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A B S T R A C T

While modern merge techniques, such as 3-way and structured merge, can resolve textual conflicts automati-
cally, they fail when the conflict arises not at the syntactic, but at the semantic level. Detecting such semantic
conflicts requires understanding the behavior of the software, which is beyond the capabilities of most existing
merge tools. Although semantic merge tools have been proposed, they are usually based on heavyweight
static analyses, or need explicit specifications of program behavior. In this work, we take a different route
and propose SAM (SemAntic Merge), a semantic merge tool based on the automated generation of unit tests
that are used as partial specifications of the changes to be merged, and that drive the detection of unwanted
behavior changes (conflicts) when merging software. To evaluate SAM’s feasibility for detecting conflicts, we
perform an empirical study relying on a dataset of more than 80 pairs of changes integrated to common
class elements (constructors, methods, and fields) from 51 merge scenarios. We also assess how the four unit
test generation tools used by SAM individually contribute to conflict identification. Our results show that
SAM performs best when combining only the tests generated by Differential EvoSuite and EvoSuite, and using
our proposed testability transformations (nine detected conflicts out of 29). These results reinforce previous
findings about the potential of using test-case generation to detect conflicts as a method that is versatile and
requires only limited deployment effort in practice.
1. Introduction

Branching and merging are common practices in collaborative soft-
ware development. They facilitate effective teamwork, allowing devel-
opers to independently contribute to the same project. Still, branching
and merging come with costs, including the need to resolve conflicts
that are detected by merge tools when integrating code changes. De-
pending on project characteristics (Owhadi-Kareshk et al., 2019; Dias
et al., 2020), such merge conflicts occur often (Perry et al., 2001;
Mens, 2002; Zimmermann, 2007; Bird and Zimmermann, 2012; Kasi
and Sarma, 2013; Brun et al., 2013; Mahmood et al., 2020), even when
using more advanced merge tools (Apel et al., 2011, 2012; Cavalcanti
et al., 2017; Accioly et al., 2018; Cavalcanti et al., 2019; Tavares
et al., 2019; Shen et al., 2019) that explore language syntax and static
semantics (Wąsowski and Berger, 2023) to avoid spurious conflicts.

✩ Editor: Shane McIntosh.
∗ Corresponding author.

E-mail address: lmps2@cin.ufpe.br (L. Da Silva).
1 This relates two conflict terminologies: one based on the development phase in which a conflict is detected, and the other based on the language aspect

that causes a conflict. We use merge conflict and textual conflict as synonyms. Build conflict refers to syntactic and static semantic conflicts. Test and production
conflicts (and undetected ones) are referred as behavioral semantic conflicts. For brevity, hereafter we omit the ‘‘behavioral’’ term in spite of focusing only on
behavioral semantic conflicts in the paper.

While many merge conflicts are easy to fix, some of them can only
be fixed with significant effort and knowledge of the code changes
to be merged. This can negatively affect development productivity,
and even compromise software quality in case developers incorrectly
fix conflicts (Sarma et al., 2012; Bird and Zimmermann, 2012; Mc-
Kee et al., 2017). To avoid dealing with merge conflicts, developers
sometimes even adopt risky practices, such as rushing to finish changes
first (Grinter, 1996; Sarma et al., 2012) and partial check-ins (de Souza
et al., 2003). Similarly, partially motivated by the need to reduce
merge conflicts, development teams have been adopting techniques such
as trunk-based development (Adams and McIntosh, 2016; Potvin and
Levenberg, 2016; Henderson, 2017) and feature toggles (Bass et al.,
2016; Adams and McIntosh, 2016; Fowler, 2017; Hodgson, 2017).
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Although these practices might reduce the occurrence of merge
onflicts, there is no evidence that they are effective in resolving or
ven detecting test (Brun et al., 2013) and production conflicts, which
re only observed when running project tests and using the system. As
uch, they are more serious than merge conflicts, because they give rise

to software failures. In fact, some of the practices mentioned before
might even aggravate the costs of test and production conflicts, which
are special kinds of what we hereafter call semantic conflicts.1 To make

atters worse, we expect semantic conflicts to cost more than merge
onflicts, as they are often harder to detect and resolve, and might end
p negatively affecting users.

Resolving merge conflicts is often simpler, because it mostly involves
econciling incompatible independent textual changes in the same area
f a file. Semantic conflicts are harder to detect and fix, especially when
esolution occurs long after conflict introduction, because resolving
hem requires handling behavioral semantic incompatibilities — as when
he changes made by one developer affect a state element that is
ccessed by code contributed by another developer, who assumed a
tate invariant that no longer holds after merging. In such cases, textual
ntegration is automatically performed generating a merged program,
build is created with success for this program, but its execution leads

o unexpected behavior caused by unplanned interference between the
evelopers’ changes — the behavior of the integrated changes does not
reserve the intended behavior of the individual changes. For humans,
t can be hard to detect semantic conflicts because this often involves
nalyzing the effect of the execution of (potentially long) chains of
ethod calls. Horwitz et al. (1989) put this more formally: two contri-

utions (sets of changes) to a base program semantically conflict — that
s, interfere in an unplanned way — when the specifications they are
ndividually supposed to satisfy are not jointly satisfied by the program
hat integrates them.

To help reduce the costs associated with semantic conflicts, we need
erge tools that are able to detect them, going beyond textual line-

ased merge tools currently used in practice (Khanna et al., 2007).
revious work (Horwitz et al., 1989; Sousa et al., 2018) proposes
emantic merge tools that rely on static analysis and model checking for
etecting conflicts. Our previous study (Da Silva et al., 2020) proposes
nd assesses the use of unit test generation to reveal interference. The

initial results bring evidence of the potential of using tests to detect
semantic conflicts, but also show a number of limitations, including a
significant false-negative rate.

To address these limitations, we extend our previous work by
proposing and evaluating new techniques (testability and serialization
transformations) and integrating them into SAM (SemAntic Merge), a
semantic merge tool for Java that automatically generates unit tests
and use them as partial specifications of the changes to be merged,
with the aim of detecting semantic conflicts. SAM first applies a textual
merge tool to integrate the changes. In case no textual conflicts are
reported, SAM builds the four program versions associated with a
merge scenario — a quadruple (Base, Left, Right, Merge) formed by a

erge commit (Merge), its parents (Left and Right), and a Base commit;
he four program versions are needed to check our new proposed
onflict criteria. Optionally, SAM applies source code transformations
hat might increase program testability and feed the test generation tools
ith objects serialized during the execution of existing project tests.
hen, SAM applies four test generation tools: EvoSuite and Differen-
ial Evosuite (Almasi et al., 2017; Fraser, 2018), Randoop (Pacheco
t al., 2007), and Randoop Clean, an adapted version of Randoop we
ropose here. SAM then runs the generated tests against the four pro-
ram builds, collects test failure information, interprets that with our
nterference criteria heuristics, and finally reports detected conflicts.

To evaluate our tool, we perform an empirical study with a dataset
f 85 changes’ pairs from 51 software merge scenarios that integrate
hanges to the same method, constructor, or field declaration. These
cenarios come from open-source Java projects and are either mined by
ur scripts or used in previous studies (Cavalcanti et al., 2019; Sousa
t al., 2018; Barros Filho, 2017; Da Silva et al., 2020). We investigate
2

he following research questions:
• RQ1: Can we adopt unit testing to detect semantic conflicts? For
each merge scenario, we invoke SAM (which uses unit test gen-
eration tools) and check its effectiveness in detecting interference
following our test-based criteria;

• RQ2: What are the causes of failures reported by SAM? For the
scenarios in which SAM fails to detect an existing interference,
we manually analyze the causes of the failure. This sheds light on
how SAM and the underlying unit test generation tools could be
improved.

• RQ3: What is the effect of adopting different unit test generation
tools, and testability and serialization transformations? Since SAM
invokes different unit test generation tools on different versions
of executables (original, transformed, and serialized), we can
measure the effect of adopting each technique;

• RQ4: How efficient are unit test generation tools in detecting behavior
changes and related metrics? Since some conflicts might be chal-
lenging to detect, we assess whether the generated test suites can
detect general behavior changes. Furthermore, we also compare
Randoop and Randoop Clean, our extended version.

Our results show that SAM performs best when combining only the
ests generated by Differential EvoSuite and EvoSuite, and using our
roposed testability transformations (nine detected conflicts out of 29).
hese results reinforce our previous findings of the potential of using
est-case generation to detect semantic conflicts, as a method that is
ersatile and requires only limited deployment effort in practice, with-
ut needing explicit behavior specifications. Despite the low rate of true
ositives, the generated tests lead to only a few cases of false positives.
his suggests that semantic merge tools based on unit test generation,
s we propose here, can help developers detect semantic conflicts early,
voiding them to otherwise reach end users as failures. However, with
he current capacity of the test generation tools, developers cannot rely
olely on such semantic merge tools for detecting conflicts.

Our manual analysis of generated test suites lead to the iden-
ification of shortcomings of the existing tools. In line with those
hortcomings, we suggest three potential improvements, that involve
reating relevant objects required for the declarations holding the
onflict, and relevant assertions exploring the propagated interference.
or some false-negative cases, we identify and categorize improvements
hat could benefit unit test generation tools. Regarding the detection
f behavior changes between commit pairs, although EvoSuite is the
ost successful tool detecting 53% of all reported changes, there is no

ombination of tools that detects all reported behavior changes. As a
inal contribution, we provide our study sample as a dataset of merge
cenarios with source code, working executables (which are necessary
or running tests), and interference ground truth. This can be used to
un new studies with less effort and to replicate ours.

This study is an extension of our previous work (Da Silva et al.,
020). After our initial results on the detection of semantic conflicts
sing unit test generation tools, we focus on evaluating the effective-
ess of our technique combined with different improvements, such
s the generation of complex objects and the test generation process
ased on a target method. In summary, we can highlight the following
ontributions of our work:

• We propose and evaluate SAM, our semantic conflict detection
tool;

• We propose and evaluate the use of serialization regarding the
generation and use of required complex objects;

• New criteria for detecting semantic conflicts are introduced, com-
paring the unit test outputs of the four program versions in a
merge scenario;

• We present and evaluate Randoop Clean, a modified version of
Randoop;

• Finally, the dataset and scripts used to run this study (Online
Appendix, 2024) are available online, supporting replications and

new experiments.
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Fig. 1. A merge of two changes (each parent removed one of the highlighted lines)
hat are semantically conflicting.

The rest of the paper is organized as follows: Section 2 motivates
he problem under investigation here, while Section 3 presents SAM. In
ection 4, we present the methodology. Section 5 presents the results,
hich are further discussed in Section 6. Threats to the validity and

elated work are discussed in Sections 7 and 8 respectively. Finally, in
ection 9, we present our conclusions.

. Motivating example and background

To illustrate the notion of behavioral semantic conflict we ex-
lore in this paper, consider the example in Fig. 1. Each change in
his merge scenario independently aims to eliminate a redundancy in
he cleanText() method, namely the two calls to normalize-
Whitespace() whenever cleanText() is executed. The illustrated
class Text results from a merge that integrates the deletion change in
green (Line 6, say from a revision Left) with the deletion change in
red (Line 10, say from a revision Right). This example is inspired by a
Merge commit from the project Jsoup.2 The other code lines originate
from a Base revision, that is, the most recent common ancestor of Left
nd Right.3 As the source code in the line 8 separates the two changes
o be integrated, there is no textual merge conflict in this case, and we
leanly obtain the syntactically valid class in the figure. We can then
ompile, build, and execute it.

