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Abstract. Achieving high surface quality is crucial in manufacturing, impacting product 
functionality and appearance. Poor quality can lead to defects, friction, and safety risks. Cutting 
tools endure harsh conditions and wear over time, affecting surface quality and increasing costs. 
Monitoring tool condition is vital for efficiency, reducing cycle times and downtime. Industries 
like aerospace and automotive require tight quality control for meeting standards. Historically, 
manual inspections and scheduled changes were used, but advanced technology now allows more 
efficient tool condition monitoring. The paper outlines a tool condition monitoring approach using 
sensors and machine learning to predict and classify tool conditions and workpiece surface quality. 
It integrates acoustic emission, accelerometer, and thermal infrared camera sensors into a lathe 
machine. Various machine learning algorithms are trained and validated to accurately predict tool 
and surface conditions. The most effective model is identified and presented. 
Introduction 
The adoption of smart production in Industry 4.0 offers a range of tangible benefits, including cost 
reduction, improved operational efficiency, and enhanced product quality [1]. This approach 
enables the creation of flexible and adaptable production systems capable of responding in real-
time to changing market demands [2]. Process monitoring through the use of sensors, data 
analytics, and machine learning algorithms allows for the timely detection and resolution of defects 
and issues, optimizing production [3]. 

Surface roughness in machining is influenced by various factors, including cutting speed, feed 
rate, depth of cut, and tool wear [4]. Sensors such as acoustic emission, accelerometers, and 
infrared devices are employed to monitor tool conditions and the quality of the machined surface, 
contributing to process optimization [5] [6]. 

Analysis of statistical characteristics of sensor signals enables assessment of tool health, with 
several studies exploring correlations between sensor data and tool wear [7] [8]. Machine learning 
techniques also represent a step forward in improving tool condition monitoring systems [9]. 

Timely detection of tool wear through sensor monitoring allows for prompt intervention, 
minimizing the impact on efficiency and quality of the machining process [10]. However, there 
remains a knowledge gap regarding the correlation between roughness, temperature, and tool wear 
based on signal characteristics [11]. Consistently with the context above described, this paper 
presents the development of a system for TCM implementing different kind of sensors for the 
quality process control. The set of sensors used for the scope consists of an accelerometer (Acc), 
an AE sensor and an infrared thermal camera (IRTC). Thus, the results of a preliminary 
experimental activity having as objective data acquisition for tool wear and surface quality 
modelling are here presented. Different cutting speed values were considered, under fixed feed 
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rate and depth of cut. In these conditions, flank wearVb, surface roughness Ra and temperature T 
at the tool-chip interface were monitored at different time steps. The signals of the Acc and AE 
sensors were adequately windowed and filtered for the noise reduction, and a set of features were 
from them extracted. A Principal Component Analysis (PCA) was performed in order to reduce 
the problem dimensionality. Then, different regression Machine Learning models for Vb, Ra and 
T were developed and evaluated, highlighting the strong correlation between Ra, Vb and T. A 
practical case of the methodology utilization is presented, demonstrating the high potential of the 
methodology application in the specific turning process. Finally, the best performing model is 
presented. 
Materials and methods 
Fig.1 shows a schematic representation of the developed TCM methodology workflow; the 
followings phases were adequately considered: 

Data Collection: Gathering of relevant data from the machining process, including information 
about tool condition and associated features such as vibration data, acoustic emissions, 
temperature, cutting forces, and machining parameters. 

Data Preprocessing: Preparing and cleaning the data, involving handling missing values, noise 
reduction, and normalization. 

Data Augmentation and Splitting: Creating new training examples by making various 
transformations or modifications to existing data; splitting of the dataset into training, validation, 
and testing sets for machine learning models setup. 

Feature Selection: Performing feature selection to identify the most important features for the 
model. 

Model Selection: Choosing appropriate machine learning algorithms or models for the specific 
problem. 

