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A B S T R A C T   

To enhance track geometry maintenance planning and reduce infrastructure costs, accurate predictions of 
accumulated permanent track deformation (settlement) caused by cyclic loading of ballast and subgrade is 
crucial for railway infrastructure managers. This paper proposes a novel approach to predict long-term settle-
ment with reduced computational cost, based on an extensive parameter study using a hybrid methodology to 
evaluate both short- and long-term track performance. Various machine learning techniques are compared and 
employed to develop predictive models, which are validated using measured results from a filed demonstrator of 
ballasted track. The performance and accuracy of each model are assessed using multiple metrics, and a sensi-
tivity analysis is conducted to identify influential explanatory variables. Notably, the developed random forest 
model demonstrates good agreement with field measured settlement data. This approach bridges the gap be-
tween numerical simulation and empirical data, offering an improved holistic understanding of permanent track 
deformation. The methodology holds potential for implementation in a computational decision support system 
for railway track maintenance and renewal management.   

Introduction 

The long-term settlement of railway tracks, caused by cyclic loading 
from passing trains, poses significant challenges for railway infrastruc-
ture management due to the associated costs and maintenance opera-
tions[22]. Consequently, there is a critical need for improved predictive 
models to better understand the short-term and, more importantly, the 
long-term performance of the railway systems[25], thereby exploring 
measures to enhance reliability and reduce life-cycle costs[33]. 

The subgrade plays a vital role in both short-term and long-term 
behaviour of the railway tracks, exhibiting two distinct deformations 
under cyclic loads: resilient and permanent deformations. While resil-
ient deformation influences short-term track performance during a train 
passages, permanent deformation significantly influences the system’s 
global behaviour over time[17]. Various methods, such as elastoplastic 
models, shakedown theory, and mechanistic-empirical deformation 
models, are employed to estimate permanent deformation based on 
laboratory tests like cyclic triaxial tests. The elastoplastic models are 

time-consuming as they are dependent on the loading history. Generally, 
these models only consider a low number of load cycles, which does not 
agree with in situ conditions. The development of these formulations is 
expressed through conventional concepts such as yield conditions, 
hardening and flow rules. The main problem with the numerical 
implementation is that the increment of permanent deformation per 
cycle soon becomes very small, and this leads to problems with the 
computational accuracy of the results [1]. The shakedown theory is used 
to find the shakedown limit of a structure under cyclic load. Indeed, the 
approach has become very popular in pavement engineering. Here, the 
main goal consists of preventing excessive permanent strain and guar-
anteeing that the loading level is below the elastic shakedown limit. 
However, the assessment is not easy and demands a significant 
computational effort since it is necessary to consider 3D modelling. The 
mechanistic-empirical permanent deformation models are simple to use 
and easy to implement as they describe a relationship between the 
number of load cycles and accumulated settlement. These models are 
based on extensive laboratory testing results and depend on fewer 
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parameters than conventional elastoplastic models [29]. 
Addressing this, the paper proposes a novel methodology utilizing 

machine learning (ML) algorithms to predict permanent deformation 
and permanent settlement induced in railway systems. While previous 
studies have focused on prediction short-term performance and resilient 
modulus, there is a scarcity of works applying ML methodologies for 
long-term permanent deformation prediction[2,14,15]. ML techniques 
offer powerful tools capable of establishing complex relationships be-
tween predictors and outcomes within a fraction of time, even in 
geotechnical engineering issues[12,31,36]. Also, several applications of 
ML algorithms in civil engineering demonstrate their efficiency, 
including predicting physical and mechanical properties of jet grouting 
columns, frost depth below pavements, and stiffness properties of 

airfield pavement, using artificial neural network models[6,8,37,38]. 
However, few studies have applied ML algorithms for predicting per-
manent deformation in railway track subgrades within a full model of 
the vehicle-track system, with most focusing on neural network algo-
rithms[11,13,16,23]. 

In this paper, in order to determine the best-performing ML models 
for predicting permanent deformation and respective settlement, five 
ML algorithms are selected: multivariable regression, decision tree, 
random forest, ANN and SVM. Each algorithm has its strengths and 
weakness, and the selection is based on factors like simplicity, accuracy 
and computational efficiency[19,39]. The methodology proposed ac-
counts for crucial features of the vehicle–track system and is trained on 
an extensive database of numerical simulation results from a hybrid 

Fig. 1. Overall description of the model development approach.  

Fig. 2. Flowchart representative of the sub-structured models [26], adapted from [4].  
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model approach, incorporating a 2.5D FEM-PML track model, including 
the implementation of an empirical permanent deformation model[26]. 
The model’s performance is enhanced through hyperparameter 
optimisation. 

The inclusion of field experimental validation of ML model distin-
guishes this research, enabling testing of the model across unseen field 
conditions. We believe this enhances its effectiveness as a tool for pre-
dicting the long-term performance of railway tracks in real-world 

Fig. 3. FEM models of (a) ballasted track, (b) ballastless track (Rheda system), and (c) ballastless track with only a concrete slab [30].  
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scenarios. 

FEM-PML model and database 

Fig. 1 shows the overall description of the approach for model and 
database development used in this study. Based on a verified finite 
element model of a railway track, a knowledge database has been 
populated. The database contains the generated input parameters (each 
with a predefined range) and the calculated permanent deformations 
induced by the passage of a train (based on the number of load cycles). 
The finite element-based knowledge database has then been employed 
to train each machine learning model to establish the relationship be-
tween the input parameters and the output variable. 

Database 

This section presents the process used to build the database and the 
methodology to predict the permanent deformation. 

