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Perturbative computations of neutron-proton scattering observables using renormalization-group
invariant chiral effective field theory up to N3LO
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Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden

(Received 7 March 2024; accepted 2 May 2024; published 3 June 2024)

We predict neutron-proton scattering cross sections and polarization observables up to next-to-next-to-next-
to-leading order in a renormalization-group invariant description of the strong nucleon-nucleon interaction.
Low-energy constants are calibrated to phase shifts, subleading corrections are computed in distorted-wave
perturbation theory, and we employ momentum-cutoff values 500 and 2500 MeV. We find a steady order-by-
order convergence and realistic descriptions of scattering observables up to a laboratory scattering energy of
approximately 100 MeV. We also compare perturbative and nonperturbative calculations for phase shifts and
cross sections and quantify how unitarity is gradually restored at higher orders. The perturbative approach offers
an important diagnostic tool for any power counting and our results suggest that the breakdown scale in chiral
effective field theory might be significantly lower than estimates obtained in nonperturbative calculations.

DOI: 10.1103/PhysRevC.109.064001

I. INTRODUCTION

Nuclear potentials used in ab initio [1] computations of
atomic nuclei [2] are almost exclusively derived using chiral
effective field theory (χEFT) [3–5] based on Weinberg power
counting (WPC) [6,7]. Such potentials [8–14], now derived
up to the fifth chiral order [15–17], have furnished a wide
range of structure and reaction predictions across the nuclear
chart [18,19], but at the same time they grapple with the renor-
malization challenge inherent to chiral nuclear forces [20]. In-
deed, numerical studies [21] of the nucleon-nucleon scattering
amplitude have shown that the contact operators, accounting
for unresolved short-range physics, already at leading order
(LO) in WPC are not sufficient to renormalize the singular
nature [22] of the one-pion-exchange potential. Consequently,
LO predictions based on WPC exhibit an unphysical de-
pendence on the cutoff � that regularizes the amount of
high-momentum (or short-range) physics that is resolved.

Several PCs leading to renormalization-group (RG) invari-
ant nucleon-nucleon amplitudes have been proposed in the
past two decades [23–35]. They can collectively be referred to
as modified Weinberg power countings (MWPCs). However,
we typically know very little about their predictive power
for nuclei beyond the lightest-mass systems [36]. The one
exception is the recent study by Yang et al. [37] that presented
the first ab initio predictions of binding energies in 4He, 6Li,
and 16O using χEFT potentials up to next-to-leading order
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(NLO) in several different MWPCs. The calculations in that
work revealed an α-decay instability in the ground states in
6Li and 16O. Subsequent analyses brought forward probable
causes for this instability as originating in (i) overfitting of the
low-energy constants (LECs) that parametrize the short-range
interactions [38] and (ii) underestimating the importance of
few-nucleon forces [39] at LO in MWPC.

The notable absence of MWPC-based predictions for
heavier-mass nuclei is likely due to a variety of factors. First,
potentials based on WPC are easier to implement in present ab
initio computer codes as one straightforwardly sums leading
and subleading corrections to the potential before solving the
Schrödinger equation, whereas in MWPC subleading correc-
tions should be added in perturbation theory [40]. Second,
there exist several widely available computer codes for eval-
uating matrix elements of chiral nucleon-nucleon and three-
nucleon potentials, as well as currents, to very high orders in
WPC. Finally, it is currently prohibitively costly to converge
ab initio predictions of nuclear properties at the large values
of the cutoff required for analyzing RG invariance in MWPC.

In light of these facts we certainly see the utility of WPC,
which might provide a consistent EFT framework provided
that renormalization is interpreted in a fashion where the cut-
off never exceeds the order of the breakdown scale [41–43].
However, the existence of MWPCs, where renormalization
does allow for the cutoff to be taken far beyond the breakdown
scale, calls for a continued effort. We note that it was shown in
Ref. [44] that one can encounter so-called exceptional points
in the cutoff domain beyond the breakdown scale for which
the cutoff independence of the phase shifts significantly dete-
riorates. Given the fundamental importance of RG invariance
it should be seriously explored whether MWPC approaches
can furnish a realistic and predictive framework for ab initio
nuclear physics.

In this paper, we contribute to the meager list of quanti-
tative predictions grounded in RG-invariant formulations of
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χEFT. To the best of our knowledge, and somewhat surpris-
ingly, nucleon-nucleon scattering observables have not been
computed in MWPC beyond LO [41]. Here, we present pre-
dictions for integrated and differential cross-sections, as well
as polarization observables, for elastic neutron-proton (np)
scattering up to next-to-next-to-next-to-leading order (N3LO)
in the MWPC of Long and Yang [30,32,45], where higher-
order corrections to the potential are treated perturbatively
[21,40]. This work serves as an important step in the devel-
opment and uncertainty quantification of any model of the
nuclear interaction [46–50].

In Sec. II we review how to construct potentials in the
PC of Long and Yang, describe how to numerically compute
the scattering amplitude in distorted-wave perturbation theory,
and explain how we calibrated LEC values. In Sec. III we
present results for scattering observables up to N3LO, and we
summarize and conclude in Sec. IV.

II. FORMALISM

In χEFT, scattering amplitudes are expanded in a dimen-
sionless ratio (Q/�b)ν . Here, ν indicates the chiral order,
�b is the underlying high-momentum scale of χEFT, and Q
denotes the relevant low-energy scale. For nucleon-nucleon
scattering, we assume Q ≈ max(p, mπ ), where p is the rel-
ative momentum in the center-of-mass (c.m.) frame of the
interacting nucleons, and the pion mass mπ is the relevant
low-energy mass scale. In this work we adopt a nomenclature
where LO scales as (Q/�b)0 while subleading orders are
denoted by their relative scaling to LO. As such, NLO scales
as (Q/�b)1, next-to-next-to-leading order (N2LO) as (Q/�b)2

and so on. In what follows, we summarize relevant details
regarding the MWPC that we use in this work, define the
potential terms V (ν) entering at each chiral order, and explain
how we performed the perturbative calculations of scattering
amplitudes.

A. The nucleon-nucleon interaction potential in the Long
and Yang power counting

We employ the MWPC of Long and Yang [30,32,40,45],
which adheres to the following overarching principles:

(i) The chiral order of a pion-exchange diagram, along
with the necessary counterterms for renormalizing
pion loops, is determined by the naive dimensional
analysis (NDA) of its nonanalytic part. This follows
the same principle as in Weinberg power counting
(WPC).

(ii) Counterterms are promoted to lower chiral order only
when needed to fulfill the requirement of RG invari-
ance.

(iii) All corrections to the potential beyond LO are
included perturbatively to obtain RG invariant ampli-
tudes.

One-pion exchange (OPE) enters at LO in χEFT and must
be treated nonperturbatively, at least in the low partial waves
where it is sufficiently strong. The singular nature of OPE
is increasingly alleviated by the centrifugal barrier. Thus, at

TABLE I. Potential contributions at each in channels where
OPE is treated nonperturbatively (column 3) and perturbatively
(column 4). Detailed expressions for the potentials can be found in
Appendix A.

