
Energy norm error estimates and convergence
analysis for a stabilized Maxwell’s equations in

conductive media

E. Lindström * L. Beilina †

December 21, 2023

Abstract

The aim of this article is to investigate the well-posedness, stability and con-
vergence of solutions to the time-dependent Maxwell’s equations for electric field
in conductive media in continuous and discrete settings. The situation we consider
would represent a physical problem where a subdomain is emerged in a homoge-
neous medium, characterized by constant dielectric permittivity and conductivity
functions. It is well known that in these homogeneous regions the solution to the
Maxwell’s equations also solves the wave equation which makes calculations very
efficient. In this way our problem can be considered as a coupling problem for
which we derive stability and convergence analysis. A number of numerical ex-
amples validate theoretical convergence rates of the proposed stabilized explicit
finite element scheme.
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1 Introduction
In this paper we consider the time-dependent Maxwell’s equations in a bounded, simply
connected spatial domain Ω. This domain is divided into two subdomains, one outer
were the dielectric permittivity and conductivity are constant functions, and one inner
one were they are allowed to vary but are still bounded functions.

One important (and of special interest for the authors) consequence of the results
developed in this paper are applications of Maxwell’s equations to solutions of Coeffi-
cient Inverse Problems (CIPs). In [39, 40] one can read about inverse problems applied
to imaging of buried objects, and in [8, 9, 13] inverse problems are used for medical
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imaging. In the latter case the problem is to reconstruct the dielectric permittivity and
conductivity functions of an anatomically realistic phantom of a breast tissue. The
dielectric properties of different tissue types in a breast are experimentally measured
and known [25], but their distribution inside every particular breast tissue is unknown.
Such a scenario is one case where the domain decomposition can be an useful tool for
solution of electromagnetic CIPs when the goal is determination of dielectric properties
of the object from boundary measurements of the scattered electric field.

Under certain circumstances, it is known that the solution to the Maxwell’s equa-
tions also solves the wave equation, which is more studied and understood, see [4, 5,
7, 8, 10]. In [10], a finite element analysis shows stability and consistency of the stabi-
lized finite element method for the solution of Maxwell’s equations in non-conductive
media, and in [4] authors investigated a stabilized domain decomposition finite ele-
ment method for the time harmonic Maxwell’s equations. Stability and convergence
analysis of a Domain Decomposition FE/FD method for time-dependent Maxwell’s
equations was presented in [5]. In our knowledge, all previous cited works consider
non-conductive media, and the research concerning time-dependent Maxwell’s equa-
tion for electric field in conductive media, when both dielectric permittivity and con-
ductivity are space-dependent functions, are missing.

The stability and well-posedness of the wave equation are well understood and
studied [23, 31]. Certain model of wave equations have also been used to model inverse
problems, see [11, 6, 24]. The progression to Maxwell’s equations is arguably natural,
since the system has wave-like properties. However, some complications occur from
the presence of the double curl operator. Another theoretical complication is that when
one analyzes the corresponding bilinear form induced by the variational form, one can
see that it is not coercive. This coercivity is often critical in proofs concerning existence
and uniqueness of solutions. The additional novelty of the presented work is in how
we deal with coercivity of the bilinear form. Since the bilinear form with presence of
time-dependent terms is non-coercive, we split it and separate terms with derivatives in
time in order to derive the coercivity for the remaining spatial part of the bilinear form
using some minor restrictions on the gradient of the permittivity function. We use then
coercivity of the spatial part of the bilinear form in the proof of a priori error estimate.
Derivation of coercivity of the entire scheme is a topic of an ongoing research.

To align the results with implementations of P1-methods, we introduce a slightly
altered, stabilized problem. Otherwise, these methods can lead to spurious solutions
(see [3, 7, 15, 16, 26, 27, 28, 29, 35, 37]) and is well-known that theoretically, diver-
gence free edge edge elements are a better fit, see [17, 21, 33, 34, 36]. To read more
about various numerical methods for Maxwell equations and more details about the
complications, see [2, 3, 4, 14, 18, 19, 21, 22, 33, 35] and references therein. Naturally,
since the theoretical results of this work have importance for numerical implementa-
tions, we also present analysis of the corresponding discrete problem to our original
pmodel.

An outline of this paper is as follows. In Section 2 we introduce the mathematical
model and present the stabilized problem for the time-dependent Maxwell’s equations
in conductive media. In Section 3 we state the variational problem for the stabilized
model and formulate the finite element scheme. Section 4 is devoted to the energy
norm error analysis and section 5 presents derivation of a priori error estimates. In
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Section 6 are performed numerical convergence tests illustrating theoretical results of
this paper. Finally, in Section 7 we conclude the results of the paper.

2 The mathematical model
Let us consider the initial value problem for the electric field E (x, t)= (E1,E2,E3)(x, t),
x ∈ R3, t ∈ [0,T ], for time-dependent Maxwell’s equations in conductive media, under
the assumptions that the dimensionless relative magnetic permeability of the medium
is µr ≡ 1:

1
c2 εr(x)

∂ 2E
∂ t2 +∇×∇×E =−µ0σ(x)

∂E
∂ t

− j,

∇ · (εE) = 0,

E(x,0) = f0(x),
∂E
∂ t

(x,0) = f1(x), x ∈ R3, t ∈ (0,T ].

