
= iεijkŜk,

[
Ŝ+, Ŝ−

]
= 2Ŝz and

[
Ŝz, Ŝ±

]
= ±Ŝ±.

In analogy with spin-1
2

particles, the pseudospins are associated with an SU(2) sym-
metry. Thus, their otherwise 2N -dimensional tensor-product Hilbert space can be writ-
ten as a direct sum of irreducible representations (irreps), in which the spin Hamiltonian
has a block diagonal form. An illustrative textbook example is the addition of two spin-
1
2

particles whose irreps are the singlet and triplet, with total spin 1 and 0, respectively:

1

2
⊗ 1

2
= 1⊕ 0. (4.5)

In left-hand-side tensor-product representation, one keeps track of each individual emit-
ter, and the states are expanded in the basis

{
|gg〉 , |ge〉 , |eg〉 , |ee〉

}
, where g and e

denotes the occupation of the ground and excited states, respectively. In the right-hand-
side direct-product representation, the good quantum numbers are instead the total an-
gular momentum S and the projection mS = −S,−(S + 1), ..., S, with Ŝz |S,mS〉 =
mS |S,mS〉. In the example above, this means that the bases

{
|1,−1〉 , |1, 0〉 , |1, 1〉

}

and
{
|0, 0〉

}
, expressed in the states |S,mS〉, are good bases for the triplet (S = 1)

and singlet (S = 0), respectively1. The states in the different bases can be related via

1Hence, then names triplet and singlet.
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3 0
n+1

n

(b) Quasiharmonic transitions(a) Tavis–Cummings ladders

Figure 4.1: Eigenenergies of the Tavis–Cummings model for N = 1, 2, and 3 two-level
emitters. (a) Solid lines denote energy levels in the full-spin sector (S = N/2), and
dashed lines denote the other spin sectors (S < N/2). The shaded areas mark where the
spectra regularize at n ≥ N number of excitations. (b) Close-up on the eigenenergies
far up the Tavis–Cummings-ladder with N = 3, the different steps can be related to the
different projections ms. At high excitation, the transitions become quasiharmonic.
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the Clebsch–Gordan coefficients that can be found in tables. For the example with two
spin-1

2
particles, the states are related as

|1, 1〉 = |ee〉 ,

|1, 0〉 =
1√
2

(
|ge〉+ |eg〉

)
,

|1,−1〉 = |gg〉 ,

|0, 0〉 =
1√
2

(
|ge〉 − |eg〉

)
.

(4.6)

This example demonstrates the relation between the quantum number mS and the total
excited state occupation p, which is p = N/2 +mS .

The collective operators introduced above do not mix states from different irreps,
i.e., different spin sectors labeled by S. Therefore, the Tavis–Cummings Hamiltonian
can be written in an infinitely block-diagonal form, expressed in terms of the collective
emitter states |S,ms〉 and the photon number states |n〉 describing the state of the cavity.
The block diagonal form allows for diagonalization of each block separately to find the
dressed states corresponding to each spin sector S [80, 85, 86].

The eigenenergies corresponding to the dressed states of the Tavis–Cummings model
are shown up to the third rung of the Tavis–Cummings ladder for N = {1, 2, 3} in
Fig. 4.1. Solid purple lines show the eigenstates corresponding to the full-spin sector
S = N/2. Dashed orange lines show the eigenstates corresponding to the other spin
sectors, which are S = 0 and S =

{
1/2,−1/2

}
for N = 2 and N = 3, respec-

tively. The spectrum at low levels of excitation (n < N/2) has an irregular structure
that grows in complexity with the emitter number N . Higher up the Tavis–Cummings
ladder (n ≥ N ), the spectrum regularizes, and at high excitation levels n � N , the
transitions become quasi-harmonic. The latter is illustrated for N = 3 in Fig. 4.1(b),
where it is also shown how the parallel eigenvalue ladders can be associated with the
projections mS . In Paper C, we show how this underlying structure remains when in-
cluding drive and dissipation in the cavity mode and imprints a correlation between the
emitters and the cavity field, revealed in the cavity’s phase-space distribution when it is
driven to high excitation levels.
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Chapter 5
Cavity QED with a lossy cavity without
adiabatic elimination

Strong coupling between quantum emitters and plasmonic nanoresonators has opened
up the possibility of exploring cavity QED in unusual parameter regimes. Despite
the inherently lossy nature of plasmonic resonances, with lifetimes in the femtosecond
regime, the subwavelength confinement of electromagnetic radiation facilitates strong
coupling with a few quantum emitters. Moreover, operating at optical frequencies, these
systems show potential for applications at non-cryogenic temperatures [68, 87]. For ex-
ample, a room-temperature all-optical transistor at the single-photon level has been a
longstanding goal [88, 89]. However, observing quantum effects with strongly dissipa-
tive cavities remains difficult.

These facts inspired the study that eventually led to Paper A, and the draft presented
in Paper B. With the goal of exploring the potential for nonlinearities at the single-
photon level in these types of systems, despite large losses, we investigated the response
of a lossy cavity coupled to a few emitters under pulsed driving on the cavity mode.
Interestingly, we found that the intensity response from a cavity with a single emitter
was more than double that of two emitters when driving on resonance with the cavity and
emitters. Switching to continuous-wave driving and studying the steady-state response,
we found that the effect was even bigger, with the response from a cavity coupled to one
emitter being an order of magnitude bigger than the response from a cavity coupled to
two emitters. In particular, we identified that the cavity response would be proportional
to the 2(N +1)th power of the drive amplitude when it coupled to N two-level emitters.
In Paper A, we analyzed this effect in detail, which we call unconventional saturation.

The identification of the unconventional saturation effect and a thorough analysis
of its underlying mechanisms are the main contributions of Paper A. Section 5.2 below
summarize the main characteristics of the effect and introduces the phenomenological
model we developed to provide insights into the numerics. In our case, not eliminating
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5. Cavity QED with a lossy cavity without adiabatic elimination

the cavity mode was an important part of our success in identifying the correlation
between the emitter number and the cavity field in this regime. One implication of
the observed nonlinear dependence on the driving intensity is a large bunching effect.
Therefore, we are also interested in the photon statistics and the output states from a
cavity displaying this effect. These are the topics of Paper B, whose preliminary results
are summarized in Section 5.3.

Related works

The mechanism underlying the unconventional saturation effect bears similarities
with electromagnetic-induced transparency (EIT) [90]. EIT refers to the opening of a
narrow transparency window in the spectrum of a three-level system due to the interfer-
ence between two allowed transitions. Typically EIT is observed with large ensembles
of Λ-type atoms [91–93], that is, atomic systems that have an energy-level structure re-
sembling the letter Λ. However, in our case, the response found at weak drive is rather
that of two classical coupled oscillators, which display a classical analog of EIT [94].
The classical EIT effect is an interference effect between the normal modes of two cou-
pled oscillators that can lead to a huge suppression of excitation at the frequency of
the drive on resonance with the oscillators. From this perspective, the unconventional
saturation effect can be interpreted as the breakdown of the harmonic-oscillator approx-
imation for the ensemble of two-level emitters. The signatures of classical EIT1, shown
in the cavity’s scattering spectra in Paper A, have been previously discussed within the
context of a single exciton coupled to a classical radiation field. In this context, the nar-
row transparency dip in the cavity’s spectrum has been referred to as exciton-induced
transparency (ExIT) [95, 96] and has been interpreted as a fano resonace [97, 98]. Even
though the saturation of the ExIT has been discussed in [98], this work and Refs. [95–
98] were limited to semiclassical and classical descriptions of a single two-level system
in a single-mode radiation field. Thus, the effect we observed in Paper A was not iden-
tified. However, the systems exhibiting ExIT [99] should be suitable for demonstrating
unconventional saturation.

The literature on the Tavis–Cummings model is extensive and includes a thorough
theoretical foundation developed over the second half of the 20th century. A full quan-
tum description of ExiT was given in the case of a single two-level atom coupled to a
cavity at the end of the 90s [100]. This time, it was referred to as cavity-induced trans-
parency to differentiate it from EIT with three-level, Λ-type atoms. Yet, neither does
this work analyze the drive-dependence of the cavity response, which is a key compo-
nent of Paper A. On the other hand, the study in Ref. [101] observes a similar behavior
of the cavity’s response to external driving in the context of a cavity QED laser. Their
rate-equation approach to finding the steady-state photon number and carrier occupa-
tion, i.e., the number of emitters in the excited state, showcases a similar nonlinear

1A narrow transparency dip at the resonance frequency.
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transition between an empty and filled cavity solution with increasing pump power. In
their case, their focus is on a “threshold-less” laser, where a single photon would induce
the lasing condition and, thus, no transition would be observed as a function of pump
power. Following that, they do not pay attention to the correlations between the emitter
number and cavity response in the few-body-few-photon regime. Only in recent years
have such correlations attained attention in light of state-of-the-art experiments with just
a few emitters.

5.1 Model system
The model system of Paper A and Paper B is a coherently driven and lossy single-mode
cavity coupled to a narrow linewidth two-level emitter, which can be well described
by the Tavis–Cummings Hamiltonian. To include the effects of dissipation, we use the
master equation

˙̂ρ = − i
~

[
Ĥtc,d, ρ̂

]
+ γcDâ[ρ̂] +

N∑

i=1

γeDσ̂−i
[ρ̂], (5.1)

where we include photon loss from the cavity with the decay rate γc and local sponta-
neous emission with the rate γe from the emitters. The superoperator Dô[·] = ô · ô† −
1
2

{
ô†ô, ·

}
is the standard Lindblad superoperator for dissipation associated with the op-

erator ô. The unitary evolution described by the first term in Eq. (5.1) is governed by
the Tavis–Cummings Hamiltonian introduced in Eq. (4.1) and a coherent drive on the
cavity with amplitude Ωd/2 in the rotating wave approximation. In the rotating frame
of the laser, this Hamiltonian takes the simple form

Ĥtc,d = ~g
N∑

i=1

(
â†σ̂−i + âσ̂+i

)
+

~Ωd

2

(
â+ â†

)
, (5.2)

when the drive is in resonance with the cavity and emitters.

