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Abstract—In this article, we address the timely topic of cellular
bistatic simultaneous localization and mapping (SLAM) with
specific focus on end-to-end processing solutions, from raw I/Q
samples, via channel parameter estimation to user equipment (UE)
and landmark location information in millimeter-wave (mmWave)
networks, with minimal prior knowledge. Firstly, we propose a new
multipath channel parameter estimation solution that operates
directly with beam reference signal received power (BRSRP)
measurements, alleviating the need to know the true antenna beam-
patterns or the underlying beamforming weights. Additionally,
the method has built-in robustness against unavoidable antenna
sidelobes. Secondly, we propose new snapshot SLAM algorithms
that have increased robustness and identifiability compared to
prior art, in practical built environments with complex clutter
and multi-bounce propagation scenarios, and do not rely on
any a priori motion model. The performance of the proposed
methods is assessed at the 60 GHz mmWave band, via both
realistic ray-tracing evaluations as well as true experimental
measurements, in an indoor environment. A wide set of offered
results demonstrate the improved performance, compared to the
relevant prior art, in terms of the channel parameter estimation
as well as the end-to-end SLAM performance. Finally, the article
provides the measured 60 GHz data openly available for the
research community, facilitating results reproducibility as well as
further algorithm development.

Index Terms—5G, 6G, integrated sensing and communications,
millimeter-wave networks, simultaneous localization and mapping.

I. INTRODUCTION

W hile the primary purpose of mobile cellular networks
is to provide efficient connectivity services, the ability

to extract location information and situational awareness of
the surrounding environment is also receiving increasing
interest [1]–[4]. The related notion of integrated sensing and
communications (ISAC) refers to extending the situational
awareness from ordinary user equipment (UE) positioning
to the ability to sense also various passive objects in the
environment, through cellular radio-based measurements and
corresponding signal processing [1], [5]. Such knowledge
of the UE locations and surrounding environment can be
harnessed in numerous ways, for example in different extended
reality (XR) use cases [6], vehicular applications [7], or
industrial systems [8]. In general, the prospects for high-
accuracy situational awareness are known to improve [9], [10]
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Fig. 1. Illustration of the bistatic cellular SLAM paradigm where UE is jointly
estimating its own state as well as those of the environment landmarks.

when the networks are expanding towards the millimeter-wave
(mmWave) frequency bands. The current fifth generation New
Radio (5G NR) specifications support already operating bands
up to 71 GHz [11], while further extensions towards the sub-
THz regime are expected in the 6G era [12].

Bistatic cellular simultaneous localization and mapping
(SLAM) is one of the prominent ISAC applications where the
coordinates of both the UE as well as those of the environment
scattering points – commonly referred to as the landmarks – are
all jointly estimated, based on either uplink (UL) or downlink
(DL) reference signals and known base-station (BS) locations
[13]–[15]. This is illustrated conceptually in Fig. 1. Complete
end-to-end solutions for SLAM comprise estimators for spatio-
temporal channel parameters, often in the form of time of
arrival (ToA), angle-of-arrival (AoA), and/or angle-of-departure
(AoD) of the involved propagation paths, combined with the
actual SLAM filters or snapshot estimators that process the
channel parameter estimates into the corresponding estimates
of the UE and landmark locations [16]. This is also the main
scope of this article, in contrast to many other studies that
focus either exclusively on channel parameter estimation in
the context of wireless communication or on cellular SLAM,
without considering the challenges of obtaining the channel
parameters. We have a specific focus on implementation-
feasible yet high-performing end-to-end processing solutions
that can operate with minimal knowledge of the involved
antenna system beampatterns and facilitate mmWave SLAM
in practical complex built environments, particularly indoors,
while operating on downlink positioning reference signal (PRS)
standardized already for the existing 5G NR networks. Addi-
tionally, we emphasize research reproducibility and provide
measured mmWave I/Q and channel data openly for the research
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community, while use the same measured data to evaluate and
benchmark the proposed methods against the relevant prior art.

A. Prior Art

The available literature on channel parameter estimation is
generally-speaking wide, however, a vast majority of works is
carried out under the assumptions of known antenna steering
vectors, beamforming weights, and thereon beampatterns. Such
methods are described, e.g., in [17]–[25]. To this end, [17]
and [18] present Bayesian channel estimation algorithms based
on different variants of Kalman filters, while [19], [21], [22]
harness the mmWave channel sparsity through compressed
sensing (CS) methods. The work in [20], in turn, proposes an
AoA estimation method using virtual subarrays which, however,
requires a special beamformer or antenna pattern design,
similar to [23]. Furthermore, [24], [25] propose joint AoD and
AoA estimation methods with specific frequency-dependent
codebooks in true-time-delay array context. Opposed to these
previous works, an angle estimation algorithm building on the
beam reference signal received power (BRSRP) measurements
is described in the recent work in [15]. The method builds on
thresholding and successive cancellation principle, operating
on AoA-AoD power map, however, is lacking, e.g., explicit
treatment of antenna sidelobes whose impact can be substantial
in mmWave systems. This is particularly so in SLAM context
where the multipaths and their dynamic range are one of the
key factors. For clarity, we also note that works like [26]
exist that deploy machine-learning to the channel parameters
estimation – however, such works are still commonly at their
early phases.

In the context of the available SLAM methods, we first
note that both snapshot approaches [16], [27]–[29] as well
as sequential filtering based solutions [13]–[15], [30], [31]
exist. Both research directions are relevant and the preferred
choice depends on the overall system and application scenario.
Snapshot SLAM is fundamentally important as it serves as a
baseline for what can be done with radio signals alone, without
any movement models, while a snapshot method can also be
used as input to filtering [27]. On the other hand, filtering based
SLAM methods process the observations sequentially over time
and are expected to remove false detections and improve the
accuracy [14]. Both SLAM methods also have their limitations.
A major drawback of snapshot SLAM is that it is not always
applicable, since the measurements may not be sufficient to
solve the SLAM problem [16]. For example, the UE cannot
be localized with the line-of-sight (LoS) alone if the clocks
of the UE and BS are not synchronized [27] and one must
resort to filtering based techniques to solve the problem over
time. On the other hand, filtering methods always require a
snapshot algorithm for initialization when prior information is
not available. Another disadvantage of filtering methods is that
they require solving a complex data association problem which
increases computational overhead of the algorithms [14], [31].
It is to be noted that low complexity alternatives exist [13], [30],
however, at the expense of reduced accuracy. Finally, different
from mono-static sensing where transmitter (TX) and receiver
(RX) entities are directly mutually synchronized [5], [32], [33],
an important practical aspect and challenge in bi-static SLAM

is the ability to estimate and track the time-varying clock-
bias between the UE and the network elements. Examples of
existing works where clock parameters are incorporated as part
of the overall state estimation or tracking problem include, e.g.,
[14], [27].

B. Novelty and Contributions

Compared to the available methods and literature, this article
provides the following contributions. Firstly, as opposed to the
vast majority of existing literature in [17]–[25], we focus on
enabling accurate multipath AoA/AoD estimation with BRSRP
measurements only, without knowledge of the complex antenna
patterns or the underlying steering vectors and beamforming
weights. This is motivated by the fact that in real networks, only
the beam indices and corresponding nominal beam directions
are commonly available [34]. Furthermore, various practical
aspects such as errors in the antenna element spacings as well as
mutual coupling create anyway varying levels of uncertainties
in the true antenna patterns – in particular in mmWave networks
[35] where analog/RF beamforming dominates and the design
and implementation of antenna elements and beamforming
units are tedious. Additionally, the proposed channel parameter
estimator that builds on the singular value decomposition
(SVD) of the AoA-AoD BRSRP map is shown to have built-
in robustness against the antenna sidelobes which is a clear
additional benefit compared to the prior art in [15]. The
proposed method is also compatible with 5G NR PRS signal
structure and beam-sweaping procedures defined in [36].

Secondly, we focus on advancing the SLAM in three
directions: first, through increased robustness and tolerance
of snapshot SLAM, compared to the prior art in [16], [28],
[29], against practical measurement imperfections or outliers;
second, by improving the SLAM problem identifiability; and
third, to perform SLAM without knowledge of the user motion
model. These aspects have high importance in real mmWave
deployment environments, where the amount of the available
LoS/non-line-of-sight (NLoS) measurements can easily vary
from measurement location to another [37]. Additionally,
despite the advances in channel parameter estimation, mea-
surement outliers are commonly occurring, e.g., due to the
clutter, multi-bounce phenomenon and antenna sidelobes [5].
Specifically, we improve the snapshot SLAM identifiability via
including an appropriate regularization term into the objective
function that embeddes the prior information to the processing
system. Additionally, a robust cost function is introduced to
handle outliers originating, e.g., from false detections or clutter.

Finally, the openly available mmWave SLAM measurement
data is scarce – or almost non-existing – hence, we bridge
this important gap and provide 60 GHz indoor measurement
data building on 5G NR standard-compliant beam-based PRS
transmissions. We also utilize the measurement data to assess
the achievable end-to-end performance of the methods proposed
in this article, while benchmarking against the prior-art.

Thus, to summarize, the novelty and contributions of the
article can be shortly stated as follows:

• End-to-end robust snapshot SLAM approach: We
develop and demonstrate an approach for end-to-end
snapshot SLAM, under minimal knowledge of the array

This article has been accepted for publication in IEEE Journal on Selected Areas in Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2024.3413995

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



3

parameters and the user motion model. The end-to-end
approach comprises a novel channel parameter estimation
method and a novel snapshot SLAM method.

