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a b s t r a c t

The Inverse Optimal Control (IOC) problem is a structured system identification problem that aims
to identify the underlying objective function based on observed optimal trajectories. This provides a
data-driven way to model experts’ behavior. In this paper, we consider the case of discrete-time finite-
horizon linear–quadratic problems where: the quadratic cost term in the objective is not necessarily
positive semi-definite; the planning horizon is a random variable; we have both process noise and
observation noise; the dynamics can have a drift term; and where we can have a linear cost term
in the objective. In this setting, we first formulate the necessary and sufficient conditions for when
the forward optimal control problem is solvable. Next, we show that the corresponding IOC problem
is identifiable. Using the conditions for existence of an optimum of the forward problem, we then
formulate an estimator for the parameters in the objective function of the forward problem as the
globally optimal solution to a convex optimization problem, and prove that the estimator is statistical
consistent. Finally, the performance of the algorithm is demonstrated on two numerical examples.

© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Optimal control is a powerful framework in which control
ecisions are performed in order to minimize some given ob-
ective function; see, e.g., one of the monographs (Anderson &
oore, 2007; Bertsekas, 2000). In fact, many processes in na-

ure can be modeled as optimal control problems with respect
o some criteria (Alexander, 1996). However, in applications of
ptimal control, a fundamental problem is to design an appropri-
te objective function. In order to induce an appropriate control
esponse, the object function needs to be adapted to the con-
extual environment in which the system is operating. This is a
ifficult task, which relies heavily on the designers’ experience
nd imagination.
Instead of designing the cost criteria, one way to overcome

his difficulty would be to identify the cost function from the
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observations of an expert system that behaves ‘‘optimally’’ in
the environment and thus ‘‘imitating’’ the expert behavior. The
latter is known as Inverse Optimal Control (IOC) (Kalman, 1964),
and has received considerable attention. In particular, IOC recon-
structs the objective function of the expert system and hence
predicts the closed-loop system’s behavior using observed data
as well as the knowledge of underlying system dynamics.

As one of the most classical optimal controller designs, linear–
quadratic optimal regulators has been widely used in engineer-
ing. Though most of the literature considers the case when Q
(the penalty parameter for the states) is positive semi-definite,
indefinite linear–quadratic optimal control (Chen, Li, & Zhou,
1998; Ferrante & Ntogramatzidis, 2015, 2016; Rami, Chen, &
Zhou, 2002; Ran & Trentelman, 1993) has found applications
in, e.g., mathematical finance (Zhou & Li, 2000), crowd evacu-
ation (Toumi, Malhamé, & Le Ny, 2020, 2021), and controller
design for automatic steering of ships (Reid, Tugcu, & Mears,
1983). We are thus motivated to develop an IOC framework for
general indefinite linear–quadratic optimal control. The linear–
quadratic IOC problem has been studied under many different
settings, including the infinite-horizon case in both continuous
time (Anderson & Moore, 2007; Boyd, El Ghaoui, Feron, & Balakr-
ishnan, 1994) and discrete time (Priess, Conway, Choi, Popovich,
& Radcliffe, 2014), respectively, as well as the finite-horizon case
in both continuous time (Li, Yao, & Hu, 2020; Li, Zhang, Yao, &
Hu, 2018) and discrete time (Keshavarz, Wang, & Boyd, 2011;
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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u, Li, Fang, & Chen, 2021; Zhang & Ringh, 2023; Zhang, Ringh,
iang, Li, & Hu, 2022; Zhang, Umenberger, & Hu, 2019), respec-
ively. IOC is also closely connected to inverse reinforcement
earning (Ng & Russell, 2000), and this perspective has been used
n Lian, Xue, Lewis, and Chai (2021), Xue, Kolaric et al. (2021)
nd Xue, Lian et al. (2021) to consider infinite horizon discrete-
ime and continuous-time linear–quadratic set-ups for regulation,
racking, and adversary scenarios, respectively. However, to the
est of our knowledge, IOC frameworks for general indefinite
inear–quadratic optimal control has not been considered. There
re also other important aspects that have not been fully in-
estigated in the aforementioned literature. More precisely, any
eal-world data would inevitably contain noise: it can either
e process noise, observation noise, or both. Therefore, from
obustness and accuracy perspectives, it is important to have
statistically consistent estimator, i.e., that converges to the

rue underlying parameter values as the number of observation
rows. Moreover, many of the aforementioned IOC algorithms
hat are based on optimization either suffer from the fact that the
stimation problems are nonconvex (Keshavarz et al., 2011; Yu
t al., 2021; Zhang et al., 2019), and can therefore have issues with
ocal minima, or suffer from the fact the estimation procedure
eeds to know the control gain a priori (Anderson & Moore, 2007;
oyd et al., 1994; Li et al., 2020, 2018; Priess et al., 2014). In
he latter case, the estimation normally needs to be done in a
wo-stage procedure and the information is thus not used in
he most efficient way. Furthermore, most of the literature on
inear–quadratic IOC consider the regulation problem. However,
n many experimental set-ups, an expert agent may have more
omplicated tasks than regulation, e.g., tracking a reference sig-
al. Finally, real-world data can be of different time lengths, and
his needs to be handled in a systematic way in order not to
eteriorate the estimates.
In this work, we address these issues. More specifically, we

xtend our previous work (Zhang & Ringh, 2023; Zhang et al.,
022), and consider the generalized linear–quadratic, indefinite,
iscrete-time IOC problem with both process noise and measure-
ent noise. The contribution of this work is three-fold:

(1) We give necessary and sufficient conditions for the well-
posedness of the generalized indefinite discrete-time
finite-horizon linear–quadratic optimal control problem.

(2) We prove the identifiability of the parameters in the objec-
tive function.

(3) We construct an IOC algorithm that works for both the
positive semi-definite and the indefinite case. The algo-
rithm is based on convex optimization, and we show that
the estimator is statistically consistent. In addition, the
convex optimization formulation guarantees that the sta-
tistically consistent estimate that corresponds to the global
optimum can actually be attained in practice.

otation: For a matrix G, G† denotes the Moore–Penrose pseudo-
nverse. For a square matrix G =

[
G11 G12
G21 G22

]
, where G11 and G22

re square, we define the Schur complements G\G22 = G11 −

21G
†
22G12 and G\G11 = G22−G12G

†
11G21 (see, e.g., Horn and Zhang

2005, Sec. 1.6)). Sn denotes the set of n× n symmetric matrices,
hile Sn

+
denotes the set of n×n positive semi-definite matrices.

or G ∈ Sn
+
, G

1
2 is the (unique) positive semi-definite matrix

quare root. ∥ · ∥ denotes l2-norm and ∥ · ∥F denotes Frobenius
orm. Bn

ϕ(x) := {y ∈ Rn
| ∥x − y∥ < ϕ}, and B̄n

ϕ(x) denotes its
losure. Moreover, Sn

+
(ϕ) := {G ∈ Sn

+
| ∥G∥F ≤ ϕ}. For G1,G2 ∈ Sn,

1 ⪰ G2 means that G1−G2 ∈ Sn
+
. For integers ν1, ν2, we let ν1 : ν2

denote ν1, ν1 + 1, . . . , ν2, and define the expression as empty if
ν2 < ν1. By Im and ker we denote the image space and kernel,
respectively, and by ⊥ we denote the orthogonal complement.
2

Finally, we use italic bold font to denote stochastic elements,
and use

p
→ to denote convergence in probability, i.e., for random

elements {ai
}
∞

i=1 and a, ai p
→ a means that for all ε > 0,

limi→∞ P(∥ai
− a∥ > ε) = 0.

2. Problem formulation

In this section, we introduce the forward problem as well as
the inverse problem. To solve the inverse problem, we use mea-
sured (noisy) optimal trajectories from an expert that performs
the given task multiple times. This gives multiple demonstration
trajectories that can be used to learn the cost.

We start by introducing the mathematical formulation of the
forward optimal control problem. To this end, let (Ω,F,P) be a
probability space that carries a random vector x̄ ∈ Rn, stochastic
processes {wt ∈ Rn

}
∞

t=1, {vt ∈ Rn
}
∞

t=1 (the measurement noise
to appear in (2)), and a random variable N ∈ {2, 3, . . . , ν} ⊂

Z+. It is assumed that for each realization (x̄,N) of the random
element (x̄,N ) (corresponding to the initial position and planning
horizon length), the agent’s control decision ut is determined by a
stochastic generalized linear–quadratic control problem, namely,

min
x1:ν ,
u1:ν

JN := E
wν−N+1:ν−1

[1
2
xTν Q̄xν + q̄Txν

+

ν−1∑
t=ν−N+1

[
1
2
xTt Q̄xt + q̄Txt +

1
2
uT
t R̄ut ]

]
(1a)

s.t. xt+1 = Axt + But + d + wt , t = ν − N + 1 : ν − 1, (1b)

xt+1 = xt , t = 1 : ν − N, (1c)

x1 = x̄, (1d)

u1 = · · · = uν−N = 0, (1e)

where A ∈ Rn×n, B ∈ Rn×m, Q̄ ∈ Sn, R̄ ∈ Sm, and q̄, d ∈ Rn. More
specifically, the minimization in (1) is over admissible control
strategies with complete state information, i.e., ut is a function
that maps from Rn to Rm, ut : xt ↦→ ut (xt ) (see, e.g., Åström
(2006, Chp. 8)).

The formulation (1) is motivated by the fact that an agent
can have different time horizon lengths (and initial values) to
complete different tasks, while the underlying decision princi-
ple (i.e., running cost) remains unchanged since the principle is
connected to the agent’s characteristics. In particular, given a
realization of the time-horizon length N = N and initial value
x̄ = x̄, the agent starts to apply its control from the initial
value x̄ at the time instant t = ν − N + 1 and the agent
maintains the same running cost for each control execution. This
formulation gives a systematic way to handle real-world data
with different time lengths (see Zhang et al. (2022)). Moreover,
note that since the dynamics (1b) and the running cost in (1a)
are time-invariant, by Bellman’s principle of optimality, (1) can be
reformulated to optimal control problems with planning horizon
length N and that start to control from an initial state at time
point t = 1. However, it turns out to be convenient to align
the optimal demonstration trajectories with different lengths at
the end time point, and view the demonstration trajectories as if
the expert starts to control the system at different time instants,
i.e., to formulate the problem as in (1).

Remark 2.1. The reason why we only consider a time-invariant
external forcing term d in (1b) is to simplify the presentation.
The results of the paper also hold for time-varying forcing terms
dt , provided that the agent knows all the future forcing terms
for t = ν − N + 1 : ν − 1. Similarly, this formulation can be
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xtended to tracking-problems by letting the linear cost term
e time-varying, qt = −Qxrt where xrt is the reference signal,
nd the results in the paper follows analogously (cf. Zhang et al.
2022)). Notably, with time-varying dt or qt , the arguments in the
aragraph just before (using time-invariance of running cost and
ynamics) does not hold. Nevertheless, the formulation (1) is still
f interest in application such as the tracking in rehabilitation
rainings, see Zhang et al. (2022).

In the remainder of the paper, we make the following assump-
ions.

ssumption 2.2 (Controlability and Full Rank). The system (A, B)
is controllable, A is invertible, and B is of full-column rank.