Nonperturbative (at LO) Purely perturbative
Order Potential channels channels

LO V (0) V (0)
1π + V (0)

ct 0

NLO V (1) V (1)
ct V (0)

1π

N2LO V (2) V (2)
2π + V (2)

ct 0

N3LO V (3) V (3)
2π + V (3)

ct V (2)
2π

some point in the partial-wave expansion there is sufficient
angular momentum � to furnish a perturbative treatment of
OPE [29,51,52] and consider it subleading.

At LO in the MWPC by Long and Yang, the OPE potential
V (0)

1π is considered nonperturbative in the 1S0, 3P0, 1P1, 3P1,
3S1-3D1, and 3P2-3F2 channels. OPE is attractive in 3P0 and
3P2. Renormalization requires promotion of counterterms to
the corresponding channels of the LO contact potential V (0)

ct
[21], thereby extending it beyond the canonical nonderiva-
tive 1S0 and 3S1 counterterms. At subleading orders (ν > 0),
two-pion-exchange, V (ν)

2π , as well as higher-order contact po-
tentials, V (ν)

ct , enter perturbatively according to the principles
presented in the beginning of this subsection. The contribu-
tions to the potential up to N3LO in the 1S0, 3P0, 1P1, 3P1,
3S1-3D1, and 3P2-3F2 channels are listed in the third column
of Table I labeled “nonperturbative (at LO) channels.”

See Appendix A for detailed expressions of the potentials
appearing in Table I. Following Long and Yang, we do not
consider any higher-order corrections to OPE and employ
potential expressions where pion loops are treated in dimen-
sional regularization. For the subleading two-pion-exchange
potential V (3)

2π we use pion-nucleon LECs c1, c3, c4 with cen-
tral values from the Roy-Steiner analysis in Ref. [53].

Let us now turn to the channels with � > 1 (and without
any coupling to � � 1). For these channels we consider OPE
to be perturbative and consequently set it to zero at LO. We
follow Ref. [51] and suppress two-pion exchanges by the
same chiral power as OPE. Up to N3LO, there are no contact
potentials in the perturbative channels, and the contributions
are listed in the last column of Table I. Other suggestions for
the PC in perturbative channels are discussed by, e.g., Pavón
Valderrama et al. [27].

B. A perturbative treatment of nucleon-nucleon
scattering amplitudes

The perturbative computation of nucleon-nucleon scatter-
ing amplitudes proceeds in two steps. First, we solve the
Lippmann-Schwinger (LS) equation for the LO amplitude
in the 1S0, 3P0, 1P1, 3P1, 3S1-3D1, and 3P2-3F2 channels. Note
that the LO potential is identically zero in all other chan-
nels. Second, we perturbatively include higher-order potential
corrections to the amplitude, accounting for the distortion
due to the nonperturbative LO solution where necessary. In
the following, we explain this procedure in detail; see also
Refs. [30,32,52].
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T (0) = = +

T (1) = + + +

FIG. 1. Diagrammatic representation of the LO neutron-proton amplitude T (0) (hatched oval), obtained by solving the LS equation, as well
as the first correction T (1) given in Eq. (11). The grey (black) solid blobs represent the potentials V (0) (V (1)).

The neutron-proton Hamiltonian in the center-of-mass
(c.m.) frame can be written

H = p2

mN
+ VI + VII, (1)

where p denotes the c.m. momentum and mN = 2mnmp/

(mn + mp) the nucleon mass. The projectile energy in the
laboratory frame will be denoted Tlab. Furthermore, VI denotes
the LO potential, and VII denotes the sum of all subleading po-
tentials, which formally can be infinitely many. The PC helps
us identify important and less important contributions to the
scattering amplitude T and therefore facilitates a meaningful
truncation of VII. With the notation for the chiral potentials
V (ν) introduced in Sec. II A, VI and VII read

VI = V (0), (2)

VII =
∞∑

ν=1

V (ν). (3)

The LO amplitude, T (0), is obtained (non-perturbatively)
by solving the LS equation

T (0) = V (0) + V (0)G+
0 T (0), (4)

where the free resolvent is given by

G+
0 = (E − H0 + iε)−1, (5)

and H0 = p2/mN . We use a notation where we suppress the
explicit dependence on the c.m. scattering energy, E , for the
resolvents and amplitudes.

In WPC, higher-order corrections are accounted for non-
perturbatively by solving the LS-equation for the sum VI +
VII. In MWPC, however, potentials beyond LO, i.e., the
corrections (VII), enter in perturbation theory to obtain RG
invariant results [40]. Indeed, higher-order corrections should
be amenable to a perturbative treatment. If not, they are non-
perturbative in nature and belong at LO.

Distorted-wave perturbation theory has been applied to
compute scattering amplitudes in several previous studies;
see, e.g., Refs. [28,30,32,45,52,54]. The perturbation series
for the scattering amplitude can be derived and expressed in
various ways. The one that we find most instructive follows
Refs. [55,56]. First, using the two-potential trick, the T
operator for the Hamiltonian in Eq. (1) is written in the form

T = T (0) + 	
†
−VII

∞∑
n=0

(G+
1 VII )

n	+, (6)

where the Møller wave operators are defined as

	+ = 1 + G+
0 T (0), (7)

	
†
− = 1 + T (0)G+

0 , (8)

and the full LO resolvent reads

G+
1 = 	+G+

0 . (9)

Inserting Eq. (3) in Eq. (6) gives for the full T operator

T = T (0) + 	
†
−

[ ∞∑
ν=1

V (ν)

] ∞∑
n=0

[
G+

1

( ∞∑
ν ′=1

V (ν ′ )

)]n

	+.

(10)

Expanding both sums and organizing terms according to their
chiral orders ν yields the expressions for the first-, second-,
and third-order corrections to the LO amplitude as

T (1) = 	
†
−V (1)	+, (11)

T (2) = 	
†
−(V (2) + V (1)G+

1 V (1) )	+, (12)

T (3) = 	
†
−(V (3) + V (2)G+

1 V (1) + V (1)G+
1 V (2)

+V (1)G+
1 V (1)G+

1 V (1) )	+. (13)

A diagrammatic representation of amplitudes up to NLO is
presented in Fig. 1. Note that the full amplitude at, e.g., third
order (N3LO) is given by the sum T (0) + T (1) + T (2) + T (3).
Clearly, the distorted-wave corrections in (11)–(13) simplify
dramatically when applied to the channels where OPE is per-
turbative such that T (0) = 0, 	+ = 1, and 	

†
− = 1. In these

channels we therefore recover ordinary perturbation theory.
The distorted-wave corrections to the amplitudes T (ν>0)

can alternatively be obtained as solutions to a set of modified
LS-type equations, discussed in more detail in Refs. [57,58],
which read

T (ν) = V (ν) +
ν∑

i=1

V (i)G+
0 T (ν−i) + V (0)G+

0 T (ν). (14)

We use this formulation to verify our numerical implemen-
tation of (11)–(13). We note that the alternative approach of
modified LS equations requires a matrix inversion at each
order, whereas the distorted-wave approach requires matrix
multiplications only. However, the number of matrix multipli-
cations increases rapidly as the chiral order is increased. For
example, at ν = 10, (11)–(13) require an order of magnitude
more matrix multiplications than the modified LS equations in
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Eq. (14). In this study we only go to ν = 3, for which the
numbers of matrix multiplications of the two formulations are
similar.