• Robust channel parameter estimation: We propose
a new propagation path AoA/AoD estimation method
utilizing standardized BRSRP measurements, alleviating
the need for knowledge of the underlying antenna system
beampatterns while offering controlled robustness against
antenna sidelobes;

• Robust snapshot SLAM: We propose a new snapshot
SLAM algorithm that offers increased system identifiabil-
ity and improved robustness against measurement outliers
compared to prior-art;

• Realistic performance evaluation: We evaluate and
benchmark the performance of the proposed methods
in a realistic indoor environment through accurate ray-
tracing as well as experimental measurement campaign,
both carried out at the 60 GHz band;

• Open-source data-set: We release the complete 60 GHz
I/Q measurement data set as well as the corresponding
processed channel parameter data set, together with
supportive scripts for their utilization in any follow-up
research;

The rest of this article is organized as follows: Section II
describes the basic assumptions, the problem geometry and the
corresponding fundamental system model. The proposed chan-
nel parameter estimation methods are described in Section III,
while the proposed snapshot SLAM method is provided in
Section IV. The considered indoor evaluation environment, ray-
tracing assumptions and the actual 60 GHz measurement setup
and data are all described in Section V. The complete end-to-
end performance results and corresponding comparisons against
benchmark methods are reported and analyzed in Section VI.
Finally, the conclusions are drawn in VII, while selected
modeling details are provided in the Appendix.

Notations: Vectors are denoted by bold lowercase letters
(i.e., a), bold uppercase letters are used for matrices (i.e., A)
and scalars are denoted by normal font (i.e., a). The operators
(·)⊤, (·)∗, (·)H, (·)†, E{·}, | · | and ∥ · ∥ denote the transpose,
conjugate, Hermitian transpose, pseudoinverse, expectation,
absolute value and Euclidian norm, respectively. Finally, i
denotes the imaginary unit for which i2 = −1.

II. SYSTEM MODEL

A. Basic Assumptions and System Geometry

In this work, we consider orthogonal frequency-division
multiplexing (OFDM) based mmWave cellular systems where
BSs are regularly broadcasting beamformed downlink reference
signals, that allow UEs to estimate the multipath channel
parameters for localization, sensing and mapping purposes.
Concrete example in 5G NR context is the PRS [36], however,
also e.g. the synchronization signal (SS) burst can in practice
be utilized, though offering lower bandwidth compared to PRS.
Additionally, since time- and angle-based measurements allow
for a paradigm shift from classical multi-BS localization and
SLAM approaches [7] towards single-BS solutions [38], we also
focus on the single-BS scenario. However, the proposed channel
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Fig. 2. Problem geometry for LoS and nth NLoS propagation path with angles
expressed in the local frames of the TX (BS) and RX (UE). αTX and αRX
represent the location orientations relative to the global coordinate system.

parameter estimator is applicable also in multi-BS scenarios
when the corresponding PRSs are properly orthogonalized.

To this end, we consider TX and RX entities equipped with
uniform planar arrays (UPAs) with vertical times horizontal
dimensions of the form Nv

TX×Nh
TX and Nv

RX×Nh
RX, respectively.

The antenna elements are separated by a half-wavelength
distance d = λ/2, where λ = c/fc denotes the wavelength at
carrier frequency fc, and c is the speed of light. The total num-
ber of antenna elements in TX and RX are NTX = Nv

TX ×Nh
TX

and NRX = Nv
RX × Nh

RX, respectively. The locations (3D
coordinates) of the involved TX and RX entities are denoted
by p3D

TX = [p⊤
TX, zTX]

⊤ and p3D
RX = [p⊤

RX, zRX]
⊤, respectively,

where pTX and pRX are the corresponding horizontal 2D
coordinates, while zTX and zRX denote the respective vertical
coordinates – all in global coordinate system. Additionally, the
3D location of an arbitrary single-bounce landmark is denoted
by m3D

n = [m⊤
n , zn]

⊤, where mn refers to the respective
horizontal 2D coordinates, zn is a vertical coordinate, while
the subscript n serves as a landmark or path index. Furthermore,
we denote the 3D AoD as ψ⊤

TX,n = [ϕn, ϕ
EL
n ], where ϕn and

ϕEL
n are the azimuth and elevation AoDs, respectively, Similarly,

the 3D AoA is denoted by ψ⊤
RX,n = [θn, θ

EL
n ]. All the involved

angles are expressed in local coordinate systems, i.e., relative
to the local orientations of the TX and RX entities.

Finally, as our main emphasis is on indoor mmWave systems,
we eventually focus mostly on 2D (azimuth) estimation and
SLAM algorithms. The corresponding 2D system geometry is
illustrated in Fig. 2. However, the basic system and received
signal models are provided in 3D for generality.

B. Received Signal Model

We assume that coarse timing information is established
between TX and RX entities, through, e.g., correlation with
known PRS sequences as discussed further in Section III.
Now, under multipath radio propagation environment with
N propagation paths, the received signal at kth subcarrier and
mth OFDM symbol, using the ith TX beam and jth RX beam,
can be represented as

yi,jk,m = wH
RX,j

(
Hk,mw∗

TX,ix
i,j
k,m + ni,j

k,m

)
, (1)
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where wTX,i ∈ CNTX and wRX,j ∈ CNRX are the TX and
RX beamformers, xk,m ∈ C with |xk,m| = 1∀k,m is the
transmitted PRS sample, and ni,j

k,m ∈ CNRX denotes the antenna
element wise additive white Gaussian noise (AWGN) at the
RX. Furthermore, Hk,m ∈ CNRX×NTX is the effective spatial
multipath channel matrix defined as [37, eq. (4)]

Hk,m =

N∑
n=1

ξne
−i2πk∆fτf,nei2πmTsymfD,n

× aRX(ψRX,n)aTX(ψTX,n)
⊤,

(2)

where ∆f is the subcarrier spacing (SCS), Tsym denotes the
OFDM symbol duration, and ξn, τf,n and fD,n are the complex
path coefficient, the propagation delay with respect to the
beginning of the received OFDM symbol, and the Doppler
frequency for the nth propagation path, respectively. The true
physical propagation delay for path n is denoted by τn =
τc + τf,n, with dn = cτn denoting the corresponding physical
distance, where τc refers to the delay between the received
OFDM symbol and transmit time. Considering now a receiver
with an unknown clock bias bUE, the corresponding biased
propagation delay τ bn can be expressed as

τ bn = τn − bUE = τc + τf,n − bUE. (3)

Estimation of τc, subject to unknown bias bUE, can be
considered part of regular OFDM symbol synchronization,
for example, through time-based correlation, as discussed
further in Section III-C. Additionally, aTX(ψTX,n)∈CNTX and
aRX(ψRX,n)∈CNRX denote the TX and RX steering vectors,
respectively. The exact way how the PRS sequences are mapped
to the physical resources (OFDM symbols and the underlying
subcarriers), in 5G NR context, is described in [36].

Now, by combining (1) and (2), the received signal model
can be re-expressed as

yi,jk,m =
{ N∑

n=1

ξne
−i2πk∆fτf,nei2πmTsymfD,nxi,j

k,m

×GTX,i(ψTX,n)GRX,j(ψRX,n)
}
+ ñi,j

k,m,

(4)

where ñi,j
k,m = wH

RX,jn
i,j
k,m denotes beamformed noise, while

GTX,i(ψTX,n) = aTX(ψTX,n)
⊤w∗

TX,i, and GRX,j(ψRX,n) =
wH

RX,jaRX(ψRX,n). Importantly, the expression in (4) applies
to arbitrary antenna systems with GTX,i(ψTX,n) ∈ C and
GRX,j(ψRX,n) ∈ C denoting the corresponding angular re-
sponses for the ith and jth beams at the TX and RX sides.

The fundamental technical problems considered in the article
are (i) to estimate the involved path angles and delays, with
received PRS samples, and (ii) to estimate the UE location and
the locations of the landmarks, with angle and delay estimates
as the inputs. These are addressed in Sections III and IV,
respectively, where Section IV also details the relations between
the locations and the involved path angles and delays.

III. CHANNEL PARAMETER ESTIMATION METHODS

In this section, we provide a detailed description of the
proposed AoA/AoD estimation method, along with an expla-
nation of the ToA estimation approach we have considered.
To ensure clarity and simplify the presentation, we focus on

describing these methods in the 2D/azimuth domain. This
approach is particularly relevant in indoor scenarios, where the
floor and ceiling impose constraints on the extent of the vertical
direction. We further assume that directional mmWave beams
are deployed, such that the TX and RX beam indices i and j
have physical correspondence to the TX and RX beamforming
angles, respectively. Such directional beams are considered in
large majority of the mmWave systems research, particularly
when analog/RF beamforming is assumed.

A. BRSRP Measurements

Taking reference signal received power (RSRP) measure-
ments is generally a standard procedure in 5G NR [39], e.g.,
for paging and beam alignment purposes. To this end, for
each TX-RX beam pair (i, j), let us define the corresponding
BRSRP as a beam-based RSRP measurement of the considered
reference signal (RS). Specifically, this is defined as

βi,j =
1

NRS

∑
(k,m)∈MRS

∣∣∣yi,jk,m

∣∣∣2 , (5)

where MRS is a set of all RS symbols and subcarriers mapped
to the OFDM resource grid with cardinality |MRS| = NRS.

Lemma 1. Let bn ∈ CK and cn ∈ CM denote the frequency-
domain and time-domain steering vectors of the nth path,
respectively, where K is the number of active RS subcarriers,
and M is the number of RS OFDM symbols. Moreover, the
kth element of bn is defined as bn[k] = e−i2πk∆fτf,n , and the
mth element of cn as cn[m] = ei2πmTsymfD,n . Suppose that the
paths in (2) are non-overlapping in either delay or Doppler,
and that K and/or M are/is sufficiently large, i.e.,

bH
n1
bn2

K
≈ 0 or

cHn1
cn2

M
≈ 0 (6)

for any n1 ̸= n2. Then, the BRSRP measurement in (5) can
be approximated as

βi,j≈
N∑

n=1

|ξn|2|GTX,i(ψTX,n)|2|GRX,j(ψRX,n)|2+σ2
noise (7)

where σ2
noise is the variance of ñi,j

k,m.