Assumption 2.3 (Independent White Random Noise). The discrete
ime stochastic processes {wt}

∞

t=1 and {vt}
∞

t=1 are independent
zero-mean white-noise processes. More specifically, this means
that E[wt ] = 0, E[vt ] = 0, ∀t , and cov(wt ,ws) = Σwδ(t − s),
ov(vt , vt ) = Σvδ(t − s), where δ(t) is the Dirac-delta function,
nd where Σw ⪰ 0 and Σv ⪰ 0 are a priori known. Moreover,
he random element (x̄,N ) is independent of the two stochastic
rocesses.

ssumption 2.4 (Support of the Planning Horizon). The constant
∈ Z+ is known, and ν ≥ n + 1. Moreover, the probability

istribution for N satisfies P(N ∈ [2, ν]) = 1, and P(N = ν) > 0.

The rationale behind the first assumption is that we are con-
sidering a controllable discrete-time system that is not over-
actuated,1 and that is sampled from a continuous-time system.
The third assumption means that the longest possible planning
horizon is known, that it is sufficiently long, and that the longest
horizon ν can be realized, i.e., it has a nonzero probability.

Next, note that since Q̄ might not be positive semi-definite,
(1) might not admit an optimal solution (see, e.g. Ferrante and
Ntogramatzidis (2015, 2016)). We analyze the well-posedness of
the forward problem (1) in depth in Section 3. However, before
that, we have the following proposition which illustrates the
reason why we emphasize the longest time-horizon length in
Assumption 2.4. The proof can be found in the Appendix.

Proposition 2.5. Under Assumptions 2.2 and 2.3, if the optimal
control problem (1) with the objective function given by (Q̄ , q̄, R̄)
admits a solution for planning horizon N = ν for any x̄ ∈ Rn, then
it admits a solution for all N = 2 : ν for any x̄ ∈ Rn.

With Assumption 2.4 and Proposition 2.5 in mind, we are thus
interested in parameters that belong to the following set:

F (R̄) = {(Q , q) ∈ Sn
× Rn

| the optimal control problem

(1) with the objective function given by (Q , q, R̄) admits
solutions a.s. under the distribution of x̄ and for all
N ∈ {2, 3, . . . , ν}}.

More specifically, if (Q̄ , q̄) ∈ F (R̄), then the forward problem
is well-posed for any N ∈ {2, . . . , ν} under the distribution of
x̄ almost surely. In addition, for the inverse problem we assume
that the observation of the optimal states x1:ν are contaminated
y observation noise:

t = xt + vt , t = 1 : ν, (2)

nd that we observe M trials of the agent. More precisely, let y i
t

ave the same distribution as yt , for all i = 1 : M and all t = 1 : ν.

1 It means that, given the system state’s evolution from time step t to t + 1,
here is only one possible control input to realize that.
3

hen the observed M trajectories of the agent’s trials, {yit}
M
i=1, are

just realizations of the I.I.D. random vectors {y i
t}

M
i=1.

Before we formulate the IOC problem, we also make the fol-
lowing assumption.

Assumption 2.6 (Initial Value Distribution). The random element
(x̄,N ) is such that E[∥x̄∥2

] < ∞. Moreover, for all N ∈ {2, . . . , ν}
such that P(N = N) > 0, it holds that for all χ ∈ Rn, there exists
a ρ > 0 such that P(x̄ ∈ Bn

ϵ (ρχ ) | N = N) > 0 for all ϵ > 0.

Intuitively speaking, the above assumption states that, for
each planning horizon length of interest, the initial value for the
forward problem can be in any ‘‘direction’’ from the origin. This
turns out to be important for both the forward and the inverse
problem. The latter will be discussed in Section 4.

With the setup presented in this section, we summarize the
IOC problem to be considered in this paper. For the sake of
simplicity, we consider the case R̄ = I when designing the IOC
algorithm.

Problem 2.7 (General Stochastic Linear–Quadratic IOC). Suppose
the unknown (Q̄ , q̄) ∈ F (I). Given the optimal state trajectory
observations {yit}

ν
t=1 of the agent’s trials i = 1 : M that are gov-

erned by (1), estimate the corresponding (Q̄ , q̄) in the objective
function (1a) that governs the agents’ motion.

3. Forward problem analysis

Before we present the IOC algorithm set-up, we first need
to analyze the forward problem. More precisely, we need to
characterize the set F (R̄) and find the necessary and sufficient
optimality conditions for the existence of such generalized indef-
inite linear–quadratic optimal control. This is not only because
we want to ensure that the forward-problem is well-behaved,
but also to construct the IOC algorithm based on the optimal-
ity conditions. Moreover, we also analyze the properties of the
time-varying closed-loop system matrices that will be useful in
developing the IOC algorithm. For the theoretical development in
this section, we do not assume that R̄ = I .

3.1. Necessary and sufficient conditions for existence of optimal
control

To this end, we first derive the necessary and sufficient con-
ditions for existence of optimal control to (1). The results build
on Ferrante and Ntogramatzidis (2015); in particular, some of
the proof ideas are inspired by the proof in Ferrante and Ntogra-
matzidis (2015, Thm. 2.1). However, we not only extend the result
to a more general setting of stochastic linear–quadratic problems,
but also show that solvability of the forward problem, i.e., that
(Q̄ , q̄) ∈ F (R̄), can be characterized in different, but equivalent,
ways. The main result of this section is the following.

Theorem 3.1 (Boundedness of Forward Problem). Under Assump-
tions 2.3 and 2.6, the following statements are equivalent:

(1) (Q̄ , q̄) ∈ F (R̄).
(2) Let P̄1:ν and η̄1:ν be generated by the Riccati iterations

P̄ν = Q̄ , (3a)

P̄t = AT P̄t+1A + Q̄ − AT P̄t+1B(BT P̄t+1B + R̄)†

× BT P̄t+1A, t = 1 : ν − 1; (3b)

η̄ν = q̄, (3c)

η̄t =
(
A − B(BT P̄t+1B + R̄)†BT P̄t+1A

)T
× (η̄t+1 + P̄t+1d) + q̄, t = 1 : ν − 1. (3d)
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S̄t := BT P̄t+1A, (4a)

R̄t := BT P̄t+1B + R̄, (4b)

ḡt := BT η̄t+1 + BT P̄t+1d. (4c)

For all t = 1 : ν − 1, it holds that

R̄t ⪰ 0, (4d)

ker(R̄t ) ⊂

[
ker(S̄T

t ) ∩ ker(ḡT
t )

]
. (4e)

(3) There exists {P̄t ∈ Sn
}t=1:ν , {η̄t ∈ Rn

}t=1:ν , and {ξ̄t ∈ R}t=1:ν
such that

P̄ν = Q̄ , η̄ν = q̄, (5a)

H̄t :=

⎡⎣R̄t S̄t ḡt
S̄T

t AT P̄t+1A + Q̄ − P̄t β̄t
ḡT
t β̄T

t ξ̄t

⎤⎦ ⪰ 0 (5b)

rank(H̄t ) = rank(R̄t ) (5c)

where β̄t := q̄ + AT P̄t+1d + AT η̄t+1 − η̄t and where S̄t ,
R̄t , and ḡt are as in (4a), (4b), and (4c), respectively, for all
t = 1 : ν − 1.

(4) The Hamilton–Jacobi–Bellman equation (HJBE)

Vν(χν) :=
1
2
χ T
ν Q̄χν + q̄Tχν, (6a)

Vt (χt ) = min
µt

{ 1
2
χ T
t Q̄χt + q̄Tχt +

1
2
µT

t R̄µt (6b)

+E
wt

[Vt+1(Aχt + Bµt + d + wt )]
}
, t = 1 : ν − 1

has a solution. More precisely, this means that Vt (χt ) is
bounded from below for any χt ∈ Rn, for t = 1 : ν − 1.
Moreover, the solution has the form

Vt (χt ) =
1
2
χ T
t P̄tχt + η̄Tt χt + γ̄t , t = 1 : ν, (7)

where P̄1:ν and η̄1:ν are generated by (3) and

γ̄ν = 0 (8a)

γ̄t = γ̄t+1 −
1
2
ḡT
t R̄

†
t ḡt +

1
2
dT P̄t+1d + η̄Tt+1d

+
1
2
tr(P̄t+1Σw), t = 1 : ν − 1, (8b)

with R̄1:ν−1 as in (4b) and ḡ1:ν−1 as in (4c).

In addition, if any of the four above conditions hold, then the optimal
control signal ut for (1) is parametrized by any arbitrary vector
λt ∈ Rn, and is given by

ut = −R̄
†
t (S̄txt + ḡt ) + Pker(R̄)

t λt , t = ν − N + 1 : ν − 1, (9a)

ut = 0, t = 1 : ν − N, (9b)

where Pker(R̄)
t = I − R̄

†
t R̄t is the projection operator onto the kernel

space of R̄t .

Proof. First, assume that (4) holds. Note that for an agent with a
planning horizon realization N = ν, by the principle of optimality
in dynamic programming (see, e.g., Bertsekas (2000, p. 18)), we
can easily show that (4) H⇒ (1) (cf. Bertsekas (2000, Prop. 1.3.1)).
For the case N < ν, note that the HJBE is still valid for t =

ν − N + 1 : ν, and thus the agents behavior is still optimal in
t = ν−N + 1 : ν. Since the systems behavior for t = 1 : ν−N is
completely determined by (1c), and (1e), by Bellman’s principle of
4

optimality, the solution to the HJBE still gives the optimal control.
This implies (1), and hence shows that (4) H⇒ (1).

Before we proceed, first note that for any N ∈ {2, . . . , ν},

0 =

ν−1∑
t=ν−N+1

{ 1
2
xTt+1P̄t+1xt+1 + η̄Tt+1xt+1 −

1
2
xTt P̄txt − η̄Tt xt

}
+

1
2
xTν−N+1P̄ν−N+1xν−N+1 + η̄Tν−N+1xν−N+1 −

1
2
xTν P̄νxν − η̄Tν xν .

Taking expectation with respect to wν−N+1:ν−1 on both sides of
the above equation, adding the latter expression to (1a), and using
(1b), (3a), (3c), and Assumption 2.3, we can write the objective
function as

JN = E
wν−N+1:ν−1

[1
2
xTν (Q̄ − P̄ν)  

=0

xν + (q̄ − η̄ν)T  
=0

xν

+

ν−1∑
t=ν−N+1

{ 1
2
(Axt + But + d + wt )T P̄t+1(Axt + But + d + wt )

+ η̄Tt+1(Axt + But + d + wt ) −
1
2
xTt P̄txt − η̄Tt xt +

1
2
xTt Q̄xt + q̄Txt

+
1
2
uT
t R̄ut

}
+

1
2
xTν−N+1P̄ν−N+1xν−N+1 + η̄Tν−N+1xν−N+1

]
= E

wν−N+1:ν−1

[ ν−1∑
t=ν−N+1

{1
2

[
uT
t xTt 1

]
H̄t

[ut
xt
1

]}
+

1
2
xTν−N+1P̄ν−N+1xν−N+1 + η̄Tν−N+1xν−N+1

]
+

ν−1∑
t=ν−N+1

1
2
dT P̄t+1d +

1
2
tr(P̄t+1Σw) + η̄Tt+1d −

1
2
ξ̄t (10)

with H̄t in the form of (5b) and ξ̄t = ḡT
t R̄

†
t ḡt in H̄t . Note that

the last row in the above equation is constant with respect to
the state and the control and hence can be discarded in the op-
timization problem. On the other hand, since {P̄t}νt=1 and {η̄t}

ν
t=1

are generated by (3), H̄t can also be written as

H̄t =

⎡⎢⎣R̄t S̄t ḡt
S̄T

t S̄T
t R̄

†
t S̄t S̄T

t R̄
†
t ḡt

ḡT
t ḡT

t R̄
†
t S̄t ḡT

t R̄
†
t ḡt

⎤⎥⎦=

⎡⎢⎣R̄t

S̄T
t

ḡT
t

⎤⎥⎦R̄
†
t
[
R̄t S̄t ḡt

]
. (11)