Parameter regime
The considered parameter regime is a lossy cavity γc � γe and strong collective

coupling gcol =
√
Ng ≈ γc, which means systems with large cooperativity:

C ≡ 4g2
col

γcγe
. (5.3)

The effects observed in Paper A can also be observed for weaker collective coupling
gcol . γc, which corresponds to a smaller cooperativity C2. However, for stronger cou-

2The effects of varying spontaneous emission rate γe and coupling strengths gcol are shown in Figs. 12
and 13 in Appendix E of Paper A.
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5. Cavity QED with a lossy cavity without adiabatic elimination

pling strengths gcol � γc, the distinction between the dressed states above the single-
excitation level becomes tractable. This changes the behavior of the driven and dissi-
pative system drastically, as was demonstrated in Paper C. Collective versus individual
emitter decay is also known to affect the behavior of spin ensembles [60, 102]. In Pa-
per A, the effects of collective decay on unconventional saturation were investigated
in Appendix D. Our comparison between the two descriptions showed that there were
no qualitative differences in our few-emitter regime and a strongly dissipative cavity3.
This was not surprising as the strong collective coupling to the cavity is the main decay
channel for the emitters in this regime, and the effects we observe are not related to the
symmetries of the spin ensemble, which would otherwise be affected by the local versus
collective description of the dissipation. In our case, the main effect of emitter decay is
stabilizing the photon number in the weak-drive regime. This gives the response along
the lower asymptotical (dashed) line in Fig. 5.1.

5.2 Unconventional Saturation
The conventional saturation effect occurs when an emitter or nonlinear medium in a
cavity cannot absorb more photons and, thus, has become saturated. In the spectrum,
this is revealed as a merging of the Rabi doublet into a single Lorentzian peak at the
cavity resonance when increasing the intracavity field [103]. From the perspective of
the emitters in the steady state, saturation occurs when all emitters have an equal proba-
bility of being in the excited and ground states due to the stimulated Rabi flopping [41]
induced by the driving from the cavity, thus giving the saturation expectation value∑N

i=1 〈σ̂+iσ̂−i〉sat = N/2. The conventional saturation effect is marked by dashed cir-
cles in Fig. 5.1, which plots the steady-state photon number

〈
â†â
〉
ss

and emitter pop-
ulation 〈σ̂+σ̂−〉ens

ss ≡
∑N

i=1 〈σ̂+iσ̂−i〉ss as functions of the drive strength Ωd. When the
emitters saturate, their effect on the cavity averages out, and the cavity photon number
regains a linear dependence on the external drive intensity I ∝ Ω2

d. This is shown in the
encircled area in Fig. 5.1(a), where the photon number follows the response (Ωd/γc)

2

of an empty cavity (dotted curve).
The unconventional saturation effect instead emerges in a regime of drive strengths

before there are any signs of saturation in the steady-state population of the emitters, as
is shown in the shaded areas in Fig. 5.1(a) and (b). The slopes of the photon numbers
in this regime in the log-log plot reveal a Ω

2(N+1)
d -dependence on the external drive,

where N is the number of emitters coupled to the cavity. This corresponds to a power-
of-(N + 1) dependency on the drive intensity, I(N+1) ∝ Ω

2(N+1)
d , which is indicative of

(N + 1)-photon processes.

3See, e.g., Fig. 10 in Appendix D of Paper A.
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(a) (b)

Figure 5.1: Log-log plots of the steady-state expectation values of the photon number
and emitter population as a function of the normalized drive strength Ωd/gcol for N =
1 − 4 emitters with the same collective coupling strength gcol. The shaded areas mark
the driving regime displaying the unconventional saturation effect, where (a) the photon
number display a clear dependence on the emitter number, while (b) the population of
the emitters is still increasing linearly. The circles mark the conventional saturation
effect where the emitter population saturates at N/2, and the response of the cavity
again becomes linearly dependent on the driving intensity I ∝ Ω2

d. The parameters used
to produce this plot were gcol/γc = 1, γe/γc = 0.01.

To provide insights into these numerical results, we developed a phenomenological
model that qualitatively captures the effects. This model is based on the good agreement
between a coupled-oscillator model and the Tavis–Cummings model in the weak-drive
regime and the fact that the emitter ensemble’s eigenvalue structure resembles a har-
monic oscillator up to the same order of excitation as the emitter number. By combin-
ing these two pictures we could explain the observed effect in the cavity as an effective
drive on the cavity arising due to the destructive interference between the ensemble and
the coherent drive up to the order N . A good intuition for the dynamics is provided by
the picture of the emitter ensemble acting as a saturable mirror that only reflects photon
states up to order N . Then, from this perspective, the unconventional saturation effect
could be described as a competition of interaction rates that saturates when the ensemble
cannot reflect more of the incoming light field as a consequence of its finite eigenenergy
space. Therefore, this effect be seen as a dynamic counterpart to the conventional satu-
ration effect. This perspective is illustrated as a comic in Fig. 5.2, where a single atom
reflects single-photon states, but not two-photon states that can be directly absorbed in
the cavity.

The effective drive on the cavity in this phenomenological description can be divided
into three parts and is illustrated from the cavity’s perspective in Fig. 5.3(b). Before a
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5. Cavity QED with a lossy cavity without adiabatic elimination

Figure 5.2: A comic illustrating the unconventional saturation effect with a single two-
level emitter coupled to a lossy cavity. The system behaves as a saturable mirror where
N emitters destructively interfere with the drive up to N photons. This interference
breaks down at (N + 1) photons that are directly absorbed in the cavity instead.

multiphoton absorption event, the cavity has a small residual photon number 〈n̂〉weak

due to imperfect cancellation/reflection from the emitters. Then, at some time t (N +
1)-photons come from the drive that are directly absorbed by the cavity. This step
can be seen as intermittent saturation of the emitters. After that, the absorbed photons
leak out of the cavity due to exponential decay. Time-averaging over such multiphoton
absorption events in a classical master-equation formulation for the cavity populations
gives the analytical expression for the photon number in the steady state,

〈n̂c〉ss = 〈n̂〉weak +
(N + 1)P T

N+1

Tγc
. (5.4)

The weak-drive photon number is given by the coupled-oscillator description in the
weak-drive regime

〈n̂〉weak =
Ω2
d

γ2
c

1

(1 + C)2
. (5.5)

The parameter P T
N+1 is the probability of having (N + 1) photons in the external drive

during the time T and is given by the Poisson distribution with the discrete-mode am-
plitude αd = ΩdT ,

P T
N+1 = e−|ΩdT |2 |ΩdT |2(N+1)

(N + 1)!
. (5.6)

The time T must be related to the temporal mode matching between the external drive
and the effective drive from the emitters. Thus it could be identified as T = 1/gcol.

The photon number obtaiend with Eq. (5.4) is plotted and compared with the nu-
merical results in Fig. 5.3(a), cf. red-dashed and blue-solid curves, respectively. As can
be seen, there is a good qualitative agreement between the phenomenological model
and the exact numerical results. Hence, supporting the intuition given by the emitters-
ensemble as a saturable mirror. We could also derive an expression for the critical drive
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5.2. UNCONVENTIONAL SATURATION

to enter the unconventional-saturation regime from the same phenomenological model.
By posing the condition that the harmonic-oscillator description of the emitters breaks
down at (N + 1) photons, we obtained the expression

Ωcr(N) =

(
N !γ2

eg
2(N−1)
col

16

) 1
2N (

1 +
1

C

)
(5.7)

The critical drive Ωcr for N = 1 − 4 is plotted as black stars in Fig. 5.3(a). As can be
seen, it predicts the onset of unconventional saturation in the analytical model with high
precision, and only slightly overestimates the onset seen in the numerical results.

Cancellation

Cavity absorption

Cavity decay

photons from drive

(a) (b)

Figure 5.3: The unconventional saturation effect can effectively be understood as direct
absorption of (N + 1)-photon pulses in the cavity that subsequently leak out from the
cavity through exponential decay. Panel (b) illustrates the time dynamics for one such
absorption event. Time averaging over many (N+1)-photon absorption events gives the
steady-state photon number 〈n̂c〉ss, which is plotted as red dashed curves in panel (a).
The analytical results show a good qualitative agreement with the numerical simulations
plotted as blue solid curves. Including the absorption of higher numbers of photons
(> N + 1) removes the falling tails and captures the conventional saturation at higher
driving strengths. The parameters used for panel (a) were the same as for Fig. 5.1.

To conclude, this section has shown you the main characteristic of the unconven-
tional saturation effect, which is a photon number scaling with the drive as Ω

2(N+1)
d when

it couples to N emitters. An intuitive picture of the effect as a destructive interference
effect between the external drive and the emitters that break down at (N + 1)-photons
was also given. The next section will continue the investigations of the unconventional
saturation effect on a more practical level. In particular, we are interested in the photon
statistics, and the output from a cavity displaying the unconventional saturation effect,
as they will uncover any potential for quantum state engineering.
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5. Cavity QED with a lossy cavity without adiabatic elimination

5.3 Photon statistics and bundle genera-
tion

A multiphoton absorption process of order n will depend on the (n+ 1)th power of the
optical intensity. Hence, our results from Paper A are indicative of (N + 1)-photon
absorption in the cavity. This statement is further supported by the phenomenological
model presented in Paper A and summarized above, which showed a good qualita-
tive agreement between an effective (N + 1)-photon drive on the cavity and the exact
numerical results. Multiphoton absorption in the cavity suggests an enhancement of
multiphoton states in the cavity’s photon number distribution. If this is the case, it
should show up as a super-Poissonian photon-number distribution in the cavity field.
A super-Poissonian photon-number distribution in the cavity is, in turn, indicative of
photon bunching in the forward’s scattered field. That is, photons are emitted grouped
in bundles with higher probability than randomly distributed [104]. The main objective
of Paper B is to characterize the emission properties of Tavis–Cummings systems in the
unconventional saturation regime. Our preliminary results are summarized below.

Correlation functions
The photon-number distribution can be characterized through its photon statistics

provided by the normalized two-time correlation functions for the cavity field [105].
The nth-order correlation function for the cavity field at zero-time delay has an easy
formulation in the steady state, which can be expressed in terms of the cavity popula-
tions ρm = 〈m|ρ̂c|m〉 as

g(n)(0) =

〈(
â†
)n

(â)n
〉

〈
â†â
〉n =

∑
m≥n

m!
(m−n)!