Short-term performance: Model of train–track–ground system 
To evaluate the short-term performance of the track, the 2.5D FEM- 

PML approach has been used. This numerical tool presents a high level 
of accuracy combined with a reduced computational effort, even when 
considering the 3D character of the problem[5,34,40]. However, it re-
quires a linear response of the structure and an invariant cross-section 
along the track. In this case, this is not a problem since the analysis 
has not considered the existence of any discontinuities/transitions. The 
assumption of a linear elastic model to represent the soil behaviour is an 
acceptable simplification of the real constitutive soil behaviour since 
only small strains are considered. 

The simulation of the dynamic interaction of the train–track system 
is performed using sub-structured models (Fig. 2). The train (modelled 
by a multi-body formulation, where only the vertical movements are 
considered) and the track are modelled independently, but compatibility 
and equilibrium across each interface are imposed. The track–ground 
system is coupled following a compliance formulation, whereas the 
compatibility in terms of vertical displacements at each wheel–rail 
contact is simulated by a linearized Hertzian contact stiffness. More 
details about this methodology can be found in Alves Costa et al. [5] and 
Alves Costa et al. [4]. 

To avoid spurious reflections from the boundaries of the track, 
Perfectly Matched Layers (PMLs) are added along the boundaries of the 
domain. These special layers absorb the energy of the waves that 
impinge the artificial boundaries. This methodology is described in more 
detail in the work developed by Lopes et al. [18]. 

Long-term performance: Model of permanent deformation 
The cyclic character of the loading induced by passing trains over 

years of traffic leads to the accumulation of permanent deformation, 

which, in extreme cases, may even lead to an ultimate collapse of the 
structure[29]. 

In this work, an empirical permanent deformation model has been 
selected to characterise the evolution of the track degradation. The 
selected model is based on the work by Chen et al. [7] and includes the 
combined influence of the number of load cycles (N), the initial stress 
state (pini and qini), the stress levels induced in the subgrade during the 
passage of the train (pam and qam), and also the influence of a yield cri-
terion through the inclusion of the parameters s and m directly related to 
the cohesion and friction angles, respectively: 

εp
1(N) = εp0

1
[
1 − e− BN]

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
pam2 + qam2

√

pa

)a

•
1

m
(

1 + pini
pam

)

+ s
pam

−
(qini+qam)

pam

(1)  

Here parameters εp0
1 , B and a are material constants of the model, pa is 

the atmospheric pressure, while m and s are defined by the yielding 
criterion q = s + m•p. 

Thus, it is assumed that the long-term permanent deformation is 
determined based on the short-term response (i.e., stresses generated 
during the train passage). Then, Eq. (1) is used to calculate the perma-
nent deformation/strain at any given number of load cycles N. The 
permanent track deformation induced by each axle passage is very 
small. This means that the simulation process is not carried out cycle by 
cycle but in increments corresponding to a set of cycles (ΔN). For each 
set of cycles, it is assumed that the stress state remains constant[28]. 

Database development 

Selection of the variables. To implement a machine learning model for 
the prediction of permanent deformation, a database has been built 
based on the parameter study presented in[26]. This parameter study 
evaluated the influence of several factors on the performance of the 
subgrade considering three different railway track forms: ballasted 
track, ballastless track, and an optimised ballastless track only composed 
of a concrete slab (the support layers were omitted). The numerical 
model for each type of track form is depicted in Fig. 3. The ballasted 
track is composed of rails, rail pads, sleepers, ballast, sub-ballast, and 
subgrade. The ballastless track (Rheda system [32] is composed of rails, 
rail pads, concrete slab, HBL (hydraulically bound layer) and FPL (frost 
protection layer). The optimised ballastless track is the same as the 
Rheda system except that the HBL and FPL have been omitted. 

For a vehicle load model representing a six-car Alfa Pendular train, 
the parameter study was performed by evaluating the stresses of each 
track form model, see Fig. 3. Only the unsprung mass of each wheelset 
was considered in the vehicle model. The study included the influence of 
a track unevenness profile that was artificially generated by superposing 
120 wavelengths in a prescribed wavelength interval. The amplitude of 

Table 1 
Summary of variables in the applied database and their range of values (adapted from Ramos et al. [26].  

Type of structure Wavelength interval of unevenness profile 
[m] 

Train speed [km/ 
h] 

Mechanical properties of the 
subgrade (1) 

Position along unevenness profile 
[m] 

Mr 

[MPa] 
ϕ [◦] c 

[kPa] 

ballasted track 
ballastless track 
optimised ballastless 
track 

1 < λ < 3 (2) 

3 < λ < 25 (3) 

25 < λ < 70 (4) 

1 < λ < 70 

80 
144 
200 
300 
360 
500 

90 
120 
205 
280 

28 
30 
35 
40 

0 
5 
10 

0 
− 85.65 
− 60.60 
− 49.6 
41.4 

(1) For each combination of resilient modulus and friction angle (90 MPa + 28◦; 120 MPa + 30◦; 205 MPa + 35◦ ; 280 MPa + 40◦), the cohesion was varied (0, 5 and 10 kPa) 
(2) The recommended values of the range D1 were adopted 
(3) Designated as D1 in EN13848-5 [9] 
(4) Designated as D2 in EN13848-5 [9]  
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each wavelength was defined based on the PSD (power spectral density) 
function developed by the FRA (Federal Railroad Administration)[3]. 
More details about the modelling, the obtained results, and the prop-
erties of all elements can be found in the work by Ramos et al. [26]. 

