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Abstract

The Inverse Optimal Control (IOC) problem is a structured system identification problem that aims to identify the underlying
objective function based on observed optimal trajectories. This provides a data-driven way to model experts’ behavior. In
this paper, we consider the case of discrete-time finite-horizon linear-quadratic problems where: the quadratic cost term in
the objective is not necessarily positive semi-definite; the planning horizon is a random variable; we have both process noise
and observation noise; the dynamics can have a drift term; and where we can have a linear cost term in the objective. In this
setting, we first formulate the necessary and sufficient conditions for when the forward optimal control problem is solvable.
Next, we show that the corresponding IOC problem is identifiable. Using the conditions for existence of an optimum of the
forward problem, we then formulate an estimator for the parameters in the objective function of the forward problem as the
globally optimal solution to a convex optimization problem, and prove that the estimator is statistical consistent. Finally, the
performance of the algorithm is demonstrated on two numerical examples.

Key words: Inverse optimal control, Indefinite linear quadratic regulator, System identification, Time-varying system
matrices, Convex optimization, Semidefinite programming, Inverse reinforcement learning

1 Introduction

Optimal control is a powerful framework in which con-
trol decisions are performed in order to minimize some
given objective function; see, e.g., one of the monographs
[3, 8]. In fact, many processes in nature can be modelled
as optimal control problems with respect to some cri-
teria [2]. However, in applications of optimal control, a
fundamental problem is to design an appropriate objec-
tive function. In order to induce an appropriate control
response, the object function needs to be adapted to the
contextual environment in which the system is operat-
ing. This is a difficult task, which relies heavily on the
designers’ experience and imagination.

⋆ This work was partially supported by National Natural
Science Foundation (NNSF) of China under Grant 62103276,
and partially by the Wallenberg AI, Autonomous Systems
and Software Program (WASP) funded by the Knut and
Alice Wallenberg Foundation.

Email addresses: zhanghan tc@sjtu.edu.cn (Han
Zhang), axelri@chalmers.se (Axel Ringh).

Instead of designing the cost criteria, one way to over-
come this difficulty would be to identify the cost func-
tion from the observations of an expert system that be-
haves “optimally” in the environment and thus “imitat-
ing” the expert behaviour. The latter is known as Inverse
Optimal Control (IOC) [22], and has received consider-
able attention. In particular, IOC reconstructs the ob-
jective function of the expert system and hence predicts
the closed-loop system’s behaviour using observed data
as well as the knowledge of underlying system dynam-
ics. The problem can be categorized as gray-box system
identification [27, p. 13], and is also closely related to
inverse reinforcement learning [30].

As one of the most classical optimal controller designs,
linear-quadratic optimal regulators has been widely used
in engineering. Though most of the literature consid-
ers the case of Q (the penalty parameter for the states)
being positive semi-definite, indefinite linear-quadratic
optimal control [10, 13, 14, 34, 35] has found applica-
tions in, e.g., mathematical finance [50], crowd evacua-
tion [41, 42], and controller design for automatic steer-
ing of ships [37]. To this end, we are motivated to de-
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velop an IOC framework for general indefinite linear-
quadratic optimal control. Linear-quadratic IOC prob-
lem has been studied under many different settings, in-
cluding the infinite-horizon case in both continuous time
[3, 9] and discrete time [33], respectively, as well as the
finite-horizon case in both continuous time [24, 25] and
discrete time [23, 46–49], respectively. IOC is also closely
connected to inverse reinforcement learning [30], and this
perspective has been used in [26, 44, 45] to consider in-
finite horizon discrete-time and continuous-time linear-
quadratic set-ups for regulation, tracking, and adver-
sary scenarios, respectively. However, to the best of our
knowledge, IOC frameworks for general indefinite linear-
quadratic optimal control has not been considered yet.
Furthermore, there are also other important aspects that
have not been fully investigated in the aforementioned
literature. More precisely, any real-world data would in-
evitably contain noise: it can either be process noise, ob-
servation noise, or both. Therefore, from robustness and
accuracy perspectives, it is important to have a statisti-
cally consistent estimator, i.e., that converges to the true
underlying parameter values as the number of observa-
tion grows. Moreover, many of the aforementioned IOC
algorithms that are based on optimization either suffer
from the fact that the estimation problems are noncon-
vex [23, 46, 49], and can therefore have issues with local
minima, or suffer from the fact the estimation procedure
needs to know the control gain a priori [3, 9, 24, 25, 33].
In the latter case, the estimation normally needs to be
done in a two-stage procedure and the information is
thus not used in the most efficient way. Furthermore,
most of the literature on linear-quadratic IOC consider
the regulation problem. However, in many experimen-
tal set-ups, an expert agent may have more complicated
tasks than regulation, e.g., tracking a reference signal.
Finally, real-world data can be of different time lengths,
and this needs to be handled in a systematic way in or-
der not to deteriorate the estimates.

In this work, we address these issues. More specifically,
we extend our previous work [47] and the conference
version [48] of this work, and consider the generalized
linear-quadratic, indefinite, discrete-time IOC problem.
In particular, in [47], we only consider the IOC prob-
lem of linear quadratic regulator with no process noise,
and there is no linear state terms in the objective func-
tion. Moreover, in that paper the parameterQ is positive
semi-definite, and the time-horizon length is fixed. On
the other hand, compared to the conference version [48],
we further consider the case that involves observation
noise and indefinite matrix Q in the objective function.

The contribution of this work is three-fold:

(1) We give necessary and sufficient conditions for
the well-posedness of the generalized discrete-time
finite-horizon indefinite linear-quadratic optimal
control problem. Specifically, we do not assume
that the running cost is positive semi-definite, and

we include a linear term in the objective function,
a forcing term in the dynamics, and process noise.

(2) We prove the identifiability of the parameters in the
objective function.

(3) We construct an IOC algorithm that works for both
the positive semi-definite and the indefinite case.
The algorithm is based on convex optimization, and
we show that its unique optimal solution is the
“true” underlying parameters in the objective func-
tion of the forward problem. Moreover, the con-
structed optimization problem, which contains an
expectation in the objective function, is approxi-
mated by the empirical mean in practice andwe also
show that the estimator based on this approxima-
tion is statistically consistent. This means that the
estimator converge in probability to the true under-
lying parameter when the number of observations
goes to infinity. In addition, the convex optimiza-
tion formulation guarantees that the statistically
consistent estimate that corresponds to the global
optimum can actually be attained in practice.

The article is organized as follows. In Section 2, we for-
mulate the forward and inverse problem, and specify
the assumptions we use. Next, in Section 3, we analyze
the forward problem and prove the necessary and suffi-
cient conditions for when it is well-posed. Section 4 in-
vestigates the identifiability issue of the formulated IOC
problem, and in particular prove that the formulated
IOC problem is identifiable. In Section 5, we construct
the IOC algorithm, construct the estimator, and prove
that the latter is statistical consistent. To illustrate the
performance of the proposed algorithm, in Section 6 we
include some numerical examples. Finally, we conclude
the paper in Section 7. For improved readability, some
proofs are deferred to the Appendix.

Notation: Sn denotes the set of n×n symmetric matrices,
while Sn+ denotes the set of n× n positive semi-definite
matrices. ∥ · ∥ denotes l2-norm and ∥ · ∥F denotes Frobe-
nius norm.Bn

φ(x) := {y ∈ Rn | ∥x−y∥ < φ} denotes the
open ball of radius φ centered at x, and B̄n

φ(x) denotes
its closure. Moreover, Sn+(φ) := {G ∈ Sn+ | ∥G∥F ≤ φ}.
For G1, G2 ∈ Sn, we denote G1 ⪰ G2 as Loewner par-
tial order of G1 and G2, i.e., G1 − G2 ∈ Sn+. Further,
G† denotes the Moore-Penrose pseudo-inverse of G. For
a square matrix G =

[
G11 G12

G21 G22

]
, where G11 and G22

are square, we define the Schur complements G\G22 =

G11 −G21G
†
22G12 and G\G11 = G22 −G12G

†
11G21 (see,

e.g., [19, Sec. 1.6]). For integers ν1, ν2, we let ν1 : ν2
denote ν1, ν1 + 1, . . . , ν2, and define the expression as
empty if ν2 < ν1. In addition, by Im and ker we de-
note the image space and kernel, respectively, by ⊥ we
denote the orthogonal complement, and by ¬ we de-
note the (mathematical) negation of a statement. Fi-
nally, we use italic bold font to denote stochastic ele-

ments, and use
p→ to denote convergence in probability,

i.e., for a sequence of random elements {ai}∞i=1 and a
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random element a, ai p→ a means that for all ε > 0,
limi→∞ P(∥ai − a∥ > ε) = 0.

2 Problem formulation

In this section, we introduce the forward problem as well
as the inverse problem. To solve the inverse problem, we
usemeasured (noisy) optimal trajectories from an expert
that performs the given task multiple times. This gives
multiple demonstration trajectories that can be used to
learn the cost. However, while the underlying “decision
principle” is the same in all the demonstration trajec-
tories, these trajectories may have different lengths. We
are hence motivated to cover those demonstrations with
one mathematical formulation.

We start by introducing the mathematical formulation
of the forward optimal control problem. To this end,
let (Ω,F ,P) be a probability space that carries a ran-
dom vector x̄ ∈ Rn, stochastic processes {wt ∈ Rn}∞t=1,
{vt ∈ Rn}∞t=1 (the measurement noise to appear in (2)),
and a random variable N ∈ {2, 3, · · · , ν} ⊂ Z+. It is
assumed that for each realization (x̄, N) of the random
element (x̄,N) (corresponding to the initial position
and planning horizon length), the agent’s control deci-
sion ut is determined by a stochastic generalized linear-
quadratic control problem, namely,

min
x1:ν ,
u1:ν

JN := E
wν−N+1:ν−1

[1
2
xT
ν Q̄xν + q̄Txν

+

ν−1∑
t=ν−N+1

[
1

2
xT
t Q̄xt + q̄Txt +

1

2
uT
t R̄ut]

]
(1a)

s.t. xt+1 = Axt +But + d+wt,

t = ν−N+1 : ν−1, (1b)

xt+1 = xt, t = 1 : ν −N (1c)

x1 = x̄, (1d)

u1 = . . . = uν−N = 0, (1e)

where A ∈ Rn×n, B ∈ Rn×m, Q̄ ∈ Sn, R̄ ∈ Sm, and
q̄, d ∈ Rn. More specifically, the minimization in (1) is
over admissible control strategies with complete state
information, i.e., ut is a function that maps from Rn to
Rm, ut : xt 7→ ut(xt) (see, e.g., [36, Chp. 8]).

The formulation (1) is motivated by the fact that an
agent can have different time horizon lengths (and ini-
tial values) to complete different tasks, while the under-
lying decision principle (i.e., running cost) remains un-
changed since the principle is connected to the agent’s
characteristics. In particular, given a realization of the
time-horizon length N = N and initial value x̄ = x̄, the
agent starts to apply its control from the initial value x̄
at the time instant t = ν −N + 1 and the agent main-
tains the same running cost for each control execution.

This formulation gives a systematic way to handle real-
world data with different time lengths (see [48]). More-
over, note that since the dynamics (1b) and the running
cost in (1a) are time-invariant, by Bellman’s principle of
optimality, (1) can be reformulated to optimal control
problems with planning horizon length N and that start
to control from an initial state at time point t = 1. How-
ever, it turns out to be convenient to align the optimal
demonstration trajectories with different lengths at the
end time point, and view the demonstration trajectories
as if the expert starts to control the system at different
time instants, i.e., to formulate the problem as in (1).

Remark 2.1 The reason why we only consider a time-
invariant external forcing term d in (1b) is to simplify the
presentation. The results of the paper also hold for time-
varying forcing terms dt, provided that the agent knows
all the future forcing terms for t = ν − N + 1 : ν − 1.
Similarly, this formulation can be extended to tracking-
problems by letting the linear cost term be time-varying,
qt = −Qxrt where xrt is the reference signal, and the re-
sults in the paper follows analogously (cf. [48]). Notably,
with time-varying dt or qt, the arguments in the para-
graph just before (using time-invariance of running cost
and dynamics) does not hold. Nevertheless, the formu-
lation (1) is still of interest in application such as the
tracking in rehabilitation trainings, see [48].

In the remainder of the paper, we make the following
assumptions.

Assumption 2.2 (Controlability and full rank)
The system (A,B) is controllable, A is invertible, and B
is of full-column rank.