C. Numerical implementation

We project potentials and amplitudes to a partial-wave ba-
sis of states |p, �, s, j〉 following the prescription in Ref. [59].1

Here, p = |p|, while s, �, j denote the quantum numbers of
the two-nucleon spin, orbital angular momentum, and total an-
gular momentum, respectively. Partial-wave matrix elements
are denoted by

V js
�′�(p′, p) = 〈p′, �′, s, j|V |p, �, s, j〉 , (15)

where the conserved quantum numbers s and j are given as
superscripts.

In the LS equation, as well as in (11)–(13), infinite momen-
tum integrals appear and all potentials are regulated according
to

V js
�′�(p′, p) → f�(p′) V js

�′�(p′, p) f�(p), (16)

where we choose a regulator function

f�(p) = exp

[
− p6

�6

]
(17)

at all orders up to N3LO. In the calibration of the LECs, we
use the cutoff values � = 500 MeV and � = 2500 MeV.

Using (7)–(9), the terms in (11)–(13) can be expanded to
sums of products of the form A1G+

0 A2, of varying length. The
Ai’s are either T (0) or V (ν) with ν = 1, 2, 3. For example, the
NLO correction in Eq. (11) reads

T (1) =V (1) + T (0)G+
0 V (1) + V (1)G+

0 T (0)

+ T (0)G+
0 V (1)G+

0 T (0). (18)

Clearly, the fundamental matrix elements that need to be eval-
uated at subleading orders are always of the form

〈p′, �′| A1G+
0 A2 |p, �〉 , (19)

where we omit the s and j quantum numbers that are identical
for the ket and the bra. In Appendix B we show how to
evaluate Eq. (19) using ordinary matrix products and Gauss-
Legendre quadrature. Longer products, e.g., of the form
A1G+

0 A2G+
0 A3, are straightforwardly reduced to the form in

Eq. (19) by the associativity of matrix products. Knowing
this, and the distributive property with respect to addition, we
can also reduce the computational complexity of evaluating
the perturbation series for T by computing and storing the
composite operators 	

†
−, 	+, and G+

1 .
For separable potentials of Yamaguchi type [60], both

the distorted-wave series and the LS equation can be solved
analytically. We exploit this to verify our numerical imple-
mentation and to inspect the stability of the perturbative
expansion. Numerical and analytical results for semirealistic
and separable Yamaguchi potentials in the 1S0 and 3S1-3D1

channels agree to at least single precision.

1Note the mistake in Eq. (4.22) pointed out in Ref. [4].

D. Calibrating the low-energy constants

Our focus in this work is to predict and analyze the descrip-
tion of np scattering observables in MWPC and specifically
the PC of Long and Yang. To enable quantitative calculations,
we calibrate the values of the unknown LECs using the same
approach as Long and Yang, i.e., by tuning the contact LECs
to achieve a good reproduction of the low-energy Nijmegen
phase shifts [61] at selected scattering energies.

Before discussing the details of the calibration, it is impor-
tant to remember that the order-by-order amplitudes

T = T (0) + T (1) + T (2) + · · · (20)

are computed perturbatively and their sum is unitary only up
to perturbative corrections. We therefore consider it natural to
compute phase shifts perturbatively as well and proceed in this
work by expanding the np S matrix and match to chiral orders;
see Appendix C for details. In doing so the phase shifts are
real by construction. If one instead solves for the partial-wave
S matrix nonperturbatively from the order-by-order sum of
T (ν) amplitudes, the corresponding phase shifts will have a
nonzero imaginary part that increases with scattering energy.
Indeed, Fig. 2 shows phase shifts computed perturbatively and
nonperturbatively in the two channels 1D2 and 3D2. Note that
there are no LECs that need to be calibrated in these channels
at the orders considered in this work. The imaginary part
of the nonperturbative phase shift increases with scattering
energy. As that happens, the real part of the phase shift and
the (real-valued) perturbative phase shift differ progressively.
This is consistent with observations in Ref. [62] and the
perturbative and nonperturbative approaches of defining the
phase shifts are consistent within the theoretical uncertainty
due to omitted and higher-order amplitudes. An alternative
approach would therefore be to work with the real part of the
perturbative amplitude as done in Refs. [63,64].

In the calibration of LECs, we do not account for un-
certainties stemming from the Nijmegen phase shifts or the
truncation of the χEFT expansion. While we are aware of
the potential risk of overfitting in doing so, we opted for a
simple approach to establish a first quantitative potential and a
baseline understanding. The application of Bayesian inference
methods [47–49] to quantify the posterior probability distri-
butions for the values of the LECs in MWPC [38], though
more robust, requires considerably more efforts. In this work,
we focus on studying the effectiveness of MWPC for realistic
description of elastic np scattering.

The Tlab values of the Nijmegen phase shifts used as cali-
bration data are listed in Table II for each channel and order.
The calibrated LECs up to N3LO are compiled in Table III
in Appendix A. We use a naming convention where capital
letters C, D, E , . . . denote LECs with dimensions MeV−2,
MeV−4, MeV−6, . . ., respectively.

Each LEC receives perturbative corrections at subsequent
orders from where it was first introduced. As an example, the
LO LEC C1S0

is expanded into contributions

C1S0
= C(0)

1S0
+ C(1)

1S0
+ C(2)

1S0
+ · · · , (21)

where the superscript enumerates the perturbative correction
and not the chiral order. In the following we will exemplify
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FIG. 2. np scattering phase shifts in the 1D2 (top row) and 3D2 (bottom row) channels at NLO, N2LO, and N3LO using a momentum
cutoff � = 2500 MeV. Phase shifts computed using the perturbative method are shown with black solid lines. The red dashed and dot-dashed
lines show the real and imaginary parts, respectively, of the phase shift computed by summing the T -matrix contribution and using the
nonperturbative relation between phase shifts and the S matrix. The black dashed lines show phase shifts from the Nijmegen analysis [61].

the calibration procedure by discussing in detail how we cali-
brated the LECs in the 1S0 channel.

At LO we calibrate the LEC C(0)
1S0

such that the LO 1S0 phase

shift, δ(0), reproduces the Nijmegen phase shift at Tlab = 5
MeV. Two LECs are present in the 1S0 channel of the NLO
potential: D(0)

1S0
and C(1)

1S0
. The latter is a perturbative correction

to the LO LEC. These two LECs are calibrated such that
the LO phase shift plus the perturbative NLO correction, i.e.,
δ(0) + δ(1), reproduce the Nijmegen phase shifts at Tlab = 5
and 25 MeV. The role of C(1)

1S0
is to ensure that the NLO

correction vanishes for Tlab = 5 MeV. At N2LO we have the
LECs C(2)

1S0
, D(1)

1S0
, E (0)

1S0
calibrated to phase shifts at ener-

gies Tlab = 5, 25, and 50 MeV. Finally, at N3LO the LECs
C(3)

1S0
, D(2)

1S0
, E (1)

1S0
, F (0)

1S0
are calibrated to reproduce the phase

shifts at Tlab = 50, 25, 50, and 75 MeV. An analogous scheme
is employed for the remaining partial waves and LECs.