(1)

Here, εr(x) = ε(x)/ε0 is the dimensionless relative dielectric permittivity, σ(x) is the
electric conductivity function; ε0, and µ0 are the permittivity and permeability of the
free space, respectively, and c = 1/

√
ε0µ0 is the speed of light in free space and j is a

given source function.
To solve the problem (1) numerically, we consider it in a bounded simply connected

space domain Ω ⊂ Rn, n = 2,3 with boundary Γ and time domain J = (0,T ). In this
work we will study the problem (1) in a special framework: we decompose the space
domain Ω into two subdomains such that Ω = Ω1∪Ω2,Ω1 ⊂ Ω and Ω1 = ΩIN∪ΩOUT.
We assume that for some known constants d1 > 1,d2 > 0 chosen such that d1 > d2, the
functions ε,σ ∈C2 (Ω) satisfy following conditions:

εr(x) ∈ [1,d1] , σ(x) ∈ [0,d2] , for x ∈ ΩIN,

εr(x) = 1, σ(x) = 0 for x ∈ Ω2 ∪ΩOUT.
(2)

We refer to [8] and references therein for justification and possible choice of these
coefficients.

We observe that conditions (2) on ε and σ together with the relation

∇×∇×E = ∇(∇ ·E)−∇ · (∇E), (3)

and divergence free condition ∇ ·(εE) = 0 in Ω2, make equations in (1) independent of
each others in Ω2 such that in Ω2, we solve the system of uncoupled wave equations:

∂ 2E
∂ t2 −∆E = 0, (x, t) ∈ Ω2 × (0,T ]. (4)

In [10], a finite element analysis shows stability and consistency of the stabilized
finite element method for the solution of (1) with σ(x) = 0. In [4] a stabilized linear,
domain decomposition finite element method for the time harmonic Maxwell’s equa-
tions was studied. In the current study we show stability and convergence analysis of
the finite element method for solution of (1) under the condition (2) on ε and σ .
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Let ΩT = Ω×(0,T ),ΓT = Γ×(0,T ). Let us introduce the following spaces of real
valued functions

H2
E(ΩT ) := {w ∈ H2(ΩT ) : w(·,0) = f0,

∂w
∂ t

(·,0) = f1},

H1
E(ΩT ) := {w ∈ H1(ΩT ) : w(·,0) = f0,

∂w
∂ t

(·,0) = f1}.
(5)

In this paper we study the following stabilized initial boundary value problem setting
H2

E(ΩT ) = [H2
E(ΩT )]

3: find E ∈ H2
E(ΩT ) such that ε

∂ 2E
∂ t2 −△E −∇(∇ · ((ε −1)E)) =−σ(x) ∂E

∂ t − j in ΩT ,

E(·,0) = f0(·), and ∂tE(·,0) = f1(·) in Ω,
E = 0 on ΓT .

(6)

Here, the divergence free condition ∇ · (εE) = 0 is hidden in the first equation of
system (6).

3 Finite Element Discretization
Throughout the paper we denote the inner product in space of [L2(Ω)]d ,d ∈ {1,2,3},
by (·, ·), and the corresponding norm by ∥ · ∥.

Let us define the following L2 scalar products used in the analysis:

(u,v) := (u,v)Ω =
∫

Ω

uv dx, ((u,v)) := ((u,v))ΩT =
∫ T

0

∫
Ω

uv dxdt,

⟨u,v⟩ := ⟨u,v⟩Γ =
∫

Γ

uv dσ , ⟨⟨u,v⟩⟩ := ⟨⟨u,v⟩⟩ΓT =
∫ T

0

∫
Γ

uv dσdt.
(7)

Additionally, we define the ω-weighted L2(Ω) norm

∥u∥ω :=
√∫

Ω

ω|u|2 dx, ω > 0, ω ∈ L∞(Ω) (8)

together with the ω-weighted L2 scalar product:

(u,v)ω :=
∫

Ω

ω uvdx. (9)

To write finite element scheme to solve the model problem (6) in whole Ω, we
discretize ΩT = Ω× (0,T ) by partition Kh = {K} of Ω into elements K, where h =
h(x) is a mesh function defined as h = maxK∈Kh hK . Here, where hK denotes the local
diameter of the element K. We also denote by ∂Kh = {∂K} a partition of the boundary
Γ into boundaries ∂K of the elements K. Let Jτ be a uniform partition of the time
interval (0,T ) into N equidistance subintervals J = (tk−1, tk] with the time step τ =
T/N. We also assume a minimal angle condition on elements K in Kh [1, 32].
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To formulate the finite element method for the spatial semi-discrete problem (6) in
Ω we introduce the finite element space W E

h (Ω) for every component of the electric
field E defined by

W E
h (Ω) := {w ∈ H1(Ω) : w|K ∈ P1(K),∀K ∈ Kh},

where P1(K) denote the set of piecewise-linear functions on K. We define f0h, f1h, jh
to be the usual interpolants of f0, f1, j, respectively, in (6) onto [W E

h (Ω)]3.
Setting WE(Ω) = [W E(Ω)]3 and WE

h (Ω) = [W E
h (Ω)]3 where the test function space

is chosen as
WE

h,0(Ω) := {v ∈ WE
h (Ω) | v = 0 on Γ}, (10)

the spatial semi-discrete problem (6) in Ω reads:
Find Eh ∈ WE

h (Ω) such that ∀v ∈ WE
h,0(Ω),

B(Eh,v) := (ε∂ttEh,v)+(σ∂tEh,v)+a(Eh,v) =−( j,v),
Eh(·,0) = f0h(·),

∂tEh(·,0) = f1h(·) in Ω.