Next, we use the above trick to prove that (1) H⇒ (2). This
is done by proving the contraposition of the statement. To this
end, suppose (4d) and (4e) cease to hold at the Nth backward
iteration (3), where N ∈ {2, . . . , ν}. Namely, R̄ν−N+t ⪰ 0,
ker(R̄ν−N+t ) ⊂

[
ker(S̄T

ν−N+t ) ∩ ker(ḡT
ν−N+t )

]
still holds for t =

2 : N but not for t = 1. We proceed by showing that this
implies that for this planning horizon length realization N , (1) is
not bounded from below. In particular, by (11) and ker(R̄ν−N+t ) ⊂

ker(S̄T
ν−N+t ) ∩ ker(ḡT

ν−N+t )
]
, ∀t = 2 : N , it follows that H̄ν−N+t

an be written as in (11), which also implies that H̄ν−N+t ⪰ 0 for
= 2 : N . Hence, in view of (1d), (1c) and the fact that {wt}

∞

t=1 is
ndependent of other random elements from Assumption 2.3, for
he given ‘‘initial state’’ realization xν−N+1 = x̄ ∈ Rn from which
he agent starts tracking, the objective function can be written as

N = E
wν−N+1:ν−1

[1
2

[
uT
ν−N+1 xTν−N+1 1

]
H̄ν−N+1

×

[uν−N+1
xν−N+1

1

]
+

N−1∑
t=2

{ 1
2

(R̄†
ν−N+t )

1
2

(
R̄ν−N+tuν−N+t

+ S̄ x + ḡ
)2 }
ν−N+t ν−N+t ν−N+t
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1
2
xTν−N+1  

x̄T

P̄ν−N+1 xν−N+1  
x̄

+η̄Tν−N+1 xν−N+1  
x̄

]
. (12)

otably, it holds that 1
2 x̄

T P̄ν−N+1x̄+η̄Tν−N+1x̄ ≤
1
2σmax(P̄ν−N+1)∥x̄∥2

+ ∥η̄ν−N+1∥ · ∥x̄∥ := τ (x̄), where σmax(·) is the largest eigenvalue
of a matrix. Also note that, for any uν−N+1 and xν−N+1 = x̄,
by the dynamics (1b) we get an xν−N+2. Selecting uν−N+2 =

−R̄
†
ν−N+2(S̄ν−N+2xν−N+2 + ḡν−N+2) + Pker(R̄)

ν−N+2λν−N+2, for some
arbitrary λν−N+2 ∈ Rn, this would give the next state xν−N+3.
Recursively selecting the other control signals for t = ν−N + 3 :

ν−1 accordingly, i.e., as ut = −R̄
†
t (S̄txt +ḡt )+Pker(R̄)

t λt , for some
arbitrary λt ∈ Rn, then all terms in the summation in (12) would
become zero. Therefore, for the objective function JN it holds that

JN ≤ E
wν−N+1:ν−1

[1
2
uT
ν−N+1R̄ν−N+1uν−N+1 + x̄T S̄T

ν−N+1

× uν−N+1 + ḡT
ν−N+1uν−N+1

]
+ x̄T S̄T

ν−N+1R̄
†
ν−N+1

× S̄ν−N+1x̄ + ḡT
ν−N+1R̄

†
ν−N+1S̄ν−N+1x̄ + τ (x̄). (13)

If R̄ν−N+1 ̸⪰ 0, it is clear that we can choose uν−N+1 =

αv−(R̄ν−N+1), where v−(R̄ν−N+1) is an eigenvector that corre-
sponds to a negative eigenvalue of R̄ν−N+1. In this case, since
such choice of uν−N+1 does not depend on the random vectors
wν−N+1:ν−1, the expectation would be marginalized out. Letting
α → +∞ would make JN tend to minus infinity. Thus, unless (4d)
holds, irrespective of the initial condition x̄ there is a planning
horizon length realization N ∈ {2, . . . , ν} such that the cost
function is not bounded from below.

On the other hand, if (4d) holds but ker(R̄ν−N+1) ̸⊂[
ker(S̄T

ν−N+1) ∩ ker(ḡT
ν−N+1)

]
, then there exists a vector v ∈

Rm with norm one, such that R̄ν−N+1v = 0, and such that
S̄T
ν−N+1v ̸= 0 or ḡT

ν−N+1v ̸= 0. Without loss of generality,
assume that ḡT

ν−N+1v ≥ 0; otherwise we instead consider −v.
By Assumption 2.6, it follows that we can find ρ > 0 such that
P

(
x̄ ∈ Bn

ϵ (ρS
T
ν−N+1v)

)
> 0,∀ϵ > 0. Now, consider uν−N+1 = αv

and xν−N+1 = x̄ = ρS̄T
ν−N+1v + ṽ, where ṽ ∈ Bn

ϵ1
(0) and where

ϵ1 > 0 will be determined shortly. Note that with such choice,
the expectation in (13) would be again marginalized out. Then it
holds for the objective function that

JN ≤ α[ρvT S̄ν−N+1S̄
T
ν−N+1v + ḡT

ν−N+1v + ṽT S̄T
ν−N+1v]

+ (ρvT S̄ν−N+1 + ṽT )S̄T
ν−N+1R̄

†
ν−N+1S̄ν−N+1

× (ρS̄T
ν−N+1v + ṽ) + ḡT

ν−N+1R̄
†
ν−N+1S̄ν−N+1

× (ρS̄T
ν−N+1v + ṽ) + τ (ρS̄T

ν−N+1v + ṽ).

Since ρvT S̄ν−N+1S̄
T
ν−N+1v+ ḡT

ν−N+1v = ρ∥S̄T
ν−N+1v∥

2
+ ḡT

ν−N+1v

> 0, we can always make ϵ1 > 0 small enough so that
ρ∥S̄T

ν−N+1v∥
2
+ ḡT

ν−N+1v + ṽT S̄T
ν−N+1v > 0, ∀ṽ ∈ Bn

ϵ1
(0). Letting

α → −∞ would make JN tend to minus infinity. Recalling that
P(x̄ ∈ Bn

ϵ (ρS
T
ν−N+1v)) > 0,∀ϵ ∈ (0, ϵ1), this shows that there

exists a set of initial value realizations x̄with non-zero probability
such that the forward problem is ill-posed. This proves that
(1) H⇒ (2).

To prove that (2) H⇒ (4), we make an ansatz that the solution
to the HJBE (6) is Vt (χt ) =

1
2χ

T
t P̄tχt + η̄Tt χt + γ̄t , with terms

enerated by (3) and (8), respectively. This ansatz fulfills (6a) and
8), and plugging it into the left hand side of (6b) we get

min
µt

{ 1
2
χ T
t Q̄χt + q̄Tχt +

1
2
µT

t R̄µt + E
wt

[ 1
2
(Aχt + Bµt

+ d + wt )T P̄t+1(Aχt + Bµt + d + wt )

+ η̄Tt+1(Aχt + Bµt + d + wt ) + γ̄t+1

]}
,

F

5

for t = 1 : ν − 1. By Assumption 2.3, we can expand the
expectation regarding wt , and removing constant terms that are
irrelevant to the optimization this gives

min
µt

{ 1
2
µT

t R̄tµt + (S̄tχt + ḡt )Tµt + (Aχt + d)T P̄t+1

× (Aχt + d) + ηTt+1(Aχt + d) +
1
2
χ T
t Q̄χt + q̄Tχt

}
, (14)

hich is an unconstrained quadratic optimization problem with
espect to µt . By (4d) we know that it is a convex problem, and
ence it has an optimal solution if and only if the gradient is zero
n some point. To verify that it has a solution, and to work out
he optimal control, we take the derivative of (14) with respect
o µt and equate it to zero, which gives R̄tµt = −S̄tχt − ḡt ,
= 1 : ν−1. Since (4e) holds, we have that S̄tχt + ḡt ∈ Im(S̄t )⊕

m(ḡt ) =

[
ker(S̄T

t ) ∩ ker(ḡT
t )

]⊥

⊂ ker(R̄t )⊥ = Im(R̄t ), where

denotes the direct sum of the subspaces. Hence, the above
quation has a solution, and the control signal takes the form of
t = −R̄

†
t (S̄tχt + ḡt ) + Pker(R̄)

t λt ,∀λt ∈ Rn, t = 1 : ν − 1, which
minimizes the right hand side of (14). Plug the aforementioned
equation into (14), use the property of (4e) and in view of (3),
(8), we have that the quadratic, first order and constant terms
regarding χt equates between the left and right hand sides. Thus
the ansatz is indeed a solution to the HJBE.

To complete the proof, we now show the equivalence between
(2) and (3). First, we prove (2) H⇒ (3), and start with noting that
if (3) holds, then (5a) holds trivially. Next, with ξ̄t = ḡT

t R̄
†
t ḡt , we

know from the above argument that due to the kernel contain-
ment (4e), H̄t can be expressed as in (11), for t = 1 : ν − 1. By
(4d), R̄†

t ⪰ 0 and hence H̄t ⪰ 0, i.e., (5b) holds. On the other hand,
y the rank property of Schur complement (Horn & Zhang, 2005,
. 43), it holds that rank(H̄t ) = rank(R̄t ) + rank(H̄t\R̄t ). Now,
bserve that

¯ t\R̄t =

[
S̄T

t R̄
†
t S̄t S̄T

t R̄
†
t ḡt

ḡT
t R̄

†
t S̄t ḡT

t R̄
†
t ḡt

]
−

[
S̄T

t

ḡT
t

]
R̄

†
t
[
S̄t ḡt

]
= 0,

nd hence rank(H̄t ) = rank(R̄t ), i.e., (5c) holds.
Now we prove (3) H⇒ (2). If (5) holds, it follows that

¯ t ⪰ 0, i.e., (4d) holds. By properties of the generalized Schur
omplement (Horn & Zhang, 2005, Thm. 1.20 and p. 43), it follows
hat (I − R̄tR̄

†
t )

[
S̄t ḡt

]
= 0, which implies (4e), that

¯ t\R̄t :=

[
AT P̄t+1A + Q̄ − P̄t β̄t

βt ξ̄t

]
−

[
S̄T

t

ḡT
t

]
R̄

†
t
[
S̄t ḡt

]
⪰ 0,

nd that rank(H̄t ) = rank(R̄t ) + rank(H̄t\R̄t ). Since rank(H̄t ) =

ank(R̄t ), we must have that H̄t\R̄t = 0, and hence (3) follows.
his finishes the proof of the entire theorem. □

emark 3.2. Note that in the equivalence between point (2) and
3) in Theorem 3.1, we have that (5a) and (5c) are equivalent
o that the Riccati recursions in (3) are satisfied, and that (5b),
.e., that H̄t ⪰ 0 holds, is equivalent to (4d) and (4e).

emark 3.3. By extending the state space to x̃t = [xTt , 1]T and
ith state space matrices given by

˜ =

[
A d
0T 1

]
, B̃ =

[
B
0

]
, ˜̄Q =

[
Q̄ q̄
q̄T 0

]
, ˜̄R = R̄, (15)

e can indeed rewrite the forward problem (1) as a ‘‘standard’’
Q problem (albeit possibly indefinite). However, note that this
oes not lead to a classic LQR in the sense that (Ã, B̃) is not con-
rollable. Moreover, ¯̃x = [x̄T , 1]T does not satisfy Assumption 2.6.

urthermore, extending such a rewriting to time-varying dt or the
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racking problem, where qt = Qxrt and xrt is the reference signal, is
ot possible without specifying the problem structure. Therefore,
xisting IOC results cannot be directly applied to the rewritten
roblem. Nevertheless, the form (15) is still useful in some of the
nalysis.