Assumption 2.3 (Independent white random elements)
The discrete time stochastic processes {wt}∞t=1 and
{vt}∞t=1 are independent zero-mean white-noise pro-
cesses. More specifically, this means that E[wt] = 0,
E[vt] = 0, ∀t, and cov(wt,ws) = Σwδ(t − s),
cov(vt,vt) = Σvδ(t − s), where δ(t) is the Dirac-delta
function, and where Σw ⪰ 0 and Σv ⪰ 0 are a priori
known. Moreover, the random element (x̄,N) is inde-
pendent of the two stochastic processes.

The rationale behind the first assumption is that we
are considering a controllable discrete-time linear system
that is not over-actuated, 1 and that is sampled from a
continuous-time system. Next, make the following mild
assumptions regarding the stochastic planning horizon
N .

Assumption 2.4 (Support of the planning horizon)
The constant ν ∈ Z+ is known, and ν ≥ n + 1.

1 It means that, given the system state’s evolution from time
step t to t + 1, there is only one possible control input to
realize that.
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Moreover, the probability distribution for N satisfies
P(N ∈ [2, ν]) = 1, and P(N = ν) > 0.

The above assumption means that the longest possible
planning horizon is known, that it is sufficiently long,
and that the longest horizon ν can be realized, i.e.,
it has a nonzero probability. Next, note that since Q̄
might not be positive semi-definite, (1) might not admit
an optimal solution (see, e.g. [13, 14]). We analyze the
well-posedness of the forward problem (1) in depth in
Section 3. However, before that, we have the following
proposition which illustrates the reason why we empha-
size the longest time-horizon length in Assumption 2.4.

Proposition 2.5 Under Assumptions 2.2 and 2.3, if the
optimal control problem (1) with the objective function
given by (Q̄, q̄, R̄) admits a solution for planning horizon
N = ν for any x̄ ∈ Rn, then it admits a solution for all
N = 2 : ν for any x̄ ∈ Rn.

PROOF. See appendix. 2

With Assumption 2.4 and Proposition 2.5 in mind, we
are thus interested in parameters that belong to the fol-
lowing set:

F (R̄) = {(Q, q) ∈ Sn × Rn | the optimal control problem

(1) with the objective function given by (Q, q, R̄) admits

solutions a.s. under the distribution of x̄ and for all

N ∈ {2, 3, . . . , ν}}.

More specifically, if (Q̄, q̄) ∈ F (R̄), then the forward
problem is well-posed for any N ∈ {2, . . . , ν} under the
distribution of x̄ almost surely. In addition, for the in-
verse problem we assume that the observation of the op-
timal states x1:ν are contaminated by observation noise:

yt = xt + vt, t = 1 : ν, (2)

and that we observeM trials of the agent.More precisely,
let yi

t have the same distribution as yt, for all i = 1 :M
and all t = 1 : ν. Then the observed M trajectories of
the agent’s trials, {yit}Mi=1, are just realizations of the
I.I.D. random vectors {yi

t}Mi=1.

Before we formulate the IOC problem, we also make the
following assumption.

Assumption 2.6 (Initial value distribution) The
random element (x̄,N) is such that E[∥x̄∥2] <∞. More-
over, for all N ∈ {2, . . . , ν} such that P(N = N) > 0, it
holds that for all χ ∈ Rn, there exists a ρ > 0 such that
P(x̄ ∈ Bn

ϵ (ρχ) | N = N) > 0 for all ϵ > 0.

Intuitively speaking, the above assumption states that,
for each planning horizon length of interest, the initial
value for the forward problem can be in any “direction”
from the origin. This turns out to be important for both
the forward and the inverse problem. The latter will be
discussed in Section 4.

With the setup presented in this section, we summarize
the IOC problem to be considered in this paper. For
the sake of simplicity, we consider the case R̄ = I when
designing the IOC algorithm.

Problem 2.7 (General stochastic linear-quadratic IOC)
Suppose the unknown (Q̄, q̄) ∈ F (I). Given the opti-
mal state trajectory observations {yit}νt=1 of the agent’s
trials i = 1 : M that are governed by (1), estimate the
corresponding (Q̄, q̄) in the objective function (1a) that
governs the agents’ motion.

3 Forward problem analysis

Before we present the IOC algorithm set-up, we first
need to analyze the forward problem. More precisely, we
need to characterize the set F (R̄) and find the necessary
and sufficient optimality conditions for the existence of
such generalized indefinite linear-quadratic optimal con-
trol. This is not only because we want to ensure that the
forward-problem is well-behaved, but also to construct
the IOC algorithm based on the optimality conditions.
Moreover, we also analyze the properties of the time-
varying closed-loop system matrices that will be useful
in developing the IOC algorithm. For the theoretical de-
velopment in this section, we do not assume that R̄ = I.

3.1 Necessary and sufficient conditions for existence of
optimal control

To this end, we first derive the necessary and sufficient
conditions for existence of optimal control to (1). The
results build on [13]; in particular, some of the proof ideas
are inspired by the proof in [13, Thm. 2.1]. However, we
not only extend the result to a more general setting of
stochastic linear-quadratic problems, but also show that
solvability of the forward problem, i.e., that (Q̄, q̄) ∈
F (R̄), can be characterized in different, but equivalent,
ways. The main result of this section is the following.

Theorem 3.1 (Boundedness of forward problem)
Under Assumptions 2.3 and 2.6, the following state-
ments are equivalent:

(1) (Q̄, q̄) ∈ F (R̄).
(2) Let P̄1:ν and η̄1:ν be generated by the following Ric-

4



cati iterations

P̄ν = Q̄, (3a)

P̄t = AT P̄t+1A+ Q̄−AT P̄t+1B(BT P̄t+1B + R̄)†

×BT P̄t+1A, t = 1 : ν − 1; (3b)

η̄ν = q̄, (3c)

η̄t =
(
A−B(BT P̄t+1B + R̄)†BT P̄t+1A

)T
× (η̄t+1 + P̄t+1d) + q̄, t = 1 : ν − 1. (3d)

Denote

S̄t := BT P̄t+1A, (4a)

R̄t := BT P̄t+1B + R̄, (4b)

ḡt := BT η̄t+1 +BT P̄t+1d. (4c)

It holds that

R̄t ⪰ 0, (4d)

ker(R̄t) ⊂
[
ker(S̄T

t ) ∩ ker(ḡTt )
]
, (4e)

for all t = 1 : ν − 1.
(3) There exists {P̄t ∈ Sn}t=1:ν , {η̄t ∈ Rn}t=1:ν , and

{ξ̄t ∈ R}t=1:ν such that

P̄ν = Q̄, η̄ν = q̄, (5a)

H̄t :=


R̄t S̄t ḡt

S̄T
t AT P̄t+1A+ Q̄− P̄t β̄t

ḡTt β̄T
t ξ̄t

 ⪰ 0 (5b)

rank(H̄t) = rank(R̄t) (5c)

where β̄t := q̄+AT P̄t+1d+AT η̄t+1 − η̄t and where
S̄t, R̄t, and ḡt are as in (4a), (4b), and (4c), re-
spectively, for all t = 1 : ν − 1.

(4) The Hamilton-Jacobi-Bellman equation (HJBE)

Vν(χν) :=
1

2
χT
ν Q̄χν + q̄Tχν , (6a)

Vt(χt) = min
µt

{1

2
χT
t Q̄χt + q̄Tχt +

1

2
µT
t R̄µt (6b)

+ E
wt

[Vt+1(Aχt +Bµt + d+wt)]
}
, t = 1 : ν − 1

has a solution. More precisely, this means that
Vt(χt) is bounded from below for any χt ∈ Rn, for
t = 1 : ν − 1. Moreover, the solution has the form

Vt(χt) =
1

2
χT
t P̄tχt + η̄Tt χt + γ̄t, t = 1 : ν, (7)

where P̄1:ν and η̄1:ν are generated by (3) and

γ̄ν = 0 (8a)

γ̄t = γ̄t+1 −
1

2
ḡTt R̄

†
t ḡt +

1

2
dT P̄t+1d+ η̄Tt+1d

+
1

2
tr(P̄t+1Σw), t = 1 : ν − 1, (8b)

with R̄1:ν−1 and ḡ1:ν−1 as in (4b) and (4c), respec-
tively.

In addition, if any of the four above conditions hold, then
the optimal control signal ut for (1) is parametrized by
any arbitrary vector λt ∈ Rn, and is given by

ut = −R̄†
t(S̄txt + ḡt) + Pker(R̄)

t λt, (9a)

t = ν −N + 1 : ν − 1,

ut = 0, t = 1 : ν −N, (9b)

where Pker(R̄)
t = I−R̄†

tR̄t is the projection operator onto
the kernel space of R̄t.

2

PROOF. First, assume that 4) holds. Note that for an
agent with a planning horizon realization N = ν, by the
principle of optimality in dynamic programming (see,
e.g., [8, p. 18]), we can easily show that 4) =⇒ 1) (cf. [8,
Prop. 1.3.1]). For the case N < ν, note that the HJBE
is still valid for t = ν − N + 1 : ν, and thus the agents
behavior is still optimal in t = ν −N + 1 : ν. Since the
systems behavior for t = 1 : ν −N is completely deter-
mined by (1c), and (1e), by Bellman’s principle of opti-
mality, the solution to the HJBE still gives the optimal
control. This implies 1), and hence shows that 4) =⇒ 1).

Next, we prove that 1) =⇒ 2) by proving the contraposi-
tion of the statement, i.e., by proving that ¬2) =⇒ ¬1).
Before we proceed, first note the fact that

ν−1∑
t=ν−N+1

{1

2
xT
t+1P̄t+1xt+1 + η̄Tt+1xt+1

− 1

2
xT
t P̄txt − η̄Tt xt

}
+

1

2
xT
ν−N+1P̄ν−N+1xν−N+1

+ η̄Tν−N+1xν−N+1 −
1

2
xT
ν P̄νxν − η̄Tν xν = 0, (10)

for any N ∈ {2, . . . , ν}. Taking the expectation with
respect towν−N+1:ν−1 on both sides of (10), adding the
latter expression to (1a), and using (1b), (3a), (3c), and

2 For the fact that Pker(R̄)
t = I − R̄†

tR̄t is indeed the pro-
jection operator onto the kernel space of R̄t, see, e.g., [12,
Prop. 2.3].
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Assumption 2.3, we can write the objective function as

JN = E
wν−N+1:ν−1

[1
2
xT
ν (Q̄− P̄ν)︸ ︷︷ ︸

=0

xν + (q̄ − η̄ν)
T︸ ︷︷ ︸

=0

xν

+

ν−1∑
t=ν−N+1

{1

2
(Axt +But + d+wt)

T P̄t+1

× (Axt +But + d+wt) + η̄Tt+1(Axt +But + d+wt)

− 1

2
xT
t P̄txt − η̄Tt xt +

1

2
xT
t Q̄xt + q̄Txt +

1

2
uT
t R̄ut

}
+

1

2
xT
ν−N+1P̄ν−N+1xν−N+1 + η̄Tν−N+1xν−N+1

]

= E
wν−N+1:ν−1

[ ν−1∑
t=ν−N+1

{1

2

[
uT
t xT

t 1
]
H̄t


ut

xt

1

}

+
1

2
xT
ν−N+1P̄ν−N+1xν−N+1 + η̄Tν−N+1xν−N+1

]
+

ν−1∑
t=ν−N+1

1

2
dT P̄t+1d+

1

2
tr(P̄t+1Σw) + η̄Tt+1d−

1

2
ξ̄t︸ ︷︷ ︸

=: Υt

(11)

with H̄t in the form of (5b) and ξ̄t = ḡTt R̄
†
t ḡt in H̄t.