Proof. Please see the Appendix.

B. Proposed SVD-based AoD and AoA Extraction

Considering the PRS beam-sweeping procedure with LTX
TX beams and LRX RX beams, comprising the corresponding
TX and RX beamforming angles {Φi}LTX

i=1 and {Θj}LRX
j=1, respec-

tively, a total of LTX × LRX directional BRSRP measurements
are available at the RX. The corresponding BRSRP matrix
B ∈ RLTX×LRX is defined as

B =


β1,1 β1,2 · · · β1,LRX

β2,1 β2,2 · · · β2,LRX

...
...

. . .
...

βLTX,1 βLTX,2 · · · βLTX,LRX

 . (8)

The matrix B thus represents the spatial channel in the angular
domain, in the form of an AoD-AoA power map. A concrete
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Fig. 3. Example visualization of measured 60 GHz BRSRP data, with the LoS
path and other landmarks being clearly visible. Antenna sidelobes are creating
notable power spreading along the two axes.

example is visualized in Fig. 3, building on measurement
arrangements described in Section V.

1) Technical Premise and Intuition: Taking into account the
fairly narrow beamwidths and the mmWave channel sparsity,
the AoDs {ϕn}Nn=1 and AoAs {θn}Nn=1 for N propagation
paths can be extracted by processing the power map B. For
this purpose, based on (5) and the approximation in (7), the
angular power map B can be first represented as

B =

N∑
n=1

|ξn|2gTX(ψTX,n)gRX(ψRX,n)
⊤ + N̄, (9)

where gTX(ψTX,n) and gRX(ψRX,n) denote the TX and RX
beam gain vectors, with gTX(ψTX,n)[i] = |GTX,i(ψTX,n)|2 and
gRX(ψRX,n)[j] = |GRX,j(ψRX,n)|2, respectively. Furthermore,
N̄ is a noise matrix whose element at the ith row and jth

column is defined as N̄[i, j] = (1/NRS)
∑

(k,m)∈MRS
|ñi,j

k,m|2.
Inspired by the structure of B in (9), let us consider its sin-

gular value decomposition (SVD), expressed as B = UΛV⊤,
where U ∈ RLTX×LTX , V ∈ RLRX×LRX are unitary matrices, and
Λ ∈ RLTX×LRX is a rectangular diagonal matrix. In the main
diagonal of Λ, singular values of B, [σ1, σ2, ..., , σR] > 0,
are sorted in the descending order, where R = rank(B) ≤
min(LTX, LRX). The SVD can also be expressed as

B =

R∑
r=1

σrurv
⊤
r =

R∑
r=1

B(1)
r , (10)

where ur and vr are the rth columns of U and V, respectively.
Importantly, based on (9), ur and vr belong to the correspond-
ing spans of {gTX(ψTX,n)}Nn=1 and {gRX(ψRX,n)}Nn=1. Thus,
the rth singular vectors can be expressed as

ur=

N∑
n=1

qu
r,ngTX(ψTX,n) and vr=

N∑
n=1

qv
r,ngRX(ψRX,n), (11)

where qu
r,n and qv

r,n are the linear combination weights of the
spanning set vectors gTX(ψTX,n) and gRX(ψRX,n), respectively.
In addition, B(1)

r in (10) is a rank-1 matrix associated with
the rth singular value and the related basis vectors ur and
vr. Furthermore, in the case of a sparse beamformed channel
where all paths are well separated, combined with directional
beamforming at the TX and RX, the following holds [37], [40]

gTX(ψTX,n)
⊤gTX(ψTX,n′) ≈ δn−n′ and

gRX(ψRX,n)
⊤gRX(ψRX,n′) ≈ δn−n′ ,

(12)

where δn−n′ is a unit impulse function. In such case, each
SVD term in (10) corresponds essentially to one propagation
path, and thus B

(1)
r is a rank-1 approximation of the power

map stemming from the corresponding path.
Interestingly, based on (9)–(11) and the corresponding fact

that the singular vectors of the BRSRP matrix are in the span
of the beam gain vectors, the SVD-based low-rank modeling
approach can also inherently manage different unknown beam
patterns, and is thus resilient to sidelobes and other beam pattern
fluctuations. Specifically, the antenna sidelobes illustrated also
in Fig. 3, can be decoupled from the peaks in B by using
different low-rank approximations with increasing rank and
analyzing the resulting power increment formed at each step.
To this end, a pair of subsequent low-rank approximations of
B, denoted as BK−1 and BK , with K < R, can be expressed
as

BK =

K∑
r=1

σrurv
⊤
r =

K∑
r=1

B(1)
r = BK−1 +B

(1)
K , (13)

where the rank-1 matrix B
(1)
K = σKuKv⊤

K represents a
recovered BRSRP map increment between the two levels of
approximation accuracy.

2) Overall Approach and Refinements: Due to the relation
of singular vectors to antenna response in (11) and the relation
of the singular vectors and singular matrix in (10), the AoD and
AoA estimates can be extracted recursively by processing rank-1
matrices B(1)

r for separate singular values, while assuming only
known TX beam angles {Φi}LTX

i=1 and RX beam angles {Θj}LRX
j=1.

A suitable rank value for the low-rank approximation in (13)
can be determined in various manner so that noise-dominated
singular matrices are omitted from the approximation. In this
article, we choose the approximation rank by ensuring that
the low-rank approximation recovers a desired portion of the
original total measured power, as described in Algorithm 1.
Additionally, suitable rank selection can also help emphasizing
LoS and single-bounce paths, over the corresponding multi-
bounce paths [33] that are typically of low power.

The complete proposed procedure for obtaining AoD esti-
mates {ϕ̂n}N̂n=1 and AoA estimates {θ̂n}N̂n=1 for N̂ estimated
paths, is stated and described in Algorithm 1. Besides the
fundamental processing of rank-1 matrices for extracting angle
information, three additional refinements are shown and applied,
namely, power thresholding, clustering, and polynomial fitting.
With power thresholding, we omit peaks which are close to
noise level, and thus mitigate noise-related estimation errors.
One feasible approach to assign a value for the related power
threshold βth is to set it at or marginally higher than the
prevailing noise floor. Concrete examples are provided along
the numerical results, in Section VI. The clustering step, in turn,
considers the fact that powerful peaks create large residuals and
require more than one rank-1 singular matrix to be properly
represented. Assuming spatially sparse channel, we expect such
residual peaks to occur only in vicinity of powerful peaks that
are spatially separated from each other, thus creating clusters in
AoD-AoA domain. After the clustering step, where any existing
clustering method [41] can be adopted, N̂ clusters are obtained,
whose cluster means represent the coarsely estimated AoD and
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Algorithm 1 Proposed AoD-AoA Extraction Algorithm
Input: TX beam angles {Φi}LTX

i=1 , RX beam angles {Θj}LRX
j=1, power

measurement matrix B ∈ RLTX×LRX , desired power ratio p, and power
threshold βth

Output: Number of estimated paths N̂ , AoD estimates {ϕ̂n}N̂n=1,
and AoA estimates {θ̂n}N̂n=1

1: Compute SVD of BRSRP matrix: B = UΛV⊤

2: Compute the total power pTOT =
∑R

r=1 σ
2
r , where σr is the rth

singular value, and R = min(LTX, LRX)
3: Set r = 1, pr = 0%, Mest = {}
4: while pr < p do
5: Compute a rank-1 matrix: B(1)

r = σrurv
⊤
r

6: Find the indices of the element with maximum value:
(̂ir, ĵr) = argmaxi,j B

(1)
r [i, j],

where B
(1)
r [i, j] is the matrix B

(1)
r element at the

ith row and j th column.
7: Save the angles and power as a 3D set element:

Mest ←Mest ∪ {(Φîr
,Θĵr

, βîr,ĵr
)}

8: Compute power ratio: pr ← 1
pTOT

∑r
r̃=1 σ

2
r̃ × 100%

9: Set r ← r + 1
10: end while, K = r

11: Power thresholding – choose only the components with power
exceeding a given threshold:

Mest ← {Mest | elements with βîr,ĵr
≥ βth}

12: Clustering – Perform clustering of elements in Mest to obtain
N̂ ≤ K clusters Mn

est, n = 1, . . . , N̂ . For each cluster,
angle estimates are obtained by computing a power-weighted
cluster mean as ϕ̄n = (

∑
s βîs,ĵs

Φîs
)/

∑
s βîs,ĵs

and θ̄n =
(
∑

s βîs,ĵs
Θîs

)/
∑

s βîs,ĵs
, where the index s is used to select

elements from the specific cluster.
13: Polynomial fitting – a subset of the power matrix B around each

cluster mean is fitted with a 2nd degree polynomial surface. For
the nth cluster, the final AoD and AoA estimates are found in
closed form as a vertex of the local polynomial surface as ϕ̂n =
(c5c3−2c6c2)/(4c6c4− c25), θ̂n = (c5c2−2c4c3)/(4c6c4− c25),
where cl, l = 1...6 are the coefficients of the polynomial surface.

AoA angles. Lastly, to enhance the angle estimation precision,
each peak associated with a coarsely estimated AoD and AoA
is fitted with a parabolic surface using a weighted least squares
method. Fitting is performed within a local window of size
approximately representing the beamwidth. The final AoD
estimates {ϕ̂n}N̂n=1 and AoA estimates {θ̂n}N̂n=1 can be then
found in closed form as a vertex of the parabolic surface for
each peak.