TABLE II. Laboratory scattering energies Tlab (in MeV) of the
Nijmegen phase shifts [61] used to calibrate the values of the LECs
at each chiral order. In total, we employed 33 single-energy phase
shifts—the same as the total number of contact LECs in the chiral
expansion of Long and Yang up to N3LO.

Channel LO NLO N2LO N3LO

1S0 5 5, 25 5, 25, 50 5, 25, 50, 75
3P0 25 – 25, 50 75, 100
1P1 – – 50 50
3P1 – – 50 50
3S1-3D1

3S1 : 30 – 3S1 : 30, 50. 3S1 : 30, 50.

– – ε1 : 50 ε1 : 50
3P2-3F2

3P2 : 30 – 3P2 : 30, 50. 3P2 : 30, 50.

– – ε2 : 50 ε2 : 50

We calibrate all LECs for two different momentum cutoffs:
� = 500 and 2500 MeV.

For the channels where OPE is perturbative there are no
LECs present that need to be calibrated. As a consistency
check we compute and reproduce the scattering phase shifts
of Ref. [51]. Figure 3 shows our fit of the phase shifts in the
channels where OPE is nonperturbative. The bands indicate
the variation due to the two different cutoff values. There
is an overall order-by-order convergence in all channels up
to around Tlab = 100 MeV and we can reproduce the known
results of [30,32,45]. The degree of cutoff sensitivity varies
notably among different channels. For instance, channels like
1P1 and 3F2 show minimal sensitivity to the cutoff value, while
3P2 and ε1 demonstrate a more pronounced dependency. The
calibration in the 3P0 channel was particularly challenging at
the higher chiral orders and the calibration energies needed
to be shifted to relatively high values at N3LO, as seen in
Table II.

III. NEUTRON-PROTON SCATTERING OBSERVABLES

Here we predict selected np scattering observables up to
Tlab ≈ 100 MeV using the potentials that were defined and
calibrated in Sec. II. We compute scattering observables from
the partial-wave amplitudes by first constructing the spin-
scattering matrix, M, by [55,65,66]

Ms
m′

sms
(p0, θcm, φ)

=
√

4π

2ip0

∑
j,�,�′

i�−�′
(2 j + 1)

√
2� + 1

×
(

�′ s j
ms − m′

s m′
s −ms

)(
� s j
0 ms −ms

)

× Y �′
ms−m′

s
(θcm, φ)

(
S(ν) js

�′� (p0, p0) − δ�′�
)
. (22)
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FIG. 3. Phase shifts in the channels where OPE is nonperturbative and the amplitudes are computed using full distorted-wave perturbation
theory. The bands indicate the envelope of the variation due to the two different cutoff values: 500 MeV (dashed line) and 2500 MeV (solid
line). Note that LO and NLO results coincide for all channels except 1S0, which is why the blue NLO band appears to be missing in several
panels. The black solid lines show phase shifts from the Nijmegen analysis [61] and the diamond markers indicate the calibration data at Tlab

values from Table II.

The angles θcm ∈ [0, π ] and φ ∈ [0, 2π ] are the polar and
azimuthal scattering angles, respectively where the latter is
set to zero by cylindrical symmetry. The on-shell scattering
momentum, p0, is given from the laboratory scattering energy
Tlab using Eq. (B2) in Appendix B. We compute S(ν) js

�′� (p0, p0),
i.e., the S matrix for a potential up to some chiral order ν, by
summing the perturbatively computed T -matrix amplitudes
to order ν. Using the conventions applied in this work, the
partial-wave relation between the on-shell S- and T -matrix
elements is thus given by

S(ν) js
�′� (p0, p0) = δ�′� − iπmN p0

× [
T (0) js

�′� (p0, p0) + · · · + T (ν) js
�′� (p0, p0)

]
.

(23)

Note that we do not need to compute phase shifts as a mid-
dle step, but rather use the amplitudes directly. This means
that the perturbative phase shift computations only indirectly
influence the observables through the LECs. We focus our

discussion on the differential np scattering cross section and
two selected polarizations, and calculate these from the spin-
scattering matrix as

dσ

d	
= 1

4
Tr MM†, (24)

dσ

d	
× Pb = 1

4
Tr Mσ1nM†, (25)

dσ

d	
× Ayy = 1

4
Tr Mσ1nσ2nM†, (26)

where σ in ≡ σ i · n̂ for nucleon i, σ i are the Pauli spin matrices,
and n̂ is normal to the scattering plane.

Figure 4 shows our prediction for these scattering ob-
servables in the energy range Tlab = 10 to 100 MeV for
the two cutoffs � = 500 MeV and � = 2500 MeV. For the
lower scattering energies (Tlab � 60 MeV) we observe an
order-by-order improvement for all considered observables.
Interestingly, the N3LO predictions do not always perform
better, but in general perform at least as well as N2LO. Indeed,
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FIG. 4. Selection of np scattering observables in the energy interval Tlab = 10 to 100 MeV. Experimental data are from Refs. [67,68]. The
bands indicate cutoff variation in the same way as in Fig. 3.

for Tlab ≈ 100 MeV (rightmost panels of Fig. 4), it appears
that the order-by-order improvement in the predictions of the
differential cross section and Pb polarization deteriorates and
N2LO can perform better than N3LO. This effect is visible
also at the level of phase shifts shown in Fig. 3. It is not
clear at the moment if this is due to overfitting and (or) an
underlying issue with the MWPC that we employ. Our N3LO
predictions are certainly influenced by the adopted values of
subleading πN LECs [53]. Calculations of other scattering
cross observables show that the order-by-order convergence
demonstrated in Fig. 4 is representative for all elastic np
scattering observables in the PC by Long and Yang. Two-
pion exchange is clearly important for achieving a realistic
description of scattering observables with Tlab � 100 MeV.

The total cross section can be straightforwardly computed
from the differential cross section as

σtot (p0) = 2π

∫ 1

−1
d (cos θcm )

dσ

d	
(p0, θcm ), (27)

and predictions for scattering energies up to Tlab = 150 MeV
are shown in Fig. 5. Also for this observable, the agreement

with experimental data typically improves order by order, at
least up to N2LO. The improvement of N3LO over N2LO
is not obvious. At very low energies, the higher-order pre-
dictions for the total cross section are much better than the
lower-order predictions. This result is somewhat peculiar for
a low-energy EFT and likely due to overfitting at the phase
shift level. For Tlab � 100 MeV, roughly corresponding to
220 MeV relative momentum, the agreement with data even
deteriorates at N3LO. This is analogous to what was found
for the angular-differential observables shown in Fig. 4 and
consistent with the observation in Fig. 3 that the phase shifts
at N3LO might suffer from overfitting at the higher energies.
Alternatively, the observed decline in predictive power might
indicate the presence of an additional mass scale at 200–300
MeV. Thus, it will be very interesting to study the effects of
accounting for the �(1232) isobar in two-pion exchange in
this MWPC.