The primary purpose of the cleanText() method is to apply some
tring cleaning. For that, it calls additional methods to remove dupli-
ated words (Line 4), comments (Line 5), and normalize whitespace
Line 6). These calls were added in previous changes when developers
ndependently added calls to normalizeWhitespace() causing
he redundancy we just discussed. Someone may argue that these
edundant calls could have been avoided by establishing a good com-
unication channel between the involved developers, but that is often
ot in place.

Aiming to eliminate the redundancy, developers decide to eliminate
ne of the calls, but they unluckily do not pick the same call. While Left
emoves the method call in Line 6, Right removes the call in Line 10
see Fig. 1). As a result, after integrating these revisions, there is no
all left to normalizeWhitespace(), characterizing an undesired
nterference between the Left and Right revisions. This way, we might
ssume the occurrence of an infection, as the state of the target program
s incorrect (Fraser and Ammann, 2008).

To detect the just discussed conflict, different approaches can be
dopted, like careful code review practices and strong test suites. How-
ver, most semantic conflicts might escape to end users. In our example,
e would have to investigate whether the defect is in the individual

2 https://github.com/jhy/jsoup/commit/a44e18a.
3 For simplicity, we assume a single most recent common ancestor. With

o-called criss-cross merge situations in git, there could be more than one.
3

Fig. 2. A test case that reveals the interference in Fig. 1.

implementations of Left and Right, or in how one of them interferes
ith the other. This would require a non-superficial investigation that
reaks the abstraction boundaries established by the declarations of the
ethods called in cleanText().

To reduce this discussed difficulty and the costs associated with
emantic conflict detection and resolution, it is important to investigate
o what extent unit test generation tools could help to reveal the kind
f interference we illustrate here. The core idea we propose and assess
n this paper is the use of generated tests as partial specifications of the
ode revisions to be integrated — tests then partially capture the effect
f the changes in the revisions. This is the basis of SAM, the semantic
erge tool that we propose.

In our motivating example, SAM could detect the interference with a
est that explores the contents of the text field. For instance, suppose a
egression test generation tool (such as Randoop (Pacheco et al., 2007)
r EvoSuite (Almasi et al., 2017; Fraser, 2018), which are invoked
y SAM) generates the test in Fig. 2 when given the revision Left
s input. That test passes when executed against revision Left, which
eads to a single call to normalizeWhitespace() when executing
emoveDuplicatedWords() (Line 4 in Text class). With the input

llustrated in test1, when reaching Line 6, t.text stores a string
similar to the test input string in Line 4 but not having the extra
space character right before dog. Consequently, the assert successfully
evaluates. Executing this test case against revision Right, the test also
passes as there is a single call to normalizeWhitespace() (Line 6).
Finally, the same test case also passes when executed against revision
Base since it has two calls to normalizeWhitespace() (Lines 6 and
10). For this reason, passing in Base and in both parent revisions Right
and Left, we say that test1 partially reveals a behavior that should be
preserved by both revisions.

However note that test1 fails when executed against revision
Merge in Fig. 1. The normalizeWhitespace() method ends up not
being called when executing cleanText(), as explained before. This
way, test1, an original behavior expected to be preserved by both
developers, is not satisfied in the merged version, revealing that the
changes in Right and Left interfere (with respect to Base) (Binkley et al.,
1995; Da Silva et al., 2020). This is essentially one of the criteria that
SAM applies for automatically detecting interference by generating and
executing tests, as detailed in the rest of the paper. Making sure that
interference actually leads to a semantic conflict cannot be automati-
cally checked in general because it involves understanding developers’
intentions or proving that implementations satisfy specifications (in
this case, specifications of the changes, which are hardly available in
public repositories). However, for simplicity, hereafter we use both
terms interchangeably and distinguish only where necessary for extra
clarity.

2.1. Background

Unit test generation tools like Randoop (Pacheco and Ernst, 2007)
and EvoSuite (Fraser and Arcuri, 2012) create tests following two steps:
test setup generation and assert generation. While the first step is respon-
sible for creating, initializing, and exercising objects required for the
test, the second step creates assertions that check the test’s expected

results.

https://github.com/jhy/jsoup/commit/a44e18aa3c1fcd25a68a5965f9490d8f7d026509
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Regarding the first step, Randoop generates sequences of calls by
andomly selecting the methods and constructors from the class under
est. The arguments for such operations are also randomly selected from
pool of primitive type values and objects previously created through

equences. A sequence can group one or more statements: method calls
or variable declarations. Each statement has two elements: a call for a
method or constructor (including arguments that reference previously
generated statements) and an assignment that stores the value returned
by each call. EvoSuite, like Randoop, also starts from randomly gener-
ated test suites; however, it relies on genetic algorithms to evolve the
test suites to optimize a specific goal, such as higher code coverage.
This way, each test suite is evaluated based on a fitness criterion, while
the fittest suites undergo mutations or crossovers, generating new tests.
This process is repeated until EvoSuite finds a test suite that satisfies
the target fitness criteria or the time budget is over.

Concerning the assert generation step, Randoop generates Java asserts
which establish whether the test passes or fails. Such asserts check
specific states held by an object, or whether exceptions are raised, for
example. As a check is always associated with a specific sequence index,
the check must be executed just after the related sequence. So, if there
is a check at the index i, this check must be performed just after the end
of the i-th sequence. EvoSuite adopts a similar approach by exploring
the values returned from executing method sequences. EvoSuite can
further calculate a reduced set of the generated assertions, whereas
Randoop generates assertions that check basic and general contracts.
A contract expresses invariant properties that hold both at entry and
exit from a call; it checks whether the resulting call values conform
with its specification.

3. Detecting semantic conflicts

This section presents the solutions and techniques we propose to
detect semantic conflicts. Initially, we motivate and introduce SAM,
our semantic merge tool based on unit test generation tools. Next, we
present different techniques, like the use of testability transformations
and serialization, that we explore aiming to enhance the potential of
detecting conflicts. Finally, we present Randoop Clean, our extended
version of Randoop.

3.1. SAM: SemAntic merge tool based on unit test generation

Detecting semantic conflicts, as motivated in Section 2 is a complex
task, not supported by current merge tools. Aiming to support develop-
ers in actively detecting these conflicts, we present SAM, our semantic
merge tool based on unit test generation (Da Silva et al., 2020). The
essence of SAM is to generate and execute tests for a given merge
scenario (quadruple of Base, Left, Right, and Merge commits). These
tests are executed over the different commits of a merge scenario, and
after interpreting their results, the tool reports if a semantic conflict is
detected.

SAM can be called right after a successful textual merge is per-
formed. With the resulting merge scenario, SAM invokes unit test
generation tools to generate test suites exploring the changes that have
just been textually integrated. Next, SAM executes the generated suites
in the different commits of a scenario, and analyzes the test results
based on a number of heuristics, reporting conflicts accordingly. We
explain in detail our heuristics later in Section 3.1.5. If a conflict is
detected, the tool warns developers about its occurrence, informing the
class and methods involved in the conflict. Next, we present in detail
how the Java-Maven version of SAM works and its different steps (see
4

the SAM’s workflow area in Fig. 5). e
3.1.1. Starting point
SAM is called when a merge is in progress in a local git client.4 If no

erge (textual) conflict occurs, SAM is invoked to verify the occurrence
f semantic conflicts involving the parent commits’ contributions. On
he other hand, if merge conflicts are reported, SAM is not called since
hese conflicts would require manual fixes by the integrator, eventually
eading to new changes not related to the original parent commits.
or merge scenarios classified as fast-forwards, SAM does not take any
ction, leaving the default merge tool to lead the integration process.
nce SAM is called, the first action is to collect the commits involved in

he merge scenario. For that, the tool gets the Merge commit hash from
he head of the current branch, while the Left, Right and Base commit
ashes are taken by calling further git commands. After collecting these
erge scenario information, the tool advances to the next step, when

he parent commits’ contributions are explored and mined.

.1.2. Selecting mutual changes on same class elements
In this step, the tool explores the changes performed by the par-

nt commits, aiming to collect mutually changed elements (methods,
onstructors, or field declarations). We assume that the chances one
eveloper’s contributions unexpectedly affect others might be higher
nder such situations, as these changes might modify, for example, the
ame variables, changing a method behavior in undesired ways. For
hat, using DiffJ,5 SAM collects the set of Java class elements changed
y each parent commit. If at least one element is changed in both
arents, the tool moves to the next step. Otherwise, the textual merge
peration continues without applying any further steps in its usual
orkflow.

.1.3. Generating executable files
Since SAM invokes unit test generation tools that rely on test

xecution as part of the generation process, it must feed such tools with
xecutable versions of the target code we want to assess.6 For that, SAM
enerates one executable version of the system for each commit of the
erge scenario (Base, Left, Right, and Merge commits). Executables of all

ersions of the system are required because SAM detects conflicts by
omparing the results of the tests when executed against the different
ersions.

SAM performs a sequence of checkouts for each commit hash to
enerate the associated executables. This way, for each target commit,
AM calls the build manager to compile the code, resulting in a JAR file
reated and released on the target directory of the project. pom.xml file.
iming to increase the testability of the target code under analysis, SAM
dopts extra techniques like the adoption of testability and serialization
ransformations, which refine the just described build process. But we
nly explain these two techniques in Sections 3.2 and 3.3, respectively.

.1.4. Generating and executing test suites
After collecting the mutually changed elements and the associated

xecutables as explained in the two previous sections, SAM generates
nd executes test suites.

The generation is driven by the classes that contain the mutually
hanged elements. This way, SAM invokes each unit test generation
ool once for each parent commit (Left and Right), as these commits
re responsible for introducing the changes that could be conflicting
n the Merge commit. If methods or constructors are mutually changed,
AM might further drive the generation of test suites based on these

4 Currently, the tool is invoked when the post-merge hook is actived;
hat is a Git feature to execute custom scripts. This hook is responsible for
erforming additional and specific checks after a successful merge commit is
reated.

5 https://github.com/jpace/diffj.
6 A JAR file with all compiled classes of the system and the required
xternal dependencies.

https://github.com/jpace/diffj
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elements, aiming to directly explore the code where conflicts likely
take place. SAM can be configured to work with different unit test
generation tools, and invoke a number of them as needed. In our
experiments, we use two versions of Evosuite and two versions of
Randoop, as detailed later. One of the versions of Randoop, called
Randoop Clean, we designed with the aim of generating tests more
focused on our goal of detecting conflicts; Section 3.4 presents our tool,
highlighting its changes compared to the standard version of Randoop.

Finally, after the test suites are generated, SAM executes each one
against each of the four executables associated with a merge scenario,
and collects the test results for further analysis.

3.1.5. Conflict detection based on test results heuristics
This step is responsible for reporting conflicts based on the results

of executing the generated tests against the four executable versions
of a merge scenario. SAM basically checks whether any test case
satisfies one of our conflict criteria, which we present next, with their
motivation. They all rely on the notion of partial specification, that is,
a specification that constrains behavior only for a subset of the possible
inputs. As such, each test case is seen as a partial behavior specification,
and we can then refer to the definition of interference that relies on
preserving parent specifications in the merged version of the code, as
discussed in Section 1.