Note that the term Υt in the above equation is constant
with respect to the state and the control and hence can
be discarded in the optimization problem. On the other
hand, since {P̄t}νt=1 and {η̄t}νt=1 are generated by (3),
H̄t can also be written as

H̄t =


R̄t S̄t ḡt

S̄T
t S̄T

t R̄
†
tS̄t S̄T

t R̄
†
t ḡt

ḡTt ḡTt R̄
†
tS̄t ḡTt R̄

†
t ḡt

 . (12)

Now, we use the above trick to prove that ¬2) =⇒ ¬1).
Suppose (4d) and (4e) cease to hold at theNth backward
iteration (3), where N ∈ {2, . . . , ν}. Namely, R̄ν−N+t ⪰
0, ker(R̄ν−N+t) ⊂

[
ker(S̄T

ν−N+t) ∩ ker(ḡTν−N+t)
]
still

holds for t = 2 : N but not for t = 1. We proceed
by showing that this implies that for this planning
horizon length realization N , (1) is not bounded from
below. In particular, by (12) and ker(R̄ν−N+t) ⊂[
ker(S̄T

ν−N+t) ∩ ker(ḡTν−N+t)
]
, ∀t = 2 : N , it follows

that

H̄ν−N+t =


R̄ν−N+t

S̄T
ν−N+t

ḡTν−N+t

 R̄†
ν−N+t

×
[
R̄ν−N+t S̄ν−N+t ḡν−N+t

]
⪰ 0 (13)

for t = 2 : N . Hence, in view of (1d), (1c) and the fact
that {wt}∞t=1 is independent of other random elements
from Assumption 2.3, for the given “initial state” real-
ization xν−N+1 = x̄ ∈ Rn from which the agent starts
tracking, the objective function can be written as

JN = E
wν−N+1:ν−1

[1
2

[
uT
ν−N+1 xT

ν−N+1 1
]
H̄ν−N+1

×


uν−N+1

xν−N+1

1

+

N−1∑
t=2

{1

2

∥∥∥(R̄†
ν−N+t)

1
2

(
R̄ν−N+tuν−N+t

+ S̄ν−N+txν−N+t + ḡν−N+t

)∥∥∥2}
+
1

2
xT
ν−N+1︸ ︷︷ ︸
x̄T

P̄ν−N+1xν−N+1︸ ︷︷ ︸
x̄

+η̄Tν−N+1xν−N+1︸ ︷︷ ︸
x̄

]
. (14)

Notably, it holds that

1

2
x̄T P̄ν−N+1x̄+ η̄Tν−N+1x̄ ≤ 1

2
σmax(P̄ν−N+1)∥x̄∥2

+ ∥η̄ν−N+1∥ · ∥x̄∥ := τ(x̄),

where σmax(·) is the largest eigenvalue of a matrix.
Also note that, for any uν−N+1 and xν−N+1 = x̄,
by the dynamics (1b) we get an xν−N+2. Selecting

uν−N+2 = −R̄†
ν−N+2(S̄ν−N+2xν−N+2 + ḡν−N+2) +

Pker(R̄)
ν−N+2λν−N+2, for some arbitrary λν−N+2 ∈ Rn, this

would give the next state xν−N+3. Recursively select-
ing the other control signals for t = ν − N + 3 : ν − 1

accordingly, i.e., as ut = −R̄†
t(S̄txt + ḡt) + Pker(R̄)

t λt,
for some arbitrary λt ∈ Rn, then all terms in the sum-
mation in (14) would become zero. Therefore, for the
objective function JN it holds that

JN ≤ E
wν−N+1:ν−1

[1
2
uT
ν−N+1R̄ν−N+1uν−N+1

+ x̄T S̄T
ν−N+1uν−N+1 + ḡTν−N+1uν−N+1

]
+ x̄T S̄T

ν−N+1R̄
†
ν−N+1S̄ν−N+1x̄

+ ḡTν−N+1R̄
†
ν−N+1S̄ν−N+1x̄+ τ(x̄). (15)

If R̄ν−N+1 ̸⪰ 0, it is clear that we can choose
uν−N+1 = αv−(R̄ν−N+1), where v−(R̄ν−N+1) is an
eigenvector that corresponds to a negative eigenvalue of
R̄ν−N+1. In this case, since such choice of uν−N+1 does
not depend on the random vectors wν−N+1:ν−1, the ex-
pectation would be marginalized out. Letting α → +∞
would make JN tend to minus infinity. Thus, unless
(4d) holds, irrespective of the initial condition x̄ there
is a planning horizon length realization N ∈ {2, . . . , ν}
such that the cost function is not bounded from below.

On the other hand, if (4d) holds but ker(R̄ν−N+1) ̸⊂[
ker(S̄T

ν−N+1) ∩ ker(ḡTν−N+1)
]
, then there exists a vec-
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tor v ∈ Rm with norm one, such that R̄ν−N+1v = 0, and
such that S̄T

ν−N+1v ̸= 0 or ḡTν−N+1v ̸= 0. Without loss

of generality, assume that ḡTν−N+1v ≥ 0; otherwise we
instead consider −v. By Assumption 2.6, it follows that
we can find ρ > 0 such that P

(
x̄ ∈ Bn

ϵ (ρS
T
ν−N+1v)

)
>

0,∀ϵ > 0. Now, consider uν−N+1 = αv and xν−N+1 =
x̄ = ρS̄T

ν−N+1v+ ṽ, where ṽ ∈ Bn
ϵ1(0) and where ϵ1 > 0

will be determined shortly. Note that with such choice,
the expectation in (15) would be again marginalized out.
Then it holds for the objective function that

JN ≤ α[ρvT S̄ν−N+1S̄
T
ν−N+1v + ḡTν−N+1v︸ ︷︷ ︸

=ρ∥S̄T
ν−N+1

v∥2+ḡT
ν−N+1

v > 0

+ṽT S̄T
ν−N+1v]

+ (ρvT S̄ν−N+1 + ṽT )S̄T
ν−N+1R̄

†
ν−N+1S̄ν−N+1

× (ρS̄T
ν−N+1v + ṽ) + ḡTν−N+1R̄

†
ν−N+1S̄ν−N+1

× (ρS̄T
ν−N+1v + ṽ) + τ(ρS̄T

ν−N+1v + ṽ).

In particular, we can always make ϵ1 > 0 small enough
so that ρ∥S̄T

ν−N+1v∥2 + ḡTν−N+1v + ṽT S̄T
ν−N+1v > 0,

∀ṽ ∈ Bn
ϵ1(0). By taking α→ −∞, the upper bound goes

to minus infinity and hence pushes JN to minus infinity.
Recalling that P(x̄ ∈ Bn

ϵ (ρS
T
ν−N+1v)) > 0,∀ϵ ∈ (0, ϵ1),

this shows that there exists a set of initial value realiza-
tions x̄ with non-zero probability such that the forward
problem is ill-posed. This proves that ¬2) =⇒ ¬1), and
thus that 1) =⇒ 2).

Next, we prove that 2) =⇒ 4). We make an ansatz that
the solution to the HJBE (6) is Vt(χt) = 1

2χ
T
t P̄tχt +

η̄Tt χt + γ̄t, where P̄1:ν , η̄1:ν and γ̄1:ν are generated by
(3) and (8), respectively. The ansatz fulfils (6a) and (8).
Plugging the ansatz into (6b), we have that

1

2
χT
t P̄tχt + η̄Tt χt + γ̄t = min

µt

{1

2
χT
t Q̄χt + q̄Tχt

+
1

2
µT
t R̄µt + E

wt

[1
2
(Aχt +Bµt + d+wt)

T P̄t+1

× (Aχt +Bµt + d+wt) + η̄Tt+1(Aχt +Bµt + d+wt),

+ γ̄t+1

]}
, t = 1 : ν − 1.

By Assumption 2.3, we can expand the expectation re-
gardingwt on the right hand side of the above equation,
and removing constant terms that are irrelevant to the
optimization we get

min
µt

{1

2
µT
t R̄tµt + (S̄tχt + ḡt)

Tµt + (Aχt + d)T P̄t+1

×(Aχt+d)+η
T
t+1(Aχt+d)+

1

2
χT
t Q̄χt+q̄

Tχt

}
. (16)

(16) is an unconstrained quadratic optimization problem
with respect to µt. By (4d) we know that it is a convex
problem, and hence it has an optimal solution if and
only if the gradient is zero in some point (see, e.g., [7,

Prop. 1.1.2]) To verify that it has a solution, and to work
out the optimal control, we take the derivative of (16)
with respect to µt and equate it to zero, which gives

R̄tµt = −S̄tχt − ḡt, t = 1 : ν − 1.

Since (4e) holds, we have that S̄tχt + ḡt ∈ Im(S̄t) ⊕

Im(ḡt) =
[
ker(S̄T

t ) ∩ ker(ḡTt )
]⊥

⊂ ker(R̄t)
⊥ = Im(R̄t)

(see, e.g., [12, Prop. 2.3] for the last equality), where
⊕ denotes the direct sum of the subspaces. Hence, the
above equation has a solution, and the control signal
takes the form of

µt = −R̄†
t(S̄tχt + ḡt) + Pker(R̄)

t λt,∀λt ∈ Rn, t = 1 : ν − 1,
(17)

which minimizes the right hand side of (16). Plug (17)
into (16), use the property of (4e) and in view of (3), (8),
the quadratic, first order and constant terms regarding
χt equates between the left and right hand sides. Thus
the ansatz is indeed a solution to the HJBE.

So far, we have shown 4) =⇒ 1) =⇒ 2) =⇒ 4), i.e., the
equivalence among 1), 2) and 4). To complete the proof,
we now show the equivalence between 2) and 3).

First, we prove 2) =⇒ 3), and start with noting that
if (3) holds, then (5a) holds trivially. Next, with ξ̄t =

ḡTt R̄
†
t ḡt, we know from the above argument that due to

the kernel containment (4e), H̄t can be expressed as

H̄t =


R̄t S̄t ḡt

S̄T
t S̄T

t R̄
†
tS̄t S̄T

t R̄
†
t ḡt

ḡTt ḡTt R̄
†
tS̄t ḡTt R̄

†
t ḡt



=


R̄t

S̄T
t

ḡTt

 R̄†
t

[
R̄t S̄t ḡt

]
, t = 1 : ν − 1.

By (4d), R̄†
t ⪰ 0 and hence H̄t ⪰ 0, i.e., (5b) holds. On

the other hand, by the rank property of Schur comple-
ment [19, p. 43], it holds that

rank(H̄t) = rank(R̄t) + rank(H̄t\R̄t).

Now, observe that

H̄t\R̄t =

[
S̄T

t R̄
†
tS̄t S̄T

t R̄
†
t ḡt

ḡTt R̄
†
tS̄t ḡTt R̄

†
t ḡt

]
−

[
S̄T

t

ḡTt

]
R̄†

t

[
S̄t ḡt

]

=

[
S̄T

t R̄
†
tS̄t S̄T

t R̄
†
t ḡt

ḡTt R̄
†
tS̄t ḡTt R̄

†
t ḡt

]
−

[
S̄T

t R̄
†
tS̄t S̄T

t R̄
†
t ḡt

ḡTt R̄
†
tS̄t ḡTt R̄

†
t ḡt

]
= 0,

7



and hence rank(H̄t) = rank(R̄t), i.e., (5c) holds.

Now we prove 3) =⇒ 2). If (5) holds, it follows that
R̄t ⪰ 0, i.e., (4d) holds. By properties of the generalized
Schur complement [19, Thm. 1.20 and p. 43], it follows
that

(I − R̄tR̄
†
t)
[
S̄t ḡt

]
= 0, =⇒ (4e),

H̄t\R̄t :=

[
AT P̄t+1A+ Q̄− P̄t β̄t

βt ξ̄t

]
−

[
S̄T

t

ḡTt

]
R̄†

t

[
S̄t ḡt

]

=

[
AT P̄t+1A+ Q̄− P̄t β̄t

β̄t ξ̄t

]
−

[
S̄T

t R̄
†
tS̄t S̄T

t R̄
†
t ḡt

ḡTt R̄
†
tS̄t ḡTt R̄

†
t ḡt

]
⪰ 0,

rank(H̄t) = rank(R̄t) + rank(H̄t\R̄t).

Since rank(H̄t) = rank(R̄t), we must have that H̄t\R̄t =
0, and hence (3) follows. This finishes the proof of the
entire theorem. 2

Before we continue, we make a few remarks related to
Theorem 3.1 and the proof.

Remark 3.2 From the above proof, it is interesting to
note that in the equivalence between point 2) and 3) in
Theorem 3.1, we have that (5a) and (5c) are equivalent
to that the Riccati recursions in (3) are satisfied, and that
(5b), i.e., that H̄t ⪰ 0 holds, is equivalent to (4d) and
(4e).

Remark 3.3 By extending the state space to x̃t =
[xT

t , 1]
T and with state space matrices given by

Ã =

[
A d

0T 1

]
, B̃ =

[
B

0

]
, (18a)

and cost matrices given by

˜̄Q =

[
Q̄ q̄

q̄T 0

]
, ˜̄R = R̄, (18b)

we can indeed rewrite the forward problem (1) as a “stan-

dard” LQ problem (albeit possibly indefinite):

min
x1:ν , u1:ν

JN := E
wν−N+1:ν−1

[1
2
x̃T
ν
˜̄Qx̃ν

+

ν−1∑
t=ν−N+1

[
1

2
x̃T
t
˜̄Qx̃t +

1

2
uT
t
˜̄Rut]

]
(19a)

s.t. x̃t+1 = Ãx̃t + B̃ut + w̃t,

t = ν −N + 1, . . . , ν − 1, (19b)

x̃t+1 = x̃t, t = 1, . . . , ν −N (19c)

x̃1 = ¯̃x, (19d)

u1 = · · · = uν−N = 0, (19e)

with initial value ¯̃x = [x̄T , 1]T , and where w̃t = [wT
t , 0]

T .
However, note that (19) is not a classic LQR in the sense

that (Ã, B̃) is not controllable. Moreover, ¯̃x does not
satisfy Assumption 2.6. Furthermore, extending (19) to
time-varying dt or the tracking problem, where qt = Qxrt
and xrt is the reference signal, is not possible without
specifying the problem structure (18). Therefore, existing
IOC results cannot be directly applied to (19).