(11)

Here, a is a bilinear form defined as

a(Eh,v) := (∇Eh,∇v)+(∇ · ((ε −1)Eh),∇ ·v)
− (n ·∇ · ((ε −1)Eh),∇ ·v)∂Ω −⟨∂nEh,v⟩Γ

(12)

We observe that boundary terms in (12) disappear because of definition of test space
(10). Thus, the bilinear form (12) for the case of test space (10) will be transformed to

a(Eh,v) := (∇Eh,∇v)+(∇ · ((ε −1)Eh),∇ ·v). (13)

Let us recall the explicit fully discrete finite element scheme for solution of (11) for
k = 1,2, . . . ,N −1 and ∀v ∈ WE

h,0(Ω) which was derived in [9]:

(
εh

Ek+1
h −2Ek

h+Ek−1
h

τ2 ,v
)
+(∇Ek

h ,∇v)+(∇ · (εhEk
h),∇ ·v)− (∇ ·Ek

h ,∇ ·v)

+(σh
Ek+1

h −Ek−1
h

2τ
,v)+( jk

h,v) = 0,
Eh

0 = f0h and Eh
1 = Eh

0 + τ f1h in Ω.

(14)

In the scheme (14) we approximated Eh(kτ) and jh(kτ) by Ek
h and jk

h, respectively,
for k = 1,2, ...,N. Rearranging terms in (14) we get for k = 1,2, . . . ,N − 1 and ∀v ∈
WE

h,0(Ω) (
(εh +

τ

2
σh)Ek+1

h ,v
)
=
(

2εhEk
h ,v

)
−
(

εhEk−1
h ,v

)
− τ

2(∇Ek
h ,∇v)

− τ
2(∇ · (εhEk

h),∇ ·v)+ τ
2(∇ ·Ek

h ,∇ ·v)

+ τ(
σh

2
Ek−1

h ,v)− τ
2( jk

h,v),

E0
h = f0h and E1

h = E0
h + τ f1h in Ω.

(15)
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For the convergence of this scheme the following CFL condition derived in [10] for
the case of σ = 0 should hold:

τ ≤ h
η
,η =C

√
1+3∥ε −1∥∞, (16)

where C is a mesh independent constant. The CFL condition for the case when both
functions ε ̸= 0,σ ̸= 0 is topic of ongoing research.

4 Energy norm error estimate (stability estimate)
In this section first we give a proof of energy estimate, for the vector E ∈H2 (ΩT ) of the
continuous model problem (6). Then we formulate stability estimate for semi-discrete
problem which is consequence of the energy estimate for the continuous problem.

Theorem 4.1. Assume that condition (2) on the functions ε(x),σ(x) hold. Let Ω ⊂R3

be a bounded domain with the piecewise smooth boundary ∂Ω. For any t∗ ∈ (0,T ) let
Ωt∗ =Ω×(0, t∗) and Γt∗ =Γ×(0, t∗). Suppose that there exists a solution E ∈H2 (ΩT )
of the model problem (6). Then the vector E is unique and there exists a constant
C = C(∥ε∥C2(Ω),∥σ∥, t∗) such that the following energy estimate is true for all ε ≥ 1
in (6):

|||E|||2(t∗) :=∥∂tE∥2
ε
(t∗)+∥E∥2

σ
(t∗)+∥∇E∥2 (t∗)+∥∇ ·E∥2

ε−1 (t
∗)

≤C
[
∥ j∥2

Ωt∗
+∥ f1∥2

ε
+∥∇ f0∥2 +∥ f0∥2

σ
+∥∇ · f0∥2

ε−1

]
.

(17)

Proof. We mark the terms in the first line of (6) with

ε∂ttE︸ ︷︷ ︸
I1

−∆E︸ ︷︷ ︸
I2

+∇(∇ · ((1− ε)E)︸ ︷︷ ︸
I3

=−σ∂tE︸ ︷︷ ︸
I4

− j︸︷︷︸
I5

(18)

to simplify notation in our proof, such that I1 + I2 + I3 = I4 + I5.
Through the proof we denote a generic constant of moderate size by C := C(∥ε −

1∥C2(Ω),∥σ∥∞, t∗). To prove our energy estimate we multiply (18) by 2∂tE and inte-
grate over Ωt∗ , and study it term by term. For the first term in (18) we have

((I1,2∂tE))Ωt∗ = ((2∂ttE,∂tE))ε,Ωt∗

=
∫ t∗

0
∂t∥∂tE∥2

ε(t)dt

= ∥∂tE∥2
ε(t

∗)−∥ f1∥2
ε (19)

where we used the chain rule, fundamental theorem of calculus and boundary condi-
tions of (6).