To detect conflicts, we rely on specific conflict criteria implemented
by SAM. We believe these criteria cover common situations of semantic
conflicts. The first two criteria (one for each parent, i.e., Left and Right)
seek for test cases that present the same outputs in the Base and Merge
xecutable versions, but a different one in the associated parent version.
or example, consider a test case test1 that passes when executed
gainst the Left version, but fails against the Base version. So we might
ay that test1 partially captures the intention of the Left change;
e can then see test1 as a partial specification of the changes of
eft. Now if test1 fails when executed against the Merge version, we
onclude that test1, the partial specification of Left, is not satisfied
n the merged version, revealing that the changes carried on by Right
nterfere with the changes of Left (with respect to the Base commit).
o when SAM finds a test that satisfies the just mentioned criteria, it
eports a (test) conflict.

Now, consider a different scenario (similar to the one in Section 2)
nd criteria, where a test case test2 passes in the Base, Left, and
ight versions. We can then consider that test2 partially captures
behavior that is preserved by both Left and Right changes, and

herefore we expect such behavior to be preserved in the merge too.
o if test2 fails in the Merge version, we conclude that a behavior
hat was expected to be preserved is actually not preserved, revealing
hat the changes in the parent commits interfere with each other (with
espect to Base). So when SAM finds a test that passes in the Base, Left,
nd Right versions, but fails in Merge, it reports a (test) conflict.

Since our conflict criteria rely on the final statuses of test cases
xecuted in different executable versions, we must further comment
bout test statuses different than passed and fail. For test cases that
resent error statuses, we opt to not consider them when reporting
onflicts. We believe that considering these cases might introduce false
ositives in our results as we could not correctly verify the test case
tatuses. As a final remark, it is important to discuss that our conflict
riteria are valid to detect conflicts if the associated test cases explore
he conflicting changes integrated during a merge scenario. Otherwise,
alse positives might be reported as well.

.1.6. Report of semantic conflict occurrence
Once a test case satisfies one of our conflict criteria, our tool warns

he developer about a potential conflict occurrence by informing the
lement where the conflict takes place, as also the test that reveals
he conflict. Then, the developer might evaluate whether the reported
onflict represents an actual conflict or not. If so, she may apply
hanges in order to fix the conflict and change the current Merge
ommit; otherwise, she skips the warning leaving the Merge commit
ithout applying any change.
5

.2. Testability transformations

Previous studies (Silva et al., 2017) report that, due to a number
f characteristics of the code under analysis, unit test generation tools
ight have a hard time generating tests that detect bugs. In our
revious study (Da Silva et al., 2020), we observe similar limitations for
etecting conflicts. For example, it might be harder to generate conflict
evealing tests for classes with many private members, as these cannot
e directly exercised by the tests. Nevertheless, directly invoking such
embers could reveal conflicts that would be hard to reveal by tests

hat only invoke public members (that indirectly invoke the private
nes). To improve testability and increase the chances of detecting
onflicts, we propose here three testability transformations that adapt
he source code of the parent commits before creating the builds and
eeding the generation tools with executables. These transformations
re motivated by preliminary experiments we performed using the unit
est generation tools with toy examples and a small subsample of the
cenarios we consider in our evaluation.

As just motivated, the first proposed transformation replaces non-
ublic access modifiers with public ones; it is applied to classes,
ethods, constructors, and fields declarations. By making all elements
ublic, more elements can be called and accessed by the generated
ests, possibly increasing the chances of detecting conflicts. This, how-
ver, brings the risk of reporting false positives, as could happen
hen a generated test accesses an originally private member in a way

hat is not equivalent to the indirect access from the available public
embers. There is also the risk of the tools using a significant part of

he generation budget for directly calling elements not involved in the
onflict, as we apply the transformation to all classes; the motivation is
hat calling non-related elements involved in the conflict might lead to
ndirect object state change that contribute to conflict detection. These
spects are evaluated in the experiments we describe later.

Our second transformation adds an empty constructor to classes
acking one, as this might help to generate tests that create and exercise
bjects of such classes. We observed that this could be especially
seful for classes having only constructors that require complex object
tructures as arguments. Again, this transformation brings the risk of
alse positives, as reported conflicts might be revealed with object states
hat would not be reachable with the original class. For simplicity, in
ase a class does not directly extend Object no empty constructor is
dded, as this would potentially require adding a chain of constructors
o the class hierarchy.

Finally, our third transformation handles scenarios in which the
utually changed declarations occur inside inner classes. As the gen-

ration tools cannot directly exercise inner classes, we extract them to
he outer level. For simplicity, we manually apply this transformation,
s it is not often required. The other two have been implemented and
re automatically applied.

.3. Serialization transformation

As previously discussed, unit test generation tools might not be
ble to generate tests that exercise complex object structures in use-
ul ways (Da Silva et al., 2020). Such structures, however, might be
equired to reveal conflicts. Aiming to address this limitation, we feed
nit test generation tools with concrete object graphs (Elbaum et al.,
006), which can then be used in the generated tests, increasing the
hances of detecting conflicts. We collect and serialize these object
raphs by monitoring the execution of existing, manually created,
roject tests. The effectiveness of this technique is then directly de-
endent on the availability of project tests that manipulate complex
bjects. For projects with no tests, we do not use this technique.

To serialize objects, we implement OSean.EX.7 First, our tool instru-
ents the target method — the method under analysis — by adding

7 https://github.com/spgroup/OSean.EX.

https://github.com/spgroup/OSean.EX
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a call for an auxiliary method that is responsible for receiving and
serializing the object currently executing the target method, and the
arguments passed to this method. OSean.EX also adds the auxiliary
class to the original target project. With this first instrumented version
of the project under analysis, the tool runs the manually created project
test suite for a specific amount of time, creating new unique serialized
objects each time the target method is reached; eventually, duplicated
objects are discarded.

When the project test suite execution is finished, our tool discards
the instrumented version of the project and creates a new class that
declares a number of methods, one for each previously serialized object.
Each method simply deserializes an associated object and returns it. OS-
ean.EX then adds this class to the original version of the target project,
creating a second instrumented version of the project, and building it.
This version’s executable can then be fed to the unit test generation
tools, which are able to create tests that call the deserialization methods
and use the returned complex objects.

Considering that a merge scenario has related commits, and that
object serialization might be expensive, OSean.EX performs all the steps
for a single commit, say Left, depending on how it is invoked. In this
ase, for the Right our tool would simply perform the last steps of
dding the created class and building the extended version of Right. The
ost of using this technique depends on the amount of time allocated
o execute the project test suites.

.4. Randoop clean

To increase the chances of detecting conflicts, we propose here
andoop Clean, which adapts Randoop with the aim of creating tests

hat more often invoke the method under analysis, and increasing the
iversity of objects manipulated by the generated tests (see our online
ppendix for more details (Online Appendix, 2024)). In our previous
ork, although Randoop did not detect as many conflicts as EvoSuite,
andoop generates more test cases reaching the target method holding

he conflict (Da Silva et al., 2020). This way, we believe exploring
ultiple calls to the target method might increase the chances of
etecting conflicts. As we preserve most behavior of original Randoop,
e highlight here only the changes implemented by our tool. First,
efore Randoop starts to generate tests, it selects all public methods and
onstructors from a list of classes given as input and puts them in a pool.
ext, Randoop creates test prefixes by randomly selecting elements

rom the pool and generating sequences of statements that invoke such
lements. If a particular method is expected to be covered by the
enerated test cases, it can be given as input to the tool. However, in
ur context, we want to go beyond that and increase in these sequences
he number of calls to the method under analysis, that is, the method
hanged by both parents commits (target method). In principle, this
ould increase the chances of conflict detection.

To address this idea of maximizing target method calls, Randoop
lean reduces randomness by optimizing the number of calls to a target
ethod (see Fig. 3). The tool has access to a list of valid sequences

enerated during test suite creation (errorSeqs, line 1). Based on
he number of classes given as input to the tool (reqClasses, line 3),
andoop Clean continuously checks the list length, verifying whether
specific number of new sequences were created (line 23). Each time

his happens, the tool adds a new call to the target method (line 24).
e adopt an interval among new target method calls so that other
ethods are called too. This way, objects required as parameters or
olding the target method can be changed, allowing the target method
o be executed against different objects.

To generate diverse objects required by the target method, Randoop
lean adopts a similar idea. Since the creation of objects occurs through
lasses’ constructor or method calls, Randoop randomly selects calls
rom the pool, which holds the previously available methods and
onstructors. In our context, randomness might represent a weakness
6

s a specific object could be generated and continuously used when
Fig. 3. Randoop Clean process of generating sequences. Adaptations to the original
Randoop appear in blue.

Fig. 4. Method selection based on required objects by target method. Based on the
number of generated steps, Randoop Clean randomly selects methods from the input
classes.

required. A method could be called with the same objects, consequently
producing the same results. Therefore, we opt to add new constructors
or method calls that return objects of a specific type in order to increase
the chances of generating diverse objects.

To generate objects that are used as arguments or targets of method
calls, Randoop follows the process presented earlier. Hence, the number
of calls to the target class constructor and of generated objects is
random. However, this might lead to reduced diversity of the object
pool, and consequently less chances of detecting conflicts. To address
this Randoop Clean tries to increase the number of calls to object creation
operations (methods and constructors). After Randoop Clean generates
a particular number of statements in a test prefix sequence (line 4
in Fig. 3), the tool adds calls to the object creation operations of the
target class (Fig. 4). If the target method requires different object types,
Randoop Clean selects one type each time and then randomly picks a
method or constructor from the pool that returns this specific object
type.

4. Evaluation method

Our evaluation method comprises five main steps to assess the
potential of SAM and unit test generation tools to detect interference
(Fig. 5). First, we extract and select merge scenarios from Java projects
hosted on GitHub, including a number of scenarios that appear in
previous code integration conflict studies (Sousa et al., 2018; Cavalcanti
et al., 2019; Barros Filho, 2017). Second, we create executable JAR
files of the program versions in each selected scenario. Initially, we
create JAR files using the original source code of the four software
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Fig. 5. Study setup. Starting with the selection of Java merge scenarios, we create our dataset, call the unit test generation tools, and execute the generated test suites to detect
semantic conflicts. Besides that, we perform a manual analysis to explain the false positives and negatives in our sample. Inside the dashed area, we show the steps covered by
SAM, our semantic merge tool.
Fig. 6. The generation process of executables for merge scenario commits. For each merge scenario, we create a number of JAR files, which are given as inputs for the unit
test generation tools. For the 85 cases of our sample we create JARs based on both the original code and the code resulting from applying the testability transformations. For a
subsample of 20 cases, we create JARs based on the code resulting from applying the testability and serialization transformations.
versions corresponding to the Base, Left, Right, and Merge commits (see
Fig. 6). Next, we generate additional four JAR files (one for each
commit version) but this time applying our testability transformations
(see Section 3.2). For some cases of our sample,8 we generate a third set
of JAR files, now applying in sequence the testability and serialization
transformations (see Section 3.3). Third, we apply four test generation
tools to create tests for the parent commits of a merge scenario based
on each kind of JAR file available (Left and Right from original, trans-
formed, and serialized JAR files). Next, we run our scripts to execute
the tests and discard invalid tests avoiding flakiness issues (Luo et al.,
2014).9 Fourth, as a last automated step, we run our scripts to check the
test-based interference criteria and additional related metrics regarding
the quality of the generated tests. Fifth, we manually analyze each
merge scenario and the obtained results to ensure that the reported
interference is correct. Furthermore, we investigate the reasons behind
the generated tests not detecting interference in some of the scenarios
that suffer from interference.