3.2 Analysis of the closed-loop system matrices

In view of (9), it seems like there might be infinitely
many choices of control signals that are optimal. How-
ever, as we shall see, under the assumptions we impose
the optimal control signal is unique for the considered
forward problem (1).

Proposition 3.4 Let R̄ ≻ 0. Under Assumptions 2.2,
2.3 and 2.6, (Q̄, q̄) ∈ F (R̄) is equivalent to R̄t ≻ 0,
t = 1 : ν − 1.

PROOF. The implication “⇐=” follows from Theo-
rem 3.1. To prove the implications “=⇒”: by Theo-
rem 3.1, since (Q̄, q̄) ∈ F (R̄), there exist matrices and
vectors that fulfil (3) and (4). In particular, since A is
invertible, by (4a) and (4b) we have that

R̄t = BT P̄t+1B+R̄ = BT P̄t+1AA
−1B+R̄ = S̄tA

−1B+R̄,

for t = 1 : ν − 1. Now, by (4e) we have that ker(R̄t) ⊂
ker(S̄T

t ) holds for t = 1 : ν−1. In particular, this means
that

z ∈ ker(R̄t) =⇒
{
R̄tz = 0

S̄T
t z = 0

=⇒
{
−S̄tA

−1Bz = R̄z

zT S̄t = 0.

This in turn means that for any z ∈ ker(R̄t),

zT R̄z = −zT S̄tA
−1Bz = 0,

and since R̄ ≻ 0 this means that z = 0. Therefore, the
only vector in ker(R̄t) is the zero-vector, and since R̄t is
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positive semi-definite (see (4d)), this implies that R̄t is
in fact strictly positive definite for t = 1 : ν − 1. 2

Corollary 3.5 Under the assumptions in Proposi-
tion 3.4, the optimal control signal for problem (1) takes
the form

ut = −R̄−1
t (S̄txt + ḡt), t = ν −N + 1 : ν − 1 (20a)

ut = 0, t = 1 : ν −N. (20b)

Remark 3.6 Even if R̄ is not strictly positive definite,
by the proof of Proposition 3.4 we can still partially char-
acterize ker(R̄t). In particular, z ∈ ker(R̄t) implies that
zT R̄z = 0. If R̄ is full rank, this is the neutral subspace
in the indefinite inner product space defined by R̄; see,
e.g., [15, Chp. 2].

By Corollary 3.5, under the conditions in Proposi-
tion 3.4 there is a unique solution to the forward optimal
control problem (1). In this case, the system’s behav-
ior (after it starts applying control) is determined by

x̃t+1 = Ãcl(t; Q̄, q̄)x̃t + w̃t, for t = ν −N + 1 : ν, where

Ãcl(t; Q̄, q̄) is the closed-loop system matrix at time t
for the extended state-space model (see Remark 3.3). In
particular,

Ãcl(t; Q̄, q̄) =

[
A−BR̄−1

t S̄t d−BR̄−1
t ḡt

0T 1

]
, (21)

with R̄t, S̄t, and ḡt as in (4), and hence it implicitly
depends on (Q̄, q̄) in the objective function (1a). This
means that the (conditional) distribution of the agent’s
optimal trajectory P(x1:ν | N = N, x̄ = x̄) and op-
timal control P(u1:ν−1 | N = N, x̄ = x̄) are implic-
itly given by solving (1). Moreover, under mild regular-
ity conditions on the probability distribution of (x̄,N),
the formulation in (1) then defines joint probability dis-
tributions for (x1:ν ,N , x̄) and (u1:ν−1,N , x̄) (cf. [39,
Prop. 1.15] or [21, Thm. 5.3]). Before we continue ana-
lyzing the identifiability, we present the following corol-
lary that is useful in the analysis to come.

Corollary 3.7 Under the assumptions in Proposi-
tion 3.4, given any R ≻ 0, for any (Q, q) ∈ F (R), let
{Pt}νt=1 be the solution to (3) that corresponds to Q. Ac-
cordingly, letRt,St and gt be defined as in Theorem 3.1,
for t = 1 : ν − 1. Then the matrix

Acl(t;Q) := A−BR−1
t St,

as well as the matrix Ãcl(t;Q, q) in (21), are invertible
for all t = 1 : ν − 1.

PROOF. The fact that the matrix Acl(t;Q) is invert-
ible for t = 1 : ν − 1 follows by an argument similar to

the proof of [49, Thm. 2.1], since R ≻ 0 and Rt ≻ 0

holds for t = 1 : ν − 1. To show that Ãcl(t;Q, q) has
full rank, we simply note that it has the upper block-
triangular form (21), and since Acl(t;Q) has full rank so

does Ãcl(t;Q, q). 2

4 Identifiability analysis and persistent excita-
tion

Next, we investigate the inverse problem of recovering
(Q̄, q̄) from observations of optimal trajectories to prob-
lem (1). Throughout the rest we will therefore, unless
explicitly stated otherwise, assume that R̄ = I and
(Q̄, q̄) ∈ F (R̄ = I). We start by considering the identi-
fiability of the problem.

To this end, first note that from the analysis in Section 3,
for any parameters (Q, q) ∈ F (I), the agent’s behav-
ior is completely determined by the time-varying closed-
loop system matrices Ãcl(t;Q, q) in (21). In the spirit of
[28, Sec. 5.1], we can thus see the sequence of closed-loop

system matrices {Ãcl(t;Q, q)}ν−1
t=1 as the model struc-

ture. Therefore, the fundamental question for identifi-
ability is if there exist two different sets of parameters
(Q, q) and (Q′, q′) such that Ãcl(t;Q, q) = Ãcl(t;Q

′, q′)
for all t = 1 : ν − 1.

Proposition 4.1 (Identifiability) Under Assump-
tions 2.2, 2.3, 2.4 and 2.6, given (Q, q), (Q′, q′) ∈ F (I),

if Ãcl(t;Q, q) = Ãcl(t;Q
′, q′) for all t = 1 : ν − 1, then

(Q, q) = (Q′, q′).

PROOF. Assume that Ãcl(t;Q, q) = Ãcl(t;Q
′, q′) for

t = 1 : ν − 1, and let (Pk, ηk,Sk,Rk, gk)
ν−1
k=ν−N+1 and

(P ′
k, η

′
k,S

′
k,R

′
k, g

′
k)

ν−1
k=ν−N+1 be the solutions to (3) and

(4) for (Q, q) and (Q′, q′), respectively. Moreover, let
Q′ = Q+∆Q, q′ = q+∆q, P ′

t = Pt+∆Pt, η
′
t = ηt+∆ηt,

S′
t = St + ∆St, R

′
t = Rt + ∆Rt, and g

′
t = gt + ∆gt.

Since Ãcl(t;Q, q) = Ãcl(t;Q
′, q′), for t = 1 : ν − 1, it fol-

lows that Acl(t;Q) = Acl(t;Q
′), for t = 1 : ν − 1. Then

following the line of arguments in [49, Thm. 2.1], we can
conclude that ∆Q = 0. This in turn implies that ∆Pt,
∆Rt and ∆St are all zero (cf. (3) and (4)).

Next, since Ãcl(t;Q, q) = Ãcl(t;Q
′, q′) and ∆Rt = 0, for

t = 1 : ν−1, it follows that d−BR−1
t gt = d−BR−1

t g′t for
t = 1 : ν − 1. Therefore, it holds that BR−1

t ∆gt = 0 for
t = 1 : ν−1. Since B is full column rank by assumption,
and sinceR−1

t ≻ 0 by Proposition 3.4, we must have that
∆gt = 0 for t = 1 : ν − 1. In view of (4c), we therefore
have that

BT∆ηt+1 = ∆gt = 0, t = 1 : ν − 1.
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Next, in view of (3c) and (3d), this in turn implies that

∆ην = ∆q, ∆ηt = AT∆ηt+1 +∆q, t = 1 : ν − 1.

Thus, we have

∆ην = ∆q, BT∆ην = BT∆q = 0, (22a)

BT∆ην−1 = BT (AT∆ην +∆q)

= BTAT∆q +BT∆q︸ ︷︷ ︸
=0

= 0. (22b)

Furthermore,

BT∆ην−2 = BT (AT∆ην−1 +∆q)

= BT ((AT )2∆ην +AT∆q +∆q)

= BT (AT )2∆q +BTAT∆q +BT∆q︸ ︷︷ ︸
=0

= 0, (22c)

. . .

BT η1 = BT (AT )ν−1∆q

+BT (AT )ν−2∆q + . . .+BT∆q︸ ︷︷ ︸
=0

= 0. (22d)

Writing (22) in a compact form gives


BT

BTAT

...

BT (AT )ν−1


︸ ︷︷ ︸

Γ

∆q = 0.

Since (A,B) is controllable by Assumption 2.2, and ν ≥
n + 1 by Assumption 2.4, the matrix Γ has full column
rank, and hence ∆q = 0. The fact that ∆Q = 0,∆q = 0
implies that Q = Q′, q = q′. 2

This means that the parameters (Q, q) that characterizes
the closed-loop system matrices are identifiable. More-
over, in view of (1), we can see (x̄,N) as the “input”
of the model and y1:ν as the “output”. To this end,
in order to uniquely identify the parameters (Q̄, q̄), the
“input” (x̄,N) needs to be “persistently exciting” [28,
Sec. 5.1]. Notably, Assumption 2.4 gives the persistent
excitation assumption regardingN . Moreover, Assump-
tion 2.6 turns out to give a persistent excitation condi-
tion for the initial value x̄. In fact, we have the following
result, the proof of which we defer to the appendix.

Lemma 4.2 Let (x̄,N) be as in Assumption 2.6. Then,
for all N ∈ {2, . . . , ν} such that P(N = N) > 0,
covx̄|N=N (x̄, x̄) ≻ 0.

PROOF. See Appendix. 2

This result can now be used to prove the following
Lemma, which is useful in the IOC algorithm construc-
tion to come. Similarly, the proof of this Lemma is also
deferred to the appendix.

Lemma 4.3 (Persistent excitation) Suppose that
(Q̄, q̄) ∈ F (I) and let x̃t := [xT

t , 1]
T . Under Assump-

tions 2.2, 2.3, 2.4, and 2.6, it holds thatExt|N=ν [x̃tx̃
T
t ] ≻

0, and E[∥x̃t∥2] <∞ for all t = 1 : ν.

PROOF. See Appendix. 2

5 The IOC algorithm

In this section, we construct the IOC algorithm for gen-
eral linear-quadratic systems with different time-horizon
lengths. In particular, we show that the algorithm is sta-
tistically consistent, i.e., that it converges in probability
to the true underlying parameter. For the sake of brevity,
in some of the following we sometimes use the notation
(·) for the arguments of some functions.

In order to construct the IOC algorithm, we furthermake
the following assumption.

Assumption 5.1 (Bounded parameters) The pa-
rameter tuple (Q̄, q̄) that governs the agents tracking
behaviour lies in the compact set

G(φ) :=

{
(Q̄ ∈ Sn, q̄ ∈ Rn) | ∥

[
Q̄ q̄

q̄ 0

]
∥F ≤ φ

}
,

for some (potentially unknown) 0 < φ <∞.

This assumption is mild, since when we solve the corre-
sponding inverse problem in practice, we can always set
φ arbitrary large if we have no prior knowledge on the
norm bound of the parameters.