Next, we analyze how the perturbative breaking of unitarity
in χEFT affects the predictions of total cross sections. Indeed,
the computation of S-matrix elements using Eq. (23), where
the order-by-order contributions of the scattering amplitudes
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FIG. 5. Total np cross sections computed by integrating the differential cross sections (27). Panel (a) shows cross sections for a large
interval of scattering energies, Tlab = 5–150 MeV. Panels (b) and (c) expand results at low- and high-energy intervals, respectively. The bands
indicate cutoff variation as in Fig. 3. Experimental data are from Refs. [67,68].

are summed directly to the S matrix, leads to a perturba-
tive breaking of unitarity. In contrast, amplitudes computed
nonperturbatively, i.e., when the potential terms are summed
before solving for the scattering amplitude (as is done in
WPC), are unitary by construction. In this case, the probability
flux in the scattering process is also conserved exactly and the
optical theorem can be safely used to compute the total cross
section as, e.g.,

σtot (p0) = 2π

p0
Im [a(θcm = 0) + b(θcm = 0)], (28)

where a(θcm ) and b(θcm ) are Saclay amplitudes computed
from the M matrix [69].

We use the difference between total cross sections cal-
culated using Eqs. (27) and (28) to measure the effects of
unitarity breaking. In Fig. 6 we show the relative difference
between the cross sections computed using exact integration
and the optical theorem as a function of scattering energy. The
figure demonstrates how unitarity is restored perturbatively as
we go to higher chiral orders. Indeed, the relative difference
between the two cross section calculations is limited to 10%
for scattering energies up to 40 MeV at NLO, 70 MeV at
N2LO, and 120 MeV at N3LO, respectively. The bands in
the figure reflect differences coming from using two cutoff
values 500 and 2500 MeV. The bands for NLO and N2LO
increase smoothly with the scattering energy. The band at
N3LO shows an artifact from the two different calculations for
� = 2500 MeV intersecting at some energies leading to very

small relative errors. We also note that the cutoff dependencies
for the N2LO and N3LO calculations do not vanish as the
scattering energy approaches zero.

We can also discuss this result in terms of the EFT trunca-
tion error. For a given chiral order, we argue that the results
from the two different cross section calculations should not
become significantly different until we reach an energy where
the next (omitted) order in the chiral low-energy expansion

0 25 50 75 100 125 150

Tlab (MeV)

10−5

10−4

10−3

10−2

10−1

100

re
l.

d
iff

FIG. 6. The relative difference between total np cross sec-
tions (σ ) computed by integrating of the differential cross sec-
tion (27) and the optical theorem (28). The bands indicate cutoff
variation as in Fig. 3. The color coding for the orders is the same
as Fig. 3. The horizontal dashed line marks a 10% difference.
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becomes relevant. This should correspond to the scattering
energy for which the truncation error is significant. Break-
ing unitarity implies that the norm of the partial-wave S
matrix in Eq. (23) deviates from unity as (S(ν) )†S(ν) = 1 −
C(Q/�b)ν+1, where we also expect C to be of natural size.
This scaling of unitarity breaking should be revisited when
probability distributions of the LEC values and the hyperpa-
rameters of the EFT truncation error have been inferred using
a Bayesian approach.

IV. SUMMARY AND OUTLOOK

This work presents a comprehensive analysis of np scat-
tering observables (cross sections and polarizations) utilizing
an RG-invariant formulation of χEFT by Long and Yang. We
calibrated the LECs by reproducing Nijmegen phase shifts at
specific scattering energies, and carried out calculation up to
N3LO for two values of the momentum-space cutoffs, 500 and
2500 MeV. The PC that we employed is fairly representative
of a broad class of MWPCs in which corrections beyond LO,
based on one-pion exchange, are included perturbatively and
the short-range contact potential incorporates counterterms
promoted to renormalize the long-range pion contributions to
the scattering amplitudes. A key result of this paper was a
quantitative demonstration that RG-invariant χEFT exhibits
a steady order-by-order convergence in the description of
scattering observables, starting already at LO. A second key
result was the realistic reproduction of experimental scattering
data in an energy range up to Tlab = 100 MeV at N2LO.
We also found that N3LO predictions do not always improve
over N2LO.

A perturbative approach exposes the deficiencies of any
PC, not only the possible lack of RG independence. In fact,
using a perturbative approach we found that the accuracy of
our N3LO predictions for the total np cross section declines
as one approaches Tlab � 100 MeV. This corresponds to a
relative scattering momentum of 220 MeV and might suggest
the presence of an additional mass scale at 200–300 MeV.
This finding is in accordance with the known mass split-
ting between the nucleon and the �(1232) resonance, but is
markedly lower than conventional estimates of the breakdown
scale of χEFT residing in the vicinity of the ρ-meson mass.
The latter estimate has also been corroborated in a Bayesian
study of nonperturbative WPC predictions of nucleon-nucleon
scattering observables [70].

Based on our comparison of perturbative and non-
perturbative calculations of phase shifts, we speculated that
the magnitudes of the imaginary component of the nonpertur-
bative phase shift and the χEFT truncation error are linked.
We also investigated the breaking of unitarity at the level of
total np cross sections. The connection between perturbative
unitarity breaking and the truncation error deserves further
attention.

Future work will focus on quantifying posterior prob-
ability distributions for the LECs and the EFT truncation
error, making predictions beyond the two-nucleon system,
and the effects of including the �(1232) resonance in the
two-pion-exchange potential. Fast and accurate emulators
[71], adapted to perturbative computations, will likely be

essential for rigorous testing of RG-invariant χEFT against
nuclear data and to address critical questions regarding,
e.g., the construction of LO, the importance of promoting
higher-order pion exchanges and many-nucleon forces as
one increases the mass number, and the level of fine tuning
in χEFT.
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APPENDIX A: NUCLEAR POTENTIALS IN THE LONG
AND YANG POWER COUNTING

The orders at which potentials appear in the Long and
Yang PC in channels where OPE is treated nonperturbatively
are shown in Table I. Similarly, for the channels where OPE
is treated perturbatively, we follow the PC of Ref. [51] also
shown in Table I. In this Appendix, we list the expressions
for the potentials appearing in Table I. The potential con-
tributions will be listed using the following decomposition
convention [4]:

V (p′, p) =VC + τ1 · τ2WC

+ [VS + τ1 · τ2WS]σ1 · σ2

+ [VLS + τ1 · τ2WLS](−iS · (q × k))

+ [VT + τ1 · τ2WT ]σ1 · qσ2 · q

+ [VσL + τ1 · τ2WσL]σ1 · (q × k)σ2 · (q × k),

(A1)

where

q = p − p′, k = 1
2 (p + p′),

S = 1
2 (σ1 + σ2), (A2)

and σ i denotes the Pauli spin matrix for the respective nu-
cleon.