Next we have that

((I2,2∂tE))Ωt∗ =−((∆E,2∂tE))Ωt∗
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=−2⟨⟨∂nE,∂tE⟩⟩Γt∗ +((2∇E,∇(∂tE)))Ωt∗

=
∫ t∗

0
∂t∥∇E∥2(t)dt

= ∥∇E∥2(t∗)−∥∇ f0∥2 (20)

where we use spatial integration by part, boundary conditions and that ∥∂nE∥Γt∗ = 0.
For the third term in (18) we integrate by parts spatially twice and get

((I3,2∂tE))Ωt∗ = ((∇(∇ · ((1− ε)E),2∂tE))Ωt∗

= 2⟨⟨n · (∇ · ((1− ε)E),∂tE⟩⟩Γt∗ −2((∇ · ((1− ε)E),∇ ·∂tE))Ωt∗

=−2((∇(1− ε) ·E,∇ ·∂tE))Ωt∗ +((2∇ ·E,∇ ·∂tE))ε−1,Ωt∗

=−2⟨⟨∇(1− ε) ·E,n ·∂tE⟩⟩Γt∗ +2((∇(∇(1− ε) ·E),∂tE))Ωt∗

+
∫ t∗

0
∂t∥∇ ·E∥2

ε−1(t)dt

= 2((∇(∇(1− ε) ·E),∂tE))Ωt∗ +∥∇ ·E∥2
ε−1(t

∗)−∥∇ · f0∥2
ε−1 (21)

Above we made use of (2) (note that since ε ≡ 1 on a neighbourhood of Γ, we have
(1− ε)|Γ ≡ 0 and ∇(1− ε)|Γ ≡ 0). We also made use of the fact that ∇ · ((1− ε)E) =
∇(1− ε)E +(1− ε)∇ ·E.

Before estimating the fourth term in (18) we first note that

E(x, t∗) = E(x,0)+
∫ t∗

0
∂tE(x, t)dt,

and using that (a+b)2 ≤ 2a2 +2b2 we get

E2(x, t∗)≤ 2E2(x,0)+2(
∫ t∗

0
∂tE(x, t)dt)2 ≤ 2E2(x,0)+2

∫ t∗

0
(∂tE)2(x, t)dt.

If we then integrate these terms over Ω we arrive at

−2((∂tE,∂tE))Ωt∗ ≤−∥E∥2(t∗)+2∥E∥2(0) = ∥E∥2(t∗)+2∥ f0∥2.

Applying this to our case we have that

((I4,2∂tE))Ωt∗ =−2((∂tE,∂tE))σ ,Ωt∗

≤−∥E∥2
σ (t

∗)+2∥ f0∥2
σ (22)

For our final term in (18), we simply use that 2ab ≤ a2 +b2:

((I5,2∂tE))Ωt∗ ≤ ((| j|,2|∂tE|))Ωt∗ ≤ ∥ j∥2
Ωt∗

+∥∂tE∥2
Ωt∗

(23)

Next we collect all the terms (19)-(23) to arrive at

∥∂tE∥2
ε(t

∗)+∥∇E∥2(t∗)+∥∇ ·E∥2
ε−1(t

∗)+∥E∥2
σ (t

∗),

≤ ∥ f1∥2
ε +∥∇ f0∥2 +∥∇ · f0∥2

ε−1 +2∥ f0∥2
σ +∥ j∥2

Ωt∗
+∥∂tE∥2

Ωt∗

7



+2((∇(∇(ε −1) ·E),∂tE))Ωt∗ . (24)

We may estimate the last term of (24) using that

|∇(∇(ε −1) ·E)| ≤C(|E|+ |∇E|).

Thus, the above estimate together with the inequality ab ≤ a2

2 + b2

2 yields

2((|∇(∇(ε −1) ·E)|, |∂tE|))Ωt∗ ≤ 2C((|E|+ |∇E|, |∂tE|))Ωt∗

≤C(∥(|E|+ |∇E|)∥2
Ωt∗

+∥∂tE∥2
Ωt∗

)

≤C(∥E∥2
Ωt∗

+∥∇E∥2
Ωt∗

+∥∂tE∥2
Ωt∗

).

Now we can rewrite (24) as

F(t∗)≤ g(t∗)+C(∥∂tE∥2
Ωt∗

+∥∇E∥2
Ωt∗

+∥E∥2
Ωt∗

)

≤ g(t∗)+C(∥∂tE∥2
ε,Ωt∗

+∥∇E∥2
Ωt∗

+∥∇ ·E∥2
ε−1,Ωt∗

+∥E∥2
σ ,Ωt∗

)

= g(t∗)+C
∫ t∗

0
F(t)dt,

for some constant C > 0, where

F(t) := ∥∂tE∥2
ε(t)+∥∇E∥2(t)+∥∇ ·E∥2

ε−1(t)+∥E∥2
σ (t),

g(t) := ∥ f1∥2
ε +∥∇ f0∥2 +∥∇ · f0∥2

ε−1 +2∥ f0∥2
σ +

∫ t∗

0
∥ j∥2 dt.

One application of Grönwall’s inequality now gives us the result in (17).

The next corollary follows from the stability estimate for the continuous problem
where all components of the electric field E are replaced with their approximations Eh,
as well as all other continuous functions are replaced with their discrete analogs.