5.1 Construction and empirical approximation

To this end, the algorithm is constructed based on the
necessary and sufficient optimality conditions in Theo-
rem 3.1. More precisely, we are interested in finding the
best (Q⋆, q⋆) ∈ F (I) that suits the collected optimal
state trajectory observations {yit}νt=1 of the agent’s tri-
als i = 1 : M . Thus, the IOC algorithm will be built
upon an optimization problem which is constructed so
that it has a unique optimal solution (Q⋆, q⋆) which is
the “true” (Q̄, q̄) ∈ F (I).
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First, we construct the objective function for the opti-
mization problem. Given a realization of the planning
horizon N , an optimal control signal µ⋆

t that is optimal
to (Q, q) (assuming that (Q, q) ∈ F (I)) and an optimal
control signal µ̄t that is optimal to (Q̄, q̄), it holds for all
state χt ∈ Rn that

0 =
1

2
χT
t Qχt+q

Tχt+
1

2
∥µ⋆

t ∥2+ E
wt

[Vt+1(Aχt+Bµ
⋆
t +d

+wt)]−Vt(χt)

= min
µt

{1

2
χT
t Qχt + qTχt +

1

2
∥µt∥2

+ E
wt

[Vt+1(Aχt +Bµt + d+wt)]
}
− Vt(χt)

≤ 1

2
χT
t Qχt+q

Tχt+
1

2
∥µ̄t∥2+ E

wt

[Vt+1(Aχt+Bµ̄t+d

+wt)]−Vt(χt),

where the inequality follows since µ̄t is not necessarily
optimal to (Q, q, R̄ = I), and where Vt(·) has the form
(7), and Pt:t+1, ηt:t+1, and γt:t+1 in Vt(·) are determined
by (Q, q) via (3). Moreover, seen intuitively from the
other perspective, for given χt and µ̄t, we expect the
inequality to hold unless we plug in (Q, q, R̄ = I) which
renders the state χt and control µ̄t optimal. We hence
define the “violation” of HJBE at time step t by

ψt,N (Q, q;χt, µt) :=

E
wt

[Vt+1(Aχt +Bµt + d+wt)] +
1

2
χT
t Qχt + qTχt

+
1

2
∥µt∥22 − Vt(χt), t = ν −N + 1 : ν − 1,

since we expect that ψt,N (Q, q;χt, µt) ≥ 0. The latter
will be formally proved in Theroem 5.2.

Now, plugging (7) and (8) in to the above equation, we
have

ψt,N (Q, q;χt, µt) = E
wt

[1
2
(Aχt +Bµt + d+wt)

TPt+1

× (Aχt +Bµt + d+wt) + ηTt+1(Aχt +Bµt + d+wt)
]

+
1

2
χT
t Qχt + qTχt +

1

2
∥µt∥2 −

1

2
χT
t Ptχt − ηTt χt

+
1

2
gTt R

†
tgt −

1

2
dTPt+1d− ηTt d−

1

2
tr(Pt+1Σw). (23)

Given a realization of the planning horizon N , let
xν−N+1:ν and uν−N+1:ν−1 be the optimal trajectory
and control. We let χt = xt and µt = ut, and take
the expectation of ψt,N (Q, q;xt,ut) with respect to

xt|N = N . In view of (1b), this gives

E
xt|N=N

[ψt,N (Q, q;xt,ut)] =

E
xt|N=N

[
E
wt

[1
2

T

(Axt +But + d+wt)︸ ︷︷ ︸
xt+1

Pt+1

× (Axt +But + d+wt)︸ ︷︷ ︸
xt+1

+ηTt+1 (Axt +But + d+wt)︸ ︷︷ ︸
xt+1

]
+

1

2
xT
t Qxt + qTxt +

1

2
∥ut∥2 −

1

2
xT
t Ptxt − ηTt xt

+
1

2
gTt R

†
tgt −

1

2
dTPt+1d− ηTt d−

1

2
tr(Pt+1Σw)

]
= E

xt+1|N=N

[1
2
xT
t+1Pt+1xt+1 + ηTt+1xt+1

]
+ E

xt|N=N

[1
2
xT
t Qxt + qTxt +

1

2
∥ut∥2 −

1

2
xT
t Ptxt − ηTt xt

]
+

1

2
gTt R

†
tgt −

1

2
dTPt+1d− ηTt d−

1

2
tr(Pt+1Σw). (24)

However, the above expression is constructed based on
xt, while the observations are in terms of yt. To rewrite
it in terms of yt, first we simply add and subtract some
terms in the expression above:

E
xt|N=N

[ψt,N (Q, q;xt,ut)] = E
xt|N=N

[ψt,N (Q, q;xt,ut)]

+
1

2
tr(Pt+1Σv)−

1

2
tr(PtΣv) +

1

2
tr(QΣv)

− 1

2
tr(Pt+1Σv) +

1

2
tr(PtΣv)−

1

2
tr(QΣv). (25)

On the other hand, by Assumption 2.3, {vt}∞t=1 are in-
dependent of any other stochastic elements. Using the
cyclic permutation property of the matrix trace opera-
tor, we know that

E
vt

[vT
t Pt+1vt] = E

vt

[tr(vT
t Pt+1vt)] = E

vt

[tr(Pt+1vtv
T
t )]

= tr(Pt+1Σv).

Similarly, we also have Evt [v
T
t Ptvt] = tr(PtΣv),

Evt+1
[vT

t Qvt] = tr(QΣv), d
TPt+1d = tr(Pt+1dd

T ).
In view of (8), (2) and the fact that Ewt

[wt] = 0,
Evt

[vt] = 0, using (24) and (25) we can rewrite
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Ext|N=N [ψt,N (Q, q;xt,ut)] as

E
xt|N=N

[ψt,N (Q, q;xt,ut)]

= E
vt:t+1

[
E

xt+1|N=N

[1
2
(xt+1 + vt+1)

T︸ ︷︷ ︸
yT
t+1

× Pt+1 (xt+1 + vt+1)︸ ︷︷ ︸
yt+1

+ηTt+1 (xt+1 + vt+1)︸ ︷︷ ︸
yt+1

]
+ E

xt|N=N

[1
2
(xt + vt)

T︸ ︷︷ ︸
yT
t

Q (xt + vt)︸ ︷︷ ︸
yt

+qT (xt + vt)︸ ︷︷ ︸
yt

+
1

2
∥ut∥2 −

1

2
(xt + vt)

T︸ ︷︷ ︸
yT
t

Pt (xt + vt)︸ ︷︷ ︸
yt

−ηTt (xt + vt)︸ ︷︷ ︸
yt

]

+
1

2
gTt R

†
tgt −

1

2
tr(Pt+1dd

T )− ηTt d−
1

2
tr(Pt+1Σw)

− 1

2
tr(Pt+1Σv) +

1

2
tr(PtΣv)−

1

2
tr(QΣv)

]
= E
yt+1|N=N

[1
2
yT
t+1Pt+1yt+1 + ηTt+1yt+1

]
+ E
xt|N=N

[1
2
∥ut∥2

]
+ E

yt|N=N

[1
2
yT
t Qyt + qTyt −

1

2
yT
t Ptyt − ηTt yt

]
+

1

2
gTt R

†
tgt −

1

2
tr(Pt+1dd

T )− ηTt d−
1

2
tr(Pt+1Σw)

− 1

2
tr(Pt+1Σv) +

1

2
tr(PtΣv)−

1

2
tr(QΣv)

=: E
yt:t+1|N=N

[ψ̃t,N (Q, q, Pt:t+1, ηt, ξt;yt:t+1)]

+ E
xt|N=N

[
1

2
∥ut∥2],

where we introduce ξt := gTt R
†
tgt. We construct the ob-

jective functionΨ(Q, q, P1:ν , η1:ν , ξ1:ν−1) by summing up
the above equation from t = ν −N +1 to ν − 1, but ex-
cluding the termsExt|N=N [ 12∥ut∥2] which are constants,
and taking the expectation over N . In particular,

Ψ(·) :=
ν∑

N=2

P(N = N) E
yν−N+1:ν |N=N

[
ψ̃N (·)

]
, (26)

where

ψ̃N (·) =
ν−1∑

t=ν−N+1

ψ̃t,N (·)

=
1

2
yT
ν Pνyν + ηTν yν − 1

2
yT
ν−N+1Pν−N+1yν−N+1

− ηTν−N+1yν−N+1 −
1

2
tr(PνΣv) +

1

2
tr(Pν−N+1Σv)

+

ν−1∑
t=ν−N+1

(1
2
ξt −

1

2
tr(Pt+1dd

T )− ηTt+1d+
1

2
yT
t Qyt

+ qTyt −
1

2
tr(Pt+1Σw)−

1

2
tr(QΣv)

)
. (27)

The objective function (26) can be rewritten as a joint
expectation over y1:ν and N . However, we find the form
in (26) more useful both in analysis and in implementa-
tion.

The objective function (26) is constructed with the idea

that Ψ(·) +
∑ν−1

t=1 Ext,N

[
1
2∥ut∥2

]
, where the latter is

the discarded constant, should be bounded from below
by 0 for all (Q, q) ∈ F (I). Therefore, ideally we would
consider the problem of finding the point (Q⋆, q⋆) that
minimizes (26) subject to (3) and (4). FromTheorem 3.1,
we know that (3) and (4) are equivalent to (5) and ξt =

gTt R
†
tgt for t = 1 : ν − 1. However, while (26) is linear

and hence a convex function, neither the constraint (5)

nor the constraint ξt = gTt R
†
tgt for t = 1 : ν − 1 are

convex. Even so, note that the only nonconvex part in
(5) is (5c). We therefore consider the relaxed convex
problem obtained by removing the constraints (5c) and

ξt = gTt R
†
tgt for t = 1 : ν − 1. 3 In particular, the

optimization problem for IOC reads

min
(Q,q)∈G(φ)

{Pt∈Sn+(φ)}t=1:ν ,

{ηt∈Bn
φ(0)}t=1:ν ,

{ξt∈B1
φ(0)}t=1:ν−1

Ψ(Q, q, P1:ν , η1:ν , ξ1:ν−1)

s.t. Pν = Q, (28a)

ην = q (28b)

Ht ⪰ 0, t = 1 : ν − 1, (28c)

where Ht has the same form as (5b). In Section 5.2, we
prove that the unique optimal solution to this optimiza-
tion problem is indeed (Q̄, q̄).

Nevertheless, the distribution of x̄, {wt}, {vt} and N
are usually not a priori known in practice, and hence the
distribution of yt and N are not known. Therefore, it
is not possible to calculate the objective function (26)
explicitly, and hence we cannot solve (28) directly. But
since we have the optimal state trajectory observations
{yit}νt=1 of the agent’s trials, i.e., realizations of I.I.D. ran-
dom processes {yi

t}νt=1 for i = 1 :M , we can instead em-
pirically estimate the objective function. To this end, let
MN denote the number of observations which has a plan-
ning horizon of N time steps. Clearly,

∑ν
N=2MN =M .

Then, for each value of N , the expectation in (26) is ap-

3 Another possibility would be to substitute ξt = gTt R
†
tgt

into the matrix (5b), which would (also) give a convex prob-
lem; see [31, 32].
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proximated by the empirical mean as

E
yν−N+1:ν |N=N

[ψ̃N (·)] ≈

1

MN

MN∑
iN=1

[1
2
yiNT
ν Pνy

iN
ν +ηTν y

iN
ν −1

2
yiNT
ν−N+1Pν−N+1y

iN
ν−N+1

− ηTν−N+1y
iN
ν−N+1 −

1

2
tr(PνΣv) +

1

2
tr(Pν−N+1Σv)

+

ν−1∑
t=ν−N+1

(1
2
ξt −

1

2
tr(Pt+1dd

T )− ηTt+1d+
1

2
yiNT
t QyiN

t

+ qTyiN
t − 1

2
tr(Pt+1Σw)−

1

2
tr(QΣv)

)]]
.

On the other hand, approximating the expectation over
N is the same as estimating the probabilities P(N =
N) using the empirical estimatesMN/M . This, together
with the above expression, gives that

Ψ(Q, q, P1:ν , η1:ν , ξ1:ν−1) ≈

Ψy
E(Q, q, P1:ν , η1:ν , ξ1:ν−1) =

1

M

ν∑
N=2

MN∑
iN=1

[1
2
yiNT
ν Pνy

iN
ν

+ ηTν y
iN
ν − 1

2
yiNT
ν−N+1Pν−N+1y

iN
ν−N+1 − ηTν−N+1y

iN
ν−N+1

− 1

2
tr(PνΣv) +

1

2
tr(Pν−N+1Σv) +

ν−1∑
t=ν−N+1

(1
2
ξt

− 1

2
tr(Pt+1dd

T )− ηTt+1d+
1

2
yiNT
t QyiN

t + qTyiN
t

− 1

2
tr(Pt+1Σw)−

1

2
tr(QΣv)

)]
. (29)

We therefore consider the estimator

min
(Q,q)∈G(φ)

{Pt∈Sn+(φ)}t=1:ν ,

{ηt∈Bn
φ(0)}t=1:ν ,

{ξt∈B1
φ(0)}t=1:ν−1

Ψy
E(Q, q, P1:ν , η1:ν , ξ1:ν−1)

s.t. (28a)–(28c) hold. (30)

In practice, an estimate is obtained by solving (30) for a
given realization {yi1:ν}Mi=1 of {yi

1:ν}Mi=1. We will use the
notation Ψy

E(·)|y=y to denote the objective function at
the given realization.