.2. Analysis of the closed-loop system matrices

In view of (9), it seems like there might be infinitely many
hoices of control signals that are optimal. However, as we shall
ee, under the assumptions we impose the optimal control signal
s unique for the considered forward problem (1).

Proposition 3.4. Let R̄ ≻ 0. Under Assumptions 2.2, 2.3 and 2.6,
Q̄ , q̄) ∈ F (R̄) is equivalent to R̄t ≻ 0, t = 1 : ν − 1.

roof. The implication ‘‘⇐H’’ follows from Theorem 3.1. To
rove the implications ‘‘H⇒’’: by Theorem 3.1, since (Q̄ , q̄) ∈

(R̄), there exist matrices and vectors that fulfill (3) and (4). In
articular, since A is invertible, by (4a) and (4b) we have that
¯ t = BT P̄t+1B + R̄ = BT P̄t+1AA−1B + R̄ = S̄tA−1B + R̄, for

= 1 : ν − 1. Now, by (4e) we have that ker(R̄t ) ⊂ ker(S̄T
t )

holds for t = 1 : ν − 1. In particular, this means that

z ∈ ker(R̄t ) H⇒

{
R̄tz = 0
S̄T

t z = 0
H⇒

{
−S̄tA−1Bz = R̄z
zT S̄t = 0.

This in turn means that for any z ∈ ker(R̄t ), it holds that zT R̄z =

−zT S̄tA−1Bz = 0, and since R̄ ≻ 0 this means that z = 0.
Therefore, the only vector in ker(R̄t ) is the zero-vector, and since
R̄t is positive semi-definite (see (4d)), this implies that R̄t is in
fact strictly positive definite for t = 1 : ν − 1. □

Corollary 3.5. Under the assumptions in Proposition 3.4, the
optimal control signal for problem (1) takes the form

ut = −R̄−1
t (S̄txt + ḡt ), t = ν − N + 1 : ν − 1 (16a)

ut = 0, t = 1 : ν − N. (16b)

Remark 3.6. Even if R̄ is not strictly positive definite, by the proof
of Proposition 3.4 we can still partially characterize ker(R̄t ). In
particular, z ∈ ker(R̄t ) implies that zT R̄z = 0. If R̄ is full rank,
this is the neutral subspace in the indefinite inner product space
defined by R̄; see, e.g., Gohberg, Lancaster, and Rodman (2005,
Chp. 2).

By Corollary 3.5, under the conditions in Proposition 3.4 there
is a unique solution to the forward optimal control problem (1).
In this case, the system’s behavior (after it starts applying control)
is determined by x̃t+1 = Ãcl(t; Q̄ , q̄)x̃t + w̃t , for t = ν −N + 1 : ν,
where Ãcl(t; Q̄ , q̄) is the closed-loop system matrix at time t for
the extended state-space model (see Remark 3.3). In particular,

Ãcl(t; Q̄ , q̄) =

[
A − BR̄−1

t S̄t d − BR̄−1
t ḡt

0T 1

]
, (17)

with R̄t , S̄t , and ḡt as in (4), and hence it implicitly depends
on (Q̄ , q̄) in the objective function (1a). This means that the
(conditional) distribution of the agent’s optimal trajectory P(x1:ν |

N = N, x̄ = x̄) and optimal control P(u1:ν−1 | N = N, x̄ = x̄)
are implicitly given by solving (1). Moreover, under mild reg-
ularity conditions on the probability distribution of (x̄,N ), the
formulation in (1) then defines joint probability distributions for
(x1:ν,N , x̄) and (u1:ν−1,N , x̄) (cf. Kallenberg (1997, Thm. 5.3)).
Before we continue analyzing the identifiability, we present the

following corollary that is useful in the analysis to come.

6

Corollary 3.7. Under the assumptions in Proposition 3.4, given
any R ≻ 0, for any (Q , q) ∈ F (R), let {Pt}νt=1 be the solution
to (3) that corresponds to Q . Accordingly, let Rt , St and gt be
defined as in Theorem 3.1, for t = 1 : ν − 1. Then the matrix
Acl(t;Q ) := A − BR−1

t St , as well as the matrix Ãcl(t;Q , q) in (17),
are invertible for all t = 1 : ν − 1.

Proof. The fact that the matrix Acl(t;Q ) is invertible for t = 1 :

ν − 1 follows by an argument similar to the proof of Zhang et al.
(2019, Thm. 2.1), since R ≻ 0 and Rt ≻ 0 holds for t = 1 : ν − 1.
To show that Ãcl(t;Q , q) has full rank, we simply note that it has
the upper block-triangular form (17), and since Acl(t;Q ) has full
rank so does Ãcl(t;Q , q). □

4. Identifiability analysis and persistent excitation

Next, we investigate the inverse problem of recovering (Q̄ , q̄)
from observations of optimal trajectories to problem (1).
Throughout the rest we will therefore, unless explicitly stated
otherwise, assume that R̄ = I and (Q̄ , q̄) ∈ F (R̄ = I). We start by
considering the identifiability of the problem.

To this end, first note that from the analysis in Section 3,
for any parameters (Q , q) ∈ F (I), the agent’s behavior is com-
pletely determined by the time-varying closed-loop system ma-
trices Ãcl(t;Q , q) in (17). In the spirit of Ljung and Glad (1994,
Sec. 5.1), we can thus see the sequence of closed-loop system ma-
trices {Ãcl(t;Q , q)}ν−1

t=1 as the model structure. Therefore, the fun-
damental question for identifiability is if there exist two different
sets of parameters (Q , q) and (Q ′, q′) such that Ãcl(t;Q , q) =

Ãcl(t;Q ′, q′) for all t = 1 : ν − 1.

Proposition 4.1 (Identifiability). Under Assumptions 2.2–2.4 and
2.6, given (Q , q), (Q ′, q′) ∈ F (I), if Ãcl(t;Q , q) = Ãcl(t;Q ′, q′) for
all t = 1 : ν − 1, then (Q , q) = (Q ′, q′).

Proof. Assume that Ãcl(t;Q , q) = Ãcl(t;Q ′, q′) for t = 1 : ν − 1,
and let (Pk, ηk,Sk,Rk, gk)ν−1

k=ν−N+1 and (P ′

k, η
′

k,S
′

k,R
′

k, g
′

k)
ν−1
k=ν−N+1

be the solutions to (3) and (4) for (Q , q) and (Q ′, q′), respectively.
Moreover, let Q ′

= Q + ∆Q , q′
= q + ∆q, P ′

t = Pt + ∆Pt ,
η′
t = ηt +∆ηt , S′

t = St +∆St , R′
t = Rt +∆Rt , and g ′

t = gt +∆gt .
Since Ãcl(t;Q , q) = Ãcl(t;Q ′, q′), for t = 1 : ν − 1, it follows that
Acl(t;Q ) = Acl(t;Q ′), for t = 1 : ν − 1. Then following the line of
arguments in Zhang et al. (2019, Thm. 2.1), we can conclude that
∆Q = 0. This in turn implies that ∆Pt , ∆Rt and ∆St are all zero
(cf. (3) and (4)).

Next, since Ãcl(t;Q , q) = Ãcl(t;Q ′, q′) and ∆Rt = 0, for
t = 1 : ν − 1, it follows that d − BR−1

t gt = d − BR−1
t g ′

t
for t = 1 : ν − 1. Therefore, it holds that BR−1

t ∆gt = 0 for
t = 1 : ν − 1. Since B is full column rank by assumption, and
since R−1

t ≻ 0 by Proposition 3.4, we must have that ∆gt = 0 for
t = 1 : ν − 1. In view of (4c), we therefore have that BT∆ηt+1 =

∆gt = 0, t = 1 : ν − 1. Then, in view of (3c) and (3d), this
in turn implies that ∆ην = ∆q, ∆ηt = AT∆ηt+1 + ∆q, t =

1 : ν − 1. Thus, we have that ∆ην = ∆q, which means that
BT∆ην = BT∆q = 0. Continuing, we have that BT∆ην−1 =

BT (AT∆ην + ∆q) = BTAT∆q + BT∆q = BTAT∆q = 0. Then
following the line of arguments in Zhang et al. (2019, Thm. 2.1),
we can conclude that ∆q = 0. The fact that ∆Q = 0,∆q = 0
implies that Q = Q ′, q = q′. □

This means that the parameters (Q , q) that characterizes the
closed-loop system matrices are identifiable. Moreover, in view
of (1), we can see (x̄,N ) as the ‘‘input’’ of the model and y1:ν
as the ‘‘output’’. To this end, in order to uniquely identify the
parameters (Q̄ , q̄), the ‘‘input’’ (x̄,N ) needs to be ‘‘persistently
exciting’’ (Ljung & Glad, 1994, Sec. 5.1). Notably, Assumption 2.4
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ives a persistent excitation condition regarding N . Moreover,
ssumption 2.6 turns out to give a persistent excitation condition
or the initial value x̄. In fact, we have the following result, the
proof of which we defer to the Appendix.

Lemma 4.2. Let (x̄,N ) be as in Assumption 2.6. Then, for all
∈ {2, . . . , ν} such that P(N = N) > 0, covx̄|N=N (x̄, x̄) ≻ 0.

This result can now be used to prove the following Lemma,
hich is useful in the IOC algorithm construction to come. Simi-

arly, the proof of this Lemma is also deferred to the Appendix.

emma 4.3 (Persistent Excitation). Suppose that (Q̄ , q̄) ∈ F (I) and
et x̃t := [xTt , 1]T . Under Assumptions 2.2–2.4 and 2.6, it holds that
xt |N=ν[x̃t x̃

T
t ] ≻ 0, and E[∥x̃t∥2

] < ∞ for all t = 1 : ν.

5. The IOC algorithm

In this section, we construct the IOC algorithm for general
linear–quadratic systems with different time-horizon lengths. In
particular, we show that the algorithm is statistically consis-
tent, i.e., that it converges in probability to the true underlying
parameter. For the sake of brevity, in some of the following
we sometimes use the notation (·) for the arguments of some
functions.

In order to construct the IOC algorithm, we further make the
following assumption.

Assumption 5.1 (Bounded Parameters). The parameter tuple (Q̄ , q̄)
that governs the agents tracking behavior lies in the compact set

G(ϕ) :=

{
(Q̄ ∈ Sn, q̄ ∈ Rn) | ∥

[
Q̄ q̄
q̄ 0

]
∥F ≤ ϕ

}
,

or some (potentially unknown) 0 < ϕ < ∞.

This assumption is mild, since when we solve the correspond-
ng inverse problem in practice, we can always set ϕ arbitrary
arge if we have no prior knowledge on the norm bound of the
arameters.