Finally, we note that if paths share the same AoD, but have
different AoAs, or vice versa, multiple paths can be represented
by one rank-1 singular matrix. Thus, one could argue that
the AoD-AoA extraction algorithm would benefit from multi-
peak selection, however, with such measurement geometry, the
weaker paths can be assumed as undesired multi-bounce paths
in the considered SLAM setting.

3) Complexity Assessment: The fundamental complexity
order of the proposed SVD-based angle estimation method is
O(min(LTXL

2
RX, L

2
TXLRX)+min(LTX, LRX)

2K+LTXLRXK),
excluding further refinements of thresholding, clustering and
polynomial fitting. The corresponding complexities of the
method in [15] as well as that of a classical cell-averaging
constant false alarm rate (CFAR) detector [42], being used
as benchmark methods along the numerical results, read
O(min(LTX, LRX)

3 + NpeakLTXLRX), and O(LTXLRXN
2
TB),

respectively, where Npeak is a maximum number of support
squares [15] and NTB is a size of the CFAR training window.
For good performance, N2

TB is comparable to or larger than
L (i.e., LTX or LRX), and thus all three methods have similar
complexity order of O(L3).

C. ToA Estimation

In general, the SS burst [36], [43] allows to establish the
basic frame and OFDM symbol synchronization, however, PRS
allows for larger bandwidth and thus facilitates more accurate
symbol time estimation and particularly the fine ToA estimation.
We thus next shortly address the ToA estimation, building on
PRS and the corresponding PRS IDs [36], [43] – both known
at the UE. The coarse ToA estimation is carried out using
time-domain I/Q signals, already before the angle estimation
phase, while the fine ToA estimation or refinement is carried
out in frequency-domain only for the identified path angles.
These together provide the estimates for the pathwise ToAs.

1) Coarse ToA Estimation in Time Domain: First, sample-
wise time delay estimation and beam ID search is performed
by maximising the cross-correlation between the received
waveform and potential reference waveforms in time domain.
For sampling rate of Fs, we denote the qth time domain signal
sample for the received signal and the PRS with PRS ID ν as
Y i,j(q) and Xi,j

ν (q), respectively. Now, the estimated PRS ID
ν̂i,j and sample-wise delay ∆̂qi,j can be obtained as

(ν̂i,j , ∆̂qi,j) = argmax
ν,∆q

Ns−1∑
q=0

|Y i,j [q +∆q]Xi,j
ν [q]∗|2. (14)

Furthermore, the coarse delay estimate reads then

τ̂ i,jc = ∆̂qi,j/Fs, (15)

which defines the delay between the received OFDM symbol
and the transmit time with respect to the receiver clock – and
is thus subject to bias.

2) Fine ToA Estimation in Frequency Domain: The fine
time delay estimation is performed per estimated path, using
the frequency domain samples yi,jk,m with (k,m) ∈ MRS ,
corresponding to the beam pair (i, j) whose beam angles are
closest to the estimated AoD and AoA. Such fine ToA estimate
for path n, determined with respect to the beginning of the
OFDM symbol, can be obtained as [44, Ch. 3.2]

τ̂f,n = argmax
τ

∣∣∣∣∣∣
∑

(k,m)∈MRS

(xîn,ĵn
k,m )∗yîn,ĵnk,m ej2πk∆fτ

∣∣∣∣∣∣ , (16)

where în = argmini(|Φi−ϕ̂n|) and ĵn = argminj(|Θj− θ̂n|)
are the TX and RX beam indices associated with the nth esti-
mated path, respectively. In practice, (16) can be solved using
an optimization algorithm, interpolated IFFT, or performing a
brute force search over suitable propagation delays.

Finally, the complete (biased) ToA estimates are obtained as

τ̂ bn = τ̂ în,ĵnc + τ̂f,n (17)

for path indices n = 1, . . . , N̂ , which correspond to (biased)
path distance estimates of cτ̂ bn. As noted in [43], [45], the
coarse ToA estimate can also be determined wrt. the frame
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start time. In such case, the possible excess time between
the beginning of the frame and the actual RS transmission
time can be taken into account in the coarse ToA estimate,
while the path-wise fine ToA estimates remains intact. With
unsynchronized TX and RX clocks, the underlying bias of
ToA estimate in (17) can be estimated and dealt with in the
considered SLAM scenario, as shown in Section IV.

IV. PROPOSED SNAPSHOT SLAM METHOD

Next, we describe the proposed snapshot SLAM method,
building on the previously described AoA, AoD and ToA
estimates. The fundamental problem geometry is illustrated in
Fig. 2, while in the following, for clarity, we explicitly refer
to BS and UE as the TX and RX entities, respectively.

A. Problem Formulation

It is assumed that the BS position and orientation, denoted
with [p⊤

BS, αBS]
⊤, are known while the unknown UE state is

represented using the 2D position, heading and clock bias (cast
in meters, BUE = cbUE) as s = [p⊤

UE, αUE, BUE]
⊤. Further-

more, the nth single bounce propagation path is represented
using the 2D interaction point or landmark mn = [xn, yn]

⊤,
n = 2, 3, ..., N̂ , where N̂ denotes the number of the available
AoA, AoD and ToA estimates in a given measurement location.
For notational convenience, the LoS path index – if existing –
is n = 1.

In addition, let xn = [s⊤, m⊤
n ]

⊤ denote the joint state of
the UE and the nth landmark, m = [m⊤

2 , . . . ,m
⊤
N̂
]⊤ denotes

the map which is the joint state of the N̂ − 1 landmarks, and
the unknown joint state of the UE and map is x = [s⊤,m⊤]⊤.
Now, the estimation problem can be defined as

p(x | z) ∝ p(x)

N̂∏
n=1

p(zn | xn), (18)

where p(x) = N (x | µ,Σ) is the prior for x obtained for
example using external sensors or a previous estimate and
p(zn | xn) is the likelihood of the nth measurement. It is to
be noted that typically snapshot SLAM implies that no prior
information exists since the primary interest is analyzing what
can be done with radio signals alone [16], [28] whereas in
this article, we evaluate the system performance both with
and without the UE prior. No prior knowledge on the map is
required, but for a comprehensive treatment of the problem,
the solution is presented considering both the UE and map
priors. The measurements are defined as zn = [cτ̂ bn, ϕ̂n, θ̂n]

⊤,
in which the delay estimates are converted to meters for
convenience. An estimate for x can be obtained by maximizing
(18), mathematically given by

x̂ = argmax
x

p(x | z). (19)

Since the UE does not known whether the LoS exists or
not, (19) is solved under NLoS only and under LoS+NLoS,
separately. Propagation paths with distance to within one meter
of the shortest path and power within 3 dB to the path with
maximum power are considered as candidate LoS signals and
NLoS denotes the number of LoS candidates. Furthermore, for
each candidate, (19) is solved with and without a prior (see

Section IV-D). This will give 2NLoS +1 solutions to (19) with
different costs and the solution with lowest cost measured in
terms of (23) can be selected as the estimate.

B. Measurement Models

Assuming that the measurement noise is zero-mean Gaussian,
which is a common assumption is bistatic SLAM [14], [31],
the likelihood function is Gaussian

p(zn | xn) = N (zn | hn(x),Rn), (20)

with mean hn(x) and covariance Rn. Building on the geometry
in Fig. 2, the mean is given by

hn(x) =

 d−BUE
atan2(−δ1,y,−δ1,x)− αBS

atan2(δ2,y, δ2,x)− αUE

 . (21)

For the LoS path (n = 1), the parameters are defined as: d =
∥pBS − pUE∥ and [δ1,x, δ1,y]

⊤ = [δ2,x, δ2,y]
⊤ = pBS − pUE.

Respectively for the nth NLoS path, the parameters are defined
as: d = ∥pBS−mn∥+∥mn−pUE∥, [δ1,x, δ1,y]⊤ = pBS−mn,
and [δ2,x, δ2,y]

⊤ = mn − pUE.

C. Regularized Robust Least Squares Estimator

Maximizing the posterior as given in (19), is equivalent to

x̂ = argmin
x

L(x), (22)

in which L(x) is the objective function we wish to minimize.
In this article, we utilize the following objective function

L(x) = (x− µ)⊤Σ−1(x− µ) +
N̂∑

n=1

f(qn(x)), (23)

where the first term is a regularization term that encodes the
prior information and the second term encodes the evidence
provided by the measurements. In the second term, f(·) is a
robust cost function which we will define later and

qn(x) = (zn − hn(x))
⊤R−1

n (zn − hn(x)). (24)

defines a quadratic error.
The Gauss-Newton algorithm can be utilized to iteratively

solve (23) and the method is based on approximating hn(x)
using a first order Taylor series expansion [46], given by

hn(x) ≈ hn(x̂
(j)) + Jn(x̂

(j))(x− x̂(j)), (25)

where x̂(j) is the estimate of x at the jth iteration and
Jn(x̂

(j)) = ∇xhn(x)|x=x̂(j) is the Jacobian. The parameter
update of the Gauss-Newton algorithm can be derived by
plugging (25) into (23), setting the gradient of L(x) to zero
and solving for x, expressed as

∂L(x)

∂x
=

∂

∂x
(x− µ)⊤Σ−1(x− µ) +

N̂∑
n=1

∂f

∂qn

∂qn
∂x

(26)

≈ 2Σ−1(x− µ)− 2

N̂∑
n=1

J⊤
n (x̂

(j))R̃n(x̂
(j))−1

×
(
zn − hn(x̂

(j))− Jn(x̂
(j))(x− x̂(j))

)
= 0,
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in which

R̃n(x̂
(j))−1 =

∂f

∂qn

∣∣∣∣
qn=qn(x̂(j))

R−1
n . (27)

In order to minimize L(x), we then set the next estimate x̂(j+1)

to be equal to the minimum, which gives

x̂(j+1) = x̂(j) +A−1b, where (28)

A = Σ−1 +

N̂∑
n=1

J⊤
n (x̂

(j))R̃n(x̂
(j))−1Jn(x̂

(j)),

b = Σ−1(µ− x̂(j))

+

N̂∑
n=1

J⊤
n (x̂

(j))R̃n(x̂
(j))−1(zn − hn(x̂

(j))).