5.2 Statistical consistency analysis

In this section, we analyze the statistical consistency of
the IOC algorithm. To proceed, we first show that the
optimization problem (28) is well-posed, i.e., the objec-
tive function (26) is bounded from below on its feasible
domain (28a), (28b) and (28c). In addition, we show the
“true” (Q̄, q̄) is actually the unique global minimizer.

Theorem 5.2 Let (Q̄, q̄) ∈ F (I) be the “true” pa-
rameters of the stochastic linear-quadratic control prob-
lem (1) that governs the agent, and let x1:ν , u1:ν ,
and y1:ν be distributed accordingly. Under Assump-
tions 2.2, 2.3, 2.4, 2.6, and 5.1, for any feasible solution
(Q, q, P1:ν , η1:ν , ξ1:ν−1) of the optimization problem (28),
the objective function (26) is bounded from below by

−
∑ν−1

t=1 Ext,N

[
1
2∥ut∥2

]
. Moreover, for φ that is large

enough, (Q̄, q̄, P̄1:ν , η̄1:ν , ξ̄1:ν−1) is the unique globally op-
timal solution achieving the lower bound, where P̄1:ν , η̄1:ν
are generated by (3) and ξ̄t = ḡTt R̄

†
t ḡt, t = 1 : ν − 1.

PROOF. See Appendix. 2

Having shown that the optimization problem (28) has
(Q̄, q̄) as unique globally optimal solution, next we turn
to the estimator (30). We show that it is statistically
consistent, but to this end we first have the following
Lemmas.

Lemma 5.3 (Boundedness of estimator) The fea-
sible region in problem (30) is compact. Moreover, for any
realization, the cost functionΨy

E(Q, q, P1:ν , η1:ν , ξ1:ν−1)|y=y

is bounded on the feasible region, and the optimization
problem (30) is convex and admits an optimal solution.

PROOF. It has already been established that the fea-
sible region is convex, see the arguments in Section 5.1.
Moreover, the feasible region is bounded by construc-
tion. Next, for any realization, Ψy

E(Q, q, P1:ν , η1:ν , ξ1:ν−1)|y=y

is a linear function, and hence (30) is a convex problem.
Moreover, since the cost function is linear, it is bounded
on the compact feasible domain. Finally, by Weierstrass’
theorem (see, e.g., [7, Prop. A.8]) the optimization
problem (30) admits an optimal solution. 2

Lemma 5.4 (Uniform law of large numbers) For
large enough φ and under Assumptions 2.2, 2.3, 2.4,
2.6, and 5.1, the optimal value

sup
(Q,q)∈G(φ)

{Pt∈Sn+(φ)}t=1:ν ,

{ηt∈Bn
φ(0)}t=1:ν ,

{ξt∈B1
φ(0)}t=1:ν−1

|Ψy
E(·)−Ψ(·)|

s.t. (28a)–(28c) hold.

converges to 0 almost surely as M → ∞.

PROOF. The proof follows along the lines of [47, Proof
of Lem. 4.2]. First, the argument inside the expectation
in Ψ(·) can be bounded from above by an integrable
function of the random variables, but which is indepen-
dent of the parameters (Q, q, P1:ν , η1:ν , ξ1:ν−1). This can
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be done using bounds from Lemmas 4.3 and 5.3. Using
this bound in terms of an integrable function, the result
follows from [20, Thm. 2]. 2

Theorem 5.5 (Statistical consistency) For large
enough φ and under Assumptions 2.2, 2.3, 2.4, 2.6,
and 5.1, given a realization of M trajectories, let
(QM , qM , PM

1:ν , η
M
1:ν , ξ

M
1:ν−1) be a corresponding opti-

mal solution to (30). Then QM p→ Q̄ and qM
p→ q̄ as

M → ∞.

PROOF. The result follows by verifying the conditions
in [43, Thm. 5.7]. In particular, since (30) is convex,
(QM , qM1:ν , P

M
1:ν , η

M
1:ν , ξ

M
1:ν−1) is a globally optimal solu-

tion. This means that

Ψy
E(Q

M , qM , PM
1:ν , η

M
1:ν , ξ

M
1:ν−1)|y=y

≤ Ψy
E(Q̄, q̄, P̄1:ν , η̄1:ν , ξ̄1:ν−1)|y=y.

Moreover, since convergence almost surely implies con-
vergence in probability [21, Lem. 3.2], Lemma 5.4 im-
plies that

sup
(Q,q)∈G(φ)

{Pt∈Sn+(φ)}t=1:ν ,

{ηt∈Bn
φ(0)}t=1:ν ,

{ξt∈B1
φ(0)}t=1:ν−1

|Ψy
E(·)−Ψ(·)|

s.t. (28a)–(28c) hold.

converges to 0 in probability asM → ∞. Finally, the fact
that the feasible region to (28) and (30) is compact (see
Lemma 5.3), and that (28) has a unique optimal solution
(see Theorem 5.2), by [43, p. 46] the last condition also
holds. Hence, the result follows. 2

5.3 On implementation and the computational com-
plexity of the estimator

To get a point estimate from the estimator (30), the data
(i.e., the observed trajectories) are used in the optimiza-
tion problem (30). This problem can be solved using any
appropriate method for solving the convex optimization
problem. In fact, even for modest sized problems, one
can use many off-the-shelf convex optimization solvers.
For example, problem (30) can be implemented, almost
exactly as stated, in frameworks for disciplined convex
programming, including YALMIP [29], CVX [16, 17],
and CVXPY [1, 11].

The only difference between an implementation in a
framework for disciplined convex programming and the
stated problem in (30), is that the cost function can be
rewritten to make the implementation more efficient. To
this end, observe that for any Z ∈ Sn and any a ∈ Rn,

aTZa = tr(ZaaT ). This means that the objective func-
tion (29) can be rewritten as

Ψy
E(Q, q, P1:ν , η1:ν , ξ1:ν−1) =

1

M

ν∑
N=2

[1
2
tr(PνY

(N)
ν ) + ηTν y

(N)
ν

− 1

2
tr(Pν−N+1Y

(N)
ν−N+1)− ηTν−N+1y

(N)
ν−N+1 −

MN

2
tr(PνΣv)

+
MN

2
tr(Pν−N+1Σv) +

ν−1∑
t=ν−N+1

(MN

2
ξt −

MN

2
tr(Pt+1dd

T )

−MNη
T
t+1d+

1

2
tr(QY

(N)
t ) + qTy

(N)
t

− MN

2
tr(Pt+1Σw)−

MN

2
tr(QΣv)

)]
,

where y
(N)
t =

∑MN

iN=1 y
iN
t andY

(N)
t =

∑MN

iN=1 y
iN
t (yiN

t )T .

Note that y
(N)
t and Y

(N)
t are collecting all the samples

at time-point t from trajectories with the same planning
horizon length N , and that these can be pre-computed
from the data before assembling the optimization prob-

lem (30). Moreover, the sizes of y
(N)
t and Y

(N)
t only

depend on the dimension of the state space, n. It means
that the size of the optimization problem does not grow
with the amount of data collected.

More specifically, since Q ∈ Sn, q ∈ Rn, {Pt ∈ Sn+}t=1:ν ,
{ηt ∈ Rn}t=1:ν , and {ξt ∈ R}t=1:ν−1, the number of
variables in the problem is n(n+1)/2+n+νn(n+1)/2+
νn + ν. Moreover, the LMI constraints in (28c) are ν
symmetric matrices of size (m + n + 1) × (m + n + 1).
This means that, e.g., n = 12, m = 4, and ν = 80 gives
a problem with a total of 7370 scalar variables and 80
LMI constraints of size 17 × 17. As we demonstrate in
Section 6.1, this can be handled by standard off-the-shelf
convex optimization solvers.

6 Numerical examples

In this section, we present two numerical examples. The
first example, in Section 6.1, illustrates that the prob-
lem (30) can be solved efficiently with off-the-shelf con-
vex optimization solvers. The second example, in Sec-
tion 6.2, applies the developed methodology to a non-
zero sum pursuit-evasion game, where the pursuer mod-
els the evaders objective function using collected data.
In both examples, the problem is solved on a MacBook
Pro with Apple M1 eight-core CPU and 16GB of RAM,
and the implementation is done using YALMIP [29] in
Matlab and solved by MOSEK [4].

6.1 Demonstration of performance for a system with
both modest size and planning horizon

To illustrate the performance of the method, we gener-
ate a system with modest size and modest planning hori-
zon length. In particular, to ensure that Assumption 2.2
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holds, we generate continuous-time matrices Â ∈ R12×12

and B̂ ∈ R12×4 in controllable canonical form

Â =


I4

I4

I4

a1I4 a2I4 a3I4 a4I4

 , B̂ =


04

04

04

I4

 .

We sample the coefficients ai, i = 1 : 4 from a stan-
dard normal distributionN (0, 1). Next, we discretize the

system by letting A = eÂ∆t and B =
∫∆t

0
eÂtdtB̂, us-

ing the sampling period ∆t = 0.1. We choose Q̄ to be
the Hermitian part of a randomly drawn matrix with
shifted eigenvalues so that the smallest eigenvalue is
−0.1. 4 Namely, we let G′ = (G + GT )/2 and Q̄ =
G′ − (σmin(G

′) + 0.1)I, where σmin(·) is the smallest
eigenvalue of a matrix and where G ∈ R12×12 and ele-
ments are randomly drawn fromN (0, 1). We set ν = 80,
and verify that the conditions in point 2) in Theorem 3.1
hold, i.e., that R̄t ≻ 0 for t = 1 : 79. The process noise
wt and measurement noise vt are drawn from multi-
variate normal distribution N (0,Σw) and N (0,Σv), re-
spectively, with covariance matrices that are randomly
generated from a Wishart distribution of degree 12, i.e.,
with the same degrees of freedom as the dimension of the
state. Moreover, the Wishart distribution used to draw
the covariance matrices has itself a random covariance of
0.01GGT , where each element in G ∈ R12×12 was drawn
from a standard normal distribution. Finally, we gener-
ateM = 5× 104 optimal trajectories, with the planning
horizon lengths N drawn uniformly from the integers in
the interval [2, 80] and with initial value x̄ drawn from
N (0, 100I12).

The time to solve the optimization problem (30), as re-
ported by MOSEK, is 4.85 seconds. Moreover, the rel-
ative error of the estimate is 0.0347, where the relative

error is computed as ∥Q̃est− ˜̄Q∥F

∥ ˜̄Q∥F

, where ˜̄Q is defined in

(18b) and Q̃est is defined analogously. This shows that
solving the IOC problem for systems of “moderate” size
and planning horizon length can be done efficiently with
off-the-shelf solvers.

6.2 Identification of cost in non-zero sum pursuit-
evasion game

In this section, we demonstrate the performance of
the proposed IOC algorithm on a non-zero sum two-
dimensional finite-horizon linear-quadratic pursuit-
evasion game, cf. [40]. For a more extensive treatment
of pursuit-evasion games, see, e.g., [5]. To this end, let
xt ∈ R2 be the distance between the pursuer and the

4 We shift the eigenvalues in order to make sure that we get a
forward problem that is well-posed, i.e., that (Q̄, q̄) ∈ F (I).

evader, and let up
t ,u

e
t ∈ R2 be the control signal of the

pursuer and the evader, respectively. In particular, for
each realization (x̄, N) of (x̄,N), we assume that the
evader solves the following problem

min
x1:ν ,
ue

1:ν

JN := E
wν−N+1:ν−1

[1
2
xT
νQ

exν+

ν−1∑
t=ν−N+1

[
1

2
xT
t Q

ext

+
1

2
∥ue

t∥2]
]

(31a)

s.t. xt+1 = Axt +Bue
t +Bup

t +wt,

t = ν−N+1 : ν−1, (31b)

xt+1 = xt, t = 1 : ν −N (31c)

x1 = x̄, (31d)

ue
1 = . . . = ue

ν−N = 0, (31e)

where (A,B) is discretized in the same way as in Sec. 6.1

from the continuous-time dynamics ẋ = Âx + B̂ue +
B̂up using the sampling period ∆t = 0.1, and where
ν = 20. Notably, Qe ≺ 0. In practice, as a pursuer,
Qe is unknown. In order to gain advantages over the
evader and predict its future movements, as a pursuer,
one can first use some “trivial” and “dummy” move-
ments up

ν−N+1:ν that are easy for the evader to predict
(i.e., known by the evader) in the first a few rounds of
the game. During these rounds, the pursuer collects the
evader’s behaviour data and use the proposed IOC algo-
rithm to estimate Qe. In particular, here we assume the
pursuer choose control up

t to be a constant during the
data collection phase for convenience. Consequently, the
forcing term d = Bup

t would be constant for the evader
(cf. (1b)). 5 The pursuer observes the noisy distance (see
(2)) between the pursuer and evader, which is the opti-
mal solution to (31).