Model Training: Training the selected machine learning models using the training dataset. 
Fine-tune hyperparameters through cross-validation on the validation set to optimize the model's 
performance. 

Model Evaluation: Assessing the models' performance on the test dataset using appropriate 
evaluation metrics. 

 
Fig.1. Adopted TCM methodology.  

 
To gather relevant data from the machining process, machining turning tests were performed. 
The material under investigation is the S235jr steel, complying with the EN 10025-2 standard; 

Table 1 reports its chemical composition. 
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Table 1. Chemical composition of the S235JR steel [12]. 
Element %weight 
Carbon, C 0.17 
Phosphorus, P 0.035 
Silicon, Si 0.045 
Manganese, Mn 1.4 
Nitrogen, N 0.012 
Copper, Cu 0.55 

 
Machining tests were performed on bars having a diameter equal to 35 mm and an overhang 

equal to 100 mm. The adopted lathe machine is a SOGI M2C-450. The TCM methodology was 
carried out implementing on the lathe machine the following experimental setup: 

• An accelerometer for vibration detection (8763b Kistler, Switzerland) 
• An acoustic emission sensor (8152C Kistler, Switzerland) 
• An infrared thermo-camera (Optris Xi 410). 
The software Elsys Tranax 4.0 was used for the Acc and AE signals acquisition; for the thermal 

imaging, the software Optrix Pix Connect was used. 
Fig. 2 reports the experimental setup. 
 

 
Fig.2. Experimental setup for turning.  

 
As shown in the figure, the Acc and the AE sensors were fixed near the tool holder. The IRTC 

was mounted on a rigid bracket and placed, also, near the tool holder.  
Thus, it was possible to keep the focus directly on the cutting zone following the movement of 

the tool during the entire process duration. Then, during the experimental tests, the signal acquired 
by IRTC indicated the thermal gradient into the cutting zone.  

The IRTC emissivity was calibrated in the temperature range 25°C-250°C; method chosen by 
authors involved heating up by cutting to a known temperature, measured with use of noncontact 
thermometer, and then measuring the target temperature with the infrared camera. The next step 
was changing the emissivity until the temperature corresponds to that of the thermometer. 
Emissivity value determined this way would be use for all future measurements. 

Further, for the tool wear measurements (complying with the ISO-3685 standard) and the 
roughness Ra evaluations (complying with the ISO-1997 standard) the following experimental 
equipment were adopted: 
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• Dinolite AM7915MZTL Microscope; 
• Mahr MarSurf PS10 SET Portable digital roughness tester. 
The experimental campaign was carried out under dry conditions; the considered time steps for 

the responses of interests and the signals acquisitions have been set on 1 minute. 
The experiments were performed at the following cutting parameters: 

• Cutting speed, vc=65m/min - 90m/min – 115m/min; 
• Feed rate, f=0.075mm/rev; 
• Dept of cut, p=0.5mm. 

The cutting tool used in the experimental activity is a Mitsubishi CCMT060204 M grade; the 
cutting parameters were selected based on the manufacturer's recommendations. 

As output, the followings responses have been considered: 
1. Roughness, Ra; 
2. Tool wearVb; 
3. Temperature T. 
The Acc and AE signals were acquired with a 2.5 MHz sample rate; the signals processing and 

analysis was performed in Matlab 2021 environment. To remove the noise due to the different 
occurrences not directly related with the process, the Acc and AE signals were adequately filtered, 
and a Hamming window was them applied to the signals to mitigate the adverse effects of impulse 
response truncation. In particular, the Acc signals (in x, y and z directions) were filtered with a 
low pass FIR filter, with a 250 kHz cut frequency while the AE signals were filtered with a high 
pass FIR filter, with a 10 kHz threshold frequency. Finally, the Power Spectrum Density was 
calculated to analyse the signals in the frequency domain. To verify the repeatability of the process, 
three replicas were carried out. Fig.3 shows, for the test with vc=90m/min, an example of AE 
signal Power Spectrum related to all the replicas; it is possible to observe that the process is 
reasonably repeatable. 