Corollary 4.1. Assume that condition (2) on the functions ε(x),σ(x) hold. For any t∗ ∈
(0,T ) let Ωt∗ = Ω× (0, t∗) and Γt∗ = Γ× (0, t∗). Suppose that there exists a solution
Eh ∈ WE

h (Ω) of the problem (11) and the approximations of the initial data f0,h and
f1,h satisfy the regularity conditions f1,h, f0,h ∈ WE

h (Ω). Then Eh is unique and there
exists a constant C = C(∥ε∥C2(Ω),∥σ∥, t∗) such that the following energy estimate is
true for all ε ≥ 1,σ > 0,ε > σ in (11):

|||Eh|||2(t∗) :=∥∂tEh∥2
ε
(t∗)+∥Eh∥2

σ
(t∗)+∥∇Eh∥2 (t∗)+∥∇ ·Eh∥2

ε−1 (t
∗)

≤C
[
∥ j∥2

Ωt∗
+
∥∥ f1,h

∥∥2
ε
+
∥∥∇ f0,h

∥∥2
+
∥∥ f0,h

∥∥2
σ
+
∥∥∇ · f0,h

∥∥2
ε−1

]
.

(25)
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5 A priori error estimates
In this section we present an a priori error estimate for the error e = E(·, t)−Eh(·, t)
between the solution E of the model problem (6) and solution Eh of the semi-discretized
problem (11).

Let
e := E(·, t)−Eh(·, t) = E −ΠhE +ΠhE −Eh = η +ξ , (26)

where η := E−ΠhE, ξ :=ΠhE−Eh. Here, ΠhE : H1
E(ΩT )−→WE

h (ΩT ) is an elliptic
projection operator for E ∈ H(div,Ω), see details in [1, 20], such that ∀v ∈ WE

h (Ω)

a(ΠhE,v) = a(E,v). (27)

The first part of error, η = E −ΠhE, can be estimated as follows.

Theorem 5.1. Let E ∈ H2
E(ΩT ) bet the solution of the continuous problem (6). Then

||η ||L2 ≤CI(τ
2||D2

t E||+h2||D2
xE||),

||η ||H1 ≤CI(τ||D2
t E||+h||D2

xE||).
(28)

For semi-discretized problem (11) these estimates reduces to:

||η ||L2 ≤CIh2||D2
xE||,

||η ||H1 ≤CIh||D2
xE||.

(29)

Proof. We observe that using (27) we can get ∀v ∈ WE
h (ΩT )

∥η∥2 = ∥E −ΠhE∥2 = (E −ΠhE,E −ΠhE)

= (E −ΠhE,E − v)+(E −ΠhE,v−ΠhE)

= (E −ΠhE,E − v)≤ ∥E −ΠhE∥∥E − v∥,
(30)

and thus,

∥η∥= ∥E −ΠhE∥ ≤ ∥E − v∥. (31)

Taking v = EI
h in (31) , where EI

h is nodal interpolant of E, and using standard interpo-
lation error estimates [20, 30, 12] for the fully discrete scheme in space and time we
get

∥η∥L2 ≤CI(τ
2||D2

t E||+h2||D2
xE||),

||η ||H1 ≤CI(τ||D2
t E||+h||D2

xE||),
(32)

where CI are interpolation constants. For semi-discretized problem (11) terms with
D2

t E disappear and these estimates reduces to (29).
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In the proof of a priori error estimate we use the constant C as a moderate constant
which is adjusted throughout the proof, as well as well-posedness of the bilinear form
a(·, ·). Let us briefly sketch the proof of well-posedness of a(·, ·). We refer to [4] for
the full details of this proof.

Let us define the linear form as

L (v) :=−( j,v). (33)

We now can rewrite the equation (11) as

(ε∂ttEh,v)+(σ∂tEh,v)+a(Eh,v) = L (v). (34)

Theorem 5.2 (well-posedness of a(·, ·) ). Assume that the following condition holds

|∇ε| ≤ 1
2

min(1/2,ε −1). (35)

Let
|||Eh|||2a :=∥ Eh ∥2

ε + ∥ ∇Eh ∥2 + ∥ ∇ ·Eh ∥2
ε−1 . (36)

Then for all Eh and v ∈ WE
h (Ω) the discrete bilinear form a(·, ·) is well-posed, or:

a(Eh,Eh)≥
1
2
|||Eh|||2a (Coercivity of a), (37)

a(Eh,v)≤C2|||Eh|||a |||v|||a, (Continuity of a), (38)
|L (v)| ≤C3|||v|||a, (Continuity of L ). (39)

where, Ci, i = 2,3 are positive constants.

Proof. We use a Lax-Milgram approach, or we will show that the discrete bilinear form
a(·, ·) is coercive, and both a(·, ·) and L (·) are continuous.

To prove coercivity of a(·, ·) we choose v = Eh in (13) to get

a(Eh,Eh) = (∇Eh,∇Eh)+(∇(ε −1)Eh,∇ ·Eh)+((ε −1)∇ ·Eh,∇ ·Eh)

=∥ ∇Eh ∥2 + ∥ ∇ ·Eh ∥2
ε−1 +(∇(ε −1)Eh,∇ ·Eh).

(40)

In (40) we have used the equality

(∇ · ((ε −1)Eh),∇ ·v) = (∇(ε −1)Eh +(ε −1)∇ ·Eh,∇ ·v). (41)

Since ∇(ε −1) = ∇ε we can use the following estimate derived in [4]:

±
(
(∇ε)Eh,∇ ·Eh

)
≥−1

2
∥Eh∥2

|∇ε|−
1
2
∥∇ ·Eh∥2

|∇ε| , (42)

Using (42) and assumption (35) we obtain coercivity of a:

a(Eh,Eh) =∥ ∇Eh ∥2 + ∥ ∇ ·Eh ∥2
ε−1 +(∇(ε −1)Eh,∇ ·Eh)

≥∥ ∇Eh ∥2 + ∥ ∇ ·Eh ∥2
ε−1 −

1
2
∥Eh∥2

|∇ε|−
1
2
∥∇ ·Eh∥2

|∇ε| ≥
1
2
|||Eh|||2a.