To simulate this, we choose Â = 0, B̂ = I2,Q
e = −0.1I2,

and for each time step in the trajectories process noise
wt and measurement noise vt are drawn from multi-
variate normal distribution N (0,Σw) and N (0,Σv), re-
spectively, with covariance matrices

Σw ≈ 10−2

[
1.04 0.68

0.68 1.00

]
and Σv ≈ 10−2

[
2.33 −2.25

−2.25 2.18

]
.

The latter matrices were randomly generated by draw-
ing two elements from a Wishart distribution of de-
gree 2, i.e., with the same degrees of freedom as the
dimension of the state. The Wishart distribution is it-
self generated analogously to the distribution in Sec-
tion 6.1. As “dummy” movements for the pursuer, we
choose up

t = [−1,−1]T , t = ν − N + 1 : ν, and hence

5 In fact, it does not matter what kinds of strategy the
pursuer uses in the data collection phase, as long as the
evader can foresee it, since, as mentioned in Sec. 2.1, the
results still hold for time-varying dt.
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the constant forcing term in the dynamics is given by
d = B[−1,−1]T . Finally, the random variableN is taken
to be uniformly distributed on the integers between 2
and ν = 20.

To test the performance of the algorithm, we generate
100 batches of trajectories, where each batch consists
of 50000 trajectories. For each batch, we divide the
trajectories into groups of size M = 100 + 100(k − 1),
for k = 1, . . . , 500, where each larger group contains all
the trajectories of a smaller group. For each such group
of trajectories, we solve the IOC problem (with φ set
to 106), and this procedure is repeated for all the 100

batches. This means that we obtain estimates Qℓ,M
est , for

ℓ = 1, . . . , 100 and M = 100, 200, . . . , 50000. For each

value of M , the relative error ∥Qℓ,M
est − Qe∥F /∥Qe∥F is

averaged over the batches, and the resulting empirical
mean and empirical standard deviation (as a function
of M) is shown in Figure 1. From the figure we see
that, in line with the statistical consistency proved in
Theorem 5.5, both the mean and the standard devi-
ation decreases with increasing M . Moreover, in Fig-
ure 1 the logarithm of the mean and the logarithm of
the standard deviation appears to be (approximately)
affine in log(M). The figure also shows the correspond-
ing lines obtained by fitting an affine model to each
of the two sets of logarithmic data. From this fit, we
see that Mean of relative error ≈ O(M−0.48) and
Standard deviation of relative error ≈ O(M−0.55).
We hence suspect that the convergence rate isO(M−0.5),

and that
√
M(QM − Q̄) is asymptotically normal, just

like most M-estimators such as maximum log-likelihood
[43, p. 51]. However, a theoretical analysis of this is left
for future work.

10
2

10
3

10
4

10
-3

10
-2

10
-1

Fig. 1. Log-log plot of the mean and standard deviation of
the relative error of Qest as a function of the number of
trajectories. The estimates are obtained using noisy data, as
described in Section 6.2.

7 Conclusion

In this work, we have considered the inverse optimal con-
trol problem for discrete-time finite-horizon general in-

definite linear-quadratic problems with stochastic plan-
ning horizons. We first investigate the necessary and suf-
ficient conditions for when the forward problem is solv-
able. The identifiability of the corresponding inverse op-
timal control problem is analyzed and proved. Further-
more, based on the underlying necessary and sufficient
condition, we construct the estimator of the inverse op-
timal control problem as the solution to a convex opti-
mization problem, and prove that the estimator is sta-
tistically consistent. The performance of the estimator
is illustrated on a numerical example of identifying the
evaders cost in non-zero sum pursuit-evasion game.
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A Deferred proofs

PROOFOFPROPOSITION2.5. We show the con-
traposition of the statement, i.e., that if (Q̄, q̄, R̄) is
such that there exists an initial value x̄ ∈ Rn and a
time-horizon length N ∈ {2, . . . , ν} so that the opti-
mal control problem (1) is unbounded from below, then
there exists an initial value x̄′ so that (1) is unbounded
from below for planning horizon length ν. To this end,
consider planning horizon N = ν. By Theorem 3.1, if
(Q̄, q̄) ̸∈ F (R̄) then there exists an N such that (4d)
or (4e) does not hold for t = ν − N + 1. Splitting the
summation in the objective function as

Jν = E
w1:ν−1

[1
2
xT
ν Q̄xν + q̄Txν

+

ν−1∑
t=ν−N+1

[
1

2
xT
t Q̄xt + q̄Txt +

1

2
uT
t R̄ut]

+

ν−N∑
t=1

[
1

2
xT
t Q̄xt + q̄Txt +

1

2
uT
t R̄ut]

]
,

and following along the lines of the proof of “1) =⇒
2)” in Theorem 3.1, similar to (15) we get the following
inequality

Jν ≤ E
w1:ν−1

[1
2
uT
ν−N+1R̄ν−N+1uν−N+1

+ xT
ν−N+1S̄

T
ν−N+1uν−N+1 + ḡTν−N+1uν−N+1

+ xT
ν−N+1S̄

T
ν−N+1R̄

†
ν−N+1S̄ν−N+1xν−N+1

+ ḡTν−N+1R̄
†
ν−N+1S̄ν−N+1xν−N+1 + τ(xν−N+1)

+

ν−N∑
t=1

[
1

2
xT
t Q̄xt + q̄Txt +

1

2
uT
t R̄ut]

]
.
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Moreover, from the same proof we know that we can se-
lect xν−N+1 in order to make the terms outside of the
last summation unbounded from below. Now, by inverta-
bility of A, we can select ut = 0 and xt = A−1(xt+1 −
d−wt) for t = 1 : ν −N . For any value of xν−N+1, this
gives an initial condition and a sequence of states and
controls that fulfill the constraints (1b)-(1e) (note that
(1c) and (1e) are vacuous since N = ν). Moreover it is
easily seen that Jν is bounded from above by an expres-
sion similar to the one in the previous proof, but con-
taining an additional constant τ̃(xν−N+1). Following a
logic similar to the reminder of the proof of “1) =⇒ 2)”
in Theorem 3.1, the result follows. 2

PROOF OF LEMMA 4.2. Let N ∈ {2, . . . , ν} be
such that P(N = N) > 0. The matrix covx̄|N=N (x̄, x̄)

is symmetric. Let covx̄|N=N (x̄, x̄) =
∑n

i=1 λivi be an
orthonormal eigen-decomposition of the matrix. This
means that we can write x̄ =

∑n
i=1 αivi for some real-

valued random variables αi, i = 1, . . . , n.

Assume that covx̄|N=N (x̄, x̄) is not (strictly) positive
definite. Then at least one eigenvalue is zero; without
loss of generality, let λ1 = 0. Then we have that

0 = vT1 cov
x̄|N=N

(x̄, x̄)v1

= E
x̄|N=N

(vT1 x̄x̄
T v1)− E

x̄|N=N
(vT1 x̄) E

x̄|N=N
(x̄T v1)

= E
x̄|N=N

(α2
1)− E

x̄|N=N
(α1) E

x̄|N=N
(α1),

and thus that (Ex̄|N=N (α1))
2 = Ex̄|N=N (α2

1). By
Jensen’s inequality [6, Prop. 9.24], we know that
(Ex̄|N=N (α1))

2 ≤ Ex̄|N=N (α2
1), and by following the

proof of [6, Prop. 9.24], we see that equality holds if
and only if α1 is constant a.s. (otherwise, the inequality
from [6, Thm. 9.23] is strict at some points). To this end,
let α1 = c a.s. for some constant c. If c = 0, then for
χ = v1, Assumption 2.6 does not hold. If c ̸= 0, then the
probability mass of x̄ is located on a hyperplane defined
by α1 = c, which does not pass through the origin. In
this case, let χ = v2 and note that for ϵ < c we have that
P(x̄ ∈ Bn

ϵ (ρv2)) = 0 for all ρ, hence violating Assump-
tion 2.6. Therefore, we must have covx̄|N=N (x̄, x̄) ≻ 0.
2

PROOF OF LEMMA 4.3. Note that

cov
x̄|N=N

(x̄, x̄) = E
x̄|N=N

[x̄x̄T ]− E
x̄|N=N

[x̄] E
x̄|N=N

[x̄]T

= E
x̄|N=N

[[
x̄x̄T x̄

x̄T 1

]]
︸ ︷︷ ︸

Ex̄|N=N [¯̃x¯̃xT ]

\1.

Hence by Lemma 4.2 and [19, Thm. 1.12], we know that
for all N such that P(N = N) > 0, Ex̄|N=N [ ˜̄x ˜̄xT ] ≻ 0.
On the other hand, by Assumption 2.3, wt is uncor-
related with the noiseless zt := Axt + But + d, for
t = ν −N + 1 : ν − 1, and for such t it thus hold that

E
xt+1|N=N

[
x̃t+1x̃

T
t+1

]
= E

xt+1|N=N

[[
zt +wt

1

] [
zT
t +wT

t 1
]]

= E
xt|N=N

[z̃tz̃
T
t ] +

[
Σw 0

0 0

]

= Ãcl(t; Q̄, q̄) E
xt|N=N

[x̃tx̃
T
t ]Ãcl(t; Q̄, q̄)

T +

[
Σw 0

0 0

]
,

where z̃t =
[
zT
t 1

]T
. In particular, note that

E
xν−N+2|N=N

[
x̃ν−N+2x̃

T
ν−N+2

]
= E

xν−N+1|N=N
[z̃ν−N+1z̃

T
ν−N+1] +

[
Σw 0

0 0

]
= Ãcl(ν −N + 1; Q̄, q̄) E

x̄|N=N
[ ¯̃x ¯̃xT ]︸ ︷︷ ︸

≻0

Ãcl(ν −N + 1; Q̄, q̄)T

+

[
Σw 0

0 0

]
︸ ︷︷ ︸

⪰0

≻ 0, (A.1)

since Ãcl(t; Q̄, q̄) is invertible for all t = 1 : ν − 1 and
since positive definiteness is invariant under congruence.
By induction, we thus have Ext|N=N [x̃tx̃

T
t ] ≻ 0 for all

N such that P(N = N) > 0, and in particular thus for
N = ν by Assumption 2.4.

Now we show E[∥x̃t∥2] <∞. First, note that E[∥ ¯̃x∥2] =
E[∥x̄∥2] + 1. By Assumption 2.6 we have E[∥x̄∥2] < ∞,
and hence E[∥ ¯̃x∥2] <∞. In addition, by taking trace on
both sides of (A.1), moving the trace inside the expec-
tation, rearranging terms, and using Cauchy-Schwartz
inequality, we have that

E
xν−N+2|N=N

[
∥x̃ν−N+2∥2

]
≤ E

x̄|N=N
[∥ ¯̃x∥2] · ∥Ãcl(ν −N + 1; Q̄, q̄)∥2F + tr(Σw).

Using an induction argument similar to the one above,
we thus have that Ext|N=N [∥x̃t∥2] < ∞ for all t = ν −
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N + 1 : ν and all N such that P(N = N) > 0. Finally,

E[∥x̃t∥2] =
ν∑

N=1

P(N = N) E
x̃t|N=N

[∥x̃t∥2] <∞,

which proves the lemma. 2

PROOF OF THEOREM 5.2 As can be seen from
the construction of the objective function in Section 5.1,
and in view of (1e),

Ψ(Q, q, P1:ν , η1:ν , ξ1:ν−1) +

ν−1∑
t=1

E
xt,N

[
1

2
∥ut∥2

]
=

ν∑
N=2

P(N = N) E
yν−N+1:ν |N=N

[
ψ̃N (·)

]
+

ν∑
N=2

P(N = N)

ν−1∑
t=ν−N+1

E
xt|N=N

[
1

2
∥ut∥2

]

=

ν∑
N=2

P(N = N)

ν−1∑
t=ν−N+1

(
E

xt|N=N
[ψt,N (Q, q;xt,ut)+

1

2
∥ut∥2]

)
Now, by the definition of ψt,N (Q, q;xt,ut) in (23), as in
(24) we have that

E
xt|N=N

[ψt,N (Q, q;xt,ut)]

= E
xt|N=N

[
E
wt

[1
2
(Axt +But + d+wt)

TPt+1

× (Axt +But + d+wt) + ηTt+1(Axt +But + d+wt)
]

+
1

2
xT
t Qxt + qTxt +

1

2
∥ut∥2 −

1

2
xT
t Ptxt − ηTt xt

+
1

2
gTt R

†
tgt −

1

2
dTPt+1d− ηTt d−

1

2
tr(Pt+1Σw)

]
.