4.1. Mining and selecting merge scenarios

Our dataset consists of 85 mutually integrated changes’ pairs from
51 merge scenarios mined from 31 GitHub Java projects. Since we
analyze class elements mutually changed by both parents in a merge
scenario, one single merge scenario might hold more than one case
of mutually changed element. As a result, for some merge scenarios,
multiple cases of changed elements are considered in our evaluation.
We focus only on Java projects because the unit test generation tools we
use are language-dependent, and some of our scripts are also test tool-
dependent; the tools we use in our study primarily generate test cases

8 Since we rely on the quality of original project test suites to generate
serialized objects, we consider only a subsample.

9 We consider tests invalid if they present different results on different
executions.
7

Table 1
Distribution of mutual changed class elements.

Original sample Selected changed mutual elements

With interference Without interference

Da Silva et al. (2020) 4 2
Cavalcanti et al. (2019) 2 6
Sousa et al. (2018) 3 18
Barros Filho (2017) 13 15
Current study 7 15

Total 29 56

for Java. Most related studies also focus on Java projects. We also limit
our study to GitHub projects as it is one of the most popular sources of
open-source projects, and most related studies also use GitHub.

From the 85 cases we consider in our dataset, 63 first appeared in
previous studies (Da Silva et al., 2020; Cavalcanti et al., 2019; Sousa
et al., 2018; Barros Filho, 2017) that rely on datasets that share some
scenarios and cases of mutually integrated changes’ pairs. Six cases
from five merge scenarios come originally from Da Silva et al. (2020);
four cases with and two without interference. From Cavalcanti et al.
(2019), we select eight original cases (from eight merge scenarios), two
with and six without interference. From Sousa et al. (2018), we select
21 original cases (from 16 merge scenarios), three with and 18 without
interference. Finally, from Barros Filho (2017), we include 28 original
cases (from 22 merge scenarios), 13 with and 15 without interference
(see Table 1).

The remaining 22 cases in our sample first appear in this paper;
seven with interference and 15 without. All these cases come from
seven scenarios that first appeared in previous work (Cavalcanti et al.,
2019; Sousa et al., 2018; Barros Filho, 2017) that considered only a
subset of the cases in these scenarios. With extra mining effort, we
found out the remaining 22 cases we consider here. In our Online
Appendix (2024), we provide further information and summarize all
selected cases discussed here. Although we have not systematically
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targeted representativeness or even diversity (Nagappan et al., 2013),
we believe that our sample has a considerable degree of diversity
concerning different dimensions such as project domain, size, and
number of collaborators. As future work, we plan to extend our sample
by adding new merge scenarios based on our criteria.

4.2. Building the projects

As mentioned at the beginning of this section, for each case in our
sample we must create JAR files that are used to generate and execute
test suites. Considering we need to create build files with all project
dependencies, for simplicity we initially try to use Travis (see Fig. 6)
to create such executables. The main advantage of this approach is to
reduce the chances of broken build processes due to local environment
and configuration issues. As we use the Travis infrastructure, in case
of merge scenarios requiring different environment options, we would
not have to deal with each one directly. Instead, we just set up a
Travis configuration file and reuse it when applicable. If Travis fails to
create the builds due to no longer having access to old dependencies,
no support for older Java versions, or by detecting problems when
running additional analysis (like style checking) adopted by projects
pipelines, we try to manually fix the problem on Travis by updating its
configuration files; if that does not work, we locally create the builds.

The automated process involving Travis is only used for creating
the builds for the original source code and the code resulting from the
testability transformations. The builds for the code resulting from the
serialization transformation are created manually, as our serialization
tool requires extra configuration for each project. We have serialization
builds only for a subsample of cases because that requires project test
suites that exercise the method under analysis. We opt for running the
project test suites for 60 s as most project test suites in our sample are
finished by this time; so allocating more time would not significantly
improve the pool of serialized objects. Once OSean.Ex accepts a list
of commits, we invoke the tool giving as input the four commits in a
merge scenario. This way, the serialized objects are generated based
on the first commit of this list; in our study, the Merge commit is
always first. The remaining commits of that list reuse the serialized
objects by deserializing them based on their versions. So for Base and
parent commits (Left and Right), OSean.Ex only performs the last step
generating the executable files.

We also adopt the manual build creation process for Ant projects
(one single case), as our automated infrastructure supports only Maven
and Gradle projects. The process and infrastructure we use to create the
builds appear in our Online Appendix (2024).

At this point, if we failed to create one of the builds for a case,
we simply discarded the case in our experiment; five scenarios were
discarded. At the end of this step, we have a sample composed of 51
merge scenarios and 85 potential interference cases, knowing that some
merge scenarios contain more than one independent change on the
same declaration. For all 85 cases, we have executables (eight, two
for each commit version in a case) with the original source code and
testability transformations. Finally, for 20 out of these 85 cases, we
have additional executable files (four, one for each commit version in
a case) with serialized objects.

4.3. Generating and executing tests

Each merge scenario and case resulting from the previous step
has a number of proper executable files that tests can execute and
exercise. These files are required by unit test generation tools that
generate tests and run them against the system to be tested, discarding
tests that fail or do not increase code coverage (see Fig. 7). This
observation is valid here for the test generation tools we evaluate:
EvoSuite (Almasi et al., 2017), Differential EvoSuite (Shamshiri, 2015),
Randoop (Pacheco et al., 2007) and Randoop Clean, our extended ver-
sion of Randoop. We chose the first three tools due to their robustness
8

and popularity.
In this step, we readily apply the unit test generation tools to
create tests for four of the executable versions (Left, Right, and their
transformed versions, as explained above) associated with each merge
scenario. For a subsample of the cases, we additionally invoke the
unit test generation tools for two executable versions with serialization
(serialized Left and Right). For each executable version, our scripts
call EvoSuite, Randoop, and Randoop Clean passing the corresponding
parent commit JAR file as input. For Differential EvoSuite, which tries
to generate tests that reveal behavior differences between two program
versions, we additionally give as input the JAR file of the Base commit,
which is used as the regression version. So, the tool will try to generate
a test that passes in the parent commit and fails in the Base commit.

For each tool, we use a budget of 5 min and their default configura-
tion.10 We decide to adopt 5 min considering that related work opt for
different budget configurations (1, 2, or even 10 min); in our previous
study (Da Silva et al., 2020), we opt for 2 min. This time, we give more
time for the tools and assess whether the budget affects the detection
of conflicts.

Our scripts invoke each of the four tools for the two parents in a
merge scenario, considering the three kinds of executables we create
(original, testability and serialization), generating then 24 (4 × 2 × 3)
test suites. For the scenarios with no serialization executable, we gen-
erate 16 test suites.11 The number of tests in each suite varies a
lot.

For each resulting test suite, our scripts execute each test case three
times for each of the different versions: Base, both parents, and Merge
(see Fig. 7), resulting in 12 executions. We execute the tests in both
parents because two of our conflict criteria assess the test results against
all executable files associated with the merge scenario commits. Finally,
for each merge scenario without serialization executables, the 16 gen-
erated test suites are executed 12 times resulting in 192 executions; in
the case of a scenario with serialization executables, the other eight test
suites are also executed 12 times resulting in additional 96 executions.

We execute each test case three times aiming to detect test flakiness.
If a test case does not yield the same result (pass or break) in the
three repeated runs, we filter it out, as they would not help in conflict
detection due to their flakinesses. The test suite execution results asso-
ciated with each case of our sample are grouped into three sets: tests
with failed status, tests with passed status, and tests that could not be
executed because they do not even compile with the version under test.
Such validity issues with tests might occur because the test is generated
for a given revision, say Left, but is executed in other revisions as
well: Base, Right, and Merge. If the Left revision, for example, adds a
method declaration that is called in the generated test, this test will
not even compile with the Base and Right version. In the same way,
ests with error statuses are not considered as failed tests. An errored
tatus signals an unexpected situation during test execution, which does
ot involve the program behavior under test. Such invalid tests are
iscarded as the last action in this step, and are not used for interference
etection in the next step.

.4. Detecting interference

We group test suite executions into sets for each case of our sample
ased on the executable versions used to generate the tests. Each set
ontains the executions associated with the Base, parents (Left and
ight), and Merge commits for the original, transformed, and serialized

10 The versions of the tools used by SAM and in our study are mentioned in
our online appendix.

11 In two cases of our sample, no test suites were generated due to environ-
ment issues (one case with and another without interference). Furthermore, for
some specific versions, the tools presented errors and the generation process
was interrupted, resulting in no test suite. In these cases, we do not discard

the cases and simply consider that the tool does not report interference.
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Fig. 7. Generation and execution of test suites. For each case of our sample, we generate test suites based on both merge scenario parent’s commits. Next, we execute three times
each generated test suite against all merge scenario commits in order to calculate our metrics.
versions. Next, for each execution result set, our scripts compute the
test cases that satisfy one of our conflict criteria (see Section 3.1.5 and
our Online Appendix (2024) for further information about our criteria).
Finally, our scripts collect the results for further analysis and report
interference if at least one test case satisfies at least one of our criteria.

4.5. Assessing other metrics

The steps so far are the essence for assessing the potential of
SAM and unit test generation to detect interference. However, to bet-
ter understand such potential and how it is limited by the unit test
generation tools we use, we go further and assess other metrics. In
particular, in the following, we consider metrics that may help us to
better evaluate the effect and limitation of each technique we rely on:
conflict detection criteria, testability and serialization transformations,
and unit test generation tools.

4.5.1. Behavior change detection
Besides assessing whether the tests generated by the tools can detect

interference, we assess whether they can establish a weaker property:
behavior change between the commits in a merge scenario. Note that
detecting interference requires detecting two behavior changes, for
instance, one from Base to Left and another from Left to Merge. So
when SAM fails to detect interference we want to assess whether the
generated tests could detect one or none of the behavior changes as a
measure of how far the tool was to detecting interference. To detect
those behavior changes, we use the test suites previously generated
and look for test cases that report different outcomes when running
them against two commits. As we want to detect the behavior changes
introduced by each parent in a merge scenario, we look for behavior in-
volving the related parent and Base or Merge commits. So for each case
in our sample, there are at most four possible behavior changes. We
then compute and compare the number of behavior changes detected
by each unit test generation tool.

4.5.2. Object diversity and target code reachability
To compare whether Randoop Clean is closer to detect interference

than Randoop, we compute two metrics that are used to compare the
test suites generated by both tools: the number of calls performed
to a target method, and the number of different handled objects. To
compute these metrics, we instrumented both tools to collect such
information and report it after the generation of each test suite. So
when we refer to Randoop in our study we actually mean a version
of Randoop instrumented with this metric collection functionality. This
way, our scripts have access to, for each tool, (i) the number of calls
made for all possible methods of the target classes, and (ii) the number
of different objects handled by the test suite.
9

4.5.3. Source code coverage
To further evaluate the improvements of Randoop Clean over Ran-

doop, we compute the source code coverage (line, branch and instruc-
tion) of the test suites generated by each tool. This might help under-
standing which tool is closer to detecting interference. For that, we
collect only the coverage achieved by each tool against the Merge com-
mit. As the Merge commits contain the potentially interfering changes,
if these are covered by a test suite on the Merge commit, they are
likely covered on the parents and Base commits. As Randoop does not
provide source code coverage information, we implement additional
scripts to compute this using Jacoco (2022). For each generated test
suite, our scripts call Jacoco to instrument the JAR file previously used
to generate the test suite. Next, the test suite is executed against that
new instrumented JAR file resulting in a file with the coverage results.
Since we want to explore the coverage of a target method, our scripts
compare the percentage achieved by each suite.

4.6. Manual analyses

In our study, we carry on two main manual analyses. First, we
manually analyze each scenario in our dataset to establish interference
ground truth. Second, after executing the experiment and detecting
false positives and false negatives, we manually analyze each case and
the generated tests and metrics to understand what caused the false
result.