The one-pion-exchange potential takes the form

V (0)
1π = (τ1 · τ2)(σ1 · qσ2 · q)WT , (A3)

WT = −
(

gA

2 fπ

)2 1

q2 + m2
π

, (A4)

where gA = 1.29 is the axial coupling, fπ = 92.1 MeV the
pion decay constant, mπ = 138.039 MeV is the average pion
mass and q = |q|. For the two-pion-exchange potentials, we
employ expressions computed with dimensional regulariza-
tion (DR). The leading two-pion-exchange potential takes the
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TABLE III. Potential contributions at each chiral order in the channels where OPE is treated nonperturbatively. This table complements
the information in Table I.

Order Pion contribution Contact terms

LO V (0)
1π V (0)

ct :

C (0)
1S0

,

(
C (0)

3S1
0

0 0

)
, D(0)

3P0
p′ p,

(
D(0)

3P2
p′ p 0

0 0

)

NLO V (1)
ct :

D(0)
1S0

(p′2 + p2), C (1)
1S0

N2LO V (2)
2π V (2)

ct :
E (0)

1S0
p′2 p2, D(1)

1S0
(p′2 + p2), C (2)

1S0
,(

D(0)
3S1

(p′2 + p2) D(0)
SD p2

D(0)
SD p′2 0

)
,

(
C (1)

3S1
0

0 0

)
,

E (0)
3P0

p′ p(p′2 + p2), D(1)
3P0

p′ p,

p′ p

(
E (0)

3P2
(p′2 + p2) E (0)

PF p2

E (0)
PF p′2 0

)
,

(
D(1)

3P2
p′ p 0

0 0

)
,

D(0)
1P1

p′ p, D(0)
3P1

p′ p

N3LO V (3)
2π (includes V (3)

ct :

πN LECs: c1, c3, c4) F (0)
1S0

p′2 p2(p′2 + p2), E (1)
1S0

p′2 p2, D(2)
1S0

(p′2 + p2), C (3)
1S0

,(
D(1)

3S1
(p′2 + p2) D(1)

SD p2

D(1)
SD p′2 0

)
,

(
C (2)

3S1
0

0 0

)
,

E (1)
3P0

p′ p(p′2 + p2), D(2)
3P0

p′ p,

p′ p

(
E (1)

3P2
(p′2 + p2) E (1)

PF p2

E (1)
PF p′2 0

)
,

(
D(2)

3P2
p′ p 0

0 0

)
,

D(1)
1P1

p′ p, D(1)
3P1

p′ p

form [4,72,73]

V (2)
2π = τ1 · τ2WC + σ1 · σ2VS + σ1 · qσ2 · qVT , (A5)

WC = − L(q)

384π2 f 4
π

[
4m2

π

(
5g4

A − 4g2
A − 1

)

+ q2
(
23g4

A − 10g2
A − 1

) + 48g4
Am4

π

w2

]
, (A6)

VS = 3g4
AL(q)q2

64π2 f 4
π

, (A7)

VT = − 1

q2
VS = −3g4

AL(q)

64π2 f 4
π

, (A8)

with

L(q) = w

q
ln

w + q

2mπ

, w =
√

4m2
π + q2. (A9)

The subleading two-pion-exchange potential takes the form
of Eqs. (4.13)–(4.20) in [4]. We apply the power counting
(Q/mN ) = (Q/�b)2 for (1/mN ) corrections, which means
that all terms proportional to 1/mN vanish at order (Q/�b)3

(N3LO). The nonzero contributions read

V (3)
2π = VC + (τ1 · τ2)(σ1 · qσ2 · q)WT , (A10)

VC = − 3g2
A

16π f 4
π

[
2m2

π (2c1 − c3) − q2c3
]
w̃2A(q), (A11)

WT = − 1

q2
WS = −g2

AA(q)

32π f 4
π

c4w
2, (A12)

with

A(q) = 1

2q
arctan

q

2mπ

, w̃ =
√

2m2
π + q2. (A13)

For the πN LECs c1, c3, c4, appearing in V (3)
2π , we employ

numerical values determined in a Roy-Steiner analysis at
NLO: c1 = −0.74 GeV−1, c3 = −3.61 GeV−1, and c4 = 2.44
GeV−1 [53].

The potential contributions at each order in the channels
where OPE is treated nonperturbatively are listed in Table III.
We denote counterterms in coupled channels by a 2×2 matrix
representing �′ = j ∓ 1 (rows) and � = j ∓ 1 (columns). Ta-
ble III expands upon Table I in Ref. [30] to also explicitly
show the perturbative corrections to LECs present at each
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TABLE IV. The number of LECs at each order in the Long and
Yang PC.

Chiral order New LECs Pert. correction Total up to order

LO 4 0 4
NLO 1 1 6
N2LO 8 5 19
N3LO 1 (+3a) 13 33

aSubleading πN LECs: c1, c3, c4 excluded from the total in the last
column.

order. Table IV summarizes the number of LECs present at
each order, excluding the three πN LECs at N3LO from the
total number.

APPENDIX B: NUMERICAL IMPLEMENTATION
OF DISTORTED-WAVE PERTURBATION THEORY

This Appendix gives some more details regarding the im-
plementation of the equations for higher-order corrections to
the scattering amplitude in (11)–(13). Since all operator prod-

ucts reduce to the form in Eq. (19), the implementation can
be done in complete analogy with the solution of the partial-
wave Lippmann-Schwinger equation using Gauss-Legendre
quadrature [74,75].

In this Appendix we suppress the conserved quantum num-
bers s and j, and write the resolution of identity in the partial
wave basis as

1 =
∑

�

∫ ∞

0
dk k2 |k, �〉 〈k, �| . (B1)

Furthermore, for a stationary proton (mass mp) and an in-
coming neutron (mass mn) with kinetic energy Tlab in the
laboratory frame of reference, the modulus of the c.m.
momentum, p0, is given by

p2
0 = m2

pTlab(2mn + Tlab)

(mn + mp)2 + 2mpTlab
. (B2)

By inserting the resolution of identity in Eq. (19) and dis-
cretizing the integral using Gauss-Legendre quadrature with
momentum points and weights, {ki,wi}N

i=1, we obtain

〈p′, �′|A1G+
0 A2|p, �〉 =

∑
�′′,�′′′

∫ ∞

0
dk1 k2

1

∫ ∞

0
dk2 k2

2 〈p′, �′|A1|k1, �
′′〉 〈k1, �

′′|G+
0 |k2, �

′′′〉 〈k2, �
′′′|A2|p, �〉

=
∑
�′′

∫ ∞

0
dk1 k2

1 〈p, �′|A1|k1, �
′′〉 mN

p2
0 − k2

1 + iε
〈k1, �

′′|A2|p, �〉 (B3)

=
∑
�′′

N∑
i=1

k2
i wi 〈p, �′|A1|ki, �

′′〉 mN

p2
0 − k2

i + iε
〈ki, �

′′|A2|p, �〉 . (B4)

Here, p0 denotes the on-shell momentum for a given scattering energy Tlab given by Eq. (B2). Doing some manipulations and
converting the +iε prescription to a principal value we obtain [66,75]