By opening the parenthesis and computing the expecta-
tion with respect to wt, and using Assumption 2.3, we
have that

E
xt|N=N

[ψt,N (Q, q;xt,ut)]

= E
xt|N=N

[1
2
(Axt +But + d)TPt+1(Axt +But + d)

+ ηTt+1(Axt +But + d)− 1

2
xT
t Ptxt − ηTt xt +

1

2
ξt

+
1

2
xT
t Qxt + qTxt

]

= E
xt|N=N

[1
2

[
uT
t xT

t 1
]
Ht


ut

xt

1

− 1

2
∥ut∥2

]
, (A.2)

where Ht has the form (5b). On the other hand, since
(Q, q, P1:ν , η1:ν , ξ1:ν−1) is feasible, by the constraint
(28c) we have that Ht ⪰ 0. Therefore, it holds that

Ψ(·) =
ν∑

N=2

P(N = N)

ν−1∑
t=ν−N+1

E
xt|N=N

[

1

2

[
uT
t xT

t 1
]
Ht


ut

xt

1

− 1

2
∥ut∥2

]
(A.3)

≥ −
ν∑

N=2

P(N = N)

ν−1∑
t=ν−N+1

E
xt|N=N

[
1

2
∥ut∥2

]

= −
ν−1∑
t=1

E
xt,N

[
1

2
∥ut∥2

]
.

This proves the first part of the theorem.

Next, we show that the lower bound is actually attained
by (Q̄, q̄, P̄1:ν , η̄1:ν , ξ̄1:ν−1). By using Theorem 3.1 we
have that the true underlying Q̄ and q̄, together with cor-
responding solution {P̄t ∈ Sn}t=1:ν and {η̄t ∈ Rn}t=1:ν

to the Riccati recursions (3), and with ξ̄t = ḡTt R̄
†
t ḡt for

t = 1 : ν − 1, is a feasible solution to the optimiza-
tion problem, if φ is large enough. For this feasible solu-
tion (Q̄, q̄, P̄1:ν , η̄1:ν , ξ̄1:ν−1), we can decompose the cor-
responding H̄t as in (13) and in this case, together with
(20), (A.2) can be written as

E
xt|N=N

[ψt,N (Q, q;xt,ut)]

= E
xt|N=N

[1
2

[
uT
t xT

t 1
]
H̄t


ut

xt

1

− 1

2
∥ut∥2

]

= E
xt|N=N

[1
2

[
uT
t xT

t 1
]

R̄t

S̄T
t

ḡTt

 R̄†
t

[
R̄t S̄T

t ḡTt

]
ut

xT
t

1


− 1

2
∥ut∥2

]
= E

xt|N=N

[ 1

2
∥(R̄t)

1
2 (R̄tut + S̄txt + ḡt)∥2︸ ︷︷ ︸

=0

−1

2
∥ut∥2

]
.

This shows that the lower bound for the objective func-
tion Ψ(·) is attained by (Q̄, q̄, P̄1:ν , η̄1:ν , ξ̄1:ν−1).

Finally, we show that the “true” (Q̄, q̄, P̄1:ν , η̄1:ν , ξ̄1:ν−1)
is actually the unique global optimizer to (28). To this
end, let (Q⋆, q⋆, P ⋆

1:N , η
⋆
1:N , ξ

⋆
1:N−1) be an optimal solu-

tion to (28), and let us also use ⋆ to denote other vectors
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and matrices obtained using this optimal solution. Since
the solution is optimal, it must be feasible, which implies
thatH⋆

t ⪰ 0,∀t = 1 : ν−1. Hence it follows thatR⋆
t ⪰ 0,

ker(R⋆
t ) ⊂

[
ker(S⋆T

t ) ∩ ker(g⋆Tt )
]
and H⋆

t \R⋆
t ⪰ 0, see

[19, Thm. 1.20, p. 43]. In view of the above “kernel con-
tainment” and (A.3), the optimal objective value can be
further rewritten as

Ψ(Q⋆, q⋆, P ⋆
1:ν , η

⋆
1:ν , ξ

⋆
1:ν−1) =

ν∑
N=2

P(N = N)

ν−1∑
t=ν−N+1

E
xt|N=N

[1
2

[
uT
t xT

t 1
]

I

S⋆T
t R⋆†

t I

g⋆Tt R⋆†
t I



R⋆

t

ATP ⋆
t+1A+Q⋆−P ⋆

t −S⋆T
t R⋆†

t S⋆
t β

⋆
t −S⋆T

t R⋆†
t g

⋆
t

β⋆T
t −g⋆Tt R⋆†

t S⋆
t ξ⋆t −g⋆tR

⋆†
t g

⋆
t



I R⋆†

t S⋆†
t R⋆†

t g
⋆†
t

I

I



ut

xt

1

− 1

2
∥ut∥2

]

Recalling the notation x̃t = [xT
t , 1]

T and the fact that
R⋆

t ⪰ 0, we in turn get

Ψ(·) =
ν∑

N=2

P(N = N)

ν−1∑
t=ν−N+1

E
xt|N=N

[
− 1

2
∥ut∥2

+
1

2

[
uT
t + xT

t S
⋆T
t R⋆†

t + g⋆Tt R⋆†
t xT

t 1
]

×

[
R⋆

t

H⋆
t \R⋆

t

]
ut +R⋆†

t S⋆
txt +R⋆†

t g
⋆
t

xt

1

]

=

ν−1∑
t=1

E
xt,N

[
− 1

2
∥ut∥2

]
+

ν∑
N=2

P(N = N)

ν−1∑
t=ν−N+1

E
xt|N=N

[
1

2
∥(R⋆

t )
1
2 (ut+R⋆†

t

[
S⋆

t g
⋆
t

]
x̃t)∥2+

1

2
tr
(
(H⋆

t \R⋆
t )x̃tx̃

T
t

) ]
,

where (·) 1
2 denotes the (uniquely defined) positive semi-

definite matrix square root (see [18, Thm. 7.2.6]). Note

that sinceH⋆
t \R⋆

t ⪰ 0, all terms except
∑ν−1

t=1 Ext,N

[
− 1

2∥ut∥2
]

are non-negative. Hence, in order for the lower bound∑ν−1
t=1 Ext,N

[
− 1

2∥ut∥2
]
to be attained, we must have

that

E
xt|N=N

[
∥(R⋆

t )
1
2 (ut +R⋆†

t

[
S⋆

t g
⋆
t

]
x̃t)∥2

]
= 0,

(A.4a)

E
xt|N=N

[
tr
(
(H⋆

t \R⋆
t )x̃tx̃

T
t

)]
=tr (H⋆

t \R⋆
t ) E
xt|N=N

[
x̃tx̃

T
t

]
= 0, t = ν −N + 1 : ν − 1, (A.4b)

for all N such that P(N = N) > 0. In particular,
by Assumption 2.4 it must be true for N = ν. From
Lemma 4.3, we know that Ext|N=ν [x̃tx̃

T
t ] ≻ 0. Thus it

follows that, for N = ν, (A.4b) implies that H⋆
t \R⋆

t = 0
holds for t = 1 : ν − 1. By using the observation in Re-
mark 3.2, we therefore have that (Q⋆, q⋆, P ⋆

1:ν , η
⋆
1:ν) sat-

isfies the generalized Riccati iterations (3).

Now, to show that the optimal solution to (28) is unique,
first assume that (Q⋆, q⋆, P ⋆

1:ν , η
⋆
1:ν) is an optimal solu-

tion such that R⋆
t ≻ 0, for t = 1 : ν−1. In this case, also

(R⋆
t )

1
2 ≻ 0 for t = 1 : ν − 1. By (A.4a), this means that,

conditioned on N = ν, we have ut = −R⋆†
t

[
S⋆

t g
⋆
t

]
x̃t

a.s. for t = 1 : ν− 1. But conditioned on N = ν, we also

have that ut = −R̄†
t

[
S̄t ḡt

]
x̃t. Therefore

R⋆†
t

[
S⋆

t g
⋆
t

]
x̃t = R̄†

t

[
S̄t ḡt

]
x̃t, a.s.,

for t = 1 : ν−1. Multiplying from the right with x̃T
t and

taking expectation Ext|N=ν on both sides, we have that

R⋆†
t

[
S⋆

t g
⋆
t

]
E

xt|N=ν
[x̃tx̃

T
t ] = R̄†

t

[
S̄t ḡt

]
E

xt|N=ν
[x̃tx̃

T
t ],

for t = 1 : ν − 1. Using Lemma 4.3, we know that
Ext|N=ν [x̃tx̃

T
t ] ≻ 0 and hence the matrix is full rank.

Therefore, it must hold that

R⋆†
t

[
S⋆

t g
⋆
t

]
= R̄†

t

[
S̄t ḡt

]
, t = 1 : ν − 1,

and thus, by (21), that

Ãcl(t;Q
⋆, q⋆) = Ãcl(t; Q̄, q̄), t = 1 : ν − 1.

By Proposition 4.1, we therefore have that Q̄ = Q⋆

and that q̄ = q⋆. This implies that in the subset
of the feasible region (28a)-(28c) where Rt ≻ 0, for
t = 1 : ν − 1, it holds that (Q̄, q̄, P̄1:ν , η̄1:ν , ξ̄1:ν−1) is the
unique globally optimal solution to (28). Next, suppose
that there exists a minimizer (Q⋆, q⋆, P ⋆

1:ν , η
⋆
1:ν , ξ

⋆
1:ν−1)

such that R⋆
t ⪰ 0 but not strictly positive definite for

some t ∈ {1, . . . , ν − 1}. In particular, this means that
(Q⋆, q⋆, P ⋆

1:ν , η
⋆
1:ν , ξ

⋆
1:ν−1) ̸= (Q̄, q̄, P̄1:ν , η̄1:ν , ξ̄1:ν−1).

Moreover, since (28) is a convex optimization problem
that attains an optimal solution, the set of all optimal
solutions is a nonempty convex set [38, Thm. 27.2]. This
means that (αQ̄+(1−α)Q⋆, αq̄+(1−α)q⋆, {αP̄t+(1−
α)P ⋆

t }νt=1, {αη̄t + (1 − α)η⋆t }νt=1, {αξ̄t + (1 − α)ξ⋆t }ν−1
t=1 )

are all optimal for all α ∈ [0, 1]; for each α ∈ [0, 1] we
denote the optimal solution (Qα, qα, Pα

1:ν , η
α
1:ν , ξ

α
1:ν−1).

Since the eigenvalues of Rt, t = 1 : ν − 1, depends
smoothly on Pt (see (4)), we can select α close enough
to 1 so that (Qα, qα, Pα

1:ν , η
α
1:ν , ξ

α
1:ν−1) will be such that

Rα
t ≻ 0 for all t = 1 : ν − 1. However, this contradicts
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the fact that (Q̄, q̄, P̄1:ν , η̄1:ν , ξ̄1:ν−1) is the unique glob-
ally optimal solution to (28) with Rt ≻ 0, t = 1 : ν − 1.
Therefore, there can be no optimal solution such thatR⋆

t
is not (strictly) positive definite for all t ∈ {1, . . . , ν−1},
and hence (Q̄, q̄, P̄1:ν , η̄1:ν , ξ̄1:ν−1) is the unique globally
optimal solution to (28). 2
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[29] J. Löfberg. YALMIP : A toolbox for modeling and
optimization in MATLAB. In In Proceedings of the
CACSD Conference, Taipei, Taiwan, 2004.

[30] Andrew Y Ng and Stuart Russell. Algorithms for
inverse reinforcement learning. In Proceeding of the
17th International Conference on Machine Learn-
ing, pages 663–670, 2000.

[31] Kenneth Nordström. Convexity of the inverse and
Moore–Penrose inverse. Linear Algebra and its Ap-
plications, 434(6):1489–1512, 2011.

[32] Kenneth Nordström. A note on the convexity of
the Moore–Penrose inverse. Linear Algebra and its
Applications, 538:143–148, 2018.

[33] M Cody Priess, Richard Conway, Jongeun Choi,
John M Popovich, and Clark Radcliffe. Solutions
to the inverse LQR problem with application to bi-

20

http://cvxr.com/cvx


ological systems analysis. IEEE Transactions on
control systems technology, 23(2):770–777, 2014.

[34] Mustapha Ait Rami, X Chen, and Xun Yu Zhou.
Discrete-time indefinite LQ control with state and
control dependent noises. Journal of Global Opti-
mization, 23(3):245–265, 2002.
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