4.6.1. Ground truth analysis
Six researchers manually analyzed all cases of our sample; in pairs,

the researchers individually analyzed each case to check for inter-
ference and later compared the analysis with his partner. If both
researchers agree with the same decision, they present the scenario and
its evaluation to the remaining four researchers. However, in case of a
conflicting decision, the whole group discusses the case and reaches a
verdict.

To reduce the chances of human error and misjudgment in this
process, for each interference verdict, we manually designed a test case
that reveals the interference. Similarly, each non-interference verdict
has an explanation of why we could not design such a test case; for
example, one of the changes is a structural refactoring, not affecting
the behavior of the other integrated changes.

Our manual analysis is local, in the sense that it involves only the
mutually changed program element and its dependencies (methods and
fields it calls and accesses, for example). As we ignore the global context
that depends on the analyzed program element, the changes could in
fact globally interfere but we would not detect it. For example, say two
developers, in the same method declaration, add assignments to disjoint
fields of the same object. So, locally, the changes do not interfere with
each other as they affect disjoint state elements that are unrelated in the
local computations. But, if we consider the global context, say a method
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computeRate() that calls the changed method and compares the
wo fields in specific ways, we could have interference. Unit tests
hat exercise the context classes could still detect this interference by
nvoking computeRate(), but not by focusing only on the class that
eclares the changed method, as we do here. We opt for checking local
nterference only for two main reasons. First, it has the potential to
etect a relevant part of interference cases. Second, the global context
an be significantly large or hard to capture, especially when the
hanges occur in widely reusable classes that are either part of an API
r are invoked from multiple program entry points (as in microservices
ystems); manual analysis and test execution in such cases could be
hallenging.

Instructions and guidelines used during this process are organized
s a document, which is available in our Online Appendix (2024). For
any cases (57), the ground truth is available in previous work, but
e nevertheless follow the process above and compare verdicts. For all

ases, we summarize the integrated changes to help reach verdicts and
id others interested in using our dataset for replications and further
tudies. We provide our dataset and its associated ground truth online,
llowing its usage for new studies exploring semantic conflicts and
eneral behavior changes.

.6.2. False positives and false negatives analysis
Comparing the results of our experiment with our ground truth,

e collect information on false positives (our interference criteria are
atisfied, but there is actually no interference in the scenario) and
alse negatives (our interference criteria do not hold, but the scenario
ctually suffers from interference).

Aiming to understand the limitations that unit test generation tools
ace — in our context of exploiting the generated test cases to detect
nterference — we analyze the test suites of the identified false nega-
ives. Based on the test descriptions we wrote during our ground truth
nalysis, we try to manually change the unsuccessful generated test
ases and check if they could then detect interference. As a result, we
dentify improvements that could be applied to the tools, as well as to
etter understand and help assess how close the tools are to generating
test case that would reveal interference.

At the end of this step, we obtain a dataset composed of merge
cenarios associated with their build files (original, transformed, and
erialized binary files), generated test suites, interference ground truth,
nd further information on the quality of each test generation tool.

For the merge scenarios reported with interference, we analyze the
ssociated test suites to ensure that the tests explore the conflict that
e find during our manual analysis. This analysis is essential since the

estability transformations could introduce false positives to our results,
s some semantically change the program behavior. For that, we check
hether the failed test case assertions explore the side effects of the
lements involved in each conflict.

. Results

We now present the results of our analysis of the 85 cases of
hanges’ pairs in the 51 merge scenarios mined from 31 GitHub Java
rojects (see Section 4.1), including how semantic conflicts are detected
y SAM’s interference criteria and test generation process. We also
iscuss how the test generation tools used by SAM could be improved
o increase conflict detection accuracy. Fig. 8 summarizes our findings.
he right branch focuses on the changes with semantic conflicts, while
he left branch focuses on the changes without conflicts, according to
ur ground truth.
10
Table 2
Comparison of SAM with related proposed tools.

Metrics Tools

SAM SAM SafeMerge

Precision 0.75 1 0.28
Recall 0.31 0.33 0.66
F1 score 0.72 0.90 0.71
Accuracy 0.43 0.50 0.40

Cases 85 21

5.1. RQ1: can we adopt unit testing to detect semantic conflicts?

To answer our first RQ, we compute the number of detected con-
flicts reported by SAM. Overall, SAM could automatically detect nine
out of 29 conflicts (31%); these nine conflicts appear in five merge
scenarios (the right branch in Fig. 8). Such a result reinforces our
previous finding that unit test generation tools are useful to detect
semantic conflicts (Da Silva et al., 2020). Although our tool misses a
significant number of conflicts, it reports only three false positives, as
depicted in the left branch. So, based on these results, a developer using
our tool should plan to use additional techniques to detect the conflicts
that SAM misses, but should not worry about wasting significant time
investigating false positives.

Comparing our results with previous work, we observe that SAM
outperforms them in some aspects. Table 2 presents a comparison with
two previous work and their related datasets. Since these studies rely
on a different dataset, we focus our comparison considering a common
subsample used in their and our studies. Although SAM presents an
overall precision of 0.75, outperforming the previous studies, when
evaluating recall, we observe that SAM shows inferior performance
(third and fourth rows in Table 2). Such a result brings to discussion
the prominent and promising direction of combining the different
approaches investigated by each study.

To illustrate one of the conflicts detected by our tool, consider the
pair of changes integrated into the code of Fig. 10, which shows a
Merge commit from the HikariCP project.12 In this merge scenario, the
eft commit adds a new condition to the if statement using the local
ariable retries (Line 6 in Fig. 10), restricting the call to incre-
mentAndGet, which increments the number of total connections to
a pool. Independently, the Right commit changes how retries is
nitialized (Line 3), which is referred by the changes performed by the
eft commit. So the Left and Right commits individually change the

program behavior (creating and adding single connections to a pool)
based on their needs. These changes can be textually integrated with
success. No merge conflict is reported since line 4 separates the changes
made by the two developers.

The change from Right, however, interferes with the change from
Left, breaking the intention of Left ’s change. Fortunately, this is re-
ported by our tool through the EvoSuite unit test case in Fig. 9. This
test case was generated when our tool invoked Evosuite with the
Right serialization executable. As highlighted in the test case (Line
5 in Fig. 9), the expected number of totalConnections is 10.
Running this test case on the Right commit, the test passes. For the
Base commit, the test fails as the returned number of connections is
12; as in this commit retries is initialized with 0, some calls to
ecrementAndGet are bypassed (Line 11 in Fig. 10), not decrement-

ing the total number of connections. Note that on the Right commit,
the variable retries is initialized based on the number of acquired
retries from the object config, which is later used in another if
statement condition (Line 10 in Fig. 10). For the Merge commit, the
test case also fails as the returned number of connections is −30;
this time, no call to incrementAndGet is executed (Line 6) due

12 HikariCP - merge commit: 1bca94a.

https://github.com/brettwooldridge/HikariCP/commit/1bca94af9ec625f21d1b58ff10efb5be71ab87a6
https://github.com/brettwooldridge/HikariCP/commit/1bca94af9ec625f21d1b58ff10efb5be71ab87a6
https://github.com/brettwooldridge/HikariCP/commit/1bca94af9ec625f21d1b58ff10efb5be71ab87a6
https://github.com/brettwooldridge/HikariCP/commit/1bca94af9ec625f21d1b58ff10efb5be71ab87a6
https://github.com/brettwooldridge/HikariCP/commit/1bca94af9ec625f21d1b58ff10efb5be71ab87a6
https://github.com/brettwooldridge/HikariCP/commit/1bca94af9ec625f21d1b58ff10efb5be71ab87a6
https://github.com/brettwooldridge/HikariCP/commit/1bca94af9ec625f21d1b58ff10efb5be71ab87a6
https://github.com/brettwooldridge/HikariCP/commit/1bca94af9ec625f21d1b58ff10efb5be71ab87a6
https://github.com/brettwooldridge/HikariCP/commit/1bca94af9ec625f21d1b58ff10efb5be71ab87a6
https://github.com/brettwooldridge/HikariCP/commit/1bca94af9ec625f21d1b58ff10efb5be71ab87a6
https://github.com/brettwooldridge/HikariCP/commit/1bca94af9ec625f21d1b58ff10efb5be71ab87a6
https://github.com/brettwooldridge/HikariCP/commit/1bca94af9ec625f21d1b58ff10efb5be71ab87a6
https://github.com/brettwooldridge/HikariCP/commit/1bca94af9ec625f21d1b58ff10efb5be71ab87a6
https://github.com/brettwooldridge/HikariCP/commit/1bca94af9ec625f21d1b58ff10efb5be71ab87a6
https://github.com/brettwooldridge/HikariCP/commit/1bca94af9ec625f21d1b58ff10efb5be71ab87a6
https://github.com/brettwooldridge/HikariCP/commit/1bca94af9ec625f21d1b58ff10efb5be71ab87a6
https://github.com/brettwooldridge/HikariCP/commit/1bca94af9ec625f21d1b58ff10efb5be71ab87a6
https://github.com/brettwooldridge/HikariCP/commit/1bca94af9ec625f21d1b58ff10efb5be71ab87a6
https://github.com/brettwooldridge/HikariCP/commit/1bca94af9ec625f21d1b58ff10efb5be71ab87a6
https://github.com/brettwooldridge/HikariCP/commit/1bca94af9ec625f21d1b58ff10efb5be71ab87a6
https://github.com/brettwooldridge/HikariCP/commit/1bca94af9ec625f21d1b58ff10efb5be71ab87a6
https://github.com/brettwooldridge/HikariCP/commit/1bca94af9ec625f21d1b58ff10efb5be71ab87a6
https://github.com/brettwooldridge/HikariCP/commit/1bca94af9ec625f21d1b58ff10efb5be71ab87a6
https://github.com/brettwooldridge/HikariCP/commit/1bca94af9ec625f21d1b58ff10efb5be71ab87a6
https://github.com/brettwooldridge/HikariCP/commit/1bca94af9ec625f21d1b58ff10efb5be71ab87a6
https://github.com/brettwooldridge/HikariCP/commit/1bca94af9ec625f21d1b58ff10efb5be71ab87a6
https://github.com/brettwooldridge/HikariCP/commit/1bca94af9ec625f21d1b58ff10efb5be71ab87a6
https://github.com/brettwooldridge/HikariCP/commit/1bca94af9ec625f21d1b58ff10efb5be71ab87a6


The Journal of Systems & Software 214 (2024) 112070L. Da Silva et al.
Fig. 8. Conflict detection results for our dataset of changes’ pairs, using the four unit test generation tools with the three kinds of executables (original, testability and serialization).
Distribution of changes (on same class element declaration), their classification, and whether a conflict is detected or not.
Fig. 9. Evosuite test case that detects semantic conflict.

Fig. 10. Test conflict caused by changes that update the same variable.

to the interaction between Left and Right changes, which the if
statement condition evaluate to false. On the other hand, multiple
decrementAndGet() calls (line 11) are executed. The multiple calls
for decrementAndGet() (line 11), in all evaluated commits, are
motivated by an exception thrown due to mal-formed objects; however,
the initialization of these objects is not impacted by the testability or
serialization transformations presented in this study.