.1. Construction and empirical approximation

To this end, the algorithm is constructed based on the nec-
ssary and sufficient optimality conditions in Theorem 3.1. More
recisely, the IOC algorithm will be built upon an optimization
roblem which is constructed so that it has a unique optimal
olution (Q ⋆, q⋆) which is the ‘‘true’’ (Q̄ , q̄) ∈ F (I).
First, we construct the objective function for the optimization

roblem. Let (Q , q) ∈ F (I), and let µ̄t be the optimal control
ignal to (Q̄ , q̄). Given a realization of the planning horizon N , it
olds for all state χt ∈ Rn that

0 = min
µt

{ 1
2
χ T
t Qχt + qTχt +

1
2
∥µt∥

2

+ E
wt

[Vt+1(Aχt + Bµt + d + wt )]
}

−Vt (χt )

≤
1
2
χ T
t Qχt + qTχt +

1
2
∥µ̄t∥

2
+ E

wt
[Vt+1(Aχt + Bµ̄t + d

+ wt )] − Vt (χt ),

where the inequality follows since µ̄t is not necessarily optimal
o (Q , q, R̄ = I), and where Vt (·) has the form (7), and Pt:t+1, ηt:t+1,
nd γt:t+1 in Vt (·) are determined by (Q , q) via (3). Moreover, seen
ntuitively from the other perspective, for given χ and µ̄ , we
t t

7

xpect the inequality to hold unless we plug in (Q , q, R̄ = I)
hich renders the state χt and control µ̄t optimal. We hence
efine the ‘‘violation’’ of HJBE at each time step t = ν − N + 1 :

− 1 by

t,N (Q , q;χt , µt ) := E
wt

[Vt+1(Aχt + Bµt + d + wt )]

+
1
2
χ T
t Qχt + qTχt +

1
2
∥µt∥

2
2 − Vt (χt ),

since we expect that ψt,N (Q , q;χt , µt ) ≥ 0. The latter will be
ormally proved in Theorem 5.2.

Plugging (7) and (8) in to the above equation, we have

t,N (Q , q;χt , µt ) = E
wt

[1
2
(Aχt + Bµt + d + wt )TPt+1

× (Aχt + Bµt + d + wt ) + ηTt+1(Aχt + Bµt + d + wt )
]

+
1
2
χ T
t Qχt + qTχt +

1
2
∥µt∥

2
−

1
2
χ T
t Ptχt − ηTt χt

+
1
2
gT
t R

†
t gt −

1
2
dTPt+1d − ηTt d −

1
2
tr(Pt+1Σw). (18)

iven a realization of the planning horizon N , let xν−N+1:ν and
ν−N+1:ν−1 be the optimal trajectory and control. We let χt = xt
nd µt = ut , and take the expectation of ψt,N (Q , q; xt , ut ) with
espect to xt |N = N . In view of (1b), this gives

E
t |N=N

[ψt,N (Q , q; xt , ut )] =

E
t |N=N

[
E
wt

[1
2

T
(Axt + But + d + wt )  

xt+1

Pt+1 (Axt + But + d + wt )  
xt+1

+ ηTt+1 (Axt + But + d + wt )  
xt+1

]
+

1
2
xTt Qxt + qTxt +

1
2
∥ut∥

2
−

1
2
xTt Ptxt − ηTt xt

+
1
2
gT
t R

†
t gt −

1
2
dTPt+1d − ηTt d −

1
2
tr(Pt+1Σw)

]
= E

xt+1|N=N

[1
2
xTt+1Pt+1xt+1 + ηTt+1xt+1

]
+ E

xt |N=N

[1
2
xTt Qxt + qTxt +

1
2
∥ut∥

2
−

1
2
xTt Ptxt − ηTt xt

]
+

1
2
gT
t R

†
t gt −

1
2
dTPt+1d − ηTt d −

1
2
tr(Pt+1Σw). (19)

owever, the above expression is constructed based on xt , while
the observations are in terms of yt . To rewrite it in terms of yt ,
irst we simply add and subtract some terms in the expression
bove:

E
t |N=N

[ψt,N (Q , q; xt , ut )] = E
xt |N=N

[ψt,N (Q , q; xt , ut )]

+
1
2
tr(Pt+1Σv) −

1
2
tr(PtΣv) +

1
2
tr(QΣv)

−
1
2
tr(Pt+1Σv) +

1
2
tr(PtΣv) −

1
2
tr(QΣv). (20)

On the other hand, by Assumption 2.3, {vt}
∞

t=1 are independent of
any other stochastic elements. Using the cyclic permutation prop-
erty of the matrix trace operator, we know that Evt [v

T
t Pt+1vt ] =

vt [tr(v
T
t Pt+1vt )] = Evt [tr(Pt+1vtv

T
t )] = tr(Pt+1Σv). Similarly,

e also have Evt [v
T
t Ptvt ] = tr(PtΣv), Evt+1 [v

T
t Qvt ] = tr(QΣv),

dTPt+1d = tr(Pt+1ddT ). In view of (8), (2) and the fact that
E [w ] = 0, E [v ] = 0, using (19) and (20) we can rewrite
wt t vt t



H. Zhang and A. Ringh Automatica 166 (2024) 111705

E

e
E
o

Ψ

w

ψ

F

t
T
ξ
a
c

D

T

(

t
P

xt |N=N [ψt,N (Q , q; xt , ut )] as

E
vt:t+1

[
E

xt+1|N=N

[1
2
(xt+1 + vt+1)T  

yTt+1

× Pt+1 (xt+1 + vt+1)  
yt+1

+ηTt+1 (xt+1 + vt+1)  
yt+1

]
+ E

xt |N=N

[1
2
(xt + vt )T  

yTt

Q (xt + vt )  
yt

+qT (xt + vt )  
yt

+
1
2
∥ut∥

2
−

1
2
(xt + vt )T  

yTt

Pt (xt + vt )  
yt

−ηTt (xt + vt )  
yt

]

+
1
2
gT
t R

†
t gt −

1
2
tr(Pt+1ddT ) − ηTt d −

1
2
tr(Pt+1Σw)

−
1
2
tr(Pt+1Σv) +

1
2
tr(PtΣv) −

1
2
tr(QΣv)

]
= E

yt+1|N=N

[1
2
yT
t+1Pt+1yt+1 + ηTt+1yt+1

]
+ E

xt |N=N

[1
2
∥ut∥

2
]

+ E
yt |N=N

[1
2
yT
t Qyt + qTyt −

1
2
yT
t Ptyt − ηTt yt

]
+

1
2
gT
t R

†
t gt −

1
2
tr(Pt+1ddT ) − ηTt d −

1
2
tr(Pt+1Σw)

−
1
2
tr(Pt+1Σv) +

1
2
tr(PtΣv) −

1
2
tr(QΣv)

=: E
yt:t+1|N=N

[ψ̃t,N (Q , q, Pt:t+1, ηt , ξt; yt:t+1)] + E
xt |N=N

[
1
2
∥ut∥

2
],

where we introduce ξt := gT
t R

†
t gt . We construct the objec-

tive function Ψ (Q , q, P1:ν, η1:ν, ξ1:ν−1) by summing up the above
quation from t = ν − N + 1 to ν − 1, but excluding the terms
xt |N=N [

1
2∥ut∥

2
] which are constants, and taking the expectation

ver N . In particular,

(·) :=

ν∑
N=2

P(N = N) E
yν−N+1:ν |N=N

[
ψ̃N (·)

]
, (21)

here

˜ N (·) =

ν−1∑
t=ν−N+1

ψ̃t,N (·)

=
1
2
yT
νPνyν + ηTν yν −

1
2
yT
ν−N+1Pν−N+1yν−N+1

− ηTν−N+1yν−N+1 −
1
2
tr(PνΣv) +

1
2
tr(Pν−N+1Σv)

+

ν−1∑
t=ν−N+1

(1
2
ξt −

1
2
tr(Pt+1ddT ) − ηTt+1d +

1
2
yT
t Qyt

+ qTyt −
1
2
tr(Pt+1Σw) −

1
2
tr(QΣv)

)
. (22)

The objective function (21) can be rewritten as a joint expectation
over y1:ν and N . However, we find the form in (21) more useful
both in analysis and in implementation.

The objective function (21) is constructed with the idea that
Ψ (·) +

∑ν−1
t=1 Ext ,N

[ 1
2∥ut∥

2
]
, where the latter is the discarded

constant, should be bounded from below by 0 for all (Q , q) ∈

(I). Therefore, ideally we would consider the problem of finding
he point (Q ⋆, q⋆) that minimizes (21) subject to (3) and (4). From
heorem 3.1, we know that (3) and (4) are equivalent to (5) and
t = gT

t R
†
t gt for t = 1 : ν − 1. However, while (21) is linear

nd hence a convex function, neither the constraint (5) nor the
onstraint ξ = gTR

†g for t = 1 : ν−1 are convex. Even so, note
t t t t p

8

that the only nonconvex part in (5) is (5c). We therefore consider
the relaxed convex problem obtained by removing the constraints
(5c) and ξt = gT

t R
†
t gt for t = 1 : ν − 1.2 In particular, let

:=
{
(Q , q, P1:ν, η1:ν, ξ1:ν−1) | (Q , q) ∈ G(ϕ), {Pt ∈ Sn

+
(ϕ)}t=1:ν,

{ηt ∈ Bn
ϕ(0)}t=1:ν, {ξt ∈ B1

ϕ(0)}t=1:ν−1
}
.

he optimization problem for IOC reads

min
Q ,q,P1:ν ,η1:ν ,ξ1:ν−1)∈D

Ψ (Q , q, P1:ν, η1:ν, ξ1:ν−1)

s.t. Pν = Q , ην = q (23a)

Ht ⪰ 0, t = 1 : ν − 1, (23b)

where Ht has the same form as (5b). In Section 5.2, we prove
that the unique optimal solution to this optimization problem is
indeed (Q̄ , q̄).

Nevertheless, the distribution of x̄, {wt}, {vt} and N are usually
not a priori known in practice, and hence the distribution of yt
and N are not known. Therefore, it is not possible to calculate the
objective function (21) explicitly, and hence we cannot solve (23)
directly. But since we have the optimal state trajectory observa-
tions {yit}

ν
t=1 of the agent’s trials, i.e., realizations of I.I.D. random

processes {y i
t}
ν
t=1 for i = 1 : M , we can instead empirically

estimate the objective function. To this end, let MN denote the
number of observations which has a planning horizon of N time
steps. Clearly,

∑ν

N=2 MN = M . Then, for each value of N , the
expectation in (21) is approximated by the empirical mean as
Eyν−N+1:ν |N=N [ψ̃N (·)] ≈

1
MN

∑MN
iN=1{ the expression in (22) with all

elements yt replaced by y iN
t }. On the other hand, approximating

he expectation over N is the same as estimating the probabilities
(N = N) using the empirical estimates MN/M . This, together

with the above expression, gives an approximation of (21) as

Ψ (Q , q, P1:ν, η1:ν, ξ1:ν−1) ≈ Ψ
y
E (Q , q, P1:ν, η1:ν, ξ1:ν−1)

=
1
M

ν∑
N=2

MN∑
iN=1

[1
2
y iN T
ν Pνy iN

ν + ηTν y
iN
ν −

1
2
y iN T
ν−N+1Pν−N+1y

iN
ν−N+1

− ηTν−N+1y
iN
ν−N+1 −

1
2
tr(PνΣv) +

1
2
tr(Pν−N+1Σv)

+

ν−1∑
t=ν−N+1

(1
2
ξt −

1
2
tr(Pt+1ddT ) − ηTt+1d +

1
2
y iN T
t Qy iN

t + qTy iN
t

−
1
2
tr(Pt+1Σw) −

1
2
tr(QΣv)

)]
. (24)

We therefore consider the estimator

min
(Q ,q,P1:ν ,η1:ν ,ξ1:ν−1)∈D

Ψ
y
E (Q , q, P1:ν, η1:ν, ξ1:ν−1)

s.t. (23a)–(23b) hold. (25)

In practice, an estimate is obtained by solving (25) for a given re-
alization {yi1:ν}

M
i=1 of {y i

1:ν}
M
i=1. We will use the notation Ψ y

E (·)|y=y
to denote the objective function at the given realization.