In general, there are many possible robust cost functions
that reduce the weight of components with large errors so
that they have a smaller influence to the solution due to a
reduced gradient [47]. In this article, we utilize the Cauchy
cost function, f(qn(x)) = log(1+qn(x)), such that the second
term of the objective function in (23) becomes

N̂∑
n=1

log
(
1+(zn − hn(x))

⊤R−1
n (zn − hn(x))

)
, (29)

and the gradient is given by (26) in which

R̃n(x̂
(j))−1 =

1

1 + qn(x̂(j))
R−1

n . (30)

Thus, the new covariance matrix R̃n is just an inflated version
of the original covariance matrix Rn, given by

R̃n(x̂
(j))=

(
1 + (zn−hn(x̂

(j)))⊤R−1
n (zn−hn(x̂

(j)))
)
Rn

(31)
and it gets bigger as the quadratic error increases. As a
consequence, cost terms that are very large and potential outliers
are given less trust to diminish their impact.

In practice, taking a full step according to (28) might be too
large with respect to the neighborhood for which the Taylor
series approximation in (25) is valid. To avoid this, a scaled
Gauss–Newton step can be done instead, proportional to the
direction given by the local approximation. In this article, we
use backtracking line search [48] to compute the step length.
The resulting algorithm is summarized in Algorithm 2 and
initialization of x̂(0) is presented in the following section.

D. Initialization

A major disadvantage of the Gauss–Newton approach is that
the linearization of the measurement model is local. In highly
nonlinear problems, this means that the solution can converge
to a local minima and therefore, initialization of the algorithm
is very important. To this end, let us define the prior mean and
inverse of the covariance matrix as

Σ−1 = blkdiag(Σ−1
ss ,Σ−1

m2m2
, . . . ,Σ−1

mN̂mN̂
), (32)

µ = [µ⊤
s , µ

⊤
m2

, . . . , µ⊤
mN̂

]⊤, (33)

where µs, Σss, µmn
and Σmnmn denote the mean and co-

variance of the UE and nth map entry, respectively. Algorithm

Algorithm 2 Proposed Gauss-Newton algorithm
Input: Initial parameter guess x̂(0) and measurements z
Output: Parameter estimate x̂ and covariance P

1: Set j ← 0
2: repeat
3: Calculate the update direction as given in (28):

∆x̂(j+1) = A−1b

4: Compute step length γ using Algorithm 9.2 in [48]
5: Update parameter estimate:

x̂(j+1) = x̂(j) + γ∆x̂(j+1)

6: Set j ← j + 1
7: until Converged
8: x̂ = x̂(j)

9: P = (Σ−1 +
∑N̂

n=1 J
⊤
n (x̂

(j))R̃n(x̂
(j))−1Jn(x̂

(j)))−1

2 is initialized using the prior mean, that is, x̂(0) = µ.
Snapshot SLAM typically implies that no prior information

exists (Σ−1 = 0) [16], [28], whereas in this article, we evaluate
the system performance both with and without the prior. If
prior information is not available, the LoS must exist so that
we can first compute a prior for the UE state as described
in Section IV-D1 which can then be used to initialize the
landmarks as presented in IV-D2. If a prior for the UE exists,
the landmarks can be directly initialized using the prior as
described in Section IV-D2. If a prior for the UE and map
exists, Algorithm 2 can be directly initialized using the prior
but in this article it is always assumed that no prior knowledge
of the map is available, that is, Σ−1

mnmn
= 0, n = 2, . . . , N̂ .

1) UE Initialization Without Prior Information: The chal-
lenge in initializing the UE state using the LoS measurement
is the unknown clock bias BUE. One can consider different
trial values of BUE over a range of [BUE,min, BUE,max]

1 and for
each trial value B̂UE, we form an augmented measurement ž =
[τ̂ b1 , ϕ̂1, θ̂1, B̂UE]

⊤ and covariance Ř1 = blkdiag(R1, σ
2
B̂UE

),
in which σ2

B̂UE
is variance of the bias which is set higher than

variance of the delay estimates. Then, the mean and covariance
of the UE prior are given by

µs = ȟ1(ž) and Σss = J̌1(ž)Ř1J̌1(ž)
⊤ (34)

where J̌1(ž) denotes the Jacobian of ȟ1(ž) evaluated with
respect to ž and the mean is defined as

ȟ1(z̃) = [xBS + x̂1, yBS + ŷ1, atan2(−ŷ1,−x̂1)− θ̂1, B̂UE]
⊤

in which x̂1 = (cτ̂ b1 − B̂UE) cos(αBS + ϕ̂1) and ŷ1 = (cτ̂ b1 −
B̂UE) sin(αBS + ϕ̂1). After computing the moments using (34),
the landmark locations can be computed as presented in Section
IV-D2. Then the trial with lowest cost according to (23), which
also involves the landmarks, is selected as the UE prior. Due to
computational reasons, we solve the described problem using
constrained nonlinear optimization [48] for which the problem
can be defined as

B̂UE = argmin
BUE,min≤BUE≤BUE,max

L(x), (35)

1We can define the following inequality, dmin ≤ cτ̂b1 − BUE ≤ dmax, in
which dmin and dmax define the minimum and maximum propagation distances
of the LoS path. From the inequality, the bias range can be computed as
BUE,min = cτ̂b1 − dmax and BUE,max = cτ̂b1 − dmin.
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with cost L(x) as given in (23).
2) Landmark Initialization: The first order Taylor series

based linear approximation of the measurement likelihood in
(20) around the UE prior reads

p(zn | xn) ≈ N (zn;hn(x) + Jn(µs)(s− µs),Rn), (36)

where hn(x) is evaluated at x = [µ⊤
s ,m

⊤
n ]

⊤, and Jn(µs) =
∇shn(x)|s=µs

is the Jacobian of hn(x) with respect to state
s computed at µs. Following the derivations in [49, Eqs. (5.6)
- (5.13)], the likelihood can be approximated as

p(zn | xn) ≈ N (zn;hn(x),Jn(µs)ΣssJ
⊤
n (µs) +Rn). (37)

The nth map element is initialized by solving a nonlinear
optimization problem, defined as

µmn
= arg min

mn

(zn − hn(x))
⊤W−1

n (zn − hn(x)), (38)

where Wn = Jn(µs)ΣssJ
⊤
n (µs) + Rn. The optimization

problem is initialized in a similar way as described in [14]
and solved using the Gauss-Newton algorithm, with the exact
details here omitted, as the algorithm is very similar to the one
presented in Algorithm 2.

V. INDOOR ENVIRONMENT, TOOLS AND DATA

We consider a modern indoor environment at the Hervanta
Campus of Tampere University, Finland, located in the so-
called Campus Arena building. The environment is illustrated
in terms of a floor plan and an actual photograph in Fig. 4,
consisting of a fairly large partially open space containing a
number of different landmarks such as columns, short walls,
booths, and so forth. The BS is located in a narrow annex 3m
wide while the UE moves in the area with a trajectory shown in
Fig. 4. Furthermore, 4×16 planar antenna arrays are considered
at both the transmitting and receiving ends, with azimuth 3 dB
beamwidth of around 10◦. Such antenna system assumption is
certainly implementation feasible at BS end while for UEs the
current mmWave implementations consider somewhat reduced
antenna counts and thus broader beams. The considered PRS
bandwidth is 400 MHz following [36].

A. Ray Tracing Tool and Assumptions

To carry out evaluations with well-defined and known ground-
truth, ray tracing was performed with Wireless InSite® [50].
The true physical environment is reproduced using the indoor
floor plan editor fitted to the building blueprint, while noting
also accurately different movable entities and objects such as
an indoor phone booth. The ITU 60 GHz material models [51],
namely, layered drywall, wood, glass, floor and ceiling board
were used. The BS position and UE trajectory consisting of
45 points 0.5m apart are accurately matched to those used in
the actual measurements. Omnidirectional antennas were used
for the ray casting, and the reception with path elevation was
limited to 80◦− 100◦, reflecting essentially the azimuth plane.
Furthermore, ray casting was limited to 25 rays per UE position,
and the number of material interactions to four reflections
and one diffraction. The ray-tracing model considers specular
reflection (SR) and diffraction (D), such that an unambiguous

ground truth for the performance assessment of the proposed
and benchmark angle estimation methods can be obtained.

The ray-tracing model is further combined with I/Q wave-
form processing in Matlab, such that realistic received I/Q
samples can be generated, per UE location. Here, the TX and
RX beampatterns are modelled through classical matched filter
type responses where the beamforming weights are matched
to the corresponding steering vector of the beamforming angle.
Additionally, we allow for similar mechanical rotation patterns
as in the actual measurements in order to cover 180◦ field-of-
view (FoV) in TX and 360◦ FoV in RX (for further details, see
the following subsection). These together facilitate a maximum
of LTX = 126 and LRX = 252 beams at TX and RX, respectively.
Moreover, we model accurately the signal-to-noise ratio (SNR)
characteristics of the environment such that the prevailing SNR
at each UE/RX point is adjusted according to the actual SNR
observed in the corresponding physical RF measurements.

B. Measurement Setup and Data

In the actual mmWave measurements, Sivers Semiconductors
Evaluation Kits EVK06002 [52] were used as the TX and
RX entities. The overall operational band of EVK06002
is 57 − 71 GHz, and it consists of strip antenna elements
arranged in 4× 16 arrays for each polarization, integrated with
the electrical phase and amplitude control of the individual
elements. The TX EVK was connected to a PC-controlled
Arbitrary Waveform Generator M8195A, whereas the RX
EVK was connected to the Keysight DSOS804A oscilloscope,
which serve as data conversion interfaces towards digital signal
processing. Similar to the ray-tracing case, the transmitted
PRS-carrying I/Q waveforms were created using the Matlab
5G Toolbox including also embedding of different PRS IDs.