Since different factors had already been analysed in detail in previ-
ous work, most of these were considered as input variables to the ma-
chine learning models. For these variables, a range of values were 
adopted. These values were not randomly generated but selected to 
represent typical conditions in the field. The parameter study included 
the factors described in Table 1 [26]. Thus, three different railway 
structures were studied, four different wavelength ranges, four train 
speeds, different mechanical properties of the subgrade (all possible 
combinations based on three levels of resilient modulus, four levels of 
friction angle and three levels of cohesion) and five different positions 
along the generated unevenness profile (A, B, C, D and the position x  =
0). The generated unevenness profile is presented in Fig. 4. The five 
positions were selected to include the positions of maximum and mini-
mum values of the unevenness profile (A and B, respectively), two in-
termediate positions where there is an increasing or decreasing trend in 
the unevenness (C and D, respectively), while the position x  = 0 m was 
randomly selected. Based on the parameter study [26], it was concluded 
that the influence of the unevenness profile on the amplification of the 
dynamic stress and permanent deformation of the subgrade was small. 
Yet, it was decided to include this variable in this work to evaluate its 

impact on a machine learning model. 
For each combination of variable settings, the maximum, mean and 

deviatoric stresses (p and q, respectively) were recorded and saved in the 
database, and they were used as input to the ML models. The number of 
load cycles (N) and the material constants of the empirical model (εp

1, B 
and a) were also added to the database. This is because empirical and 
laboratory results (i.e., from triaxial cyclic tests) usually show that the 
permanent deformation is highly dependent on these parameters[29]. 

The implemented process is described in Fig. 5. Based on the 2.5D 
FEM-PML approach and the implementation of the empirical permanent 
deformation model, the permanent deformation was determined 
considering the quasi-static and dynamic loading mechanisms. Firstly, 
the stresses were obtained, as well as the corresponding principal 
stresses and the mean and deviatoric stresses (short-term analysis). For 
each given set of input data, the typical simulation time to calculate the 
short-term response in all elements of the model was about two days 
since it is necessary to calculate the transfer functions in the frequency 
domain and then transform the response to the time domain. Posteriorly, 
these stresses were included in the empirical permanent deformation 
model. Further, the yield criterion and strength parameters, such as 
cohesion and friction angle, were entered as input/variables, as shown 
in Table 1. The subsequent simulation of the long-term performance 
(which also includes the post-processing of the data) was 2–3 h 
depending on the number of elements and nodes of the track model. 

Fig. 4. Selection of considered positions along the unevenness profile.  

Fig. 5. Flowchart of simulation methodology to build the database.  

A. Ramos et al.                                                                                                                                                                                                                                  
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Compared to the 2.5D FEM-PML approach described here, the simula-
tion time when using the various machine learning models is negligible. 

Each observation in the database corresponds to a single run with the 
model. Based on the short-term analysis, the values of each variable 
were recorded and added to the database defined in the software 
MATLAB. Thus, a database was obtained with the values regarding the 
type of structure, wavelength, train speed, resilient modulus, position on 
the unevenness profile and mean and deviatoric stresses, see Table 1. 
Posteriorly, this shortened database was expanded through the consid-
eration of more variables related to the long-term analysis (number of 
load cycles, constant of the model, material parameters such as cohe-
sion, friction angle and number of load cycles). Then, the final database 
was imported into the R software [24]. The total number of observations 
is 186 000. The final database with 186 000 observations is a repetition 
of the short database but considering the variation of the parameters 

related with the long-term analysis such as the number of load cycles. 
Since the analysis is dependent on the mesh of the model, with this 

methodology, it is possible to have a more efficient approach and save, 
for each calculus, 2–3 h per finite element. The main goal is to calculate 
the permanent deformation of each finite element of the model, as well, 
as the accumulated permanent settlement (also called cumulative per-
manent deformation), which is the sum of the permanent settlement of 
all finite elements along a vertical alignment. Depending on the size of 
the model, this process may take some time, which can be reduced 
through the application of the machine learning model. 

Examples of calculated stress results (stress paths) are presented in 
Fig. 6 for the element 1 (identified Fig. 3). This element was selected 
because of its proximity to the symmetry plane as this simplifies the 
short-term analysis. These stress paths were calculated in a short-term 
analysis considering the passage of an Alfa Pendular train. The 

Fig. 6. Examples of calculated p-q stress paths for element 1: (a) influence of train speed on the slab track; (b) influence of the mechanical properties of the subgrade 
in the ballasted track [26]. 

A. Ramos et al.                                                                                                                                                                                                                                  
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Fig. 7. Examples of cumulative permanent deformation results in the database: a) influence of train speed on the slab track; b) influence of the mechanical properties 
of the subgrade in the ballasted track [26]. 

Table 2 
Statistical information regarding variables used to predict the induced permanent deformation.  

Code Variable Abbrev. Category Min Max Average Unique values 

x1 Ballasted track B.t Input 0.000 1.000 0.323 2 
x2 Optimised ballastless track O.bl.T Input 0.000 1.000 0.323 2 
x3 1 < λ < 3 

[m] 
1 < λ < 3 Input 0.000 1.000 0.048 2 

x4 3 < λ < 25 
[m] 

3 < λ < 25 Input 0.000 1.000 0.048 2 

x5 25 < λ < 70 
[m] 

25 < λ < 70 Input 0.000 1.000 0.048 2 

x6 Position [m] P Input − 85.650 41.400 − 7.473 5 
x7 Resilient modulus [MPa] Mr Input 90.000 280.000 152.661 4 
x8 Cohesion [kPa] c Input 0.000 10.000 5.000 3 
x9 Friction angle [◦] ϕ Input 28.000 40.000 31.952 4 
x10 Train speed [km/h] v Input 80.000 500.000 257.290 6 
x11 Maximum deviatoric stress [Pa] qmax Input 10229.920 26238.190 12914.500 62 
x12 Maximum mean stress [Pa] pmax Input 5660.234 14985.950 7872.714 62 
x13 Material constant a a Input 0.017 0.650 0.399 4 
x14 Material constant B B Input 0.006 0.222 0.163 4 
x15 Material constant εp0

1 εp0
1 

Input 0.001 0.429 0.091 4 
x16 Number of load cycles N Input 1 996,001 498,001 250 
Y Permanent deformation (%) εp

1 Output 0.002 2.459 0.295 152,250  

A. Ramos et al.                                                                                                                                                                                                                                  
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maximum mean and deviatoric stresses are important inputs in the 
database (pmax, qmax, respectively). In Fig. 6 a), the yielding criterion 
was defined considering a cohesion of 0 KPa and a friction angle of 30◦

(associated with a Resilient Modulus of 120 MPa). In Fig. 6 b), the 
yielding criterion was defined considering a cohesion of 0 kPa. The 
friction angle’s values associated with each yielding criterion are iden-
tified in the figure. 