ρm

(
∑
m≥0

mρm

)n . (5.8)

Photon bunching in the field will be signaled by g(n)(0) > 1. Employing the phe-
nomenological model developed in Paper A, we can additonally find analytical expres-
sions p̄m for the populations ρm. Taking these p̄m for the cavity populations in Eq. (5.8),
we get analytical solutions for the nth-order correlation functions:

ḡ(n)(0) =

∑
m≥n

m!
(m−n)!

p̄m

(
∑
m≥0

mp̄m

)n . (5.9)
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Figure 5.4: Zero-time-delay correlation functions [top panel], and cavity (〈n̂〉ss]) and
emitter (〈Ξ〉 ≡ 〈σ̂+σ̂−〉ens

ss ) populations [bottom panel], for increasing drive amplitude
when the cavity contains two emitters. The response is characterized by three different
regimes. For weak drive (I), the 3rd-order correlation function is constant as predicted
for (N+1)-photon absorption in the cavity. As the drive increases, the cavity population
displays the unconventional saturation effect, and the higher-order correlation functions
start to decrease (II) until the emitters saturate in the strong-drive regime (I I I ). The
dotted curves show the correlation functions for an empty cavity driven by (N + 1)-
photon pulses. The parameters used to obtain this figure were gcol/γc = 1 and γe/γc =
0.1

By plotting the g(n)(0) as functions of the drive Ωd, we confirm a huge bunching
effect in the cavity field in the weak-drive regime, where all g(n>1)(0) � 1. Moreover,
we find that another signature of the unconventional saturation effect is g(N+1)(0) =
constant in the weak-drive regime Ωd/gcol � 1. This claim is supported by the analyt-
ical expression ḡ(N+1)(0), which in the weak-drive regime can be found as

ḡ(N+1)(0) = 1 +
N !

γc/gcol

K2

K1

, (5.10)

where K1 and K2 are constants determined by the system parameters.
Figure 5.4 demonstrates these findings for the case N = 2. In this figure, green

solid and dashed curves plot the second g(2)(0) and third-order g(3)(0) correlation func-
tions found by solving the master-equation, and pink dotted curves plot the analytical
expressions ḡ(2)(0) and ḡ(3)(0). In particular, we can identify three different regimes at
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5. Cavity QED with a lossy cavity without adiabatic elimination

weak (I), intermediate (II), and strong (III) drives with different characteristics. In the
following, we’re interested in the output from the system in regime (II), which has a
larger average photon-number than in the weak-drive regime, while still demonstrating
large bunching. This regime corresponds to the unconventional saturation regime, where
(N + 1)-photon processes are dominating the cavity’s response to external driving.

Characterization of the output field

The output from the cavity can be characterized by photon-detection simulations.
For this, we use a stochastic master equation [58] corresponding to the master equa-
tion (5.1). We assume all light emitted from the cavity is detected, while the weak
emission from the emitters due to a small dissipation to modes other than the cavity is
undetected. After the detection of a photon, we count the total number of excitations
〈m〉c = 〈m| ρ̂c |m〉 remaining in the system at the next time step using the conditional
density matrix ρ̂c = âρ̂â†/Tr

{
âρ̂â†

}
. The remaining excitations 〈m〉c are used to char-

acterize a photon bundle. After the identification of a bundle, the next photon bundle
starts at the (〈m〉c+1)th photon-detection event. The obtained distribution is then com-
pared with the corresponding distribution for a coherently driven cavity with the same
output flux of photons α, with conditional Poisson distribution Pm(α) after the detection
of one photon.

The statistics of photon bundles characterized with 〈m〉c after∼ 5000 photon detec-
tion events are presented in Fig. 5.5. The corresponding bundle size will be 〈m〉c + 1,
as it is conditioned on the detection of a photon. The drive strengths are chosen within
region (II), corresponding to the specific emitter number. As expected, the distribu-
tion with an empty cavity follows the Poisson distribution Pm(α) [Fig. 5.5(a)]. Includ-
ing a single emitter in the cavity, we find a large enhancement of two-photon bundles
(〈m〉c + 1 = 2) [Fig. 5.5(b)]. Similarly, we find an enhancement of three-photon bun-
dles in the case with two emitters in the cavity [Fig. 5.5(c)]. These observations agree
well with the picture of (N + 1)-photon enhancement due to the unconventional satu-
ration effect. The case with three emitters in the cavity also shows an enhancement of
(N + 1)-photon bundles. However, it is clear from Fig. 5.5(c) that the suppression of
lower photon numbers (n < N + 1) are less efficient in this case.

5.4 Outlook
So far, we have confirmed that a system displaying the unconventional saturation effect
will have a large bunching of photons in the cavity field. We have also found that the
photons leaking out of the cavity will have an enhancement of photon bundles compared
to a coherent light source, which could find applications in post-selection schemes or
multiphoton spectroscopy. In Paper B, we also employ a cascaded-quantum-system ap-
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Figure 5.5: Remaining excitations in the cavity-emitter system after the detection of a
photon for (a) an empty cavity and drive Ωd/γc = 0.4, and (b)-(d) a cavity containing
N = {1, 2, 3} emitters and drive amplitudes Ωd/γc = {0.3, 0.4, 0.8}. The orange circles
mark the corresponding distribution for a coherently driven cavity with the same output
flux α of photons. The data used to produce this figure consists of ∼ 5000 photon
detection events.

proach to catch the output state with a boxcar filter. Catching states conditioned on
a photon detection event display Wigner distributions corresponding to superpositions
of fock states up to 〈m〉c photons. Thus, our preliminary results demonstrate the po-
tential to harness this, previously overlooked, nonlinear effect emerging in lossy Tavis-
Cummings systems. However, there is more work required to fully understand and
characterize the output field in this regime. There are also open fundamental questions
about how the competition between coherent and incoherent processes settles the sys-
tem’s behavior. Understanding the fundamental mechanism that governs the behavior
of small emitter ensembles in driven cavities will help guide the development of new
quantum technology.
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Chapter 6
Photon blockade breakdown in the
few-emitter limit

This chapter leaves the lossy cavity modes behind and focuses on Tavis–Cummings
systems with a few emitters inside high-quality cavity, which is the model system in
Paper C. However, even though the work of Paper C considers a low-loss cavity mode,
the inspiration for this work came from where Paper A left off. The increasingly sharp
transitions between the two linear regimes with increasing emitter number N , found in
Paper A, suggest a critical behavior in the limit N →∞. My initial studies in the lossy
cavity regime showed that the observed cavity response could be related to absorptive
optical bistability [106] in the limit N →∞ in a low-photon density regim [107, 108].
Yet, at the same time as I observed the indications of optical bistability in the large
N limit, I also found bimodal Wigner distributions, which is considered a signature of
bistability, with only a few two-level emitters. The latter was surprising as previous
studies on the extension of single-atom bistability [109] to the few-emitter regime [110]
had ruled out the possibility of optical bistability with a few emitters with my set of
parameters. This raised questions about the correlations that arise between the cavity
field and the emitters that are imprinted in the cavity field and are tractable in the few-
emitter regime. With my coauthors of Paper C, we set out to answer these questions,
leading to the work presented in Paper C, which will be summarized in the following.
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6. Photon blockade breakdown in the few-emitter limit

6.1 Model system
The notation in Paper C is slightly different from the previous chapter therefore, the
Hamiltonian is repeated here for clarity,

H̃ε = ~Ω(Ŝ+â+ Ŝ−â
†) + ~ε(â+ â†). (6.1)

This is again the driven Tavis–Cummings Hamiltonian in the rotating frame of the drive
on resonance with the cavity and emitters. The coupling strength is now denoted Ω, and
ε is the drive strength. Dissipation is included with the master equation

˙̂ρ = (i~)−1
[
H̃ε, ρ̂

]
+ 2κ

(
âρ̂â† − 1

2
â†âρ̂− 1

2
ρ̂â†â

)
, (6.2)

where we consider photon loss with the decay rate κ as the only decay channel. As this
master equation does not have any local emitter processes that mix states from different
spin sectors, the total angular momentum S is a conserved quantity. Therefore, we
can work with the total angular momentum states |S,ms〉 with a fixed total angular
momentum S. The results presented in Paper C are obtained within the full-spin sector
S = nat/2, where nat is the number of emitters.

6.2 Successive quasienergy collapses
The work in Paper C emphasizes the role of the dressed states in the behavior of the
driven-disspative Tavis–Cummings system. Through a systematic analysis, we could
demonstrate a structure in the system, provided by the dressed states, that is maintained
in the presence of cavity drive and dissipation.

The eigenenergies of the Tavis–Cummings Hamiltonian without drive and dissipa-
tion were shown in Fig. 4.1. Including a drive on the cavity shifts the attention from
energies and eigenstates into quasienergies and time-periodic states that satisfy

H̃ε|ψα〉 = Ẽα|ψα〉. (6.3)

When the drive is weak, it will only be a small perturbation to the undriven dressed
states, and the corresponding quasienergies will have a discrete spectrum that resembles
the undriven spectrum. In the rotating frame of the drive, these energies will be sym-
metrically split around 0. As the drive increases, the time-periodic solutions to Eq. (6.3)
begin to spread along different excitation manifolds. These driven states have been
found analytically for a single atom [111–113], and a similar mechanism is expected to
follow for many atoms. Following the single-atom results, the quasienergies are found
to maintain the discrete

√
n-anharmonic structure at weak drives but will become closer
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Figure 6.1: [(a),(c),(d)] Quasienergies of the driven Tavis–Cummings Hamiltonian for
nat = {1, 2, 3} obtained via numerical diagonalization of Eq. (6.1). A discrete spectrum
found at small drive amplitudes collapses at the critical drives εcol(ms) = |mS|Ω with
mS = 0, (1

2
), 1, (3

2
), . . . , 1

2
nat for even (odd) number of atoms. After each collapse

(pink triangles), a continuous spectrum rises (shaded lines). These partial collapses
allow for states to be organized into separate groups denoted by the cooperative number
mS , drawn here as solid and dashed lines. [(b),(d),(f)] Wigner distributions of the cavity
field with nat = 3. After each collapse point, two new peaks appear in the Wigner
distributions. Orange crosses mark the approximate coherent states amplitudes αmS

,
obtained with the mean-field equations.
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6. Photon blockade breakdown in the few-emitter limit

and closer in energy as the drive increases until they collapse into a continuous spectrum
at the point ε = 1/2. Physically, we can understand this behavior as a photon-blockade
effect [113], where the anharmonicity at low excitation levels prevents excitation of the
system at weak drives, which is then broken through at high levels of excitation where
the excitation paths become quasi-harmonic.