5.2. Statistical consistency analysis

In this section, we analyze the statistical consistency of the IOC
algorithm. To proceed, we first show that the optimization prob-
lem (23) is well-posed, i.e., the objective function (21) is bounded
from below on its feasible domain (23a)–(23b). In addition, we
show the ‘‘true’’ (Q̄ , q̄) is actually the unique global minimizer.
The proof of the theorem is deferred to the Appendix.

2 Note that substituting ξt = gT
t R

†
t gt into the matrix (5b), also gives a convex

roblem; see Nordström (2011, 2018).
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heorem 5.2. Let (Q̄ , q̄) ∈ F (I) be the ‘‘true’’ parameters of
he stochastic linear–quadratic control problem (1) that governs
he agent, and let x1:ν , u1:ν , and y1:ν be distributed accordingly.
nder Assumptions 2.2–2.4, 2.6 and 5.1, for any feasible solution
Q , q, P1:ν, η1:ν, ξ1:ν−1) of the optimization problem (23), the objec-
ive function (21) is bounded from below by −

∑ν−1
t=1 Ext ,N

[ 1
2∥ut∥

2
]
.

Moreover, for ϕ that is large enough, (Q̄ , q̄, P̄1:ν, η̄1:ν, ξ̄1:ν−1) is the
unique globally optimal solution achieving the lower bound, where
P̄1:ν, η̄1:ν are generated by (3) and ξ̄t = ḡT

t R̄
†
t ḡt , t = 1 : ν − 1.

Having shown that the optimization problem (23) has (Q̄ , q̄) as
unique globally optimal solution, next we turn to the estimator
(25). We show that it is statistically consistent, but to this end we
first have the following Lemmas.

Lemma 5.3 (Boundedness of Estimator). The feasible region in prob-
lem (25) is compact. Moreover, for any realization, the cost function
Ψ

y
E (Q , q, P1:ν, η1:ν, ξ1:ν−1)|y=y is bounded on the feasible region, and

the optimization problem (25) is convex and admits an optimal
solution.

Proof. The feasible region is convex and compact, and for any
realization, Ψ y

E (·)|y=y is a linear function. This means that (25)
is a convex problem and by Weierstrass’ theorem, it admits an
optimal solution. □

Lemma 5.4 (Uniform Law of Large Numbers). For large enough ϕ
and under Assumptions 2.2–2.4, 2.6 and 5.1, the optimal value of
the problem sup |Ψ

y
E (·) − Ψ (·)| subject to (Q , q, P1:ν, η1:ν, ξ1:ν−1) ∈

D and (23a)–(23b), converges to 0 almost surely as M → ∞.

Proof. The proof follows along the lines of Zhang and Ringh
(2023, Proof of Lem. 4.2), using bounds from Lemmas 4.3 and 5.3,
and is omitted for brevity. □

Theorem 5.5 (Statistical Consistency). For large enough ϕ and under
Assumptions 2.2–2.4, 2.6 and 5.1, given a realization of M tra-
jectories, let (QM , qM , PM

1:ν, η
M
1:ν, ξ

M
1:ν−1) be a corresponding optimal

solution to (25). Then QM p
→ Q̄ and qM

p
→ q̄ as M → ∞.

Proof. The result follows by verifying the conditions in van
der Vaart (1998, Thm. 5.7). In particular, since (25) is convex,
(QM , qM1:ν, P

M
1:ν, η

M
1:ν, ξ

M
1:ν−1) is a globally optimal solution. This

means that Ψ y
E (Q

M , qM , PM
1:ν, η

M
1:ν, ξ

M
1:ν−1)|y=y ≤ Ψ

y
E (Q̄ , q̄, P̄1:ν,

η̄1:ν, ξ̄1:ν−1)|y=y. Moreover, since convergence almost surely im-
plies convergence in probability (Kallenberg, 1997, Lem. 3.2),
Lemma 5.4 implies that the optimal value in the statement of
the Lemma converges to 0 in probability as M → ∞. Finally,
the fact that the feasible region to (23) and (25) is compact (see
Lemma 5.3), and that (23) has a unique optimal solution (see
Theorem 5.2), by van der Vaart (1998, p. 46) the last condition
also holds. Hence, the result follows. □

5.3. On implementation and the computational complexity of the
estimator

To get a point estimate from the estimator (25), the data
(i.e., the observed trajectories) is used in the optimization prob-
lem (25). This problem can be solved using any appropriate
method for solving the convex optimization problem, in the form
of almost exactly as stated, by disciplined convex programming,
e.g. YALMIP (Löfberg, 2004). Nevertheless, the cost function can
be rewritten to make the solving process more efficient. To this
end, observe that for any Z ∈ Sn and any a ∈ Rn, aTZa =

T (N) ∑MN iN (N)
tr(Zaa ). This means that by defining yt = iN=1 yt and Y t =

9

∑MN
iN=1 y

iN
t (y iN

t )T , the objective function (24) can be rewritten as in
terms of expressions of the form
MN∑
iN=1

1
2
y iN T
ν Pνy iN

ν =
1
2
tr(PνY (N)

ν ),

MN∑
iN=1

ηTν y
iN
ν = ηTν y

(N)
ν ,

MN∑
iN=1

ξt =
MN

2
ξt ,

with analogous expressions of all other terms. Note that y(N)
t

nd Y (N)
t are collecting all the samples at time-point t from

rajectories with the same planning horizon length N , and that
hese can be pre-computed from the data before assembling the
ptimization problem (25). Moreover, the sizes of y(N)

t and Y (N)
t

nly depend on the dimension of the state space, n. It means
hat the size of the optimization problem does not grow with the
mount of data collected. More specifically, since Q ∈ Sn, q ∈ Rn,
Pt ∈ Sn

+
}t=1:ν , {ηt ∈ Rn

}t=1:ν , and {ξt ∈ R}t=1:ν−1, the number of
ariables in the problem is n(n+1)/2+n+ νn(n+1)/2+ νn+ ν.
oreover, the LMI constraints in (23b) are ν symmetric matrices
f size (m+n+1)×(m+n+1). This means that, e.g., n = 12,m = 4,
nd ν = 80 gives a problem with a total of 7370 scalar variables
nd 80 LMI constraints of size 17 × 17. As we demonstrate in
ection 6.1, this can be handled by standard off-the-shelf convex
ptimization solvers.

. Numerical examples

In this section, we present two numerical examples. The
irst example, in Section 6.1, illustrates that the problem (25)
an be solved efficiently with off-the-shelf convex optimization
olvers. The second example, in Section 6.2, applies the developed
ethodology to a non-zero sum pursuit-evasion game, where the
ursuer models the evaders objective function using collected
ata. In both examples, the problem is solved on a MacBook
ro with Apple M1 eight-core CPU and 16 GB of RAM, and the
mplementation is done using YALMIP (Löfberg, 2004) in Matlab
nd solved by MOSEK (MOSEK ApS, 2019).

.1. Demonstration of performance for a system with both moderate
ize and moderate planning horizon

To illustrate the performance of the method, we generate
system with moderate size and planning horizon length. In
articular, to ensure that Assumption 2.2 holds, we generate
ontinuous-time matrices Â ∈ R12×12 and B̂ ∈ R12×4 in control-
able canonical form

ˆ =

⎡⎢⎣ I4
I4

I4
a1I4 a2I4 a3I4 a4I4

⎤⎥⎦ , B̂ =

⎡⎢⎣04
04
04
I4

⎤⎥⎦ .
e sample the coefficients ai, i = 1 : 4 from a standard normal
istribution N (0, 1). Next, we discretize the system by letting
= eÂ∆t and B =

∫ ∆t
0 eÂtdtB̂, using the sampling period∆t = 0.1.

e choose Q̄ to be the Hermitian part of a randomly drawn
atrix with shifted eigenvalues so that the smallest eigenvalue is
0.1.3 We set ν = 80, and verify that the conditions in point (2)

n Theorem 3.1 hold, i.e., that R̄t ≻ 0 for t = 1 : 79. The process
oise wt and measurement noise vt are drawn from multi-variate

3 Namely, we let G′
= (G+GT )/2 and Q̄ = G′

−(σmin(G′)+0.1)I , where σmin(·)
is the smallest eigenvalue of a matrix and where G ∈ R12×12 and elements are
randomly drawn from N (0, 1). We shift the eigenvalues in order to make sure
that we get (Q̄ , q̄) ∈ F(I).
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ormal distribution N (0,Σw) and N (0,Σv), respectively, with
ovariance matrices that are randomly generated from a Wishart
istribution of degree 12, i.e., with the same degrees of freedom
s the dimension of the state. Moreover, the Wishart distribution
sed to draw the covariance matrices has itself a random covari-
nce of 0.01GGT , where each element in G ∈ R12×12 was drawn
rom a standard normal distribution. Finally, we generate M =

× 104 optimal trajectories, with the planning horizon lengths
drawn uniformly from the integers in the interval [2, 80] and
ith initial value x̄ drawn from N (0, 100I12).
The time to solve the optimization problem (25), as reported

y MOSEK, is 4.85 s. Moreover, the relative error of the estimate
defined as ∥Q̃est−

˜̄Q∥F

∥
˜̄Q∥F

where ˜̄Q is defined in (15) and Q̃est is

efined analogously, is 0.0347. This shows that the IOC problem
or systems of ‘‘moderate’’ size and planning horizon length can
e efficiently solved with off-the-shelf solvers.

.2. Identification of cost in non-zero sum pursuit-evasion game

In this section, we demonstrate the performance of the pro-
osed IOC algorithm on a non-zero sum two-dimensional finite-
orizon linear–quadratic pursuit-evasion game, cf. Starr and Ho
1969). For a more extensive treatment of pursuit-evasion games,
ee, e.g., Başar and Olsder (1982). To this end, let xt ∈ R2 be the
istance between the pursuer and the evader, and let up

t , ue
t ∈ R2

e the control signal of the pursuer and the evader, respectively.
n particular, for each realization (x̄,N) of (x̄,N ), we assume that
he evader solves the following problem

in
x1:ν ,
ue1:ν

E
wν−N+1:ν−1

[1
2
xTνQ

exν +

ν−1∑
t=ν−N+1

[
1
2
xTt Q

ext +
1
2
∥ue

t∥
2
]

]
(26a)

s.t. xt+1 = Axt + Bue
t + Bup

t + wt ,

t = ν − N + 1 : ν − 1, (26b)

xt+1 = xt , t = 1 : ν − N (26c)

x1 = x̄, (26d)

ue
1 = · · · = ue

ν−N = 0, (26e)

here (A, B) is discretized in the same way as in Section 6.1
rom a continuous-time dynamics ẋ = Âx + B̂ue

+ B̂up using the
ampling period∆t = 0.1, and where ν = 20. Notably, Q e

≺ 0. In
practice, as a pursuer, Q e is unknown. In order to gain advantages
over the evader and predict its future movements, a pursuer can
first use some ‘‘trivial dummy movements’’ up

ν−N+1:ν that are easy
or the evader to predict (i.e., known by the evader) in the first
ew rounds of the game. During these rounds, the pursuer collects
he evader’s behavior data and use the proposed IOC algorithm
o estimate Q e. In particular, here we assume the pursuer choose
ontrol up

t to be a constant during the data collection phase for
convenience. Consequently, the forcing term d = Bup

t would be
constant for the evader (cf. (1b)).4 The pursuer observes the noisy
distance (see (2)) between the pursuer and evader, which is the
optimal solution to (26).

To simulate this, we choose Â = 0, B̂ = I2, Q e
= −0.1I2,

and for each time step in the trajectories process noise wt and
measurement noise vt are drawn from multi-variate normal dis-
tribution N (0,Σw) and N (0,Σv), respectively, with covariance
matrices

Σw ≈ 10−2
[
1.04 0.68
0.68 1.00

]
and Σv ≈ 10−2

[
2.33 −2.25

−2.25 2.18

]
.