(43)
10



To prove continuity of a(·, ·), we use Cauchy-Schwarz’ inequality and estimate (42)
to obtain ∀v ∈ WE

h (Ω) :

a(Eh,v) = (∇Eh,∇v)+(∇ · ((ε −1)Eh),∇ ·v)
= (∇Eh,∇v)+((ε −1)∇ ·Eh,∇ ·v)+((∇ε)Eh,∇ ·v)
≤∥ ∇Eh ∥∥ ∇v ∥+ ∥ ∇ ·Eh ∥ε−1∥ ∇ ·v ∥ε−1

+ ∥ Eh ∥|∇ε|∥ ∇ ·v ∥|∇ε|≤C|||Eh|||a · |||v|||a.

(44)

Finally, we can verify continuity of L (v):

|L (v)|= |(− j,v)| ≤∥ j ∥∥ v ∥≤∥ j ∥ |||v|||. (45)

Theorem 5.3. Let E ∈ H2
E(ΩT ) solves the continuous problem (6), and Eh ∈ WE

h (ΩT )
solves the semi-discretized problem (11). Assume that E(t),∂tE(t),∂ttE(t) ∈ H2(Ω).
Further assume that the assumptions (2) and (35) on functions ε and σ hold, as well
as f0, f1 ∈ [H1(Ω)]3, f0h, f1h, jh ∈ [W E

h (Ω)]3 and j ∈ [L2(ΩT )]
3. Then there exists a

constant C(ε,σ) such that for all t ∈ [0,T ] the following a priori error estimates hold:

∥e(t)∥= ||E(·, t)−Eh(·, t)|| ≤CIh2(∥D2
xE∥Ω +2d1t

∫ T

0
(∥∂ssD2

xE∥Ω +∥∂sD2
xE∥Ω)ds),

∥e(t)∥H1 = ||E(·, t)−Eh(·, t)||H1 ≤CIh(∥D2
xE∥Ω +2d1t

∫ T

0
(∥∂ssD2

xE∥Ω +∥∂sD2
xE∥Ω)ds).

(46)

Proof. Since η is estimated via standard interpolation error estimates (28), we begin
to estimate ξ . We first note that ∀v ∈ WE

h (Ω)

a(ΠhE,v) = a(E,v)
=−( j,v)− (ε∂ttE,v)− (σ∂tE,v) (47)
+(ε∂ttΠhE,v)+(σ∂tΠhE,v)− (ε∂ttΠhE,v)− (σ∂tΠhE,v).

Using (26) the equation above can be rewritten as

(ε∂ttΠhE,v)+(σ∂tΠhE,v)+a(ΠhE,v) =−( j,v)− (ε∂ttη ,v)− (σ∂tη ,v). (48)

By subtracting the first equation of (11) from the expression above, while letting v :=
∂tξ we arrive at

(ε∂ttξ ,∂tξ )+(σ∂tξ ,∂tξ )+a(ξ ,∂tξ ) =−(ε∂ttη ,∂tξ )− (σ∂tη ,∂tξ ). (49)

Note that ∀v ∈ WE
h (Ω)

a(ξ ,v) = a(ΠhE −Eh,v) = a(E −Eh,v) = 0,

11



by the properties of Πh and Galerkin orthogonality. Using this we observe that in (49)
the term a(ξ ,∂tξ ) = 0. Thus, we can estimate a lower bound of the left-hand side of
(49) as

(ε∂ttξ ,∂tξ )+(σ∂tξ ,∂tξ )+a(ξ ,∂tξ )≥ (ε∂ttξ ,∂tξ ) =
1
2

∂t∥ε∂tξ∥2
Ω ≥ 1

2
∂t∥∂tξ∥2

Ω,

(50)
where we have used that (σ∂tξ ,∂tξ )≥ 0 and ε ≥ 1,σ ≥ 0.

We can also estimate an upper bound for the right-hand side of (49):

−(ε∂ttη ,∂tξ )− (σ∂tη ,∂tξ )≤ (∥ε∂ttη∥Ω +∥σ∂tη∥Ω)∥∂tξ∥Ω. (51)

Collecting these two estimates, we have

∂t∥∂tξ∥2
Ω ≤ 2(∥ε∂ttη∥Ω +∥σ∂tη∥Ω)∥∂tξ∥Ω. (52)

Integrating over [0, t∗] where t∗ ∈ [0,T ] and using conditions (2) for functions ε,σ
noting that ε > σ we get

∥∂tξ∥2
Ω(t

∗)≤ 2
∫ t∗

0
(∥ε∂ssη∥Ω +∥σ∂sη∥Ω)∥∂sξ∥Ω(s)ds

≤ 2d1

∫ t∗

0
(∥∂ssη∥Ω +∥∂sη∥Ω)(s)ds · max

t ′∈[0,T ]
∥∂sξ∥Ω,

(53)

where we have used that ξ (·,0) = ∂tξ (·,0) = 0, and σ ≤ ε ≤ d1.
Since (53) holds for all t∗ ∈ [0,T ], we have

max
t ′∈[0,T ]