In Paper C, we numerically solved for the quasienergies with nat = {1, 2, 3}, and
found that the single-atom behavior is, indeed, maintained with many atoms, but now,
the collapses occur successively. Moreover, following the approach of Ref. [112], we
could find the collapse point of the successive collapses and relate it to the emitter
projections mS:

εcol(mS) = Ω|mS|. (6.4)

The successive collapses of the quasienergies are shown in Fig. 6.1(a) that plots the
quasienergies for nat = {1, 2, 3} as a function of the drive ε. The pink triangles mark
the collapse points εcol(mS). After each collapse point, there is a large degeneracy of
states at the drive frequency. The shaded solutions in Fig. 6.1(a) are numerical artifacts
arising from working in a truncated Fock-basis.

6.2.1 Multipeaked Wigner distributions

Next, we included the effects of photon loss described by the master-equation (6.2). Dis-
sipation will, in general, stabilize a driven system in a steady state with a well-defined
excitation number. However, in Paper C, we additionally found that photon loss in this
system will stabilize the steady state in a superposition of coherent states that are cor-
related with the emitter projection mS via the parallel quasiharmonic excitation paths,
high up the Tavis–Cummings ladders. By plotting the steady-state Wigner distributions
of the cavity field at increasingly strong drives, we could see these metastable coherent
states emerge after each collapse point. Our results for nat = 3 is shown in Fig. 6.1(b).
The top panel is obtained close after the first collapse point εcol(1/2) and shows how
the empty-cavity solution at αx = αy = 0 gives way to a double-peaked Wigner distri-
bution. The empty-cavity solution vanishes as the drive increases (middle panel), and at
strong drives, far beyond the second collapse point εcol(3/2), four well-separated peaks
are found (bottom panel) corresponding to mS =

{
−3

2
,−1

2
, 1

2
, 3

2

}
.

The emergence of multiple peaks in the Wigner distributions can be associated with
the coexisting dressed-state ladders (labeled by mS) in a mean-field picture, where the
cooperative response of the emitters can be seen as independent radiating dipoles radi-
ating with the rate |mS|Ω. In this picture, the mean-field solution αmS

= 〈â〉mS
above
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εcol(ms) can be found as

αmS
= −i ε

κ

[
1 +

mSΩ

κ|αmS
|

]−1

,

with

|αmS
|2 =

(
ε

κ

)2
[

1−
(
mSΩ

ε

)2
]
.

(6.5)

(6.6)

The mean-field amplitudes αmS
display two opposite phases corresponding to the plus

and minus rungs of the mS-ladders in the Tavis–Cummings spectrum. The orange
crosses in Fig. 6.1(b) show that these solutions coincide perfectly with the peaks in
the Wigner distributions.

However, the excitation paths in the real system are not independent, and fluctua-
tions will induce switching between them. Yet, the likelihood of switching decreases in
the limit of large excitation, thus making it more likely for the system to remain inside a
single mS-ladder as the excitation number increases. In this limit, it is possible to create
approximate eigenstates of the jump operator â within a single ladder. These approx-
imate states will resemble coherent states with the amplitudes αmS

, thus the success
of the mean-field solutions. Moreover, as these states are approximate pointer states
(eigenstates of the jump operator), they will act as attractors under time evolution with
the master equation (6.2, which minimizes the rate at which the system loses its purity
to the environment [114].

6.3 Outlook
Our work in Paper C is a generalization of the photon blockade breakdown with a single
two-level atom to the few-emitter regime. The breakdown of photon blockade has been
characterized as a 2nd-order dissipative phase transiton [113]. The thermodynamic limit
in this system is defined by the limits ε/κ � 1 and Ω/κ � 1, with ε/κ = constant,
which corresponds to the limit where we see the individual mS-ladders becoming more
and more independent. The work in Ref. [115] showed that the photon blockade break-
down can be associated with a spontaneous breaking of an antiunitary particle-hole type
of symmetry that is related to a sign change in the atomic operators Ŝx,y accompanied
by one in the field quadratures (â± â†). Our numerical study in Paper C supports their
single-atom results, but in our few-emitter limit, the symmetry is broken in stages.

In particular, we looked for signatures of symmetry breaking in the Liouvillian spec-
trum [116, 117], which is indicated by multiple eigenvalues of the Liouvillian to ap-
proach 0 in the thermodynamic limit [116, 118, 119]. Our results displayed a complex
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interplay of attraction and repulsion of the biggest1 eigenvalues as the drive was in-
creased. As our study was numerical, we were limited to finite-size systems, so our
results are not more than indicative. Nevertheless, we could see a clear and sharp rise
of 2s eigenvalues, related to the atomic number as s = nat/2, appearing successively
after each collapse point ε(mS) and in good agreement with the appearance of multiple
peaks in the Wigner distributions. This implies the existence of 2s+1 different symme-
try sectors, which we relate to the number of possible dressed-states ladders. However,
the symmetry was not characterized explicitly and, thus, remains an open question. The
signatures in the system indicate a discrete Zn symmetry that should be revealed by a
generalization of the single-atom results in Ref. [115] but was not immediately trivially
seen in our numerical investigations.

A full characterization of the symmetries in the few-emitter regime of the driven-
dissipative Cummings model would be a valuable contribution that could provide the-
oretical insights into the role of the competition between coherent and incoherent pro-
cesses in settling the system’s behavior. An important part of this investigation would
be to look at other decay channels, including individual, and collective spontaneous
emission from the emitters. This could not only help in relating the results of Paper
Cto the seemingly different correlations between the field and the emitters that were
shown in Paper A. It could also help bridge the gap between one, a few, and many emit-
ters and connect the breakdown of photon blockade to optical bistability and collective
resonance fluorescence.

1The Liouviliian eigenvalues are negative to ensure decay to a steady state. The eigenvalues are,
moreover, complex. As our system does not have the symmetries required to have oscillating coher-
ence – eigenvalues with zero real part and non-zero imaginary part – the imaginary parts of the biggest
eigenvalues are zero in our case.
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Part II
Identical harmonic emitters

The second part of this thesis is dedicated to the intriguing properties of polaritons in the
strong- and ultrastrong-coupling regimes. In particular, we are interested in polaritons
formed with a single light mode of a microcavity and the collective bright mode of an
array of identical metallic nanoparticles that sustain surface plasmon polaritons. This is
the model system of Paper D whose main results will be discussed in Chapter 8. While
our study was performed on this particular plasmon-microcavity system, our results are
also relevant for a big family of polaritonic platforms where a Lorentzian permittivity
can describe the matter component. A Lorentzian approximation has, for example, been
applied to an ensemble of atoms [120], phonons in a crystal [121], excitons and phonons
in a 2D crystal [122], and excitons in organic molecules [123].

Chapter 8 will additionally give a quantum description of this model system for
cavity-polaritons, which was described classically in Paper D. To this end, the Hopfield
model for coupled bosonic modes described by quadratic Hamiltonians is introduced in
Chapter 7. The Hopfield model is a versatile tool for coupled modes that can be mod-
eled as harmonic oscillators described by bosonic creation and annihilation operators.
Even though the observed phenomena in Paper D are essentially classical, the quantum
description provides further insight into the effects of the light-matter interaction.
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Chapter 7
The Hopfield model

The modern formulation of the Hopfield model describes the coupling between the elec-
tromagnetic field and a generic matter field whose excitation and deexcitation can be
described by bosonic creation and excitation operators. In Chapter 8, we will apply
the Hopfield model to the plasmon-microcavity of Paper D to explore the effects of
the RWA and the A2-term on the polaritonic decay rates. As a primer for that study,
Section 7.2 of this chapter will discuss the diagonalization of the Hopfield Hamiltonian,
and provide expressions for the polaritonic operators in terms of the so-called Hopfield
coefficients. But first, the original formulation from Hopfield will be briefly introduced
below. This will give context to the great versatility of the Hopfield model. Then,
in Section 7.1, we will move on to discuss the equivalence between the Coulomb and
dipole gauge formulations, as this has recently been a topic of heated discussions in the
context of ultrastrong coupling.

The Hopfield model originates back to Hopfield’s seminal work on exciton-polaritons
formed due to light-matter interaction in a bulk dielectric, published in 1958 [44]. In
this work, Hopfield demonstrates that it is necessary to also include the interaction with
light when describing excitons in a 3D crystal. In particular, Hopfield describes the exci-
tation of excitons in a uniform dispersionless dielectric as approximate bosonic modes
and uses a coupled-boson Hamiltonian for the light-matter interaction between these
collective matter modes and the electromagnetic field. Since then, this model has been
generalized and applied to many different interacting light-matter systems where the
light and matter modes can be described by Lorenztian bosonic fields including quan-
tum wells [124], cavity polaritons [125], phonon polaritons [126, 127], and plasmon
polaritons [13, 128].
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7. The Hopfield model

Following the original formulation, the Hopfield Hamiltonian in the Coulomb gauge
(∇ ·A = 0) can be written as

Ĥhop =
∑

k,σ

~ωk,σ

(
â†k,σâk,σ +

1

2

)
+ ~ω0

∑

k,σ

(
b̂†k,σ b̂k,σ +

1

2

)

+ i~ω0

∑

k,σ

λk

(
âk,σ + â†−k,σ

)(
b̂k,σ − b̂†−k,σ

)
(7.1)

+ ~ω0

∑

k,σ

λ2
k

(
âk,σ + â†−k,σ

)2

,

where the index k labels the wave vector, and σ labels the two transverse polarization
directions defined by the polarization unit vectors ek,σ. The first line in the Hamil-
tonian describes the bare light and matter modes without the light-matter interaction.
The terms on the second and third lines arise from the minimal coupling replacement
(p + eA)2 and describe, respectively, the light-matter coupling with coupling param-
eter ω0λk and the A2-term. The operators âk,σ are the standard bosonic annihilation
operators for the electromagnetic field with dispersion ωk,σ, and the b̂k,σ operators are
bosonic annihilation operators for the matter excitations with frequency ω0. As in Hop-
field’s formulation, the matter frequency ω0 is fixed assuming dispersionless matter
excitation and the field and matter operators obey the bosonic commutation relations
[âk,σ, âk′σ′ ] = [b̂k,σ, b̂k′σ′ ] = δk,k′δσ,σ′ , where δx,x′ , {x = k, σ} is the Kronecker delta.