The beamforming capabilities of the Sivers EVK allows
for synthesizing electrically controlled beams, building on
embedded proprietary codebook. The exact beampatterns are
unknown but based on elementary antenna measurements
resemble those of the ray tracing model complemented with
additional tapering. Since the electrical beamforming FoV of
the EVK is limited to [−45◦, 45◦], both TX and RX EVK
were complemented with FLIR Pan Tilt PTU-46 for additional
mechanical rotation capabilities, in order to cover 180◦ and
360◦ FoVs with maximum of LTX = 126 and LRX = 252 TX
and RX beams, respectively. Both receiver and transmitter were
controlled by the same PC and synchronized to the same clock
via a coaxial cable to provide a reference for ToA measurements.
Additionally, the true UE locations were recorded accurately for
ground-truth purposes. The measurement setup and a glimpse
of the physical environment are shown along the Fig. 4.

The complete 60 GHz I/Q measurement data set as well
as the corresponding processed channel parameter data set,
together with supportive scripts are all openly shared along
this article – refer to the first page footnote for further details.

VI. RESULTS

In this section, the angle estimation results as well as the
complete end-to-end SLAM results are presented and analyzed.
The angle estimator assessment builds on the ray tracing data, as
it contains the ground-truth information also for the landmarks.

This article has been accepted for publication in IEEE Journal on Selected Areas in Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2024.3413995

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



10

TX EVK (BS)

RX EVK(UE)
trajectory

(a) Ray-tracing environment (b) Photograph of the physical measurement environment

Fig. 4. Illustrations of the considered indoor environment. (a) Ray-tracing model visualization showing the TX/BS position and the RX/UE trajectory; (b)
Photograph from the physical premises with the TX and RX trolleys also shown during the measurement campaign.

The end-to-end SLAM assessment, in turn, builds on the true
measurement data.

A. Angle Extraction Results with Ray Tracing Data

The performance of the proposed SVD-based method is
assessed and compared to the available successive cancellation-
based reference method described in [15]. Additionally, the
classical CFAR detector [42] is also implemented and consid-
ered as an additional benchmark solution, as such is widely
used, e.g., in radar context for target detection subject to clutter.

The method in [15] is parameterised with the so-called sup-
port power increment, ϵ, and the maximum number of searched
peaks, Npeaks. We additionally apply power thresholding to
reduce the amount of false detections, and thereon to have as
fair comparison as possible. The CFAR technique, in turn, uses
training cells of size NTB around the target cell to estimate the
local noise level to reach the given false alarm probability PFA.
The Matlab 2D CFAR detector implementation from phased
array system toolbox was used, while further clustering was also
applied to the results as CFAR method yields easily multiple
AoD-AoA estimates per one peak. Finally, the proposed SVD-
based method is parametrized as follows. For the power ratio
parameter p, we consider the values of p = 99%, 99.9% and
99.99%. The power thresholding related parameter βth is, in
turn, set at 10% above the prevailing noise floor. This value is
designated with notation β∗

th while additional complementary
results where the value of βth is varied are also provided.

1) Qualitative Comparison: The capabilities of the different
methods are first visually illustrated in Fig. 5, covering both
NLoS and LoS UE locations, and with the parametrizations as
shown in the caption. As can be observed, the method from [15]
has notable challenges in dealing with antenna sidelobes, while
also several true propagation paths are missed especially in
LoS case. The CFAR has also clear limitations with sidelobes
while missing a large number of true landmarks in NLoS. The
proposed method, in turn, is able to offer enhanced performance
in both NLoS and LoS, while processing efficiently also the
antenna sidelobes.

2) Quantitative Comparison: As illustrated in Fig. 5,
the amounts of the detected paths differ from method to

another, while the ray-tracing model limits the amount of
ground-truth paths to the earlier noted number of 25. Such
data of different cardinality can be reliably compared and
quantitatively assessed using the generalized optimal sub-
pattern assignment (GOSPA) metric [53], which takes into
account, in addition to root-mean-squared errors (RMSEs)
of the quantities of interest, the numbers of false detection,
NFD, and missed detection, NMD. We thus utilize the GOSPA
metric for quantitative assessment, and express it in degrees
as γGOSPA = (γRMSE + (NFD + NMD)d

P
c /α)

(1/P), where the
parameters dc = 10◦, P = 2 and α = 2 are cutoff distance,
exponent power and cardinality penalty factor, respectively.

Furthermore, a subset of all false detections are due to the
sidelobes. Such sidelobe effects, unlike those of a noise, cannot
be reduced by increasing the number of observations. Thus, we
consider sidelobe false detection (SLFD) a systematic error that
is especially detrimental to the performance of the whole end-
to-end system. To this end, we introduce an additional metric
that quantifies the number of SLFDs, NSLFD. We specifically
express the SLFD through the following conditions of (i) the
ToA estimates are within a threshold of |τ̂n1 − τ̂n2 | ≤ τth, and
(ii) the corresponding TX or RX beam indices differ at most
by one, i.e., (|̂in1

− în2
| ≤ 1)∨ (|ĵn1

− ĵn2
| ≤ 1). A tight delay

threshold of τth = 0.3 ns is used in the numerical assessment.
Finally, to present the sidelobe detection metric comparable
to GOSPA, the same penalty factor is used, and thus the final
metric is expressed as γSLFD =

(
(NSLFDd

P
c )/α

)(1/P)
.

The quantitative comparison between the three methods in
terms of GOSPA and sidelobe detection metric are presented in
Fig. 6, covering the whole UE/RX trajectory shown in Fig. 4,
while also noting the options for the different parametrizations.
In terms of the GOSPA metric, the proposed SVD-based method
clearly outperforms the reference methods. Additionally, in
terms of the SLFD metric, the proposed method outperforms
that in [15] by a large margin. The CFAR with PFA = 0.002
is closer in performance, however, having clear challenges to
detect the actual multipaths as shown in Fig. 5 already. It can
also be observed that for the proposed method, the GOSPA
metric decreases with the increase of p due to the increased
number of recovered multipath components. At the same time,
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(a) Cancellation-based method [15]

-150 -100 -50 0 50 100 150

RX angle [deg]

-50

0

50T
X

 a
ng

le
 [d

eg
]

-60

-50

-40

-30

Sidelobes

Sidelobes

(b) CFAR [42]
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Fig. 5. Illustration of angle extraction methods in NLoS (upper row) and LoS (lower row) UE locations. (a) Cancellation method [15] for Npeaks = 10,
ϵ = 0.05 (NLoS) and 0.1 (LoS); (b) CFAR [42] for NTB = 15 and PFA = 0.002 (NLoS) and 0.12 (LoS); (c) Proposed SVD method for p of 99.9% (NLoS)
and 99.99% (LoS), and with βth 10% above the noise floor. Extracted path angles are marked with colored dots, side-lobe false detections with arrows, and
missed detections with squares.

0 10 20 30 40
Rx position #

25

30

35

40

G
O

S
P

A
 [d

eg
]

(a) GOSPA values at different measurement loca-
tions

Cancellation CFAR SVD
28

30

32

34

36

G
O

S
P

A
 [d

eg
]

(b) Averaged GOSPA values across all locations

Cancellation CFAR SVD
0

5

10

15

S
LD

M
 [d

eg
]

Cancellation, 
1
=0.1

Cancellation, 
2
=0.05

CFAR, P
false1

=0.12

CFAR, P
false2

=0.002

SVD, p=99%
SVD, p=99.9%
SVD, p=99.99%

(c) Average sidelobe detections across all locations

Fig. 6. Quantitative assessment of different angle extraction methods. (a) GOSPA metric at different UE/RX locations for cancellation-based method [15] with
ϵ = 0.1 ( ) and ϵ = 0.05 ( ), for CFAR method [42] with PFA = 0.12 ( ) and PFA = 0.002 ( ), and for the proposed SVD-based method
with p = 99%,( ) p = 99.9% ( ), and p = 99.99% ( ), and with βth 10% above the noise floor. (b) Corresponding average GOSPA metrics for
all methods. (c) Average sidelobe detection metric for all methods.

the sidelobe detection rate slightly increases with the number
of detected components, however, the sidelobe detection metric
stays generally low for all considered values of p compared to
the reference methods.

We next provide further complementary assessment of the
SVD-based method in terms of the impact of the power
thresholding parameter βth. The results are shown in Fig. 7),
with β∗

th denoting the baseline value used otherwise in the article.
We can observe that the exact value of the power thresholding
is impacting the performance only when working under a
vary large value of the power ratio parameter p (particularly
p = 99.99%). This is because in such case, the baseline SVD
processing passes through a large number of components, some
of which being most likely noise already. Overall, the results
in Fig. 7 show the robust behavior and performance of the
proposed scheme.

In summary, we conclude that the proposed SVD approach
outperforms the prior-art benchmark methods. As demonstrated
by the ray-tracing results, it offers robust performance in
both LoS and NLoS scenarios, while is also having built-in
mechanism to suppress the impacts of the unavoidable antenna
sidelobes.
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Fig. 7. GOSPA metric for the proposed SVD-based method for p = 99%
( ), p = 99.9% ( ), and p = 99.99% ( ) with different values for
the power thresholding parameter βth relative to the baseline value β∗

th.

B. SLAM Results with Measurement Data

Next, the actual end-to-end SLAM results are provided and
analyzed, utilizing the true measurement data. We use the
proposed SVD method for angle estimation, and assume p =
99%. The ToA estimation is carried out as described in (14)–
(17), while using brute force search to solve (16).