∥∂tξ∥2
Ω ≤ 2d1

∫ T

0
(∥∂ssη∥Ω +∥∂sη∥Ω)(s)ds · max

t ′∈[0,T ]
∥∂tξ∥Ω,

max
t ′∈[0,T ]

∥∂tξ∥Ω ≤ 2d1

∫ T

0
(∥∂ssη∥Ω +∥∂sη∥Ω)(s)ds. (54)

Substituting this estimate into (53), we finally obtain

∥∂tξ∥Ω ≤ 2d1

∫ T

0
(∥∂ssη∥Ω +∥∂sη∥Ω)(s)ds. (55)

To proceed further we use estimate (28) to get∫ t∗

0
(∥∂ssη∥Ω +∥∂sη∥Ω)(s)ds ≤CIh2

∫ T

0
(∥∂ssD2

xE∥Ω +∥∂sD2
xE∥Ω)ds. (56)

Using (56) in (55) we obtain

∥∂tξ∥Ω ≤ 2d1CIh2
∫ T

0
(∥∂ssD2

xE∥Ω +∥∂sD2
xE∥Ω)ds. (57)

Further, we observe that

d
dt

∥ξ∥2
Ω
= 2∥ξ∥

Ω

d
dt

∥ξ∥
Ω
=

d
dt

∫
Ω

|ξ |2 dx

= 2
∫

Ω

ξ ·ξt dx ≤ 2∥ξ∥
Ω
∥∂tξ∥Ω

(58)
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from which it follows that

d
dt

∥ξ∥
Ω
≤ ∥∂tξ∥Ω

. (59)

Integrating in time (59) and using (57) yields

∥ξ (t)∥
Ω
≤

∫ t

0
∥∂sξ∥Ω

ds ≤ 2d1CIh2t
∫ T

0
(∥∂ssD2

xE∥Ω +∥∂sD2
xE∥Ω)ds (60)

From (60) and (28) follows also that

∥ξ (t)∥H1 ≤ 2d1CIht
∫ T

0
(∥∂ssD2

xE∥Ω +∥∂sD2
xE∥Ω)ds. (61)

Summing up (28), (60) and (61) we get the desired error estimates (46), and the
proof is complete.

6 Numerical examples
In this section we perform computations which will confirm theoretical predictions
given in Theorem 4. All computations are performed in the software package WavES
[41] using C++/PETSC [38]. The computational domain Ω× (0,T ) is chosen as Ω =
[0,1]× [0,1] with Ω1 = [0.25,0.75]× [0.25,0.75] such that Ω1 ⊂ Ω. To discretize the
computational domain Ω we denote by Thl := {K} a partition of the domain Ω into
triangles K of sizes hl = 2−l , l = 3, ...,6. The explicit finite element scheme (15) derived
in [9] was used in computations. We have chosen the time step τ = 0.0005 such that
the whole explicit scheme remains stable.

We have used following time-dependent model problem in computations:

ε(x)
∂ 2E(x, t)

∂ t2 +∇×∇×E(x, t)+σ(x)
∂E(x, t)

∂ t
= f (x, t),

∇ · (εE)(x, t) = 0,

E(x,0) = 0,
∂E
∂ t

(x,0) = 0,

E|Γ = 0.

(62)

The source data f (x, t), x := (x,y)∈R2, t ∈ [0,0.25] is computed by knowing the exact
solution

E1(x, t) =
t2

ε
π sin2

πxcosπysinπy,

E2(x, t) =− t2

ε
π sin2

πycosπxsinπx
(63)

13



a) m = 6 b) m = 8

c) m = 10 d) m = 12

Figure 1: a) The function ε(x,y) in the domain Ω1 = [0.25,0.75]× [0.25,0.75] for
different values of m in (64)
.

of the problem (62).
In the model problem (62) the function ε(x,y) is defined as

ε(x,y) =

 1 +(sinπ(2x−0.375))m · (sinπ(2y−0.375))m

+(sinπ(2x−0.625))m · (sinπ(2y−0.625))m in Ω1,
1 otherwise,

(64)

and the function σ(x,y) as

σ(x,y) =

 0.001(1 +(sinπ(2x−0.375))m · (sinπ(2y−0.375))m

+(sinπ(2x−0.625))m · (sinπ(2y−0.625))m) in Ω1,
0 otherwise

(65)
Figures 1, 2 show the functions ε and σ , respectively, for different m = 6,8,10,12 in
(64), (65) which were used in computations.
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a) m = 6 b) m = 8

c) m = 10 d) m = 12

Figure 2: a) The function σ(x,y) in the domain Ω1 = [0.25,0.75]× [0.25,0.75] for
different values of m in (64)
.