7.1 Equivalence of the dipole and Coulomb
gauges

In recent years, an old discussion about the subtleties [129, 130] of gauge invariance
in quantum light-matter Hamiltonians was reignited by ambiguous results found in the
Coulomb and dipole gauges in the ultrastrong coupling regime [131, 132]. Most of the
issues were related to an inappropriate application of the two-level approximation and a
consistent transformation between the two gauges was shortly resolved [39, 133–135].
Yet, the discussion about gauge invariance is still ongoing [133, 136, 137].

As the Hopfield model does not rely on a two-level approximation, it has gener-
ally been considered protected from the discussed gauge ambiguities, even though it is
known that the parameters that enter the interaction Hamiltonian are gauge-dependent
and cannot be directly compared. The benefit of writing the Hopfield Hamiltonian on
the form in Eq. (7.1) is that the coupling parameter λk remains invariant [32] under the
unitary Power-Zienau-Woolley (PZW) transformation [133], taking the Coulomb gauge
Hamiltonian into the dipole gauge Hamiltonian. One should not forget, however, that by

56



7.1. EQUIVALENCE OF THE DIPOLE AND COULOMB GAUGES

choosing a gauge, one also chooses constraints that are included in the field and matter
operators, which are gauge-dependent. Choosing a gauge does not change observables,
but the different constraints are the reason for the different forms of the interaction pa-
rameters. This fact can be exemplified by noting that the Hopfield Hamiltonian in the
Coulomb gauge can be written as [32]

ĤC = Ĥa + ÛĤbÛ
†, (7.2)

with Û = exp[i
∑

k,σ λk(âk,σ+ â†−k,σ)(b̂k,σ− b̂†−k,σ)], and Ĥa and Ĥb being the bare light
and matter Hamiltonians, respectively. Similarly, the dipole gauge Hamiltonian can be
written as

ĤD = ÛĤaÛ
† + Ĥb. (7.3)

For an electromagnetic field and generic polarization field associated with the matter
excitation described by

Â(r) =
∑

k,σ

Ak,0ek,σ

(
âk,σ + â†−k,σ

)
eikr, (7.4)

P̂(r) = P0

∑

k,σ

ek,σ

(
b̂k,σ + b̂†−k,σ

)
eikr, (7.5)

the unitary operator Û coincide with the PZW transformation

T̂ = exp
[
i

~

∫

r

dr Â(r)P̂(r)

]
,

= exp


i
∑

k,σ

λk(âk,σ + â†−k,σ)(b̂k,σ − b̂†−k,σ)


 (7.6)

with λk = V Ak,0P0 and V the quantization volume. Thus, applying the PZW transfor-
mation, one finds that the Coulomb gauge representation of the bare matter operators is
given by b̂C = T̂ b̂T̂ †, and conversely the dipole gauge representation of the bare field
operators is given by âD = T̂ âT̂ †. The physical interpretation of âD and b̂C is that
they represent the physical light-like and matter-like fields, respectively, that describe
the annihilation of the physical quanta of the fields [32, 138]. The index k, σ has been
dropped here and in the rest of the section for better readability.

For most practical applications of the Hopfield model, one can use the Coulomb and
dipole gauges interchangeably without knowledge of âD and b̂C and still get the correct
results. So why go through all this trouble? In addition to gaining insight into the
meaning of physical (measurable) fields and gauge invariance, the motivation for this
thesis is the recent publication [138]. This work showcased that one obtains ambiguous
values for the dephasing rates in an open Hopfield model if the bare operators â and b̂
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are erroneously used in the perturbation Hamiltonian in the dipole and Coulomb gauges,
respectively. With the formulation in Eqs. (7.2) and (7.3), it is easy to see how these
ambiguities arise as â†â 6= T̂ â†âT̂ † and b̂†b̂ 6= T̂ b̂†b̂T̂ †.

In the next chapter, we consider another open Hopfield model to find expressions
for the polaritonic decay rates in a quantum description. Therefore, we went through
this somewhat lengthy discussion to make sure that the dissipation model employed is
appropriate for our purposes. In our case, we use the Coulomb gauge representation and
are interested in single-photon loss which for the matter mode is modeled by the system-
reservoir interaction Hamiltonian ĤSR =

∑
j(b̂ + b̂†)(κj r̂j + κ∗j r̂

†
j). Using the explicit

expression for T̂ from Eq. (7.6), and after performing some algebra, it is easy to see that
the dissipation model for single-photon loss is invariant under the PZW transformation
(b̂ + b̂†) = T̂ (b̂ + b̂†)T̂ †. Hence, the bare matter operators b̂ and b̂† can safely be used
without loss of generality.

7.2 Polaritonic eigenenegergies and eigen-
operators

As preparation for Chapter 8 on polaritonic decay rates, this section presents the eigenen-
ergies and eigenoperators for the Hopfield Hamiltonian. The eigenenergies and eigenop-
erators correspond to the polaritonic resonances and their bosonic annihilation and cre-
ation operators. As the Hopfield Hamiltonian is bilinear and at most quadratic, the so-
lution can be obtained analytically by a bosonic Bogoliubov transformation [139, 140].

In the following, a two-mode version of the Hopfield Hamiltonian (7.1) will be con-
sidered. This reduction of the problem will make for easier readability and suffices
for describing the interaction between a single-mode electromagnetic resonator and a
bosonic matter field that models certain collective matter excitations, also Hopfield’s
original formulation naturally reduces to a two-mode version for each |k| when modes
with different k and σ don’t couple [44]. The bosonic Bogoliubov transformation tech-
nique is, nevertheless, not restricted to two modes as long as the mode couplings remain
bilinear.

Let â and â† represent the annihilation and creation operators for the light mode, and
b̂ and b̂† represent the (bosonic) annihilation and creation operators for the matter mode.
Then, the two-mode Hopfield Hamiltonian is

Ĥab =~ωa
(
â†â+

1

2

)
+ ~ωb

(
b̂†b̂+

1

2

)

+ i~ωbλ
(
â+ â†

)(
b̂− b̂†

)
+ ~ωbλ2

(
â+ â†

)2
(7.7)

It is possible to diagonalize Ĥab directly, but it is instructive to perform the diagonal-
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ization in two steps: first, a single-mode Bogoliubov rotation to get rid of the quadratic
term, and secondly a two-mode Bogoliubov rotation on the resulting Hamiltonian that
now only have linear terms. The transformation of a general single-mode Hamiltonian
and a general two-mode Hamiltonian with no self-quadratic terms are shown in Box 1
and Box 2, respectively.

BOX 1

SINGLE-MODE QUADRATIC HAMILTONIAN

1
~Ĥ = wâ†â+ wââ† + vâ†â† + vââ, w, v ∈ R

⇒ 1
~H̃ = ω̃

(
ã†ã+

1

2

)

ω̃ = 2Ω = 2
√
w2 − v2, condition: w2 > v2

[
ã
ã†

]
= U

[
â
â†

]
,

[
â
â†

]
= U−1

[
ã
ã†

]

U =

[
u1 u2

u2 u1

]
, U−1 =

[
u1 −u2

−u2 u1

]

u1 =

√
w + Ω√

2Ω
, u2 =

√
w − Ω√

2Ω
, constraint: |u1|2 − |u2|2 = 1

STEP 1: The Hamiltonian for the light mode only can be written in matrix form as

Ĥa

~
=
[
â† â
][ωa

2
+ ωbλ

2 ωbλ
2

ωbλ
2 ωa

2
+ ωbλ

2

][
â
â†

]
= 〈a|M |a〉 . (7.8)

A Bogoliubov transformation takes the matrix M to its diagonal form and ensures that
the new eigenoperators obey bosonic commutation relations. The details will not be pre-
sented here, but the results from a general single-mode transformation with real matrix
elements are found in Box 1. Note that a standard matrix diagonalization of M would
not automatically ensure bosonic commutation relations.
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The diagonal form of the light mode Hamiltonian is

Ĥã = ~ω̃a
(
ã†ã+

1

2

)
,

ω̃a =
√
ω2
a + 4ωaωbλ2,

(7.9)

(7.10)

and the diagonal-form operators are

ã = u1â+ u2â
†,

ã† = u2â+ u1â
†,

(7.11)

(7.12)

with the coefficients obeying the constraint |u1|2−|u2|2 = 1, which ensures the bosonic
commutation reltation

[
ã, ã†

]
= 1. The inverse transformation gives the bare operators

in terms of the new ones as,

â = u1ã− u2ã
†,

â† = −u2ã+ u1ã
†.

(7.13)

(7.14)

Equation (7.10) displays how the resonance frequency for the light mode is shifted
due to the light-matter interaction. Hence, if the bare frequencies of the two modes
were initially tuned ωa = ωb ≡ ω0, the light-matter interaction will make them slightly
detuned ω̃a − ω0 ≈ 2ω0λ

2, assuming 4λ2 � 1. The detuning is approximately the
strength of the diamagnetic (A2) term and can, in general, be neglected when λ is small,
e.g., in the strong-coupling regime.

A common gauge-related misconception is a belief that this light-matter-induced de-
tuning could be avoided in the dipole gauge where the quadratic term instead involves
the matter operators. This is not true, and performing an analogous Bogoliubov trans-
formation on the matter mode in the dipole gauge would instead give a shifted matter
frequency ω̃b =

√
ω2
b + 4ωaωbλ2. Here, we also see another example of the benefit

of writing the light-matter coupling parameter in terms of the coulomb-dipole-gauge
invariant parameter λ which makes the expressions in the two gauges symmetric with
respect to the resonance frequencies.