The other eight detected conflicts have common aspects with the
previous example. First, the conflicts occur because the parent commits’
changes impact the values stored in the same variables or object fields.
So, to detect the conflict, the test revealing conflict might exercise a
single specific object. Second, the test has to directly access the object
involved in the conflict (side effects of the changes), having at least one
assertion that explores the changed object fields.
11
Regarding the cases without conflicts, correctly not reported by
SAM (true negatives), we observe 53 cases (left branch in Fig. 8). Six are
classified as unsupported because the potentially conflicting changes
occur in test cases and test classes, not in the code that implements
system functionality. So even if the changes were conflicting, SAM
would not be able to detect that as its current version does not support
test classes; the unit test generation tools are not configured to generate
test cases for test classes, as the associated testing framework and
project environment are not fed to the tools, which would need to be
adapted for such purpose.

For 33 of the 47 changes supported by SAM, the parent com-
mits individually change program behavior, but when integrated the
changes do not locally interfere with each other. Static analysis tools
that rely on more conservative analysis could maybe err on that, but
the chances of SAM erring on those cases are reduced. The same applies
for the 11 cases in which one of the integrated branches only applies
whitespace changes and structural refactorings such as renamings and
extractions of variables and methods. In such circumstances, even if
one parent commit changes program behavior, we have no interference
and semantic conflict. This way, even if the generated tests present
different results between the Base and one parent, let us say Left, the
Merge commit behaves exactly like the Left, as Right does not change
program behavior.

Finally, for the remaining three cases, the parent commit changes
cause other kinds of conflicts during the integration (textual or build
conflicts). When merge or build conflicts occur, human intervention
is necessary to fix these conflicts, and their resolution often involves
discarding some of the changes. This in turn likely reduces the chances
of a residual semantic conflict. That is what we observed in these three
cases: significant parts of the changes were discarded during the textual
and build conflicts’ resolutions, and so no conflict was wrongly detected
by our tool.

5.2. RQ2: What are the causes of failures reported by SAM?

To answer RQ2, we explore the cases in which SAM erroneously
reports or omits a conflict (false positives and negatives, respectively).
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Fig. 11. Test case associated with false positive caused by unrelated parent conflicting
ontributions.

egarding false positives, SAM might report some for some reasons.
irst, the generated test cases are not guaranteed to be free from
lakiness. So, for instance, we can have a test case that fails in the
ase in some executions and passes in others. SAM could then consider
ne of our interference criteria to hold when relying on an incorrect
est result, and consequently wrongly report a conflict. To reduce this
roblem, we run each test suite three times in each commit, aiming to
etect and discard flaky tests by comparing the results of the three test
xecutions; if the three results are not identical, we discard the test case
nd do not consider it for detecting interference. However, this is not
nough to eliminate flakiness in general. In fact, in our study, we still
bserve two (out of three) false positives due to flakiness.

The remaining case of false positives observed in this study corre-
ponds to an interference, but not one caused by the changes in the
nalyzed method. As our manual analysis is local, focusing only on
he analyzed method and its dependencies, we conservatively classify
his case as a false positive. The parent commits change a common
arget method,13 each setting the values of disjoint sets of object

fields. Additionally, the Left commit updates the version of an external
dependency. The generated test case based on the Right commit passes
in that commit as expected (see Fig. 11), as its changes lead to an ex-
ception during execution (IlegalStateException). When running
the same test on the Base commit, the expected exception is not thrown
and the test fails. Finally, the test fails again when run against the Merge
ommit, but this time due to the new external dependency version
ntegrated by Right, which leads to a different unexpected exception.
his way, we have a test case that satisfies one of our conflict criteria,
ut only part of the failed states are caused by the parent changes on
he common target method.

Another reason for false positives is that our interference criteria are
imply approximations, as interference is not computable in general.
AM uses them regardless of the characteristics of the generated tests,
ut the criteria are guaranteed to be valid only if the test assertions
olely explore the state elements affected by the changes of the parent
ommit that was used to generate the corresponding test. For example,
onsider a merge scenario with Left and Right commits that simply
hange how a disjoint set of state elements is updated. Say Left adds the
ssignment left=1 and Right adds right=1, whereas both variables
ere initialized with 0 in Base. If SAM generates a test for Left asserting
eft==1 & right==0, this test breaks in Base (as left evaluates to
), passes in Left, and breaks in Merge (as right evaluates to 1). As this

est satisfies our criteria, SAM wrongly reports interference even though
he integrated changes do not affect each other. The false positive is
aused by the test assertion that unnecessarily constrains the value
f the right variable, which is not affected by Left ’s change. We,
owever, observed no such cases in our sample.

Regarding false negatives, we observe 20 cases, as reported in the
ight branch of Fig. 8. Next, we discuss the limitations behind these
issed conflicts by manually analyzing the generated test suites and

hecking whether the conflicts could be detected after applying a few
hanges to the test cases. Our main goal is to evaluate how close the
enerated tests are to detecting conflicts. To guide us during this adap-
ation process, we consider the test descriptions that we created when

13 Spring Boot - merge commit: 958a0a4.
12
establishing ground truth (see Section 4.6). The manually adapted test
cases could detect conflicts in 13 out of 20 false negative cases in our
sample. This suggests that improving SAM’s test generation process,
or allocating more resources for generation, could maybe significantly
reduce the chances of false negatives. However, detecting the other six
false negatives would likely require radical changes in how SAM works.

To understand how close SAM gets to detecting conflicts, we discuss
now one of the 13 false negatives. Both parent commits add calls to
methods that update the same object stored in the field logger, as
they write different values on the log output.14 While the Left commit
updated the message using the method info, the Right commit updates
using the method debug. Although the parents use different writing
methods to update the object, they write on the same character stream.
To detect such interference, SAM would have to generate at least
one test case with an assertion that explores the fields of the object
changed by the target method, the object stored in logger in this case.
However, by manually inspecting the generated test cases, we only find
one such assertion, which simply checks whether the object is null.
Regardless of the particularities of this scenario, a conflict revealing
assertion would have to compare the contents of the object stored in
logger, not simply that it is different from null. This case shows that a
generated test case reaches the interference location, the object state is
infected, and the interference is propagated (Voas, 1992), but the test
case assertions fail to explore that. As such, we consider that SAM is
close to detecting interference in this case, but misses it.

In other cases, SAM is not even close to detecting a conflict. The
methods holding the conflict are called by the generated test cases,
but with arguments that are unable to lead test execution to reach the
interference location; for example, a null argument makes the method
raise an exception before even reaching the interference location. The
same happens when infection depends on more complex object graphs
that not easily created by the test generation tools. In these cases, with
no infection and propagation, the assertions are often far from the ones
that could detect the interference, making it harder to manually adapt
the generated test cases.

Another major SAM limitation we observe is when infection or even
reachability would only occur if the generated test cases were able to
set dependencies to external resources such as database sessions. As this
is highly project-dependent, SAM would need to have access to project-
specific setup information and feed them to the unit test generation
tools, in order to avoid missing conflicts. The current version of SAM
has no such support, reducing the chances of detecting conflicts in
projects that demand external resources. In one scenario, for example,
the interfering changes are made inside a block that is only executed
if a valid database session is available. As no such session is set up
by the generated test cases, the interference location is never reached.
By adapting the test cases with Junit annotations like Before or
BeforeEach, or using mocks, could overcome this limitation.

5.3. RQ3: What is the effect of adopting different unit test generation tools,
and testability and serialization transformations?

To answer our third research question, we initially assess how each
unit test generation tool invoked by SAM contributes to the overall
result. Table 3 illustrates the overall results for all tools, while each
column shows the number of conflicts detected by each tool when
invoked with a specific kind of executable.

We observe that EvoSuite and Differential EvoSuite are the most
successful tools, detecting six conflicts each, while Randoop and Ran-
doop Clean detect two conflicts each. Most tools perform better when
applied to the testability executables; only Evosuite performs better
when applied to the original executables. Differential EvoSuite and
Randoop are the only tools not reporting false positives (presented in

14 Spring Boot - merge commit: fdd3f12.
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Table 3
Distribution of detected conflicts by unit test generation tools and executables.

Unit test tools Executable program versions

Testability Original Serialization

Differential
EvoSuite

6 (↓3, →3)
pr. 1
re. 0.21
ac. 0.74

3 (→3)
pr. 1
re. 0.1
ac. 0.70

0

EvoSuite 5 (↑2, ↓4) [1]
pr. 0.83
re. 0.17
ac. 0.71

6 (↑3, ↓5, ←1, →6)
pr. 1
re. 0.21
ac. 0.74

1 (↑1, ↓1)
pr. 1
re. 0.03
ac. 0.68

Randoop 2 (↑1, →1)
pr. 1
re. 0.07
ac. 0.69

1 (→1)
pr. 1
re. 0.03
ac. 0.68

0

Randoop
Clean

2 (→1) [1]
pr. 0.66
re. 0.07
ac. 0.68

1 (→1) [1]
pr. 0.66
re. 0.03
ac. 0.67

0

Downward arrows (↓) stand for conflicts detected by the associated unit test generation
tool, but not detected by the next tool below. Upward arrows (↑) stand for conflicts
detected by the associated unit test generation tool, but not detected by the next tool
above. Left arrows (←) stand for conflicts detected by the associated unit test generation
tool, but not detected by the next left tool. Right arrows (→) stand for conflicts detected
by the associated unit test generation tool, but not detected by the next right tool.
Numbers between brackets represent false positives reported by the tools. pr., re., and
ac. stands for precision, recall, and accuracy, respectively.

quare brackets in the first line of some cells). EvoSuite and Randoop
lean present one and two false positives, respectively.

None of the tools is able to detect all conflicts. Although EvoSuite
nd Differential EvoSuite detect the same number of conflicts, together
hey detect all nine conflicts detected by SAM. All conflicts detected
y Randoop and Randoop Clean are also detected by the other tools.
o to catch all detected conflicts of our sample (31%), combining
ifferential EvoSuite and EvoSuite would be enough. A version of SAM

hat uses only these two tools would be computationally more efficient
nd detect the same conflicts as the full fledged version of SAM that
nvokes the four unit test generation tools.

The results mostly show that the testability transformations help to
etect conflicts (first column in Table 3), but not when applied together
ith the serialization transformation (third column). For example, after
pplying testability transformations, the tools could directly access
bject fields and, consequently, explore them in assertions. So, the
se of such transformations leads to the detection of three additional
onflicts not detected by the same tools when applied to the original
xecutables; while Differential EvoSuite detects all three new conflicts,
he remaining tools detect one conflict each. This observation reinforces
ur previous results that testability transformations help detect more
onflicts (Da Silva et al., 2020). Note, however, that one conflict is
ot detected by EvoSuite when applied to the testability executable. In
his particular case, the target method is public, so the transformations
ould have no effect. Regarding the addition of empty constructors, de-

ecting some conflicts was possible after applying this transformation;
n these cases, the tools focus on calling the target element instead of
ealing with problems when instantiating objects. We believe Evosuite
isses this conflict in this case by chance due to its randomness, not

ecause of the chosen executable.
Regarding the use of serialization (third column in Table 3), eight

ut of the 20 cases in our subsample have conflicts. Although the
erialization numbers are quite low, remember that these numbers
erive from a much smaller sample than the original and testability
umbers. From the nine detected conflict cases with original and
estability executables, only one case is in the serialization subsample.
oreover, this conflicting case is also detected with the serialization

xecutable. Nevertheless, the detection is not due to the extra serializa-
ion information available in the executable, as the EvoSuite test case
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that detects the conflict (third column, second row in Table 3) does not
explore serialized objects. So we have no evidence that the serialization
technique can help improve conflict detection, but we also have no
evidence that it can hinder conflict detection, as might be suggested
by the illustrated number if one does not know that they are based on
a subsample. We should, though, run new studies with a bigger sample
in order to better assess this issue.