4 In fact, it does not matter what kinds of strategy the pursuer uses in the
ata collection phase, as long as the evader can foresee it, since, as mentioned
n Remark 2.1, the results still hold for time-varying d .
t p

10
Fig. 1. Log–log plot of the mean and standard deviation of the relative error of
Qest as a function of the number of trajectories.

The latter matrices were randomly generated by drawing two ele-
ments from a Wishart distribution of degree 2, i.e., with the same
degrees of freedom as the dimension of the state. The Wishart
distribution is itself generated analogously to the distribution in
Section 6.1. As ‘‘dummy’’ movements for the pursuer, we choose
up
t = [−1,−1]T , t = ν − N + 1 : ν, and hence the constant

forcing term in the dynamics is given by d = B[−1,−1]T . Finally,
the random variable N is taken to be uniformly distributed on the
integers between 2 and ν = 20.

To test the performance of the algorithm, we generate 100
batches of trajectories, where each batch consists of 50 000 tra-
jectories. For each batch, we divide the trajectories into groups
of size M = 100 + 100(k − 1), for k = 1, . . . , 500, where
each larger group contains all the trajectories of a smaller group.
For each such group of trajectories, we solve the IOC problem
(with ϕ set to 106), and this procedure is repeated for all the
100 batches. This means that we obtain estimates Q ℓ,M

est , for ℓ =

1, . . . , 100 and M = 100, 200, . . . , 50 000. For each value of
M , the relative error ∥Q ℓ,M

est − Q e
∥F/∥Q e

∥F is averaged over the
batches, and the resulting empirical mean and empirical stan-
dard deviation (as a function of M) is shown in Fig. 1. From
the figure we see that, in line with the statistical consistency
proved in Theorem 5.5, both the mean and the standard de-
viation decreases with increasing M . Moreover, in Fig. 1 the
logarithm of the mean and the logarithm of the standard de-
viation appears to be (approximately) affine in log(M). The fig-
ure also shows the corresponding lines obtained by fitting an
affine model to each of the two sets of logarithmic data. From
this fit, we see that Mean of relative error ≈ O(M−0.48)
and Standard deviation of relative error ≈ O(M−0.55).
We hence suspect that the convergence rate is O(M−0.5), and
that

√
M(QM − Q̄ ) is asymptotically normal, just like most M-

stimators such as maximum log-likelihood (van der Vaart, 1998,
. 51). However, a theoretical analysis of this is left for future
ork.

. Conclusion

In this work, we have considered the inverse optimal con-
rol problem for discrete-time finite-horizon general indefinite
inear–quadratic problems with stochastic planning horizons. We
irst investigate the necessary and sufficient conditions for when
he forward problem is solvable. The identifiability of the cor-
esponding inverse optimal control problem is analyzed and
roved. Furthermore, based on the underlying necessary and
ufficient condition, we construct the estimator of the inverse
ptimal control problem as the solution to a convex optimization
roblem, and prove that the estimator is statistically consistent.
he performance of the estimator is illustrated on a numeri-
al example of identifying the evaders cost in non-zero sum
ursuit-evasion game.
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ppendix. Deferred proofs

roof of Proposition 2.5. We show the contraposition of the
tatement, i.e., that if (Q̄ , q̄, R̄) is such that there exists an initial
alue x̄ ∈ Rn and a time-horizon length N ∈ {2, . . . , ν} so
hat the optimal control problem (1) is unbounded from below,
hen there exists an initial value x̄′ so that (1) is unbounded
rom below for planning horizon length ν. To this end, consider
lanning horizon N = ν. By Theorem 3.1, if (Q̄ , q̄) ̸∈ F (R̄)

then there exists an N such that (4d) or (4e) does not hold
for t = ν − N + 1. Splitting the summation in the objective
function as Jν = Ew1:ν−1

[
1
2x

T
ν Q̄xν + q̄Txν +

∑ν−1
t=ν−N+1[

1
2x

T
t Q̄xt +

¯Txt + 1
2u

T
t R̄ut ]+

∑ν−N
t=1 [

1
2x

T
t Q̄xt + q̄Txt + 1

2u
T
t R̄ut ]

]
, and following

along the lines of the proof of ‘‘(1) H⇒ (2)’’ in Theorem 3.1,
similar to (13) we get the following inequality Jν ≤ Ew1:ν−1[

1
2u

T
ν−N+1R̄ν−N+1uν−N+1+xTν−N+1S̄

T
ν−N+1uν−N+1+ ḡT

ν−N+1uν−N+1

+ xTν−N+1 S̄T
ν−N+1R̄

†
ν−N+1S̄ν−N+1xν−N+1 + ḡT

ν−N+1R̄
†
ν−N+1 S̄ν−N+1

xν−N+1+τ (xν−N+1)+
∑ν−N

t=1 [
1
2x

T
t Q̄xt+q̄Txt+ 1

2u
T
t R̄ut ]

]
. Moreover,

rom the same proof we know that we can select xν−N+1 in order
to make the terms outside of the last summation unbounded from
below. Now, by invertibility of A, we can select ut = 0 and
xt = A−1(xt+1 − d − wt ) for t = 1 : ν − N . For any value of
xν−N+1, this gives an initial condition and a sequence of states
and controls that fulfill the constraints (1b)–(1e) (note that (1c)
and (1e) are vacuous since N = ν). Moreover it is easily seen
hat Jν is bounded from above by an expression similar to the
ne in the previous proof, but containing an additional constant

˜ (xν−N+1). Following a logic similar to the reminder of the proof
f ‘‘(1) H⇒ (2)’’ in Theorem 3.1, the result follows. □

roof of Lemma 4.2. Let N ∈ {2, . . . , ν} be such that P(N = N) >
, and let covx̄|N=N (x̄, x̄) =

∑n
i=1 λivi be an orthonormal eigen-

ecomposition of the symmetric matrix. This means that we can
rite x̄ =

∑n
i=1 αivi for some real-valued random variables αi,

= 1, . . . , n. Assume that covx̄|N=N (x̄, x̄) is not positive definite.
hen at least one eigenvalue is zero; without loss of generality,
et λ1 = 0. Then we have that 0 = vT1 covx̄|N=N (x̄, x̄)v1 =

x̄|N=N (vT1 x̄x̄
Tv1) − Ex̄|N=N (vT1 x̄)Ex̄|N=N (x̄Tv1) = Ex̄|N=N (α2

1) −

x̄|N=N (α1)Ex̄|N=N (α1), and thus that (Ex̄|N=N (α1))2 = Ex̄|N=N (α2
1).

y Jensen’s inequality (Bauschke & Combettes, 2017, Prop. 9.24),
e know that (Ex̄|N=N (α1))2 ≤ Ex̄|N=N (α2

1), and by following the
roof of Bauschke and Combettes (2017, Prop. 9.24), we see that
quality holds if and only if α1 is constant a.s. To this end, let
1 = c a.s. for some constant c. If c = 0, then for χ = v1,
ssumption 2.6 does not hold. If c ̸= 0, then the probability mass
f x̄ is located on a hyperplane defined by α1 = c , which does not
ass through the origin. In this case, let χ = v2 and note that for
< c we have that P(x̄ ∈ Bn

ϵ (ρv2)) = 0 for all ρ, hence violating
ssumption 2.6. Therefore, we must have covx̄|N=N (x̄, x̄) ≻ 0. □

roof of Lemma 4.3. Note that

cov
¯|N=N

(x̄, x̄) = E
x̄|N=N

[[
x̄x̄T x̄
x̄T 1

]]
  

Ex̄|N=N [¯̃x ¯̃xT ]

\1.

Hence by Lemma 4.2 and Horn and Zhang (2005, Thm. 1.12), we
know that for all N such that P(N = N) > 0, Ex̄|N=N [˜̄x ˜̄xT ] ≻ 0. On
the other hand, by Assumption 2.3, wt is uncorrelated with the
noiseless z t := Axt + But + d, for t = ν − N + 1 : ν − 1, and for
such t it thus holds that

E
[
x̃t+1x̃

T
t+1

]
= E [z̃ t z̃

T
t ] +

[
Σw 0

]

xt+1|N=N xt |N=N 0 0

11
= Ãcl(t; Q̄ , q̄) E
xt |N=N

[x̃t x̃
T
t ]Ãcl(t; Q̄ , q̄)T +

[
Σw 0
0 0

]
, (A.1)

where z̃ t =
[
zTt 1

]T . In particular, note that this holds for t =

ν − N + 1. By induction, since Ex̄|N=N [¯̃x ¯̃xT ] ≻ 0, since Ãcl(t; Q̄ , q̄)
is invertible for all t = 1 : ν−1, and since positive definiteness is
invariant under congruence, we thus have Ext |N=N [x̃t x̃

T
t ] ≻ 0 for

all N such that P(N = N) > 0, and in particular thus for N = ν.
Now we show E[∥x̃t∥2

] < ∞. First, note that E[∥¯̃x∥2
] =

E[∥x̄∥2
] + 1 < ∞ by Assumption 2.6. Next, taking trace on both

sides of (A.1), moving the trace inside the expectation, rearrang-
ing terms, and using Cauchy–Schwarz inequality, we have that
Exν−N+2|N=N

[
∥x̃ν−N+2∥

2
]

≤ Ex̄|N=N [∥¯̃x∥2
]·∥Ãcl(ν−N+1; Q̄ , q̄)∥2

F +

tr(Σw). Using a similar induction argument, we thus have that
Ext |N=N [∥x̃t∥2

] < ∞ for all t = ν − N + 1 : ν and all N
such that P(N = N) > 0. Finally, E[∥x̃t∥2

] =
∑ν

N=1 P(N =

N)Ex̃t |N=N [∥x̃t∥2
] < ∞, which proves the lemma. □

Proof of Theorem 5.2. From the construction of the objective
function in Section 5.1, and in view of (1e), Ψ (·) +

∑ν−1
t=1 Ext ,N[ 1

2∥ut∥
2
]

=
∑ν

N=2 P(N = N)
∑ν−1

t=ν−N+1(Ext |N=N [ψt,N (Q , q; xt , ut )
1
2∥ut∥

2
]). Now, by the definition of ψt,N (Q , q; xt , ut ) in (18),

sing Assumption 2.3 and computations analogous to those in
19) we have that

E
t |N=N

[ψt,N (Q , q; xt , ut )]

= E
xt |N=N

[1
2
(Axt + But + d)TPt+1(Axt + But + d)

+ ηTt+1(Axt + But + d) −
1
2
xTt Ptxt − ηTt xt +

1
2
ξt

+
1
2
xTt Qxt + qTxt

]
= E

xt |N=N

[1
2

[
uT
t xTt 1

]
Ht

[ut
xt
1

]
−

1
2
∥ut∥

2
]
, (A.2)

here Ht has the form (5b). On the other hand, since (Q , q, P1:ν,
1:ν, ξ1:ν−1) is feasible, by the constraint (23b) we have that Ht ⪰

0. Therefore, it holds that

Ψ (·) =

ν∑
N=2

P(N = N)
ν−1∑

t=ν−N+1

E
xt |N=N

[
1
2

[
uT
t xTt 1

]
Ht

[ut
xt
1

]
−

1
2
∥ut∥

2
]

(A.3)

≥ −

ν∑
N=2

P(N = N)
ν−1∑

t=ν−N+1

E
xt |N=N

[
1
2
∥ut∥

2
]

= −

ν−1∑
t=1

E
xt ,N

[
1
2
∥ut∥

2
]
.