〈p′, �′|A1G+
0 A2|p, �〉 =

∑
l ′′

N∑
i=1

k2
i wi 〈p′, �′|A1|ki, �

′′〉 mN

p2
0 − k2

i

〈ki, �
′′|A2|p, �〉

− 〈p′, �′|A1|p0, �
′′〉 〈p0, �

′′|A2|p, �〉
[

mN p2
0

N∑
i=1

wi

p2
0 − k2

i

+ iπmN p0

2
− mN p0 arctanh

(
p0

�̃

)]
. (B5)

All potentials are regulated using Eq. (16) and, at sufficiently high momentum �̃ all potential matrix elements are essentially
zero. This means that the integral in Eq. (B4) is well represented by the discretized sum where the momentum points and
weights {ki,wi}N

i=1 are chosen using Gauss-Legendre quadrature in the interval [0, �̃]. The last term in the bracket in Eq. (B5)
implements the principal-value integral on the interval [�̃,∞] analytically since the grid is just doing the integration on [0, �̃]
[76]. It is possible to have a grid that extends to numerical infinity, but this generally leads to slower convergence with N . For the
calculations in this study, we employ �̃ = � + 1500 MeV, for both � = 500 MeV and � = 2500 MeV, which we find sufficient
for numerical convergence.

Equation (B5) can be expressed in a simpler form using matrix products, which speeds up the computations. We define the
propagator matrix as

[G+
0 ]i j = δi jFi, Fi =

{
mN

p2
0−k2

i
, i = 1, . . . , N,

− f (p0), i = N + 1,
(B6)

where

f (p0) = mN p2
0

N∑
i=1

wi

p2
0 − k2

i

+ iπmN p0

2
− mN p0 arctanh

(
p0

�̃

)
. (B7)
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Similarly, we make the following definitions of matrices for Aμ, μ = 1, 2,[
A�′�

μ

]
i, j = ki

√
wi 〈ki, �

′|Aμ|k j, �〉 k j
√

w j, i, j = 1, . . . , N, (B8)[
A�′�

μ

]
i, j=N+1 = ki

√
wi 〈ki, �

′|Aμ|p0, �〉 , i = 1, . . . , N, (B9)[
A�′�

μ

]
i=N+1, j = 〈p0, �

′|Aμ|k j, �〉 k j
√

w j, j = 1, . . . , N, (B10)[
A�′�

μ

]
i=N+1, j=N+1 = 〈p0, �

′|Aμ|p0, �〉 , (B11)

effectively including an extra momentum-grid point kN+1 ≡ p0 with weight
√

wN+1 = p−1
0 . Using these definitions and defining

D = A1G+
0 A2, Eq. (B5) can be written using (N + 1) × (N + 1) matrix products

[D�′�]i j =
∑
�′′

N+1∑
n,m=1

[
A�′�′′

1

]
in[G+

0 ]nm
[
A�′′�

2

]
m j, i, j = 1, . . . , N + 1. (B12)

For coupled channels, we further eliminate the sum over �′′ in
Eq. (B12) by defining (2N + 2) × (2N + 2) block matrices,
which for A1 reads

[A1] =
(

[A−−
1 ] [A−+

1 ]

[A+−
1 ] [A++

1 ]

)
. (B13)

The ± notation represents � = j ± 1. The propagator is diag-
onal in � and can be written as

[G+
0 ] =

(
[G+

0 ] 0

0 [G+
0 ]

)
. (B14)

We can finally write Eq. (B12) as

[D] = [A1][G+
0 ][A2]. (B15)

Note that the simplification of Eq. (B5) to an ordinary
matrix product in Eq. (B15) is only possible due to the specific
structure of having G+

0 in between A1 and A2. This structure
gives rise to the last “on-shell” term in (B5) that can be
incorporated by adding the grid point kN+1 = p0, which then
extends the sum in Eq. (B5) to N + 1. Equation (B12) can
now be used recursively to compute longer products such as
〈p′, �′|A1G+

0 A2G+
0 A3|p, �〉.

As an example, the first-order correction to the T matrix in
Eq. (11) can be expressed as the matrix equation

[T (1)] = (1 + [T (0)][G+
0 ])[V (1)](1 + [G+

0 ][T (0)]). (B16)

APPENDIX C: PERTURBATIVE PHASE SHIFTS

In this Appendix we discuss how to obtain phase shifts
given perturbative corrections to the T -matrix computed from
(11)–(13). We will follow the method outlined in Ref. [32]
and add some additional details. For uncoupled scattering
channels, the 1×1 S matrix can be parameterized by

S = exp (2iδ), (C1)

where δ is the phase shift. We expand both the phase shifts
and the on-shell S matrix with the contributions at each chiral
order, obtaining

S(0) + S(1) + S(2) + S(3) + O(Q3) (C2)

= exp(2i[δ(0) + δ(1) + δ(2) + δ(3) + O(Q3)]). (C3)

Performing a Taylor expansion of both sides, and matching
chiral orders, gives

S(0) = exp(2iδ(0) ), (C4)

S(1) = 2iδ(1) exp(2iδ(0) ), (C5)

S(2) = [2iδ(2) − 2(δ(1) )2] exp(2iδ(0) ), (C6)

S(3) =
[

2iδ(3) − 4δ(1)δ(2) − 4i

3
(δ(1) )3

]
exp(2iδ(0) ). (C7)

From these equations, we straightforwardly obtain explicit
expressions for the LO phase shift δ(0) (trivial), and all cor-
rections {δ(ν)}ν>0. We note that all corrections are real valued.
To obtain the total phase shift at, e.g., N2LO, one has to sum
δ(0) + δ(1) + δ(2). The S-matrix corrections are obtained from
the T -matrix corrections as

S(ν)
�′� = −iπmN p0T (ν)

�′� , ν > 0, (C8)

for a given on-shell momentum, p0.
For coupled channels we use the Stapp parametrization

[77] for the on-shell 2×2 S matrix

S =
(

cos(2ε)e2iδ1 i sin(2ε)ei(δ1+δ2 )

i sin(2ε)ei(δ1+δ2 ) cos(2ε)e2iδ2

)
, (C9)

where the three phase shifts δ1, δ2, and ε parametrize the
amplitude for a given channel. We now proceed completely
analogous to the uncoupled case, dividing the S matrix and
phase shifts into chiral orders as

S =
∞∑

ν=0

= S(ν), δ1 =
∞∑

ν=0

δ
(ν)
1 ,

δ2 =
∞∑

ν=0

δ
(ν)
2 , ε =

∞∑
ν=0

ε (ν). (C10)

For convenience, we define the functions

f11(ε, δ1) = cos(2ε)e2iδ1 , (C11)

f12(ε, δ1, δ2) = i sin(2ε)ei(δ1+δ2 ), (C12)

f22(ε, δ2) = cos(2ε)e2iδ2 , (C13)
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which are the constituents of the matrix in Eq. (C9). Inserting the expansions in Eq. (C10) into Eq. (C9), Taylor expanding and
matching chiral orders, gives the perturbative corrections to the phase shifts. Expanding the upper left matrix element of S gives

S(0)
11 = f11, (C14)

S(1)
11 = ∂ε f11 × ε (1) + ∂δ f11 × δ(1), (C15)