 

 
Fig.3. AE signal Power Spectrum.  

 
In the Feature extraction phase, a set of 40 features in the Time and Frequency domains were 

extracted from the Acc and AE sensors signals. The considered features in the Time Domain are 
listed as follows: Mean, Standard Deviation, Root Mean Square (RMS), Peak to Peak, Peak to 
Valley, Crest Factor and Kurtosis. The considered features in the Frequency Domain are listed as 
follows: Mean, Root Mean Square (RMS) and Crest Factor. 

To reduce the problem complexity and to manage with less dimensions, a Principal Components 
Analysis was performed (Dimensionality reduction phase); the 40 features were reduced to 12 
considering the scores S1-S12, without a loss of information content (there was still a 96% 
explained variance with only 12 features). 

T,Vb and Ra were acquired during the experimental tests; Fig.4 shows how the data were 
operationally collected. 



Material Forming - ESAFORM 2024  Materials Research Forum LLC 
Materials Research Proceedings 41 (2024) 2011-2020  https://doi.org/10.21741/9781644903131-222 

 

 
2015 

 

 
Fig.4. Data acquisition operative modes.  

 
Finally, in the tool wear, roughness, and temperature conditions prediction phase, the 

followings different algorithms were trained and tested: 
1. Decision Tree, with two different values of Minimum Life Size: DT-4, DT-12; 
2. Artificial Neural Network, with two different values of the First Layer Size: ANN-10, 

ANN-25; 
3. Support Vector Machine, with two different kernel functions: SVM-Q, SVM-C; 
4. Gaussian Process Regression, with two different kernel functions: GPR-RQ, GPR-M5/2; 
5. Gaussian Process Regression, with bayesian optimization: GPR-BO. 

The models learning phase (training and validation) was performed using the 60% of the overall 
data for the training and the 20% for the validation. The resting 20% of the data was used for the 
testing phase. For the development of the models, the Matlab 2021 environment was used. 
 
Results 
In Fig.5 are represented the trends of Vb and roughness, acquired during the experimental activity 
(the error bars are reported). As can be seen from the graphs, the trends of these responses are 
consistent with the behaviors widely described in the literature [13]. 
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Fig.5. Vb and roughness experimental trends.  
 
Because the original dataset was sparse, the Makima interpolation technique was utilized to 

create new data points between existing ones, to generate a more extensive dataset. Therefore, the 
time steps were augmented obtaining data every 30 seconds, and 11 levels were added to the 
cutting speed values range (65m/min to 115m/min). This increased from 56 to 390 observations. 

All data, including temperature, were used to train and validate the responses regression models 
as functions of the time t and the S1-S12 scores, obtained from the application of the PCA to the 
40 features extracted from the Acc and AE signals. Then, the following models were developed 
and tested: 

• VB=VB(t,S1,S2,S3,S4,S5,S6,S7,S8,S9,S10,S11,S12); 
• Ra=Ra(t,S1,S2,S3,S4,S5,S6,S7,S8,S9,S10,S11,S12); 
• T=T(t,S1,S2,S3,S4,S5,S6,S7,S8,S9,S10,S11,S12). 
Fig.6 shows the results obtained about the performances of Vb, Ra and T models. For all of 

them, RMSE and R-Squared values obtained both during the models’ validation and testing phases, 
are presented. The RMSE index is related with the prediction error: the lower this index, the higher 
the model accuracy. On the other hand, the R-Squared index is function of the portion of the total 
variability explained by the model: the closer this index is to 1, the more accurate the model is. 

Regarding the Vb regression, GPR models exhibits the lowest RMSE values and the highest R-
Squared values; GPR with Bayesian optimization (GPR-BO) can be considered the most 
performing algorithm. 