Interestingly, ω̃a (ω̃b) coincides with the resonance of the upper polariton found in
the limit k → 0 in the case of bulk polaritons, which additionally defines the upper edge
of the polaritonic gap [141]. That is: a region of forbidden frequencies for light prop-
agation. This region has been interpreted as the so-called Reststrahlen band, wherein
the real part of the permittivity becomes negative, thus forbidding the propagation of
plane waves [44]. Consequently, the results of this partial diagonalization of the Hop-
field Hamiltonian provide a connection between the opening of a polaritonic gap and
the effect of the diamagnetic term in the light-matter interaction Hamiltonian.
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BOX 2

TWO-MODE BILINEAR HAMILTONIAN

1
~Ĥ = w11

(
â†â+ ââ†

)
+ w22

(
b̂†b̂+ b̂b̂†

)
+ w12

(
â†b̂+ b̂â†

)
+ w∗12

(
âb̂† + b̂†â

)

+v12

(
âb̂+ b̂â

)
+ v∗12

(
â†b̂† + b̂†â†

)
, w11, w22 ∈ R, w12, v12 ∈ C,

⇒ 1
~H̃ = ωA

(
A†A+

1

2

)
+ ωB

(
B†B +

1

2

)
.

ωA = 2

√
C1/2 +

√
C2

1/4− C2, ωB = 2

√
C1/2−

√
C2

1/4− C2,

C1 = w2
11 + w2

22,

C2 = w2
11w

2
22 − 2w11w22

(
|w12|2 + |v12|2

)

+|w12|2 + |v12|2 − 2|w12|2|v12|2.




A
B
A†

B†


 = T †




â

b̂
â†

b̂†


,




â

b̂
â†

b̂†


 = JTJ




A
B
A†

B†


.

T4×4 =

[
T1 T2

T ∗2 T ∗1

]
, J4×4 =

[
12×2 0

0 −12×2

]
,

T1 =

[
c1 d1

c2 d2

]
, T2 =

[
c∗3 d∗3
c∗4 d∗4

]
.

c =
[
c1 c2 c3 c4

]T

=
vA
‖vA‖p

, d =
[
d1 d2 d3 d4

]T

=
vB
‖vB‖p

,

where vA,B are the eigenvectors corresponding to ωA,B and the paranorm is

‖v‖p = v†Jv = |v1|2 + |v2|2 − |v3|2 − |v4|2
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STEP 2: The transformation above presents the light mode Hamiltonian in its (coulomb
gauge) diagonal form, including the effects of the A2 term that arises due to the light-
matter interaction. This shifted light mode with resonance frequency ω̃a interacts with
the matter mode with the coupling parameter λ̃ = λ(u1 − u2), where λ is the cou-
pling parameter from Eq. (7.7), and u1 and u2 are the coefficients from the single-mode
transformation above.

Analogous to the single-mode Hamiltonian, we can write the two-mode Hamiltonian
in matrix form,

Ĥãb

~
=
[
ã† b̂† ã b̂

]1

2




ω̃a iωbλ̃ 0 −iωbλ̃
−iωbλ̃ ωb −iωbλ̃ 0

0 iωbλ̃ ωa −iωbλ̃
iωbλ̃ 0 iωbλ̃ ωb







ã

b̂
ã†

b̂†


. (7.15)

Following the prescription in Box 2, the solution can be found as

Ĥpol = ~ω+

(
P̂ †+P̂+ +

1

2

)
+ ~ω−

(
P̂ †−P̂− +

1

2

)
,

ω± =
1√
2

√
ω̃2
a + ω2

b ±
√(

ω̃2
a − ω2

b

)2
+ 16ω̃aωb|iωbλ̃|2,

(7.16)

(7.17)

with the polaritonic annihilation operators given by

P̂+ = c1ã+ c2b̂+ c3ã
† + c4b̂

†,

P̂− = d1ã+ d2b̂+ d3ã
† + d4b̂

†.

(7.18)

(7.19)

The coefficients ci and di with i = {1, 2, 3, 4} are often referred to as the Hopfield co-
efficients in the strong-coupling community. Here, the coefficients are allowed to be
complex and they obey the constraints |x1|2 + |x2|2 − |x3|2 − |x4|2 = 1 for x = {c, d}.
These constraints ensure that the new polaritonic operators obey the bosonic commuta-
tion relations

[
P̂+, P̂

†
+

]
=
[
P̂−, P̂

†
−
]

= 1. Continuing, the inverse transformation gives

ã = c∗1P̂+ + d∗1P̂− − c3P̂
†
+ − d3P̂

†
−,

b̂ = c∗2P̂+ + d∗2P̂− − c4P̂
†
+ − d4P̂

†
−.

(7.20)

(7.21)

In the next chapter, we want to find expressions for the polaritonic decay rates using
a Hopfield model for the plasmon-microcavity system from Paper D and the master
equation formalism.
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Chapter 8
Polaritonic decay rate asymmetry

Technical advancements over the last decade have significantly improved our control
over the interaction between light and matter. As discussed in Section 1.2, photons
interacting strongly with a material resonance form hybrid light-matter states called po-
laritons. Polaritons formed due to strong and ultrastrong light-matter coupling have
gained significant attention because of their intriguing properties and their potential to
modify and manipulate material properties, such as conductivity [142], energy trans-
port [143], photochemistry [144], and chemical reaction rates [145, 146].

Despite intense research, the dissipative properties of polaritons in the strong and
ultrastrong coupling regimes remain less explored. In Paper D, we experimentally and
numerically demonstrate a linewidth asymmetry in a plasmon-microcavity system that
challenges previous expectations of equal line widths at zero detuning [21, 147, 148].
According to previous descriptions of polaritons formed in the strong-coupling regime,
the decay rates of both upper and lower polaritons are expected to equal the average of
the uncoupled decay rates [21] when the light-matter system is tuned on resonance. A
linewidth asymmetry only occurs at nonzero detuning [147].

Asymmetric linewidths have been previously observed in experiments on exciton-
polaritons [149–151]. Several theoretical studies performed in the 90s attributed this
to disorder and motional narrowing [149, 151–156]. Linewidth asymmetries continue
to be observed in modern experiments [18, 150, 157–159], including the experiments
presented in Paper D. These asymmetries are often attributed to the disorder proposed in
the earlier theoretical studies. However, the model system in Paper D is homogeneous
under the effective Lorentzian-permittivity approximation of the collective nanoparti-
cle response and thus is disorder-free. Our results, moreover, suggest that the observed
linewidth asymmetry is a general classical electromagnetism phenomenon that could
be observed in other experimental platforms whose matter components can be approxi-
mated by a Lorenztian permittivity.

Even though the method used in Paper D can determine the linewidths without
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detailed knowledge about the system’s microscopic properties and refrains from phe-
nomenological descriptions such as non-Hermitian Hamiltonians based on coupled-
oscillator models. The study left open questions about the meaning of zero detuning
and the connections to the light-matter interaction terms arising in a quantum mechan-
ical description. For example: In Paper D, it was found that the interband transitions
(IBTs) in the gold mirrors enhanced the linewidth asymmetry by broadening the upper
polariton for higher angles and coupling strengths where they start to overlap spectrally.
However, considering mirrors without IBTs showed that the asymmetry persists at zero
detuning, but now, the polaritons share the same linewidth at a higher detuning1. More-
over, Paper D showed that the linewidth asymmetry also remains in the case of bulk
polaritons, and in this case, it is found that the polaritonic linewidths become equal
when the detuning equals the frequency shift associated with the polaritonic gap.

The preliminary results presented in Section 8.3 below display our efforts to provide
insights into these questions from a quantum perspective. In contrast to a classical
description based on Maxwelll’s equations, a quantum description has the power to
study the effects of different physical processes separately, by choosing which coherent
and incoherent interactions to include. The former corresponds to the interaction terms
included in the Hamiltonian, and the latter corresponds to dissipation channels included
in an open quantum system treatment. This study was mainly developed in parallel
with the study presented in Paper D and guided us in the discussions. As the quantum
description builds on the study in Paper D, the model plasmon-microcavity system will
first be briefly introduced below.

8.1 A model system for cavity-polaritons
The experimental platform considered in Paper D was constituted by an array of gold
nanodisks sustaining localized surface plasmons in a Fabry–Pérot microcavity. The
setup is shown schematically in Fig. 8.1(a). From an experimental perspective, this is a
unique platform for cavity-polaritons as it has the potential to span all coupling regimes
due to the large and tunable oscillator strength of the plasmonic nanoparticles, and the
tunability of the collective coupling to the cavity mode through changes in the pitch of
the array, and the diameter of the nanoparticles. Figure 8.1(c) shows experimental data
for the described system for varying pitch Λ.

The localized surface plasmon modes in the nanoparticles will form collective modes
when organized in an array. Depending on the pitch Λ, these modes can display a com-
plex mode structure [160, 161]. Here and in Paper D, we are interested in a regime
where the array sustains a distinct collective bright mode that can be described by an ef-
fective permittivity composed of a single Lorenztian. This was confirmed in Paper D by

1See Fig. S13 in the supplementary material to Paper D [14].
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(c)(b)(a)

Figure 8.1: (a) Schematic illustration of the plasmonic nanoparticle array outside [top
panel] and inside [bottom panel] the cavity. (b) Numerical simulations of the reflection
spectrum from the plasmonic nanoparticle array [top panel] and the plasmon-micro cav-
ity system [bottom panel]. (c) Experimental reflection spectra for increasing coupling
strength (∝ 1/Λ). The figures are adapted from Paper D [14].
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a comparison between exact FDTD simulations and a transfer-matrix-method (TMM)
using an effective permittivity2. The collective mode of the particles outside the cavity
is shown in the top panel of Fig. 8.1(b). When the particle array is placed inside a reso-
nant or near-resonant cavity, the two modes hybridize and one can see the formation of
two distinct polaritons, as shown in the bottom panel of Fig. 8.1(b).

8.2 Quantum description
The plasmon-microcavity system described above can be modeled by a simplified two-
mode Hopfield Hamiltonian. The first mode represents the first-order Fabry–Pérot mode
of the cavity, and the second mode represents the collective bright mode of the plas-
monic nanoparticle array. Tuned in resonance, the coupling between these modes will
be the dominant coupling mechanism in the system.