The stress results are then used to calculate the permanent defor-
mation (dimensionless) and the corresponding accumulated settlement 
(cumulative permanent deformation) in millimeters. Examples of 
calculated cumulative permanent deformation versus depth from the 
track surface are depicted in Fig. 7. Thus, at each depth, the permanent 
settlement is accumulated with the permanent settlement measured at 
this depth and the previous one. The base of the layer is the depth to 
which the accumulation of deformations is calculated. This type of graph 
allows to analyse the rate of accumulation of permanent deformation 
and which areas are contributing the most, which corresponds to the 
area close to the surface (steepest curve zone). 

Statistical analysis. Each dataset in the database is characterised by 16 
inputs/predictors and the predicted variable, which is the permanent 
deformation. Considering the information in Table 1, two variables 
“type of structure” and “range of wavelength” are classified as 

categorical. The structure of these variables needs to be recoded into a 
set of separated binary variables since this is a regression problem. This 
process is called “dummy coding”, where the original variables con-
taining k different levels are transformed into k-1 numerical dummy 
variables. In the case of the variable “type of structure”, which has three 
different levels, two dummy variables were created containing the 
values 1 and 0 corresponding to the settings “yes” and “no” for “bal-
lasted track” and “optimized ballastless track”, respectively. In this 
study, the level/magnitude of permanent deformation at the subgrade 
level was found to be similar for the ballasted track and the ballastless 
track [26]. The decision not to code the level ballastless track stems from 
a common practice in data modeling. In order to mitigate bias, it is often 
advisable to refrain from coding the largest group. This approach aims to 
prioritize the utilization of the most differentiating variables when 
constructing the model, thereby minimizing potential biases in the 
analysis. In this case, the “optimised ballastless track” shows a major 
influence on permanent deformation because the induced permanent 
deformation was found to be significantly higher[26]. The same meth-
odology was applied for the “range of wavelength” variable. Here three 
dummy variables were created: 1 < λ < 3, 3 < λ < 25 and 25 < λ < 70 
[m], while the variable 1 < λ < 70 [m] was not coded. 

To summarise, each dataset is characterised by the variables pre-
sented in Table 2. In the models, these variables are identified by the 

Fig. 8. Box plots of variables: (a) Resilient modulus; (b) Cohesion; (c) Friction angle; (d) Train speed; (e) Maximum deviatoric stress; (f) Maximum mean stress.  
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following designations xi (i = 1, 2, 3, …, 16). Thus, considering that the 
problem can be characterised by the expression y = f(X), then X = {x1, 
x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x16}. 

The software R was used to perform the prediction of the permanent 
deformation using the different machine learning algorithms listed in 
Section 2. Since some variables can be expected to have a higher in-
fluence on the permanent deformation, these will be further evaluated in 
a sensitivity analysis in Section 5. In this case, there are no missing 
values since the database was repeatedly filled during the process 
described in Fig. 1 and Fig. 5. The statistical information for each vari-
able that was used for predicting the permanent deformation of the 
subgrade is provided in Table 2. 

Box plots are presented for some selected input variables in Fig. 8. 
Each of the variables “Resilient modulus,” “Cohesion,” and “Friction 
angle” has a regular box plot without outliers, whereas the variable 
“Train speed” includes one outlier. However, this outlier is important in 
the prediction of the permanent deformation since this value is very 
close to the critical speed and leads to an amplification of the permanent 
deformation. Therefore, this outlier was not excluded from the database. 
Moreover, the variables “Maximum deviatoric stress” and “Maximum 
mean stress” also show some outliers. Again, these variables are signif-
icant for the determination of the permanent deformation and, thus, the 
respective observations were kept in the database. 

This database can be characterised as multivariate data. The multi-
variate data allows for defining relationships between two or more at-
tributes. The correlation measure (R2) is one option, and it presents an 
advantage in comparison with the covariance since it eliminates the 
influence of the scale. This correlation presents an indication of the level 
of linear relationship between two attributes. In this case, a matrix of 
correlation (correlogram) presents the value of correlation between each 
pair of attributes. The correlation can be defined by the Pearson method 
(linear correlation), or the Spearman method, and the results can be 
visualized as exemplified in Fig. 9. 

The correlogram in Fig. 9 (a) shows very low linear correlations 
between most variables. Exceptions are the “Resilient modulus” and 
“Friction angle”, which is understandable since there are several 
empirical expressions that establish a relationship between the Young’s 
modulus of a geomaterial and the friction angle. Indeed, in the param-
eter study carried out prior to this work, the “Resilient modulus” was 
defined based on the relationship between this variable and shear wave 
speed and typical values of NSPT [35]. Moreover, the friction angle was 
defined based on the expression ϕʹ =

[
15.4(N1)60

]0.5
+ 20◦ , which is 

also dependent on the NSPT. 
Furthermore, the variables “εp

1”, “B”, “Maximum deviatoric stress”, 

“Maximum mean stress”, and “Train speed” show strong correlations. 
The variables “Ballasted track” and “Optimized ballastless track” also 
show a high (>0.5) value of correlation. In Fig. 9 (b), only the statisti-
cally significant (p-value < 0.01) results are presented, which changes 
the order of the variables in the calculus. 