S(2)
11 = ∂ε f11 × ε (2) + ∂δ f11 × δ(2) + g(2)

11 (ε (1), δ(1) ), (C16)

S(3)
11 = ∂ε f11 × ε (3) + ∂δ f11 × δ(3) + g(3)

11 (ε (1), δ(1), ε (2), δ(2) ), (C17)

where the functions g(ν)
11 are introduced to capture all nonlinear terms in the expansion,

g(2)
11 (ε (1), δ(1) ) = 1

2∂2
ε f11 × (ε (1) )2 + 1

2∂2
δ f11 × (δ(1) )2 + ∂ε∂δ f11 × δ(1)ε (1), (C18)

g(3)
11 (ε (1), δ(1), ε (2), δ(2) ) = ∂2

ε f11(ε (1)ε (2) ) + ∂ε∂δ f11(ε (1)δ(2) + ε (2)δ(1) )

+ ∂2
δ f11(δ(1)δ(2) ) + 1

6∂3
ε f11(ε (1) )3 + 1

2∂δ∂
2
ε f11(ε (1))2δ(1)

+ 1
2∂2

δ ∂ε f11ε
(1)(δ(1) )2 + 1

6∂3
δ f11(δ(1) )3. (C19)

Since f11 depends on ε and δ1 the index one is suppressed. The function f11 and all its derivatives are evaluated
at (ε (0), δ

(0)
1 ).

For the lower right matrix element described by f22 the expressions are completely analogous to Eqs. (C18) and (C19), but
with δ2 instead of δ1. For the off-diagonal elements we get

S(0)
12 = f12, (C20)

S(1)
12 = ∂ε f12 × ε (1) + ∂δ1 f12 × δ

(1)
1 + ∂δ2 f12 × δ

(1)
2 , (C21)

S(2)
12 = ∂ε f12 × ε (2) + ∂δ1 f12 × δ

(2)
1 + ∂δ2 f12 × δ

(2)
2 + g(2)

12

(
ε (1), δ

(1)
1 , δ

(1)
2

)
, (C22)

S(3)
12 = ∂ε f12 × ε (3) + ∂δ1 f12 × δ

(3)
1 + ∂δ2 f12 × δ

(3)
2 + g(3)

12

(
ε (1), δ

(1)
1 , δ

(1)
2 , ε (2), δ

(2)
1 , δ

(2)
2

)
, (C23)

where the functions g(ν)
12 capture the nonlinear terms

g(2)
12 (ε (1), δ

(1)
1 , δ

(1)
2 ) = 1

2∂2
ε f12 × (ε (1) )2 + 1

2∂2
δ1

f12 × (
δ

(1)
1

)2 + 1
2∂2

δ2
f12 × (

δ
(1)
2

)2

+ ∂ε∂δ1 f12ε
(1)δ

(1)
1 + ∂ε∂δ2 f12ε

(1)δ
(1)
2 + ∂δ1∂δ2 f12δ

(1)
1 δ

(1)
2 , (C24)

g(3)
12

(
ε (1), δ

(1)
1 , δ

(1)
2 , ε (2), δ

(2)
1 , δ

(2)
2

) = ∂2
ε f12ε

(1)ε (2) + ∂2
δ1

f12δ
(1)
1 δ

(2)
1 + ∂2

δ2
f12δ

(1)
2 δ

(2)
2

+ ∂ε∂δ1 f12
(
ε (1)δ

(2)
1 + ε (2)δ

(1)
1

) + ∂ε∂δ2 f12
(
ε (1)δ

(2)
2 + ε (2)δ

(1)
2

)
+ ∂δ1∂δ2 f12

(
δ

(1)
1 δ

(2)
2 + δ

(2)
1 δ

(1)
2

) + 1
2∂2

ε ∂δ1 f12(ε (1) )2δ
(1)
1 + 1

2∂2
ε ∂δ2 f12(ε (1) )2δ

(1)
2

+ 1
2∂ε∂

2
δ1

f12ε
(1)

(
δ

(1)
1

)2 + 1
2∂δ2∂

2
δ1

f12δ
(1)
2

(
δ

(1)
1

)2 + 1
2∂ε∂

2
δ2

f12ε
(1)

(
δ

(1)
2

)2+ 1
2∂δ1∂

2
δ2

f12δ
(1)
1

(
δ

(1)
2

)2

+ ∂ε∂δ1∂δ2 f12ε
(1)δ

(1)
1 δ

(1)
2 + 1

6∂3
ε f12(ε (1) )3 + 1

6∂3
δ1

f12
(
δ

(1)
1

)3 + 1
6∂3

δ2
f12

(
δ

(1)
2

)3
. (C25)

The function f12 and all its derivatives are evaluated at (ε (0), δ
(0)
1 , δ

(0)
2 ). Note that all the functions g(ν)

∗∗ vanish if the NLO
corrections (δ(1)

1 , δ
(1)
2 , ε (1) ) are zero. This is the case for all coupled channels where OPE is treated nonperturbatively as seen in

Table III. Furthermore, in all channels where OPE is treated perturbatively the LO phase shifts are all zero, which makes many of
the terms in the expressions for g(ν)

∗∗ vanish due to vanishing derivatives. Thus, in both the perturbative and nonperturbative cases,
Eqs. (C18), (C19), (C24), and (C25) can be simplified substantially. The phase shift corrections (ε (ν), δ

(ν)
1 , δ

(ν)
2 ) for ν = 1, 2, 3.

are finally obtained by solving a system of linear equations,

NLO:

⎛
⎜⎜⎝

S(1)
11

S(1)
12

S(1)
22

⎞
⎟⎟⎠ =

⎛
⎝∂ε f11 ∂δ1 f11 0

∂ε f12 ∂δ1 f12 ∂δ2 f12

∂ε f22 0 ∂δ2 f22

⎞
⎠

⎛
⎜⎝

ε (1)

δ
(1)
1

δ
(1)
2

⎞
⎟⎠, (C26)

N2LO:

⎛
⎜⎜⎝

S(2)
11 − g(2)

11

S(2)
12 − g(2)

12

S(2)
22 − g(2)

22

⎞
⎟⎟⎠ =

⎛
⎝∂ε f11 ∂δ1 f11 0

∂ε f12 ∂δ1 f12 ∂δ2 f12

∂ε f22 0 ∂δ2 f22

⎞
⎠

⎛
⎜⎝

ε (2)

δ
(2)
1

δ
(2)
2

⎞
⎟⎠, (C27)

064001-13



THIM, EKSTRÖM, AND FORSSÉN PHYSICAL REVIEW C 109, 064001 (2024)

N3LO:

⎛
⎜⎜⎝

S(3)
11 − g(3)

11

S(3)
12 − g(3)

12

S(2)
22 − g(3)

22

⎞
⎟⎟⎠ =

⎛
⎜⎝∂ε f11 ∂δ1 f11 0

∂ε f12 ∂δ1 f12 ∂δ2 f12

∂ε f22 0 ∂δ2 f22

⎞
⎟⎠

⎛
⎜⎝

ε (3)

δ
(3)
1

δ
(3)
2

⎞
⎟⎠. (C28)
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