Letting the cavity and plasmon modes be represented by the pairs of bosonic an-
nihilation and creation operators â, â†, and b̂, b̂†, respectively, the two-mode Hopfield
Hamiltonian introduced in Eq. (7.7) can be written as

Ĥhop =~ωc
(
â†â+

1

2

)
+ ~ω0

(
b̂†b̂+

1

2

)
(8.1)

− i~gC
(
â+ â†

)(
b̂− b̂†

)
+ ~

g2
C

ω0

(
â† + â

)2

. (8.2)

The first two terms describe the bare evolution of the cavity mode with resonance fre-
quency ωc and the plasmonic mode with resonance frequency ω0, respectively. The
third term describes the light-matter coupling with the Coulomb gauge coupling strength
gC ≡ ω0λ, with λ being the gauge-invariant coupling strength discussed in Section 7.1.
In this system, λ will be proportional to the cavity field amplitude and the collective
polarization field of the plasmonic nanoparticles. The last term is the A2 term. By
keeping the A2 term and refraining from the RWA, this Hamiltonian is suitable for the
ultrastrong-coupling regime.

The polaritonic resonance frequencies ω± are given by Eq. (7.17). Expressed in
terms of the Coulomb gauge coupling strength gC they are

ω± =
1√
2

√
ω̃2
c + ω2

0 ±
√(

ω̃2
c − ω2

0

)2
+ 16ω0ωcg2

C . (8.3)

with ω̃c =
√
ω2
c + 4ωc

ω0
g2
C being the shifted cavity frequency due to the A2 term, as

explained in Section 7.2. The shift of the cavity frequency due to A2 makes the ini-
tially tuned system, ωc = ω0, detuned by the amount δω = (ω̃c − ω0)|ωc=ω0

. For

2See Paper D for details on the theoretical methods.
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4g2
C/(ωcω0) � 1, this detuning is δω ≈ 2g2

C/ω0. Interestingly, this value coincides
with the polaritonic gap found for bulk polaritions [141] in a classical description. But,
in the case of the polaritonic gap for bulk polaritons, the shift is found in the material
resonance ω̃0 in the limit k → 0. The behavior of the corresponding polaritonic decay
rates obtained in this quantum description will be studied in the next section.

8.3 Decay rate asymmetry in the open Hop-
field model

The polaritonic decay rates associated with the dressed eigenmodes of the Hopfield
model presented above can be found within the Born and Markov approximations by
employing the Lindblad master-equation formalism introduced in Chapter 3. We are
interested in investigating the dissipative properties of the polaritons in the strong and
ultrastrong-coupling regimes. In particular, we are interested in the effects of approx-
imations made in the light-matter interaction Hamiltonian. Therefore, we employ the
dressed master equation for bosonic modes introduced in Section 3.3.

The dressed master equation for the two polaritonic modes is given by Eq. (3.13)
with the bare modes labeled by n = {c, 0} for the cavity and plasmon modes, respec-
tively, and the dressed modes labeled by m = {+,−}:

˙̂ρ(t) = − i
~

[
ĤHop, ρ̂(t)

]
+
[
Γc(ω+) + Γ0(ω+)

]
D[P̂+]ρ̂

+
[
Γc(ω−) + Γ0(ω−)

]
D[P̂−]ρ̂,

with the superoperator D[ô]· = ô · ô† − 1
2
{ô†ô, ·} having the standard Lindblad form.

Recalling the relationship Γn(ωm) = γn(ωm)|cnm|2 given in Eq. (3.16), the polaritonic
decay rates can be identified as

Polaritonic decay rates:
γ+ = γc(ω+)|cc+|2 + γ0(ω+)|c0+|2,
γ− = γc(ω−)|cc−|2 + γ0(ω−)|c0−|,

(8.4)
(8.5)

where the coefficients |cc±| and |c0±| are given by Eq. (3.15),

cc± = 〈0,±|â+ â†|1,±〉 , (8.6)

c0± = 〈0,±|−i(b̂− b̂†)|1,±〉 . (8.7)

The states |nex,±〉 are dressed states containg nex = {0, 1} excitations in the polaritonic
modes labeled by {+,−}. The latter equation is obtained with the system operator
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(ŝn+ ŝ†n) = −i(b̂− b̂†), interacting with the environment. This choice is consistent with
the form of the Hamiltonian in Eq. (8.1).

The frequency-dependent decay rates γn(ω) = 2πDn(ω)|κn(ω)|2, n = {c, 0} are
determined by the density of states Dn(ω) and the coupling to the environment with
strength κn(ω), assuming local white noise3. Evaluated at the bare resonance frequen-
cies, they correspond to the bare decay rates: γc(ωc) = γc, and γ0(ω0) = γ0. In the
following, it will be assumed that the decay rates γn(ω) have the same values at the two
resonances, γc(ω±) = γc and γ0(ω±) = γ0. As in Paper D, γc is the decay rate of the
bare cavity and γ0 is the intrinsic loss of the plasmon mode. In free space, the total
decay rate of the bare plasmon mode would be given by γ = γr + γ0 where γr is the
radiative decay rate, that is proportional to the particle’s oscillator strength [14]. How-
ever, inside the cavity, the radiative decay of the plasmon mode mainly occurs through
the coupling to the cavity4. Thus, the radiative decay to modes other than the cavity is
neglected. Nevertheless, the master equation formalism allows for absorbing additional
decay channels into the parameter γ0 if the system operators involved in the decay pro-
cess are the same.

In Fig. 8.2, the polaritonic decay rates are shown as a function of the cavity-emitter
detuning. The results obtained making the RWA (dash-dotted curves) again agree with
the expectation of equal decay rates at zero detuning. The decay rates of the full Hop-
field Hamiltonian (solid curves), on the other hand, display a large decay rate asymmetry
at zero detuning. Instead, they cross at a non-zero detuning. It is tempting to attribute
the crossing at a non-zero detuning to the A2 related shift of the cavity resonance δω.
However, as is clearly illustrated by the vertical dashed-dotted line in Fig. 8.2, this shift
only accounts for a small fraction of the detuning for the new crossing point with this set
of parameters, even though a considerable coupling strength (gC/ω0 = 0.15) was cho-
sen. Empirically varying the values of the bare decay rates show that the new crossing
point strongly depends on the difference γc−γ0, but no exact parameter dependence was
determined. Similar observations were made in Fig. S13 in the supplementary material
to Paper D with fully classical caluclations.

Figure 8.3 instead shows the polaritonic decay rates γ+ and γ− for increasing cou-
pling strength gC at zero detuning ωc = ω0. The results are obtained with Eqs. (8.4) and
(8.5) using the full Hopfield Hamiltonian (8.1) [Fig. 8.3(a) (solid curves)], including
all light-matter interaction terms, and within the RWA [Fig. 8.3(b) (solid curves)]. The
decay rates are normalized by the average of the bare decay rates, γavg = (γc+γ0)/2, to
illustrate the emergence of a linewidth asymmetry that deviates from previous strong-
coupling predictions. The dash-dotted curves in both panels correspond to the exclusion
of the A2 term.

3See Section 3.3
4This is the same argument as the Purcell effect in the weak-coupling regime, which leads to Purcell

enhancement of the radiative decay in the resonant case.
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Figure 8.2: The decay rates γ+ and γ− as a function of the cavity-plasmon detuning.
The decay rates obtained with the full Hopfield Hamiltonian (solid curves) display a
large linewidth asymmetry at zero detuning and equal linewidths at negative detuning.
On the other hand, the decay rates obtained within the RWA and neglecting the A2

term (dash-dotted curves) display equal line widths at zero detuning, in agreement with
previous expectations in the strong-coupling regime. The vertical dashed-dotted line
marks the shift of the cavity frequency δω, due to the A2 term. The coupling strength
used to produce this figure was gC/ω0 = 0.15, the other parameter was the same as in
Fig. 8.3 [ωc = ω0, γ0/ω0 = 0.17,γc/ω0 = 0.08].

The results in Fig. 8.3(b) show that making the RWA gives equal polaritonic linewidths
at all coupling strengths. This result confirms the previous predictions in the strong-
coupling regime [21, 147] and can be understood by the Hopfield coefficients being
equal within the RWA, |cc±|2RWA = |c0±|2RWA = 1/2. The latter corresponds to the
polaritons being equal mixtures of the light and matter modes at zero detuning, which
agrees with the standard descriptions of polaritons within the RWA5. However, Fig. 8.3(a),
which is obtained including all light-matter interaction terms, contrarily demonstrates a
linewidth asymmetry that is very sensitive to changes in the coupling strength. The
results show that the asymmetry can be significant at coupling strengths before the
ultrastrong-coupling regime (gC/ω0 < 0.1), similar to the results presented in Paper
D. However, strangely enough, the behaviors of the two polariton branches are inverted,
with the upper polariton taking the role of the lower polariton and vice versa. The dis-
crepancy between the two descriptions could be understood by considering a fully plas-

5Thus, this result further supports the argumentation about labeling the different light-matter coupling
regimes by the level of approximation posed in Section 2.3.3
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Figure 8.3: Plots of the polaritonic decay rates γ+ and γ−, corresponding to the decay of
the upper (UP) and lower (LP) polaritons, respectively. Panel (a) shows the decay rates
found with the full Hopfield Hamiltonian (solid curves), and neglecting A2 (dash-dotted
curves). Panel (b) shows the decay rates found in the RWA with A2 (solid curves),
and without A2 (dash-dotted curves). The parameters used for panel (a) and (b) were
ωc = ω0, γ0/ω0 = 0.17, and γc/ω0 = 0.08. These parameters correspond to Fig. 4
in Paper D and are realistic for the plasmon-cavity system. Panel (c) shows classical
results from Paper D. The behavior is qualitatively the same, but curiously the behaviors
of the polaritonic branches are reversed.
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monic system with two identical nanodisks. In this situation, the dissipative behaviors
of the two polaritons can be swapped, depending on their configuration. The change
of behaviors, in this case, occurs as the two coupled modes can align or anti-align in
phase, and depending on the configuration, one or the other is energetically more favor-
able, thus, changing the roles of the upper and lower polaritons. The translation of this
scenario to the Hopfield model could resolve the issue.