Based on Fig. 9, the variables x7 and x9 (“Resilient modulus” and 
“Friction angle”, respectively) show a very high positive correlation 
(close to 1). This means that one of these variables should be excluded 
from the permanent deformation model. In this case, the “Friction 
angle” variable was eliminated. 

Modelling process 

In the modelling process, the main parameters that influence the 
quality of each machine learning model have been optimised to improve 
accuracy. The k-fold cross-validation approach has been used to divide 
the dataset. This methodology allows for the generation of several splits 
of the training set into training and validation sets to avoid overfitting. 
The parameter k corresponds to the number of different subsets used to 
split the data. The k-1 subsets are used to train the model, while the 
remaining datasets are used to validate the model. In this case, k = 10 
was applied. To keep the reliability of the predictions, the same seed was 
used in the different analyses and tests. Thus, this option assures that the 
observations in the training and testing datasets are not altered between 
predictions since this process is performed randomly. In this analysis, 
five machine learning algorithms were used to predict the permanent 
deformation. 

To evaluate the efficiency, accuracy and robustness of each predic-
tive model, different metrics have been used: R2, σ, RMSE, MAE and 
MSE. The R2 value is the square of the correlation between values that 
have been predicted and those that have been measured, whereas the 
standard deviation σ measures how dispersed the data is from the mean. 
The root mean square error, RMSE, represents the standard deviation of 
the error between the predicted and measured values. The mean abso-
lute error, MAE, represents the error that is most likely to occur when the 
actual values are compared to the predicted ones. The mean square 
error, MSE, measures the average of the squares of the errors, i.e. the 
average squared difference between the predicted values and the actual 
value. In this case, the closer the value is to 0, the more accurate is the 
model. 

The R2, σ, RMSE, MAE and MSE are defined by the following 
expressions: 

Fig. 9. (a) Correlogram, and (b) correlogram with statistically significant results (p-value < 0.01).  
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R2 = 1 −
RSS
TSS

(2)  

σ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(xi − μ)2

N

√

(3)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(Si − Oi)

2

n

√
√
√
√
√

(4)  

MAE =
1
n
∑n

i=1
|Si − Oi| (5)  

MSE =
1
n
∑n

i=1
(Si − Oi)

2 (6)  

where RRS is the number of square residuals, TSS is the total sum of 
squares, n is the number of observations, xi corresponds to each value 
from the population, μ is the population mean, Si is the predicted values 
of a variable, and Oi are the observations. 

Multivariable regression model 

The first ML model evaluated here is the multivariable regression 
model. To evaluate the model, the F-statistic and the associated p-value 
have been analysed. The result for the multivariable regression model 
shows that the p-value of the F-statistic is < 2.2e-16, which indicates a 
high significance, see Table 3. This means that at least one of the pre-
dictor variables is significantly related to the output variable. The co-
efficients table, see Table 3, shows the estimated regression beta 
coefficients (column 2) and their associated t-statistic p-values (column 
5, represented by Pr (>|t|)). These results show that most of the pre-
dictor variables are significant, except the variables x3, x5 and x6. The 
predictors with p-values less than 0.05 are considered statistically sig-
nificant, which means there is confidence that the corresponding beta 
coefficient is not zero. Thus, the beta coefficient does add value to the 
model by helping to explain the variance within our dependent variable. 
The standard error (column 3 in Table 3) and t-value (coefficient divided 

by the standard error – column 4 in Table 3) confirm these conclusions. 
Indeed, the larger the t-statistic value is, the higher the probability that 
the beta coefficient is not zero. The t-value is then used to find the p- 
value. 

In this analysis, the adjusted R2 is equal to 0.6906, which means that 
69.06 % of the variance in the measure of permanent deformation can be 
predicted with statistical significance by the selected variables. How-
ever, one general problem of R2 is that its value always increases when 
more variables are added to the model; even if those variables are only 
weakly associated with the output variable [10]. A solution is to adjust 
the R2 by taking into account the number of predictor variables. 
Furthermore, the result of the multivariable regression analysis shows 
an RSE of 0.227, which corresponds to a 77 % error rate. 

Decision tree 

Next, the decision tree algorithm was tested. This is a method 
generally associated with low bias and high variance. This means that it 
is sensitive to (small) changes in the training data. In this analysis, the 

Table 3 
Machine Learning model 1 - Multivariable regression analysis: coefficients table.   

Estimate Std. 
Error 

t-value Pr(>|t|) Significant. 
codes 

Intercept 9.2E-01 1.1E-02 8.3E + 01 < 2e-16 *** 
x1 − 7.2E-02 2.4E-03 − 3.0E +

01 
< 2e-16 *** 

x2 2.1E-01 4.8E-03 4.4E + 01 < 2e-16 *** 
x3 5.2E-03 3.2E-03 1.7E + 00 0.09773 . 
x4 − 6.9E-03 3.2E-03 − 2.2E +

00 
0.03000 * 

x5 − 1.6E-04 3.2E-03 − 5.0E-02 0.96021 x 
x6 2.0E-05 2.6E-05 7.7E-01 0.44297 x 
x7 − 7.3E-04 1.3E-05 − 5.5E +

01 
< 2e-16 *** 

x8 − 2.9E-02 1.6E-04 − 1.8E +
02 

< 2e-16 *** 

x10 3.0E-05 1.1E-05 2.8E + 00 0.00491 ** 
x11 − 5.0E-06 9.5E-07 − 5.3E +

00 
1.41e- 
07 

*** 

x12 3.0E-05 1.7E-06 1.8E + 01 < 2e-16 *** 
x13 − 1.1E +

00 
2.7E-03 − 3.9E +

02 
< 2e-16 *** 

x14 − 1.1E +
00 

4.9E-02 − 2.3E +
01 

< 2e-16 *** 

x15 − 1.1E-01 2.3E-02 − 4.8E +
00 

1.59e- 
06 

*** 

x16 4.1E-08 2.3E-09 1.8E + 01 < 2e-16 *** 
Significant. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘x’ 1  

Fig. 10. Machine Learning model 2 - Decision tree.  