Comparing our results with previous work (Da Silva et al., 2020)
shows that our initial results are replicable; all four conflicts previously
detected are also reported in the study reported here. We adopt the
same testability transformations in both works, but a larger budget
(5 min) for the test generation process. Like our previous study, all nine
conflicts detected here are detected through the same conflict criterion
(see our Online Appendix (2024)); a test case that passes on the parent
commit and fails on the Base and Merge commits. Although no conflict
is detected using our new two criteria, they are still valid as they
explore scenarios not supported by our previous criteria (see Section 2).
We believe our approach for generating the test suites do not favor the
new criteria. As we currently generate tests based on parent commits,
these tests are expected to pass on these commits, partially limiting our
new two conflict criteria. To better evaluate the new criteria, we should
run a new study generating tests against the Base and Merge commits
instead of only parent ones.

As a final remark, based on our sample, Differential EvoSuite,
together with EvoSuite, is the best configuration of tools to be adopted
by SAM. Similarly, we should configure SAM to use only testability
executables. Finally, regarding our proposed conflict criteria, the first
criterion is the best option for detecting all conflicts reported in this
study.

5.4. RQ4: How efficient are unit test generation tools in detecting behavior
changes and related metrics?

Although our main focus is the detection of semantic conflicts, RQ4
evaluates related metrics regarding the quality of the generated test
suites. These metrics allow us to better understand the strengths and
weaknesses of our proposed extended version of Randoop, Randoop
Clean.

Regarding detecting Behavior Changes, we are looking for test cases
that present different outputs when executed against a pair of commits.
This way, we might evaluate how close the tools are of detecting
conflicts, in case the reported behavior change is associated with the
same changed class element.

Overall, 89 behavior changes are detected by the generated test
cases when using all kinds of executables we consider in our experi-
ment. These changes involve either a parent and the Base, or a parent
and the Merge commit. EvoSuite is the most successful tool detecting 47
out of 89 behavior changes. Next, we have Randoop Clean, Randoop,
and Differential EvoSuite with 38, 37, and 28 detections, respectively.
Even combining the last three tools, they would not achieve the rate de-
tection of EvoSuite, as their outputs overlap. Different from the results
of conflict detection, Differential EvoSuite does not rank first this time.
As each tool could detect at least one exclusive behavior change, no
combination of tools could capture all reported behavior changes. How-
ever, the highest detection rate not including all tools could be obtained
by combining EvoSuite, Randoop Clean, and Differential EvoSuite, as
they report together 85 out of 89 behavior changes.

We observe that the adoption of testability transformations helps
the tools to detect behavior changes. In the same direction as for
semantic conflict detection, 20 additional changes are detected with
testability executables, when compared to the original executables
(only 69 changes detected). From the 20 false-negative cases observed
in the experiment, we could detect behavior changes in 12 of them.
However, the reported behavior changes are not caused by the changes
involved in the semantic conflicts. So, we cannot say that the tools were

close in these cases.
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We also observe that the serialization executables help detect 15
changes not covered when using the original and testability executa-
bles. In these cases, as the tools have access to realistic objects, the
generated test cases may further and deeply explore the instructions
and branches of the target code under analysis.

To evaluate the proposed changes applied on our extended version
of Randoop, Randoop Clean, we consider the following metrics: Target
Code Reachability, Object Diversity, and Source Code Coverage. Compared
to Randoop, Randoop Clean generates more tests that directly call target
methods. Regarding the diversity of objects, no matter the kind of
executable used in the experiment, Randoop Clean often generates more
diverse objects than Randoop when the time budgets are not inferior
to 5 min; the larger the budget, the greater the difference in favor
of Randoop Clean. Finally, overall, the tools present similar coverage
in most cases. Likely due to our sample size and the reduced effects
of the Randoop Clean changes — its benefits cannot be observed in
cases where the tools fail to reach the target method — we observed
no statistically significant difference between the tools. Furthermore,
for some cases, even when Randoop Clean generates tests reaching
the target method, the diversity of objects generated was not good
enough to properly reach the conflict and observe its behavior. Similar
results are observed when using original and testability transformations
executables. However, using executables with serialized objects leads to
higher coverage. Thus, we may conclude that the quality of serialized
objects allows both tools to explore instructions of the target code under
analysis more deeply.

6. Discussion

Semantic merge tools based on regression testing, as we evaluate
here, can help developers detect semantic conflicts. Due to the observed
low number of false positives, the benefits can be obtained by avoiding
major costs on wasted developer effort. However, due to the significant
number of observed false negatives, developers should not exclusively
rely on our semantic merge tool to detect semantic conflicts. They
should still try to catch such conflicts by reviewing the code and
executing project tests.

Although we evaluate the use of SAM with four unit test genera-
tion tools, our results show that combining EvoSuite and Differential
EvoSuite would be the best option to detect all conflicts in our sample.
Configuring SAM that way we might spend less time generating tests
and detecting conflicts. Although we present four conflict criteria, not
all of them detected conflicts in our study. However, we would not
suggest a version of SAM that only applies a subset of the criteria, as
checking them is not expensive.

Although the proposed testability transformations are not sound, in
our sample we observe that the transformations contribute to increasing
the testability of the code under analysis without drawbacks, allowing
the tools to directly access and call all elements of a target class.

We believe the adoption of serialization may support the detec-
tion of conflicts, though we provide no such evidence in our study,
likely due to the restricted subsample we consider for evaluating the
serialization transformations. As the quality and coverage of project
test suites play an essential role in providing diverse serialized objects,
projects with weak test suites will not benefit from serialization. In our
evaluation, only nine conflicting merge scenarios were associated with
project test suites covering the target methods where the conflicts takes
place. For the sample of nine scenarios with conflicts, we observe strong
test suites associated with eight cases, covering the target method and
providing more than 100 serialized objects for each case. However,
these objects were not diverse enough to reach the infection state.

A special benefit of our regression testing approach to detect con-
flicts is that one ends up with a test case that reveals a conflict, when
the tool reports one. This decreases the effort to understand how a
conflict occurs. The test case limits the amount of source code that
should be analyzed and changed to fix the conflict, and can be used for
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debugging and understanding the mechanics of the conflict. Finally, the
test case could also help making sure the conflict is fixed. This contrasts
with static analysis approaches, which report a conflict and maybe the
statements involved in the conflict mechanics, but provide no test case.

Although our study and results are restricted to Java, we could
use a similar approach for other languages with support for unit test
generation tools like those we use here.

As a final remark, although SAM focuses on detecting semantic con-
flicts, it does not support fixing the conflicts due to the particularities of
this conflict type. Different from build conflicts (Da Silva et al., 2022),
test conflicts are harder to fix as developers must take into account the
semantics of the integrated changes that cause the conflict. This way,
applying straightforward changes, like those adopted for build conflict
fixes, is often not enough in this context. As a result, to fix test conflicts,
developers must be aware of the program specifications or intents, and
then, they might apply the required changes aiming to meet that.

6.1. Improving SAM

Our evaluation of SAM reveals improvements that might be imple-
mented in future versions of our tool. We also discuss a number of usage
scenarios for SAM, and different contexts in which our tool might be
adopted.

Using SAM in a reactive way to detect conflicts
Knowing that SAM requires significant computing resources to gen-

erate the test suites and execute them on each commit of a merge
scenario, SAM’s usage by individual developers might require support
from a server that runs the analysis without blocking local repository
activities. So a developer would merge locally and move on while the
analysis is performed on the server. The developer is later notified.

Alternatively, SAM can also be integrated to continuous integration
pipelines, in such a way that contributions to be integrated into a main
remote project repository are first analyzed by SAM before integration
actually takes place. These are just two contrasting usage scenarios, but
the tool could fit other scenarios as well.

Reusing original project test suites as input for SAM
For projects with solid and robust test suites, we could use a config-

urable version of SAM that extends the current version in such a way
that the detection of conflicts relies not only on generated tests, but also
on existing and manually created project test suites. This combination
of generated and existing project tests could increase the potential to
detect conflicts.

We also envision a version of SAM that generates test suites not only
for the parent commits in a merge scenario, but also for the Base and
Merge commits. If the interference criteria applies for these test suites,
we could similarly report conflict. This could also increase the potential
of detecting conflicts, but further studies are necessary to assess that.

6.2. Improving unit test generation

We observed a few limitations and weaknesses of generated unit
tests in our specific context. For instance, in a few cases the generated
tests are not able to create complex objects with internal or external
dependencies. As presented in Section 4, we try to address some of
these limitations by applying testability transformations in the code
under analysis. Although this helps, a number of limitations persist.
By manually analyzing generated test suites of false-negative cases, we
were able to better understand the limitations. We discuss the main
ones in the following.
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Reaching interference location through relevant object creation
The unit test generation tools have a hard time creating tests that

manipulate objects that need to be directly or indirectly exercised in
order to detect a conflict. Many test cases prematurely finish their
executions due to failed attempts to access fields or call methods on
objects that are not properly initialized or configured.15 The attempt to
access fields through a variable textNode0 throws a NullPoint-
erException, since this variable is not properly instantiated with a
valid object. Giving relevant objects for test cases like this is necessary
to at least reach the interference location. This topic is also related
to cases in which the methods holding the conflict are not adequately
called. In these cases, besides the proper creation of relevant objects,
a sequence of method calls must be invoked with the aim of properly
instantiating an object in such a way that the interference location can
be reached.

Relevant assertions exploring the propagated interference
In a few cases, the generated tests even reach the interference loca-

tion, infection occurs, but the test assertions do not properly explore the
propagated interference. For example, consider a conflict in the project
CloudSlang,16 where the parent commits change the same array. The
test case generated for this scenario correctly creates the object, calls
the method in which the conflict occurs, and saves the method return
object into a local variable. However, the generated assertion checks
whether the local variable is null instead of exploring the object
size. So, depending on the type of method return object, the unit test
generation tools could explore defined aspects that could detect the
conflict. This way, tools could provide a list of handlers based on the
types of objects under analysis. For example, for array objects, these
handlers would force the assertions to explore their size and contents.
For strings, assertions might explore comparisons between different
strings, as well as whether substrings are part of others, and so on.

Relevant assertions relying on interference propagation
Test case assertions often explore the object returned by a method,

but not objects that are passed as parameters. For example, again
analyzing the changes performed of the previously mentioned merge
scenario of project Jsoup, the method outerHtmlHead requires three
parameters as input, not returning any object (void method), as previ-
ously mentioned in this section. However, a semantic conflict occurs,
and the first parameter holds the propagated interference. The test case
generated by EvoSuite focuses on verifying whether an exception is
thrown during its execution. The assertions should not be restricted to
exploring objects returned by a method, but also other objects that are
used by a method or any other way of communication.

7. Threats to validity

Construct Validity As explained in Section 2, we cannot assess se-
mantic conflict occurrence without having access to the developers’
intentions or specification of the changes they make. So our study
focuses on interference occurrence. As manually assessing global inter-
ference, and generating and running tests for the whole system, would
demand considerable effort, our study is restricted to local interference
occurrence. So the number of false negatives and false positives with
respect to a global notion of interference could be different than what
our results report. Nonetheless, regression tests could detect global
interference if the interference is propagated, and if we generate tests
for other classes in addition to the one that integrates the parallel
changes made by two developers.