8.3.1 Outlook

The results presented in this work regarding the Hopfield diagonalization are consis-
tent with other works employing a quantum description of polaritons modeled with the
Hopfield model [57, 124, 162–164]. However, with the current numerical results, it is
hard to see if a similar phase dependence is absorbed in the parameters of the Hopfield
model, as in the classically described example of two coupled plasmons. The numer-
ical results also hide how the polaritonic decay rates depend on the bare decay rates
explicitly, as noted above. Therefore, it would be interesting to derive the Hopfield
coefficients explicitly, which in turn would additionally give analytical expressions for
the polaritonic decay rates expressed in the system parameters. The latter would help
elucidate the mechanism governing linewidth asymmetries in homogeneous systems,
without disorder. Expressions for the decay rates in terms of the Hopfield coefficients
are given at the end of this chapter.

It is also interesting to note that a similar behavior to the results in Fig. 8.2 has been
observed with exciton-polaritons [150]. In that case, the linewidth asymmetry at zero-
detuning was attributed to a cross-damping term in a phenomenological non-Hermitian
Hamiltonian. The fact that we can reproduce a similar asymmetry by just keeping the
full form of the Hamiltonian, could shine new light on their empirical study.

That being said, there is also an analog to cross-damping within the Lindblad master-
equation formalism. As was discussed in Section 3.2, dissipative coupling can arise
between different subsystems when they are coupled to the same environment. Thus,
the formalism presented here has the potential to be extended to such systems. On
this note, it would also be interesting to connect their cross-damping Hamiltonian to an
effective non-Hermitian Hamiltonian by neglecting the jump terms in a Lindblad mas-
ter equation. A systematic study, combining the effects of dissipative and coherent (as
presented here) light-matter interactions could elucidate the mechanism behind the dis-
sipative properties of polaritons in a broad range of polaritonic platforms, provided that
an appropriate Hamiltonian formulation can be motivated. Such systematic mapping
could then be used as a roadmap for engineering polaritonic resonances at will.
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Decay rates in terms of the Hopfield coefficients
A Bogoliubov transformation solves the considered two-mode Hopfield Hamilto-

nian. The eigenfrequencies were already given in Eq. (8.3) and the corresponding po-
lariton operators are given by Eqs. (7.18) and (7.19). But here, we are interested in the
inverse Bogoliubov transformation given by Eqs. (7.20) and (7.21), repeated here for
clarity,

ã = c∗1P̂+ + d∗1P̂− − c3P̂
†
+ − d3P̂

†
−, (8.8)

b̂ = c∗2P̂+ + d∗2P̂− − c4P̂
†
+ − d4P̂

†
−. (8.9)

Note that the annihilation operator ã is the rotated operator obtained after diagonalizing
the cavity part of Eq. (8.1). The bare cavity annihilation operator â is given by Eq. (7.13)
in terms of the single-mode Hopfield coefficient u1 and u2:

â = u1ã− u2ã
†. (8.10)

Employing Eqs. (8.8)-(8.10) it is possible to evaluate the expectation values in Eqs. 8.6
and 8.7 analytically to obtain the decay rates in terms of the Hopfield coefficients

γ+ = γc(ω+)|u1 − u2|2|c∗1 − c∗3|2 + γ0(ω+)|c∗2 + c∗4|,
γ− = γc(ω−)|u1 − u2|2|d∗1 − d∗3|2 + γ0(ω+)|d∗2 + d∗4|.

(8.11)
(8.12)

The single-mode coefficients u1, u2 are given explicitly in Box 1 in Chapter 7. With
the Hopfield Hamiltonian used here, the scalar numbers w and v can be identified as
w = ωc/2 + g2

C/ω0 and v = g2
C/ω0. Thus, the absolute value of the difference can be

evaluated as |u1 − u2|2 = [1 + 4g2
C/(ω0ωc)]

−1/2. Explicit expressions for the Hopfield
coefficients {c∗i , d∗i }, i = 1, 2, 3, 4, expressed in terms of the system parameters, are
attainable with the Bogoliubov transform outlined in Box 2 in Chapter 7. It will be an
interesting investigation for future work to see if these expressions can provide deeper
insights into the exact parameter dependencies governing the observed behaviors of the
polaritonic decay rates. For example, such an investigation could elucidate the new
detuning condition where the decay rates are equal, as well as provide insight into the
potential for engineering resonances that are narrower, or broader than the bare decay
rates.
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Chapter 9
Concluding remarks

This thesis has presented a theoretical exploration of the intriguing effects of light-
matter interactions with identical emitters of light in new regimes of cavity QED that
are attainable in state-of-the-art experiments. In particular, this thesis has focused on the
few-emitter regime, where correlations between the emitters and the field are tractable,
and on the exciting properties of polaritons formed in the strong and ultrastrong cou-
pling regimes. As the interaction with the environment is unavoidable in any realistic
setting, all the presented works have taken an open-quantum-system approach to include
the effects of dissipation.

Throughout the appended Papers A to D, it is clear that the environment and dissi-
pation play a key role in settling the system’s behavior. Notably, the results of Paper A
and Paper C are two illustrative examples where dissipation does not destroy the corre-
lations that form between the emitters and the light field, contrary to common beliefs.
In Paper A, the competition between coherent external driving, collective coupling to
N emitters, and dissipation to the environment leads to a fascinating interference effect
with multiphoton absorption in the cavity that is directly related to the emitter num-
ber. This work also shows that including a small spontaneous emission rate changes
the behavior of the system in the weak-drive regime. With spontaneous emission, the
response in this regime is that of two lossy coupled oscillators. However, without it,
emitters would act as perfect mirrors up to N photons, which would extend the behav-
ior seen in region II in Fig. 5.4 to the weak drive regime. In Paper C, on the other hand,
it is not interference but the fact that coherent states are eigenstates to the decay operator
â that keeps the correlations between the emitters and the field. In this case, dissipation
stabilizes the system, driven far from equilibrium, in one of the parallel quasiharmonic
ladders corresponding to a different mS projection of the collective pseudospin.

The work in Paper D has a different character, dealing with an essentially classical
system, but is the work that dives the deepest into losses. In this work, we show the
potential for engineering of narrow or broad polaritonic resonances that can have very
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9. Concluding remarks

different properties than the bare constituents that form them. Nevertheless, even though
our study shows that linewidth asymmetry is a classical electromagnetism phenomenon,
the quantum description of the polaritonic system given in Chapter 8 provides a compli-
mentary perspective that showcases the close interconnection between light and matter
interaction and the dissipative properties of polaritons.
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Büchler, T. Lahaye, and A. Browaeys, “Observation of a symmetry-protected
topological phase of interacting bosons with Rydberg atoms”, Science 365, 775–
780 (2019).

[62] J. Rui, D. Wei, A. Rubio-Abadal, S. Hollerith, J. Zeiher, D. M. Stamper-Kurn,
C. Gross, and I. Bloch, “A subradiant optical mirror formed by a single structured
atomic layer”, Nature 583, 369–374 (2020).

[63] M. Zanner, T. Orell, C. M. F. Schneider, R. Albert, S. Oleschko, M. L. Juan,
M. Silveri, and G. Kirchmair, “Coherent control of a multi-qubit dark state in
waveguide quantum electrodynamics”, Nature Physics 18, 538–543 (2022).

[64] Z. Wang, H. Li, W. Feng, X. Song, C. Song, W. Liu, Q. Guo, X. Zhang, H. Dong,
D. Zheng, H. Wang, and D.-W. Wang, “Controllable Switching between Super-
radiant and Subradiant States in a 10-qubit Superconducting Circuit”, Physical
Review Letters 124, 013601 (2020).

[65] O. Katz, L. Feng, A. Risinger, C. Monroe, and M. Cetina, “Demonstration of
three- and four-body interactions between trapped-ion spins”, Nature Physics 19,
1452–1458 (2023).

[66] C. M. Holland, Y. Lu, and L. W. Cheuk, “On-demand entanglement of molecules
in a reconfigurable optical tweezer array”, Science 382, 1143–1147 (2023).

[67] N. B. Vilas, P. Robichaud, C. Hallas, G. K. Li, L. Anderegg, and J. M. Doyle, “An
optical tweezer array of ultracold polyatomic molecules”, Nature 628, 282–286
(2024).

[68] J. Heintz, N. Markešević, E. Y. Gayet, N. Bonod, and S. Bidault, “Few-Molecule
Strong Coupling with Dimers of Plasmonic Nanoparticles Assembled on DNA”,
ACS Nano , acsnano.1c04552 (2021).

[69] K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in
a plasmonic cavity at the single quantum emitter limit”, Nature Communications
7, ncomms11823 (2016).

80

https://doi.org/10.1103/PhysRevA.101.062112
https://doi.org/10.1103/PhysRevA.101.062112
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1126/science.aav9105
https://doi.org/10.1126/science.aav9105
https://doi.org/10.1038/s41586-020-2463-x
https://doi.org/10.1038/s41567-022-01527-w
https://doi.org/10.1103/PhysRevLett.124.013601
https://doi.org/10.1103/PhysRevLett.124.013601
https://doi.org/10.1038/s41567-023-02102-7
https://doi.org/10.1038/s41567-023-02102-7
https://doi.org/10.1126/science.adf4272
https://doi.org/10.1038/s41586-024-07199-1
https://doi.org/10.1038/s41586-024-07199-1
https://doi.org/10.1021/acsnano.1c04552
https://doi.org/10.1038/ncomms11823
https://doi.org/10.1038/ncomms11823


BIBLIOGRAPHY

[70] G. Zengin, M. Wersäll, S. Nilsson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Re-
alizing strong light-matter interactions between single nanoparticle plasmons and
molecular excitons at ambient conditions”, Physical Review Letters 114, 157401
(2015).

[71] M. Wersäll, J. Cuadra, T. J. Antosiewicz, S. Balci, and T. Shegai, “Observation
of Mode Splitting in Photoluminescence of Individual Plasmonic Nanoparticles
Strongly Coupled to Molecular Excitons”, Nano Letters 17, 551–558 (2017).

[72] J. M. Fink, R. Bianchetti, M. Baur, M. Göppl, L. Steffen, S. Filipp, P. J.
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