Fig. 11. Machine Learning model 3 - Random Forest: error rate.  
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rpart function from the R software was used and a pruning value (cp) of 
0.005 was adopted as it represented the best solution in this case. 

The obtained decision tree is presented in Fig. 10. The results show 
that the variables material constant “a” (x13), material constant “B” 
(x14), “Optimised ballastless track” (x2), “Cohesion” (x8), and 
“Maximum mean stress” (x12) have the highest influence on the per-
manent deformation. This information is given by the features used for 
splitting at the nodes. Features that are used for splitting higher up in the 
tree or used more frequently can be considered more important and with 
higher influence on the output. 

Random Forest 

In order to refine the results, the random forest algorithm was tested. 
This technique does not require the pre-processing and is very robust to 
outliers. The main disadvantage is the fact that is less interpretable. 
Although being accurate, it often cannot compete with advanced 
boosting algorithms. 

In this study, the function randomForest from R was used. By default, 
the algorithm performs 500 trees, and the number of variables tried at 
each split was equal to 3. The performance of the model was evaluated 
by a plot illustrating the error rate as more trees were introduced. As 
depicted in Fig. 11, the error rate stabilises with around 100 trees but it 
continues to converge slowly until around 500 trees (the maximum 
value adopted). The figure also indicates the minimum error and the 
associated number of trees. 

Furthermore, the number of candidate variables to select at each split 
set was tested and the function tuneRF was used to find the best/optimal 
value of mtry that leads to the smallest error, which means that the best 
value of p is determined. 

Artificial neural network 

In order to try to improve the results even more, the neural network 
algorithm was investigated. In these analyses, the model was tested 
numerous times and the number of hidden layers was tried and opti-
mised. In this case, the number of hidden layers was 2 with 10 and 2 
neurones, respectively. Moreover, resilient backpropagation with 
weight backtracking was adopted. The data was normalized before 
splitting the database into sets for training and testing. In this analysis, 
the single output corresponds to the “Permanent deformation” (y vari-
able), while 15 input variables were included in the model. Moreover, 
the package “neuralnet” was used to develop the model. 

SVM – Support vector regression 

Finally, the SVM was adopted using the package e1071 (from R). This 
function automatically detects if the model is dealing with a classifica-
tion or a regression problem. In this case, no hyper-parameterization 
was tested, which means that the parameters Cost and gamma were 
not tuned. This algorithm is different from traditional linear regression 
methods since it finds a hyperplane that best fits the data points in a 
continuous space, instead of fitting a line to the data points. Indeed, this 
algorithm focuses on identifying a hyperplane that maximizes its prox-
imity to numerous data points within a defined margin. This strategy 
minimizes prediction errors and enables to address non-linear connec-
tions between input and target variables through kernel functions. 

Results and discussion 

As described in Section 3, the performance of each model was ana-
lysed in detail based on the R2, σ, RMSE, MAE, MSE metrics. The results 
are presented in Table 4. Based on their performance indices for the 
training and testing datasets, see Indraratna et al. [16], the models are 
ranked in Table 5. It is important to note that the results of the perma-
nent deformation are presented in percentage (εp

1 × 100). 
The multivariable regression analysis model, see Table 4, shows 

satisfactory results but very far from optimal. Despite the relatively high 
value of R2 (>0.6), the MAE and RMSE are high, which indicates a 
problem with the model. The metrics for the decision tree model show 
satisfactory results and an improvement compared to the multivariable 
regression analysis model (the R2 increased and the RMSE and MAE and 
MSE significantly decrease but remains higher taking into account the 
magnitude of the output value. A significant improvement in accuracy 
(metrics) is obtained for the random forest algorithm. Here, the metrics 
were determined considering the best mtry. In this case, the R2 is close to 
1 and the error rates decrease in comparison with the decision tree. 

For the neural network model, the metrics also show very low values 
regarding the RMSE, MAE and MSE, and a high R2 value. The metrics are 
much better than the corresponding values for the decision tree and 
multivariable linear regression model, showing the high potential of this 
model. However, the RMSE and the MAE are lower in the random forest 
model. The results for the SVM model show higher values of the RMSE 
when compared to the neural network model. The results may show a 
higher dispersion when compared to the neural network model. 

Based on the testing results, but also the training results, the models 
have been ranked according to their metrics MAE and RMSE. The results 
presented in Table 5 show that the multivariable linear regression (MLR) 
model has the worst performance. The best performance was obtained 
for the random forest model. Moreover, the results show that there are 
no differences in the ranking based on the testing and training metrics. It 
is important to highlight that these results should also be compared and 
validated considering a different database, see Section 6. 

The observed and predicted values are compared for the random 
forest and neural network models in Fig. 12. Despite the low value of 
RMSE for both models, it is observed that the dispersion is similar for the 
neural network model and random forest model since the points are 
closer to the line y = x. 

Table 4 
Metrics results for the different evaluated machine learning algorithms.  