The proposed SLAM method is benchmarked with respect
to two other SLAM approaches [28], [31]. The first benchmark
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(a) BM1 [28] (b) BM2 [31] (c) Proposed SLAM approach

Fig. 8. Visual illustration of the performance of the different SLAM algorithms with measurement data including UE clock bias. In the figures, location of the
BS illustrated using ( ), the ground truth UE trajectory with ( ), the UE position estimates using ( ) and the estimated landmark locations with ( ).

(a) BM1 [28] (b) BM2 [31] (c) Proposed SLAM approach

Fig. 9. Visual illustration of the SLAM performance in the reference case where the UE and BS are mutually synchronized. For other details, refer to the
caption of Fig. 8).

is a geometry based snapshot SLAM algorithm [28] referred
to as BM1 and the second is a recursive probability hypothesis
density (PHD)-SLAM filter [31] referred to as BM2. In the
following, the time delay and clock bias are converted to
distance for convenience, and the clock bias is emulated
to evolve according to a random walk model with variance
σ2
B = 1m2. The measurement noise covariance used in the

experiments is Rn = diag([0.3m, 3 deg, 3 deg]2), ∀n. Recall
that no prior knowledge of the map is assumed as discussed
in Section IV-D. The mean and covariance of the UE prior
for the proposed method are µs = µs,prev and Σss = I4, in
which µs,prev denotes the UE state estimate at the previous
measurement position. In the first measurement position, which
is located at [0.55, −2.75]⊤, there is no prior and estimation
is possible because the LoS signal exists. The UE initialization
algorithm presented in Section IV-D1 uses dmin = 1 m and
dmax = 20 m in the constrained nonlinear optimization problem
defined in Equation (35). The benchmark PHD-SLAM filter
considers three types of landmarks [14]: i) BS for the LoS
path; ii) virtual anchors (VAs) for large reflecting surfaces;
and iii) scattering points (SPs) for small objects. However, the
VAs are converted to SPs using [14, Eq. (42)] in the following
illustrations so that the map of the PHD-SLAM filter is directly
comparable to the maps of the snapshot SLAM algorithms. The

benchmark PHD-SLAM filter uses similar parameter values as
in [31], [54], while the values were slightly tuned to maximize
the performance in the considered experiment. The PHD-SLAM
filter is implemented using 1000 particles, the UE state is
modeled to evolve according to a random walk model and the
process noise is set to Q = I4 which is the same as covariance
of the UE prior. The PHD-SLAM filter is initialized using the
proposed snapshot SLAM algorithm. Since BM1 is sensitive to
outliers, measurements labeled as outliers2 are removed from
the data for BM1 unless otherwise stated.

1) Qualitative Comparison: The example mapping and
localization performance of the algorithms are visualized
in Fig. 8. Qualitative analysis indicates that the map and
UE position estimates are more accurate with BM2 and the
proposed SLAM algorithm than with BM1. For BM1, the
estimate is close to the ground truth and the estimated landmark
locations are inline with the map in many measurement
positions. In several locations however, the estimates are very

2Under the Gaussian assumption, the quadratic error in (24) follows a χ2

distribution with three degrees of freedom and if qn(x) > Th, the measurement
is labeled an outlier. The quadratic error is evaluated using the ground truth UE
state and Th ≈ 16.3 is computed by choosing tail probability 0.001 followed
by evaluating the inverse cumulative distribution of the χ2 distribution at
0.999.
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TABLE I
PERFORMANCE SUMMARY OF THE DIFFERENT ESTIMATORS WITH AND WITHOUT

CLOCK BIAS

Estimator Position [m] Heading [deg] Bias [m] Time [s]
BM1 2.83± 2.24 32.05± 32.13 2.99± 3.03 41.44
BM2 0.56± 0.26 2.85± 2.79 0.55± 0.37 77.41

BM2∗ 2.86± 2.37 35.19± 34.92 1.87± 1.83 1.16
Proposed 0.56± 0.33 2.30± 2.26 0.54± 0.51 1.44

BM1† 0.34± 0.16 2.32± 2.33 − 0.37
BM2† 0.26± 0.14 2.24± 2.21 − 73.83

Proposed† 0.32± 0.16 1.87± 1.79 − 0.15
∗BM2 implemented with 10 particles. †Known clock bias BUE.

inaccurate and there are two primary reasons for this. First
of all, the method requires four NLoS signals so that the
system is identifiable and this criterion is not satisfied at every
measurement position. For example, when the UE is located at
pUE = [4.06, −5.70]⊤, there are only three propagation paths
meaning that the system is underdetermined resulting in an
inaccurate estimates as illustrated in Fig. 8. The second reason
is that in several measurement positions, the cost function of
BM1 is multimodal and the global minima is not the one closest
to the ground truth. The proposed method and BM2 can operate
in mixed LoS/NLoS conditions and the prior or posterior from
the previous time step can be viewed as a regularization term
which constrains the posterior update so that the system state
is identifiable at every measurement position. Moreover, the
resulting estimates for BM2 and the proposed method can be
viewed as a weighted average of the evidence provided by the
data and the regularization term. Thus, the estimate is expected
to be close to the ground truth as long as the prior is not
biased and the covariance captures the underlying uncertainties
correctly. Lastly, both BM2 and the proposed approach result
in sufficient SLAM performance despite the measurement data
being corrupted by outliers as shown in Fig. 8.

Since both the TX and RX were controlled by the same PC,
with an opportunity to utilize also a dedicated synchronization
cable allowing to synchronize to a common clock, we can
also analyze the reference performance of the algorithms with
known clock bias BUE. Example performance is illustrated in
Fig. 9 while the results are further elaborated and discussed in
Section VI-B3.

2) Quantitative Comparison: The algorithms are next eval-
uated quantitatively while since the ground truth landmark
locations are unknown, the mapping accuracy is excluded
which a common practice in SLAM when using experimental
data. The performance metrics are tabulated in Table I in which
the position, heading and bias errors are computed using the
RMSE and standard deviation (STD). Even without outliers,
BM1 results in unsatisfactory performance due to the reason
discussed above. The other two methods outperform BM1 and
have comparative performance among each other. However, the
computational complexity of BM2 is two orders of magnitude
higher than with the proposed method. One could decrease the
computational complexity by using less particles (see BM2∗

in Table I) but at the same time, the accuracy of the filter
degrades notably. Thus, a major advantage of the proposed
method is that it combines high accuracy together with low
computational overhead.

Next, we evaluate the different algorithms with and without

Fig. 10. Position RMSEs of different algorithms in LoS and NLoS conditions
with UE clock bias, and with ( ) and without ( ) outliers. The heading
and bias RMSE have a similar trend but are omitted from the figure for brevity.
The impact of the different objective function variants in (23) are also shown,
including i) OFv0: no prior and quadratic cost function; ii) OFv1: no prior
and robust cost function; and iii) OFv2: prior and quadratic cost function.

outliers, and in LoS and NLoS conditions. The results are
summarized in Fig. 10. The performance of BM1 degrades
significantly if the data contains outliers, whereas the perfor-
mance of BM2 and the proposed method only degrade slightly.
This indicates that both methods are capable of handling
noisy measurements that are not inline with the models. The
mechanisms how the two methods deal with outliers are quite
different. The PHD-SLAM filter associates the outliers to
clutter so that they do not affect the UE estimate, whereas the
proposed method inflates the covariance according to (31) such
that outliers are given less trust thus diminishing their impact.
Interestingly, the proposed method outperforms BM2 in LoS
conditions and vice versa in NLoS conditions. For the proposed
method and when the LoS signal exists, the hypothesis that
minimizes the cost function is typically the one for which the
prior is computed using the LoS and the estimate is computed
only from the evidence provided by the data. In this particular
scenario, in which the prior uncertainty and the process noise
of the dynamic model used by BM2 are high, relying solely
on the measurements is beneficial. In NLoS conditions and
when the proposed method cannot be initialized using the
measurements, filtering is beneficial and BM2 outperforms the
proposed method – however, at the expense of substantially
higher complexity.

Lastly, we decompose the objective function of the proposed
method and analyze the performance impact of the prior and
the robust cost function. The results are illustrated in Fig. 10
from which we can conclude the following: (i) Without prior
information and using a quadratic cost function (OFv0), the
SLAM solution is useless in NLoS conditions and/or when the
data contains outliers. The method outperforms BM1 only if
the outliers are removed from the data and if the LoS signal
exists. (ii) Without prior information and using a robust cost
function (OFv1), the estimator yields comparative performance
as the proposed method in LoS conditions, whereas in NLoS
conditions the estimates are very innaccurate. (iii) With prior
information and using a quadratic cost function (OFv2), the
results are comparative to BM1 in both LoS and NLoS
conditions and the performance improves significantly if the
outliers are removed from the data. Thus to conclude, the
robust cost function is a strict requirement of snapshot SLAM
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algorithms that are utilized in realistic scenarios in which the
measurements are noisy and contain outliers. Moreover, prior
information is required to improve identifiability of the system
and enable estimation in mixed LoS/NLoS conditions.