Aiming to increase the testability of the source code under analysis
for the unit test generation tools, we apply testability transforma-
tions before performing our analysis. For example, we change access

15 This case refers to merge commit a44e18a in project Jsoup.
16 This case refers to merge commit 20bac30 in project CloudSlang.
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modifiers to public. Although this transformation breaks program
encapsulation, it does not semantically change a program. If a seman-
tic conflict can be observed accessing a class field, but this field is
private, the unit test generation tools would face many problems
trying to indirectly access this attribute without the transformation.
Some may argue that, without this transformation, such conflict could
never be observed. That might be true if indirect access, for instance
with accessor methods, is not available, but we are aware of this and
take it into consideration in our false positive analysis. Furthermore,
the transformed program is only accessed by our semantic merge tool.

Internal Validity When creating the interference ground truth, we
rely on manual analysis of unfamiliar source code. Although we cannot
generalize our results due to our sample size, when compared with
related work, overall, we analyze a similar or larger number of merge
scenarios. Furthermore, we also provide a dataset that can be used for
replications or new studies. To reduce this threat, we involve a group of
six researchers, which are split in pairs during the analysis, and demand
they provide an explanation of why there is no interference; this often
requires understanding the changes in detail to detect refactorings,
changed state elements, and how they impact each other. The risk is
significantly reduced for the cases in which the tools are successful, as
the threat can be minimized by analyzing the interference revealing test
case, running it, and manually checking whether the test case assertions
focus on the changed state elements.

External Validity Our results are limited to the context of open-
source GitHub Java projects. In the same way, the diversity of real
projects we analyze here might have an impact on the detection of
potential conflicts by our semantic tool. The testability transformations,
as we discuss, positively impact our results and contribute to increasing
the source code testability; in some cases, also detecting the conflict.
Applying our proposal of semantic merge tool to other programming
languages would require test generation tools for the desired language
and also the testability transformations, if applicable.

8. Related work

In this section, we discuss the related work to our study. First, we
focus on works targeting semantic conflict detection, as we do with
SAM. Next, we present studies exploring regression testing.

8.1. Semantic conflict detection

Assistive tools
Researchers also present techniques to detect and prevent conflicts

early. Palantir (Sarma et al., 2012) is a workspace awareness tool that
notifies developers of parallel changes in the same artifact. Brun et al.
(2013) propose incorporating speculative analysis for early detection
and prevention of conflicts. This way, they present Crystal, an assistive
tool that compares remote and local individual collaborators’ reposi-
tories in order to warn about possible code integration conflicts. To
detect test conflicts, they evaluate their technique by analyzing three
Java projects and rely on project tests, which are often not enough for
detecting interference as we explore here. The authors do not mitigate
possible flaky tests in both studies, as we do in our study by executing
the test suites multiple times. The failed tests are not executed on the
parent and base commits of the merge scenario, as we do here, which
may result in false positives, as the failed test may occur due to the
changes exclusively performed by one parent. These studies have also
investigated ways in which conflicts can be prevented early, thereby
minimizing their impact on productivity.

Cavalcanti et al. (2017), Tavares et al. (2019) and Cavalcanti et al.
(2019) conduct empirical studies that analyze merge scenarios and
compare the accuracy of different merge resolution techniques: unstruc-
tured, semi-structured, and structured merge. Contrasting with our in-
vestigation here, their proposed tools are not able to detect behavioral
semantic conflicts, only syntactic and static semantics conflicts.

https://github.com/jhy/jsoup/commit/a44e18aa3c1fcd25a68a5965f9490d8f7d026509
https://github.com/CloudSlang/cloud-slang/commit/20bac30d9bd76569aa6a4fa1e8261c1a9b5e6f76
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Conflict detection through static analysis
Wuensche et al. (2020) suggest an approach based on static analysis

and a tool to detect and predict the occurrence of test conflicts, as
they formally call higher-order merge conflicts. Based on the changes
erformed during a merge scenario, they (re)build a call graph and
etect potential dependencies among merge scenario code fragments
hat lead to a conflict. To detect test conflicts, the authors manually
nalyze build records of merge scenarios and extract change patterns
hat lead to test conflicts based on the authors’ observation. As a result,
2 potential conflicts out of 1489 merge scenarios are reported by the
ool. To validate the potential conflicts, the authors search for bugs
eported after each merge scenario occurrence. However, they do not
onfirm conflict occurrences as no bug is reported.

Sousa et al. (2018) propose SafeMerge, a tool that leverages composi-
ional verification to check semantic conflict freedom in merge scenarios.
n principle, this kind of static analysis should lead to more false
ositives and fewer false negatives, when compared to the use of tests
s we propose here. An evaluation with 52 merge scenarios indicates
hat SafeMerge reports 75% of the scenarios without conflicts, with a
alse positive rate of 15%. However, analyzing the merge scenarios
eported with conflicts, we conclude that some of them do not represent
onflicts according to our criteria. In these cases, the changes involved
o not interfere with each other or are only refactorings, leading
o no behavior change and consequently no interference. Due to the
xperimental design and dataset characteristics, the authors do not
resent false negative rates. However, concerning false positives, the
uthors disclose a rate of 3.8% (2 out of 52 cases), whereas our study
emonstrates a rate of 3.5% (3 out of 85 cases).

de Jesus et al. (2023) investigate the detection of semantic conflicts
sing static analysis techniques. For that, the authors implement differ-
nt algorithms based on the Soot framework and perform an empirical
tudy evaluating 99 cases of candidate scenarios with conflicts. When
ompared to our results, the authors report that their approach shows
etter results regarding F1 score and recall. However, when we com-
are their results regarding precision and accuracy, SAM outperforms
hem. Combining these two approaches might represent a good way
o overcome their individual limitations and achieving better results,
ased on the evaluated metrics discussed.

onflict detection through dynamic analysis
Nguyen et al. (2015) present Semex, a tool for detecting which

ombination of merged changes causes a test conflict based on a tech-
ique called variability-aware execution (Nguyen et al., 2014). First,
he tool separates the changes done by each parent commit in the merge
cenario and encodes each one using conditionals around them (if
tatements) to integrate all these changes in a single program. Semex
hen uses variability-aware execution to detect semantic conflicts by
unning existing project tests, if available, on this single program,
xploring all possible combinations of the encoded changes. Reporting
conflict exclusively based on the failure of a test in the merged code
oes not always imply a conflict or interference. If the test fails in one
f the parent commits too, failure in the merge might simply indicate
nheritance of a defect. That is why we propose different criteria,
ased on the idea of tests as partial specifications of the changes to be
ntegrated. We also rely on and assess the use of test generation tools to
etect conflicts, instead of relying on existing project tests, which are
ften missing or have limitations, as described above.

Tiwari et al. (2021) present PANKITI, a related approach regarding
he use of serialization to support unit test generation tools. Unlike our
pproach to serializing objects based on a target method during merge
cenarios, PANKITI monitors an application in production serializing
bjects when target methods are called. While we serialize the current
bjects holding the target method and its required parameters, the
uthors also serialize the returning target method objects. For our con-
ext, we are not interested in returning objects as we focus on objects
hat might let us reach infection states of conflicting contributions.
urthermore, infections are not always propagated through returning
arget method objects; in our sample, we observe infections being
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ropagated through parameters, for example.
8.2. Regression testing

Regression testing has been used for detecting behavior changes
in the past. Evans and Savoia (2007) combine regression and pro-
gressing testing (differential testing) to detect preserved, altered, and
eliminated behavior of a program. Jin et al. (2010) present a test
generator based on a list of changed classes between two versions of
a program. Shamshiri et al. (2013) present EvosuiteR, a test generation
tool for differential testing that uses search-based algorithms to find
regression faults on different versions of a program. While the previous
studies evaluate the detection of regression faults between two different
versions of a program using regression tests, in this work, we evaluate
the potential of regression tests to detect semantic conflicts on merge
scenarios (three different versions of a program).

Campos et al. (2014) propose an approach (CTG) to more efficiently
generate unit tests considering the whole project, instead of a single
method or class as we do here. They focus on a Continuous Integration
context, and their approach can help detect behavior changes and
regressions, as tests generated in a previous commit might yield a
different result when executed in the next commit. But this is not
enough for detecting interference as we do here, as our interference
heuristic goes beyond behavior change detection; a test that was gen-
erated and passes in a parent commit, and that breaks in the following
(say merge) commit, might indicate interference only if it breaks in the
corresponding base commit. It would, however, be important to use
CTG, instead of raw Evosuite focused on a target method as we do here,
to assess whether it could improve SAM. Hejderup and Gousios (2022)
investigate the effectiveness of project test suites on detecting semantic
changes motivated by updates to external dependencies instead of
conflicting contributions applied to the project itself, as we do here.

Arcuri and Galeotti (2021) adopt a related approach by presenting
a set of testability transformations; unlike our transformations, they
do not focus on changing code element access modifiers or semantic
changes but support and guide the search algorithm when generating
tests. Their core idea is based on Method Replacements, which replace
specific method calls at the bytecode level with their customized meth-
ods. To evaluate their technique, they implement it as an extension
of the EvoMaster tool and perform an empirical study analyzing ten
Rest web service projects (open-source and industrial ones). The results
show that the techniques effectively improve code coverage and fault
detection.

Regarding the issues we observe by the tools when generating
test suites, previous studies also bring evidence about the hardness of
dealing with complex objects (Fraser and Arcuri, 2015; Silva et al.,
2017; Da Silva et al., 2020). These related studies discuss the difficulty
of generating complex objects, which are required when calling specific
methods under analysis. By complex objects, we consider objects with
multiple other objects from internal as also external dependencies.
In order to address these issues, we propose feeding the tools with
serialized objects leading them to reuse previous objects originally
created by the original project test suite.

9. Conclusion

In this work, we present and evaluate a semantic merge conflict de-
tection technique using automated test-case generation. As opposed to
prior attempts in the literature, our strategy does not require explicitly
defined behavior specifications or substantial setup effort. We define
interference criteria and systematically investigate their effectiveness
by detecting conflicts upon a manually curated ground-truth dataset
originating from 85 changes’ pairs from 51 software merge scenar-
ios that integrate changes to the same method, constructor, or field
declaration mined from GitHub.

In order to detect conflicts, we combine unit test generation tools
and adopt improvements, such as testability and serialization transfor-

mations. As a result, we show the feasibility of a semantic merge tool,
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SAM (SemAntic Merge tool). While SAM is able to detect nine conflicts
out of 29 conflicts from 85 changes’ pairs, we report only three false
positives according to our interference criteria. This suggests that se-
mantic merge tools based on unit test generation would help developers
detect semantic conflicts early, otherwise reaching end-users as failures.
Our results show that SAM performs best when combining only the tests
generated by Differential EvoSuite and EvoSuite. The testability trans-
formations improve the testability of target code under analysis in three
of the nine detected interference cases, suggesting that they might be
useful for interference detection. We discuss necessary improvements
to test generation and make our manually curated dataset available in
a replication package (Online Appendix, 2024), also to help building
future semantic merge tool.

We also explore and measure the impact of different improvements
in our semantic merge-conflict detection technique due to the limita-
tions of unit test generation tools and the complexity of the target code
under analysis. First, we propose and evaluate the use of serialized
objects as input for the tools during the generation process. Although
we do not observe new semantic conflicts detected after applying this
technique, new general behavior changes are detected involving pairs
of commits. Second, we also extend Randoop aiming to maximize the
number of tests exploring the target method when applicable. Although
our tool Randoop Clean reports better results regarding test suites
dealing with more diverse objects, we do not observe the detection
of new conflicts. As future work, we plan to extend SAM to consider
original project test suites to detect conflicts based on our conflict
criteria, improve the use of serialization transformations, and extend
unit test generation tools.
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