About the Ra regression, GPR models, particularly the GPR-BO, still excel in terms of RMSE 
and R-Squared.  

Finally, about the T regression, there is a clear distinction between the performance offered by 
the GPR algorithms and others such as DT and ANN. 
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Fig.6. Vb, Ra and T models performances: RMSE and R-Squared values. 
 
Fig.7 shows the responses vs record number and the predicted vs true plots related to the Vb, 

Ra and T GPR-BO models. 
The "responses vs record number" plot shows how the responses in the dataset change 

concerning the record number or index of the data: the plot shows how the response variable 
changes over time. 

The "true vs predicted" plot is a visualization used to evaluate the performance of a predictive 
model, especially in regression or estimation tasks. It compares the actual (true) values of the target 
variable against the predicted values generated by the model. 

As for the trends of Vb over time, ordered by increasing cutting speeds, it can be observed that 
at high speeds the curves are steeper and contain fewer observations. The difference between actual 
observations, in blue, and predicted observations, in orange, is minimal. About the Vb true vs 
predicted response plot, it shows how the observations are densely distributed around the line of 
perfect prediction. For Vb values below 0.1mm, the prediction is extremely accurate; with the 
evolution of the process, the contribution of uncontrollable phenomena is more marked, then the 
model predictions are less accurate. This occurrence is more evident in the Fig.8 where the 
experimental Standard Deviation versus Vb are linked with the evidence in the True vs Predicted 
plot; as can be seen, the Standard Deviation increasing with the Vb (and then, with the time), 
probably also generating the spread of the True vs Predicted plot after a Vb of 0.1 mm. 
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The Ra plot over time shows the tendency of the response to decrease as the cutting speed 
increases. From each the individual trends, after a running-in phase, Ra stabilizes and then 
increases as a announce of process drift. 

From the true vs predicted plot it is immediate to observe the high predictive capacity of the Ra 
GPR-BO model, in fact almost all the 390 observations of the dataset lie on the perfect prediction 
line. 

Finally, from the observation of the response vs record number and true vs predicted plots, even 
for T the GPR_BO model demonstrates to provide a high degree of accuracy. 

Additionally, when examining plot response and record numbers, a discernible almost quadratic 
trend emerges in the relationship between T and cutting speed. The temperature rises with the 
increase in cutting speed until reaching a specific threshold, beyond which it begins to decrease. 

This pattern is explicable by the heightened heat dissipation resulting from the higher Material 
Removal Rate (MRR) at elevated cutting speeds. 
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Fig.7. Vb, Ra and T models performances: responses vs record number plots (actual 
observations, in blue, predicted observations, in orange), predicted vs true response plots. 

 

 
Fig.8. Standard Deviation vs Vb. 

Conclusions and future developments. 
This study evaluates the performance of artificial intelligence-based approaches for estimating 
roughness, tool wear and temperature at the tool/chip interface during turning of S235jr alloy steel. 
Different algorithms were trained to estimate the roughness, tool wear and temperature values in 
the process at several cutting speeds. The proposed models are developed on a dataset of 390 data 
points (60% of which are used in the training phase, 20% in the validation phase and the remaining 
20% in the testing phase). The reported results show the feasibility of the GPR-BO models for 
estimating roughness, tool wear and temperature with high accuracy (RMSE and R-Squared were 
evaluated). The estimated values are in good agreement with the performed experiments and with 
the results reported in literature. The obtained results demonstrate the effectiveness of the Tool 
and Surface Conditions Monitoring based on previous training dataset in the reduction of the 
experimental work and resources. As future development, the authors will extend the experimental 
activity considering tests at different feed rate and depth of cut. Moreover, the developed models 
will be integrated in a process automation able of near real time anomaly detection. 

In addition, the authors will develop a process automation integrating sensors, acquisition 
devices, analysis software, developed models and that will be able to perform anomaly detection 
in near real time. 
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