Algorithm R2 σ RMSE MAE MSE 

Multivariable regression 
analysis  

0.831  0.5271  0.2245  0.1489  0.0504 

Decision tree  0.987  0.5690  0.065  0.041  0.0043 
Random Forest (best mtry)  0.999  0.5715  0.0022  0.0004  4.966e-05 
Neural Network  0.999  0.5701  0.0043  0.0027  1.826e-05 
SVM  0.998  0.5702  0.0277  0.0235  0.0007  

Table 5 
Ranking and predictive performance of the machine learning models.  

Model Performance Ranking Total Ranking 

MAE- train MAE - test RMSE - train RMSE - test MAE - train MAE - test RMSE - train RMSE - test 

MLR  0.1482  0.1489  0.2242  0.2245 1 1 1 1 4 
Decision tree  0.0394  0.0407  0.0631  0.0657 2 2 2 2 8 
Random Forest  0.0003  0.0004  0.0019  0.0022 5 5 5 5 20 
ANN  0.0026  0.0027  0.0041  0.0043 4 4 4 4 16 
SVM  0.0234  0.0235  0.0270  0.0277 3 3 3 3 12  
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Sensitivity analysis 

Based on the ranking presented in Table 5, the random forest model 
showed the best performance. To better understand the model, a 
sensitivity analysis was performed to determine which variables have 
the highest influence. The explanatory variables for this algorithm were 
ranked, see Fig. 13. Here, the mean decrease accuracy shows how much 
the model accuracy decreases if a given variable is excluded, while the 
mean decrease Gini measures the variable importance based on the Gini 
impurity index used for the calculation of splits in trees. 

Despite the significance of variables as indicated in Fig. 13, it is also 
useful to discuss them based on empirical knowledge about the evolu-
tion and development of permanent deformation in the field. The results 
suggest that the constants (“a”, “B”, “εp0

1 ”) of the empirical model, the 
type of structure/track form, as well as the number of load cycles, have 
the most significant influence on the permanent deformation. This is in 
good agreement with observations in the field. Moreover, triaxial cyclic 
tests show that the mean and deviatoric stresses may influence the 
development of the permanent deformation. Indeed, by analysing 

Fig. 12. Comparisons between neural network and optimized random forest models.  

Fig. 13. Explanatory variables of machine learning model 3 – Random forest.  
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Fig. 13 from the random forest model, “Train speed” and “Maximum 
mean stress” are also identified as explanatory variables besides the 
previously discussed variables. 

To improve the model, an additional analysis was performed where 
only the explanatory variables with the highest significance were 
selected: “x2”, “x8”, “x10”, “x12”, “x13”, “x14”, “x15” and “x16”. Again, 
the random forest algorithm was tested, and the metrics and scatter plot 

were also determined as well as the importance of each variable. 
For the random forest model with a reduced number of selected 

variables, the corresponding metrics are presented in Table 6. In this 
case, the metrics remain unchanged when compared to the “original” 
model. Thus, it is concluded that the random forest model does not need 
to include the less significant variables to say accurate. This is also 
confirmed by the scatter plot (Fig. 14), where a very good performance 
of the model is observed since the predicted and observed values are 
very close. 

In the analysis of the explanatory variables, see Fig. 15, the mean 
decrease accuracy shows that the reduced random forest model is highly 
dependent on the “Type of structure – optimised ballastless track” and 
“Cohesion” of the subgrade, corresponding to variables x2 and x8. The 
model also shows that the “Maximum mean stress”, “Number of load 
cycles”, the constant “a” and “Train speed” have a significant influence 
on the developed model. These results demonstrate that the random 
forest model is very well aligned with empirical knowledge. 

Field validation 

The preceding sections have established a sense of confidence in 
some of the developed machine learning models, in particular the 
random forest and neural network models. In this section, the random 
forest model will be verified against long-term settlement data measured 
in the field for the ballasted track at the transition zone[20,21]. 

Permanent settlements of a track structure have been measured at a 
test site located on the Swedish heavy haul line in Malmbanan at 
Gransjö, north of Boden. The traffic on Malmbanan, a single-track rail-
way line in northern Sweden, is dominated by iron ore freight trains 
with axle loads up to 32.5 tonnes and speeds of 60 km/h (70 km/h in 
tare conditions). The annual traffic load is approximately 15 MGT (Mega 
Gross Tonnes) with around 850 000 axles in loaded and unloaded iron 
ore trains. Extensive measurements have been carried out in the tran-
sition zone between the conventional ballasted track and a 48 m section 
of a Moulded Modular Multi-Blocks (3 MB) slab track, see Fig. 16(a). 

The ballasted track at the test site comprises 60 kg/m rails, rubber 
rail pads and concrete sleepers. In the slab track section, the rail is 

Table 6 
Results with selected (reduced number of) variables in the random forest 
algorithm.  

R2 σ RMSE MAE MSE  

0.999  0.5715  0.0023  0.0004 5.4647e-06  

Fig. 14. Scatter plot: predicted values versus observed values (random forest 
model with reduced number of variables). 

Fig. 15. Explanatory variables of random forest model with selected (reduced number of variables).  
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discretely supported at rail seat distance of 0.6 m. The 3 MB track system 
is constructed using 4.8 m modules, each featuring a base slab consisting 
of two longitudinal reinforced concrete beams connected by two trans-
versal beams. In each module, there are also eight precast moulded 
concrete blocks, with four on each longitudinal beam of the base slab. To 

reduce the stiffness gradient in the transition zone, under sleeper pads 
were implemented in the ballasted track. The subgrade at the site con-
sists primarily of moraine extending down to a depth of up to 5 m before 
reaching bedrock. The embankment height varies between 2.0 and 2.5 
m. The properties of ballast, sub-ballast, soil layer 1 and soil layer 2 were 
defined based on MASW (Multichannel Analysis of Surface Waves) tests 
performed in situ, see Nasrollahi et al. [21]. The properties of the rails, 
rail pads and sleepers were provided by the manufacturers. A summary 
of the track properties is presented in Table 7. 