3) SLAM Performance with Known Clock Bias: The es-
timated angles determine the problem geometry up to a
scaling which is defined by the unknown clock bias. Thus,
the SLAM problem is notably easier to solve if the clock
bias is known. The experimental arrangements allowed for an
additional dedicated synchronization cable between the TX
and RX entities, such that we could also evaluate the reference
system performance with perfect synchronization. Example
performance with known clock bias was already illustrated in
Fig. 9 while the corresponding quantitative performance metrics
are tabulated in Table I. As can be observed, the performance
improves significantly with all methods when comparing to the
practical case with unknown clock bias. Perfect synchronization
improves the performance of BM1 the most. Since BUE is
known, only three propagation paths are required to solve the
problem and this criterion is satisfied at every measurement
position. The cost function is also unimodal and the minima are
close to the corresponding ground truth in every measurement
position. In addition, the computational complexity of the
algorithm is much lower since the problem is solved by finding
the minimum cost over αUE, whereas with unknown clock bias,
the minimum cost is found by jointly optimizing αUE and BUE.
With unknown clock bias, the underlying likelihood function
that is used to update the particle weights of BM2 is commonly
multimodal and the filter can converge to the wrong solution.
On the other hand, the likelihood function is generally unimodal
if BUE is known so that the filter more frequently converges
to the correct solution. The computational complexity of BM2
only reduces slightly since the only notable difference is that
the UE state dimension reduces from four to three. Also with
the proposed algorithm the performance improves significantly
and the underlying cause is the same as with BM1 and BM2,
that is, the likelihood function is typically unimodal resulting in
an objective function that has a minimum close to the ground
truth. Furthermore, the initialization of the proposed algorithm
simplifies if the TX and RX entities are synchronized since
mean and covariance of the UE prior are directly given by
(34) and optimization over different trial values of B̂UE is not
required. Thanks to this straightforward initialization procedure
and faster convergence of the Gauss-Newton algorithm, the
computational complexity of the algorithm is reduced by an
order of magnitude.

4) Impact of Power Ratio to SLAM Accuracy: Finally, we
evaluate and show the SLAM performance using channel
estimates that are obtained with three different values for the
power ratio parameter p in the proposed SVD method. As
already discussed in Section VI-A2, increasing p grows the
rank of the SVD-based approximation and as an outcome, the
number of estimated paths increases. However, the number of
resolvable propagation paths cannot be grown indefinitely since
a limited number of physical propagation paths exist and power
threshold βth truncates channel estimates for which the power
is close to the noise floor. Higher p values also increase the
number of measurements that do not follow the model in (21),

Fig. 11. The numbers of inliers and outliers in each measurement position and
with different power ratio p values. Minimum number of inliers required by
BM1 to solve SLAM is illustrated with the black dashed line.

TABLE II
POSITION RMSE IN METERS WITH DIFFERENT POWER RATIO p VALUES

Estimator p = 99% p = 99.9% p = 99.99%
BM1 2.83 1.43 1.43
BM2 0.56 0.55 0.54

Proposed 0.56 0.56 0.56

such as multi-bounce paths. Such measurements must be treated
as unwanted outliers that cannot be utilized by the considered
SLAM algorithms. The number of inliers and outliers in each
of the 45 measurement positions is illustrated in Fig. 11. As
shown, increasing the power ratio from 99% to 99.9% increases
both the number of inliers and outliers. Increasing p even more,
the channel estimates of p = 99.9% and p = 99.99% only
differ slightly in two measurement positions since already
with p = 99.9%, the SVD-based channel estimator finds all
resolvable propagation paths. The power ratio value has the
biggest impact on BM1. Recall that four or more propagation
paths are required to solve the SLAM using BM1 and if
p = 99%, this criterion is not satisfied at measurement position
number 14 and 35 as illustrated in Fig. 11. Now increasing
p also increases the number of inliers such that the system
is identifiable at every measurement position which improves
the accuracy as tabulated in Table II. The system is always
identifiable with the proposed and BM2 methods since the
prior constrains the posterior update and the two methods yield
similar performance with the tested power ratio values. In
general, it is expected that SLAM performance improves as
the number of propagation paths increases [27]. At the same
time, however, the number of outliers increases which can have
a negative impact on SLAM performance and therefore, the
accuracy with BM2 and the proposed approach only improves
very little (BM2) or not at all.

C. Limitations and Future Directions

One of the limitations of the proposed BRSRP-based
AoA/AoD extraction algorithm is its inability to decouple two
multipath components that have the same AoA or AoD, which
may lead to a missed detection. This type of misdetections,
however, do not largely impact the actual SLAM performance,
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as in majority of cases such undetected components corre-
spond to multi-bounce paths due to the involved geometry.
Nevertheless, one future work direction is extending the SVD-
based AoA/AoD extraction to support multi-peak detection and
selection. One potential way to pursue such can be performing
the peak search directly in the singular vector domain, aided by
further assumptions about the shape of the beam responses and
ToA-based sidelobe rejection. Alternatively, the overall problem
may be addressed through a different technical approach – for
example, as a pattern recognition problem solved either through
classical methods or potentially through machine learning. On
the SLAM and related concepts side, extending the methods
to extract information also about the material characteristics of
the environment interaction points, on top of their locations, is
an interesting future research avenue.

VII. CONCLUSIONS

In this article, we addressed the timely notion of mmWave
radio SLAM from end-to-end processing perspective, under
minimal knowledge regarding the array parameters and user
mobility. We first proposed a novel SVD-based estimation ap-
proach for acquiring the AoAs and AoDs of the involved prop-
agation paths. The method operates on BRSRP measurements
and does not need information on the complex antenna patterns
or the underlying steering vectors and beamforming weights,
while offering built-in robustness against antenna sidelobes.
The method relies only on known physical correspondence
between the beam indices and the beamforming angles, and the
sparsity of the beamformed mmWave channel. Secondly, a new
snapshot SLAM method was also proposed, to jointly estimate
the locations of the landmarks and the UE, offering improved
robustness and identifiability compared to prior-art. The perfor-
mance of the proposed methods was comprehensively assessed
through ray tracing and true measurement data at 60 GHz.
The results show that the methods outperform the relevant
prior-art, with the end-to-end performance being comparable
or even better compared to sequential filtering solutions while
offering substantially reduced complexity. Finally, we provide
the measured 60 GHz data openly available for the research
community. Our future work considers extending the proposed
angle estimation methods to include multi-bounce detection
and estimation with rank-1 singular matrices, thus facilitating
further evolved SLAM solutions beyond the common single-
bounce approaches.
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APPENDIX

PROOF OF LEMMA 1

We first denote ζi,jk,m,n = xi,j
k,me−i2πk∆fτf,nei2πmTsymfD,n and

G̃i,j
n = ξnGTX,i(ψTX,n)GRX,j(ψRX,n). Now, by substituting

(4) into (5), the BRSRP measurement can be written as

βi,j=

=Sd (direct signal terms)︷ ︸︸ ︷
1

NRS

∑
(k,m)
∈MRS

N∑
n=1

∣∣∣G̃i,j
n ζi,jk,m,n

∣∣∣2+
=Nd (direct noise terms)︷ ︸︸ ︷
1

NRS

∑
(k,m)
∈MRS

∣∣∣ñi,j
k,m

∣∣∣2

+

=Nc (noise cross terms)︷ ︸︸ ︷
2

NRS

∑
(k,m)
∈MRS

Re
[(

ñi,j
k,m

)∗ N∑
n=1

G̃i,j
n ζi,jk,m,n

]

+

=Sc (signal cross terms)︷ ︸︸ ︷
2

NRS

∑
(k,m)
∈MRS

Re
[ N∑
n1=1

N∑
n2=1
n2 ̸=n1

(G̃i,j
n1
ζi,jk,m,n1

)∗G̃i,j
n2
ζi,jk,m,n2

]
.

(39)

In the following, we elaborate on the limiting behavior of the
ratio between the cross and direct terms for both signal and
noise components, denoted as Sc, Sd, Nc and Nd, in (39).

The ratio between the signal components Sc and Sd in (39)
as K and M tend to infinity can be computed as

lim
K→∞
M→∞

Sc

Sd
=

limK→∞
M→∞

Sc

limK→∞
M→∞

Sd
, (40)

provided that the limits on the numerator and the denominator
exist. Using (39), and inserting |MRS| = NRS = KM , we can
write

lim
K→∞
M→∞

Sc = Re
[ N∑
n1=1

N∑
n2=1
n2 ̸=n1

(G̃i,j
n1
)∗G̃i,j

n2

× lim
K→∞
M→∞

2

KM

∑
(k,m)
∈MRS

(ζi,jk,m,n1
)∗ζi,jk,m,n2

]
.

(41)

Considering |xi,j
k,m|=1 and the definitions of bn[k] and cn[m]

in Lemma 1, the numerator and denominator in (40) yields

lim
K→∞
M→∞

Sc = 0 and lim
K→∞
M→∞

Sd =

N∑
n=1

∣∣∣G̃i,j
n

∣∣∣2, (42)

respectively. As a result,

lim
K→∞
M→∞

Sc

Sd
= 0, and thus Sd + Sc ≈ Sd (43)

for sufficiently large K and M .

The ratio between the noise components Nc and Nd in (39)
as K and M tend to infinity can be computed as

lim
K→∞
M→∞

Nc

Nd
=

limK→∞
M→∞

Nc

limK→∞
M→∞

Nd
. (44)

Regarding the limiting behavior of the cross term and direct
term in (44), we note that the summands (over path index n) are
independent and identically distributed (i.i.d.) random variables.
Hence, by invoking the law of large numbers, while exploiting

the noise characteristics E
{
ñi,j
k,m

}
= 0 and E

{∣∣∣ñi,j
k,m

∣∣∣2}=

σ2
noise, where σ2

noise denotes the variance of ñi,j
k,m, we obtain

lim
K→∞
M→∞

Nc

Nd
= 0 and thus, Nd +Nc ≈ Nd (45)

for sufficiently large K and M .

To conclude, following the (43) and (45), the BRSRP
measurement in (39) can be approximated for sufficiently large
K and M as

βi,j ≈ lim
K→∞
M→∞

Sd + lim
K→∞
M→∞

Nd , (46)

=

N∑
n=1

∣∣∣G̃i,j
n

∣∣∣2 + σ2
noise , (47)

which establishes the result (7) in Lemma 1.
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