Relative errors Θ(1),Θ(2) are computed at the time moment t = 0.25 as

Θ
(1) =

∥Ê − Êh∥L2

∥Ê∥L2

, and (66)

Θ
(2) =

∥∇(Ê − Êh)∥L2

∥∇Ê∥L2

, (67)

in L2- and H1-norms, respectively. Here, Ê = (Ê1, Ê2) is the exact solution given by
(63), and Êh = (Ê1h, Ê2h) is the computed solution. We note also that∣∣Ê∣∣ :=

√
Ê2

1 + Ê2
2

∣∣Êh
∣∣ :=

√
Ê2

1h + Ê2
2h. (68)

Figures 3 present convergence results of explicit finite element scheme (15) for
the functions ε and σ defined by (64), (65), respectively, for different values of m =

6,8,10,12. Table 1, Table 2, Table 3 and Table 4 present relative errors Θ
( j)
l , j = 1,2

and convergence rates r( j)
l , j = 1,2 in the L2-norm and in the H1-norm for mesh sizes

15



a) m = 6 b) m = 8

c) m = 10 d) m = 12

Figure 3: Relative errors for different m in (64), (65)
.

hl = 2−l , l = 3, ...,6, for different values of m = 6,8,10,12 in (64),(65). We note that
chosen values of m satisfy the regularity assumptions on the exact solution, see details
in [10].

We used following expressions to compute convergence rates r(1) and r(2) presented
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in these figures and tables:

r(1) =

∣∣∣∣log
(

Θ
(1)
l

Θ
(1)
l+1

)∣∣∣∣
| log(2)|

,

r(2) =

∣∣∣∣log
(

Θ
(2)
l

Θ
(2)
l+1

)∣∣∣∣
| log(2)|

,

(69)

where Θ
( j)
l , j = 1,2 are computed relative norms Θ( j), j = 1,2 on the mesh Th with

the mesh sizes hl = 2−l , l = 3, ...,5.

l nel nno Θ(1) Θ
(1)
l

Θ
(1)
l+1

r(1) Θ(2) Θ
(2)
l

Θ
(2)
l+1

r(2)

3 128 81 0.058066 - - 0.464524 - -
4 512 289 0.011481 5.057543 2.34 0.183696 2.528771 1.34
5 2048 1089 0.002355 4.875048 2.29 0.075362 2.437524 1.29
6 8192 4225 0.000453 5.202624 2.38 0.028971 2.601312 1.38

Table 1: Relative errors Θ
( j)
l , j = 1,2 and convergence rates r( j)

l , j = 1,2 in the L2-
norm and in the H1-norm for mesh sizes hl = 2−l , l = 3, ...,6, for m = 6 in (64),(65).

l nel nno Θ(1) Θ
(1)
l

Θ
(1)
l+1

r(1) Θ(2) Θ
(2)
l

Θ
(2)
l+1

r(2)

3 128 81 0.071545 - - 0.572362 - -
4 512 289 0.015110 4.735050 2.24 0.241756 2.367525 1.24
5 2048 1089 0.002406 6.280222 2.65 0.076989 3.140111 1.65
6 8192 4225 0.000469 5.130590 2.36 0.030012 2.565295 1.36

Table 2: Relative errors Θ
( j)
l , j = 1,2 and convergence rates r( j)

l , j = 1,2 in the L2-
norm and in the H1-norm for mesh sizes hl = 2−l , l = 3, ...,6, for m = 8 in (64), (65).

Using Figures 3 and tables we observe that the explicit finite element scheme de-
rived in [9] behaves like a first order method in in H1(Ω)-norm and second order
method in L2(Ω)-norm. Therefore, these results confirm theoretical analytic estimates
derived in Theorem 4.

7 Conclusions
This paper presents stability and convergence analysis for the finite element method
for stabilized time-dependent Maxwell’s equations in conductive nonmagnetic media
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l nel nno Θ(1) Θ
(1)
l

Θ
(1)
l+1

r(1) Θ(2) Θ
(2)
l

Θ
(2)
l+1

r(2)

3 128 81 0.051348 - - 0.410785 - -
4 512 289 0.013703 3.747278 1.91 0.219245 1.873639 0.91
5 2048 1089 0.002553 5.367863 2.42 0.081688 2.683932 1.42
6 8192 4225 0.000495 5.156936 2.37 0.031681 2.578468 1.37

Table 3: Relative errors Θ
( j)
l , j = 1,2 and convergence rates r( j)

l , j = 1,2 in the L2-
norm and in the H1-norm for mesh sizes hl = 2−l , l = 3, ...,6, for m = 10 in (64), (65).

l nel nno Θ(1) Θ
(1)
l

Θ
(1)
l+1

r(1) Θ(2) Θ
(2)
l

Θ
(2)
l+1

r(2)

3 128 81 0.038995 - - 0.311959 - -
4 512 289 0.011230 3.472240 1.80 0.179688 1.736128 0.80
5 2048 1089 0.002753 4.078874 2.03 0.088106 2.039437 1.03
6 8192 4225 0.000526 5.238828 2.39 0.033636 2.619414 1.39

Table 4: Relative errors Θ
( j)
l , j = 1,2 and convergence rates r( j)

l , j = 1,2 in the L2-
norm and in the H1-norm for mesh sizes hl = 2−l , l = 3, ...,6, for m = 12 in (64), (65).

developed in [9]. We present analysis for a specific case when the dielectric permittivity
and conductivity functions have a constant value in a boundary neighborhood.

In the theoretical part of the paper we derived energy norm stability estimates for
the continuous and discrete solutions of the model problem, as well as a priori error
bounds in the gradient dependent, weighted norms. Our numerical computations con-
firm theoretical predictions and show that our method behaves like a first order method
in H1(Ω)-norm and second order method in L2(Ω)-norm.
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