A real-time monitoring system was employed to assess the influence 
of traffic load on the accumulated differential settlement in the transi-
tion zone[20,21]. The monitoring took place from September 2022 to 
June 2023. The vertical sleeper displacements of sleepers 5 and 11 from 
the transition were measured using fibre Bragg grating (FBG-based) 
displacement transducers positioned at the end of each sleeper, see 
Fig. 16 (b). The displacement was measured with respect to a fixed 
anchor embedded deep in the ground. Both sleepers were initially 
experiencing a high settlement rate after the installation of the transition 
zone, see Fig. 17. 

To evaluate the performance of this transition zone, a 3D FEM model 
was developed to mimic the conditions at the Gransjö transition zone, 

Fig. 16. (a) Overview of the transition zone between the ballasted track and 3 MB slab track at Gransjö, Sweden. (b) Detail of an instrumented sleeper equipped with 
a vertical base plate, an L-shaped mechanism, one accelerometer and one displacement transducer. The positions of the anchor tip and the L-shaped mechanism with 
a swivel and a roller are shown [20]. 

Table 7 
Adopted properties for the numerical model (adapted from Nasrollahi et al. [20].  

Element E (MPa) ν ρ (kg/ 
m3) 

α β 

Rail 200 × 103  0.30 7850 – – 
Railpad – ballasted 

track 
97.7  0.45 1200 3.06 7.76 × 10-5 

Railpad – slab track 2.85  0.45 1200 3.06 7.76 × 10-5 

Sleeper 38 × 103  0.15 2500 – – 
Block 30 × 103  0.2 2500 0.61 1.55 × 10-5 

Concrete slab 30 × 103  0.2 2500 0.61 1.55 × 10-5 

Ballast 67.5  0.20 1800 1.84 4.66 × 10-5 

Sub-ballast 161.7  0.30 2100 1.84 4.66 × 10-5 

Soil layer 1 472.4  0.25 2100 1.84 4.66 × 10-5 

Soil layer 2 800  0.25 2100 1.84 4.66 × 10-5  

Fig. 17. Measured evolution of unloaded sleeper displacement (settlement) from September 2022 to June 2023 for sleepers 5 and 11 from the transition [20] versus 
settlement predicted by the random forest model. 
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see Fig. 18. Based on calculated stresses in the short term, the long-term 
permanent deformation and respective settlement in the transition zone 
was predicted by the application of the random forest model generated 
in Section 3. In this analysis, the track type corresponded to a ballasted 
track and the Resilient Moduli varied according to the material (ballast, 
sub-ballast, soil layer 1 and soil layer 2), as well as the cohesion. Train 
speed was set to 60 km/h. For the empirical constants of the model, the 
values presented in Table 8 were obtained from the work developed by 
Ramos et al. [26] and Ramos et al. [27]. 

The mean and deviatoric stresses vary according to the depth of the 
finite element and the material. The permanent deformation was pre-
dicted for each element of the 3D model. Subsequently, the following 
equation was applied to calculate the cumulative settlement evaluated 
over the depth of each element of the geomaterials: 

δ =
∑n

i=1
εi

p × hi (7)  

where i represents the number of elements, hi is the thickness of each 
element (in m), and εp

i is the permanent deformation (dimensionless) of 
element i obtained through Equation (1). 

The predicted long-term deformation of the track and the measured 
settlements are compared in Fig. 17. It is observed that the random 
forest model can effectively predict the permanent deformation and 
permanent (accumulated) settlement in the ballasted track, in particular 
the trend after about 0.5 MGT. It is important to highlight that the field 
test data (in particular for sleeper 5) is close to the transition, which 
usually presents an unpredictable behaviour. This achievement stands as 
a cross-validation of the random forest model, even within the intricate 
context of a transition zone. 

Conclusions 

The prediction of permanent deformation in railway subgrade is 
crucial for track performance and maintenance cost management. This 
work introduces a novel methodology utilizing machine learning to es-
timate permanent deformation. The model is trained on a comprehen-
sive database of numerical simulation results, combining a hybrid 2.5D 
FEM-PML model and an empirical deformation model. Although the 

2.5D model has limitations in accounting for spatially varying parame-
ters of infrastructure along the track, the methodology successfully 
identifies significant variables affecting track degradation. This en-
compasses both quasi-static and dynamic mechanisms, with the later 
incorporating unevenness profile of the track. Various machine learning 
algorithms (multivariable regression analysis, decision tree, random 
forest, neural network and support vector regression) are compared by 
means of different metrics, being random forest yielding the most ac-
curate results, followed by neural networks and support vector regres-
sion model. Sensitivity analysis highlights significant variables such as 
settlement model constants, load cycles, track form, and subgrade 
strength properties, which are well aligned with what has been observed 
in the field and previously reported in the specialised bibliography. A 
simplified random forest model including only 8 variables demonstrates 
robust performance, indicating its suitability for predictive accuracy of 
permanent deformation. The random forest model is applied to a 
Swedish test demonstrator, showing an acceptable predictive capacity of 
permanent deformation and validating the methodology’s effectiveness. 
The study concludes that this innovative methodology offers efficient 
and accurate prediction of railway track permanent deformation, with 
substantial time savings compared to traditional methods. 
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Fig. 18. 3D numerical model of transition zone at Gransjö.  

Table 8 
Material constants applied in the empirical permanent deformation model.   

Material constant a Material constant B Material constant εp0
1 

Ballast  0.65  0.2  0.0093 
Sub-ballast  0.65  0.2  − 0.000041 
Soil layer 1  0.65  0.2  − 0.000041 
Soil layer 2  0.65  0.2  − 0.000041  
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