This proves the first part of the theorem.
Next, we show that the lower bound is actually attained by

(Q̄ , q̄, P̄1:ν, η̄1:ν, ξ̄1:ν−1). By using Theorem 3.1 we have that the
true underlying Q̄ and q̄, together with corresponding solution
{P̄t ∈ Sn

}t=1:ν and {η̄t ∈ Rn
}t=1:ν to the Riccati recursions

3), and with ξ̄t = ḡT
t R̄

†
t ḡt for t = 1 : ν − 1, is a feasible

olution to the optimization problem, if ϕ is large enough. For
his feasible solution (Q̄ , q̄, P̄1:ν, η̄1:ν, ξ̄1:ν−1), we can decompose
he corresponding H̄t as in (11) and in this case, together with
16), and (A.2), Ext |N=N [ψt,N (Q , q; xt , ut )] can be written as

E
t |N=N

[1
2

[
uT
t xTt 1

]⎡⎣R̄t
S̄T

t
T

⎤⎦ R̄
†
t
[
R̄t S̄T

t ḡT
t

]⎡⎣ut
xTt

⎤⎦ −
1
2
∥ut∥

2
]

ḡt 1
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i

Ψ

N
∥

ν

= E
xt |N=N

[1
2
∥(R̄t )

1
2 (R̄tut + S̄txt + ḡt )∥2  

=0

−
1
2
∥ut∥

2
]
,

This shows that the lower bound for the objective function Ψ (·)
is attained by (Q̄ , q̄, P̄1:ν, η̄1:ν, ξ̄1:ν−1).

Finally, we show that the ‘‘true’’ (Q̄ , q̄, P̄1:ν, η̄1:ν, ξ̄1:ν−1) is
actually the unique global optimizer to (23). To this end, let
(Q ⋆, q⋆, P⋆1:N , η

⋆
1:N , ξ

⋆
1:N−1) be an optimal solution to (23), and let

us also use ⋆ to denote other vectors and matrices obtained using
this optimal solution. Since the solution is optimal, it must be
feasible, which implies that H⋆t ⪰ 0,∀t = 1 : ν − 1. Hence
it follows that R⋆

t ⪰ 0, ker(R⋆
t ) ⊂

[
ker(S⋆T

t ) ∩ ker(g⋆Tt )
]
and

H⋆t \R
⋆
t ⪰ 0, see Horn and Zhang (2005, Thm. 1.20, p. 43). In view

of the above ‘‘kernel containment’’, (A.2), and (A.3), the optimal
value of Ext |N=N [ψt,N (Q ⋆, q⋆; xt , ut )] can be further rewritten as

E
xt |N=N

[1
2

[
uT
t xTt 1

]⎡⎣ I
S⋆T

t R
⋆†
t I

g⋆Tt R
⋆†
t I

⎤⎦
×

⎡⎣R⋆
t

ATP⋆t+1A + Q ⋆
− P⋆t − S⋆T

t R
⋆†
t S⋆

t β⋆t − S⋆T
t R

⋆†
t g⋆t

β⋆Tt − g⋆Tt R
⋆†
t S⋆

t ξ ⋆t − g⋆t R
⋆†
t g⋆t

⎤⎦
×

⎡⎣I R
⋆†
t S

⋆†
t R

⋆†
t g⋆†t

I
I

⎤⎦[ut
xt
1

]
−

1
2
∥ut∥

2
]
.

Recalling the notation x̃t = [xTt , 1]T and the fact that R⋆
t ⪰ 0, we

n turn get

(·) =

ν∑
N=2

P(N = N)
ν−1∑

t=ν−N+1

E
xt |N=N

[
−

1
2
∥ut∥

2

+
1
2

[
uT
t + xTt S⋆T

t R
⋆†
t + g⋆Tt R

⋆†
t xTt 1

]
×

[
R⋆

t
H⋆t \R

⋆
t

]⎡⎣ut + R
⋆†
t S⋆

t xt + R
⋆†
t g⋆t

xt
1

⎤⎦ ]

=

ν−1∑
t=1

E
xt ,N

[
−

1
2
∥ut∥

2
]

+

ν∑
N=2

P(N = N)
ν−1∑

t=ν−N+1

E
xt |N=N

[
1
2

∥ (R⋆
t )

1
2 (ut + R

⋆†
t

[
S⋆

t g⋆t
]
x̃t ) ∥

2
+

1
2
tr

(
(H⋆t \R

⋆
t )x̃t x̃

T
t

) ]
,

ote that since H⋆t \R
⋆
t ⪰ 0, all terms except

∑ν−1
t=1 Ext ,N [ −

1
2

ut∥
2
] are non-negative. Hence, in order for the lower bound∑ν−1

t=1 Ext ,N [−
1
2∥ut∥

2
] to be attained, we must have that for t =

− N + 1 : ν − 1

E
xt |N=N

[
∥ (R⋆

t )
1
2 (ut + R

⋆†
t

[
S⋆

t g⋆t
]
x̃t ) ∥

2
]

= 0, (A.4a)

E
xt |N=N

[
tr

(
(H⋆t \R

⋆
t )x̃t x̃

T
t

)]
= tr

(
H⋆t \R

⋆
t

)
E

xt |N=N

[
x̃t x̃

T
t

]
=0, (A.4b)

for all N such that P(N = N) > 0. In particular, by Assumption 2.4
it must be true for N = ν. From Lemma 4.3, we know that
Ext |N=ν[x̃t x̃

T
t ] ≻ 0. Thus it follows that, for N = ν, (A.4b) implies

that H⋆t \R
⋆
t = 0 holds for t = 1 : ν − 1. By using the observation

in Remark 3.2, we therefore have that (Q ⋆, q⋆, P⋆1:ν, η
⋆
1:ν) satisfies

the generalized Riccati iterations (3).
Now, to show that the optimal solution to (23) is unique, first

assume that (Q ⋆, q⋆, P⋆1:ν, η
⋆
1:ν) is an optimal solution such that

R⋆
t ≻ 0, for t = 1 : ν − 1. In this case, also (R⋆

t )
1
2 ≻ 0 for

t = 1 : ν − 1. By (A.4a), this means that, conditioned on N = ν,
we have ut = −R

⋆†
t

[
S⋆

t g⋆t
]
x̃t a.s. for t = 1 : ν − 1. But

conditioned on N = ν, we also have that u = −R̄
† [

¯ ¯
]
x̃ .
t t St gt t

12
Therefore R
⋆†
t

[
S⋆

t g⋆t
]
x̃t = R̄

†
t
[
S̄t ḡt

]
x̃t , a.s., for t = 1 :

ν − 1. Multiplying from the right with x̃Tt and taking expectation
Ext |N=ν on both sides, we have that R⋆†

t
[
S⋆

t g⋆t
]
Ext |N=ν[x̃t x̃

T
t ] =

R̄
†
t
[
S̄t ḡt

]
Ext |N=ν[x̃t x̃

T
t ], for t = 1 : ν − 1. Using Lemma 4.3,

we know that Ext |N=ν[x̃t x̃
T
t ] ≻ 0 and hence the matrix is full

rank. Therefore, it must hold that R⋆†
t

[
S⋆

t g⋆t
]

= R̄
†
t
[
S̄t ḡt

]
,

t = 1 : ν − 1, and thus, by (17), that Ãcl(t;Q ⋆, q⋆) = Ãcl(t; Q̄ , q̄),
t = 1 : ν − 1. By Proposition 4.1, we therefore have that
Q̄ = Q ⋆ and that q̄ = q⋆. This implies that in the subset
of the feasible region (23a)–(23b) where Rt ≻ 0, for t =

1 : ν − 1, it holds that (Q̄ , q̄, P̄1:ν, η̄1:ν, ξ̄1:ν−1) is the unique
globally optimal solution to (23). Next, suppose that there exists
a minimizer (Q ⋆, q⋆, P⋆1:ν, η

⋆
1:ν, ξ

⋆
1:ν−1) such that R⋆

t ⪰ 0 but not
strictly positive definite for some t ∈ {1, . . . , ν−1}. In particular,
by Proposition 3.4 this means that (Q ⋆, q⋆, P⋆1:ν, η

⋆
1:ν, ξ

⋆
1:ν−1) ̸=

(Q̄ , q̄, P̄1:ν, η̄1:ν, ξ̄1:ν−1). Since (23) is a convex optimization prob-
lem that attains an optimal solution, the set of all optimal solu-
tions is a nonempty convex set (Rockafellar, 1970, Thm. 27.2).
This means that all points (Q α, qα, Pα1:ν, η

α
1:ν, ξ

α
1:ν−1) := (αQ̄ +

(1 − α)Q ⋆, αq̄ + (1 − α)q⋆, {αP̄t + (1 − α)P⋆t }
ν
t=1, {αη̄t + (1 −

α)η⋆t }
ν
t=1, {αξ̄t + (1 − α)ξ ⋆t }

ν−1
t=1 ) are optimal, for all α ∈ [0, 1].

Since the eigenvalues of Rt , t = 1 : ν − 1, depends smoothly
on Pt (see (4)), we can select α close enough to 1 so that
(Q α, qα, Pα1:ν, η

α
1:ν, ξ

α
1:ν−1) will be such that Rα

t ≻ 0 for all t =

1 : ν − 1. However, this contradicts the fact that (Q̄ , q̄, P̄1:ν,
η̄1:ν, ξ̄1:ν−1) is the unique globally optimal solution to (23) with
Rt ≻ 0, t = 1 : ν − 1. Therefore, there can be no optimal
solution such that R⋆

t is not (strictly) positive definite for all
t ∈ {1, . . . , ν−1}, and hence (Q̄ , q̄, P̄1:ν, η̄1:ν, ξ̄1:ν−1) is the unique
globally optimal solution to (23). □

References

Alexander, R. McNeill (1996). Optima for animals. Princeton, NJ: Princeton
University Press.

Anderson, Brian D. O., & Moore, John B. (2007). Optimal control: linear quadratic
methods. Mineola, NY: Dover Publications.

Başar, Tamer, & Olsder, Geert Jan (1982). Dynamic noncooperative game theory.
London, UK: Academic Press.

Bauschke, H. H., & Combettes, P. L. (2017). Convex analysis and monotone operator
theory in Hilbert spaces (2nd ed.). Cham: Springer.

Bertsekas, Dimitri P. (2000). Dynamic programming and optimal control: Volume
1 (2nd ed.). Belmont, MA: Athena scientific.

Boyd, Stephen, El Ghaoui, Laurent, Feron, Eric, & Balakrishnan, Venkataramanan
(1994). Linear matrix inequalities in system and control theory. Philadelphia,
PA: SIAM.

Chen, Shuping, Li, Xunjing, & Zhou, Xun Yu (1998). Stochastic linear quadratic
regulators with indefinite control weight costs. SIAM Journal on Control and
Optimization, 36(5), 1685–1702.

Ferrante, Augusto, & Ntogramatzidis, Lorenzo (2015). A note on finite-horizon
LQ problems with indefinite cost. Automatica, 52, 290–293.

Ferrante, Augusto, & Ntogramatzidis, Lorenzo (2016). A discussion on the
discrete-time finite-horizon indefinite LQ problem. In 2016 IEEE 55th
conference on decision and control (pp. 216–220). IEEE.

Gohberg, Israel, Lancaster, Peter, & Rodman, Leiba (2005). Indefinite linear algebra
and applications. Basel: Birkhäuser Verlag.

Horn, Roger A., & Zhang, Fuzhen (2005). Basic properties of the Schur comple-
ment. In Fuzhen Zhang (Ed.), The Schur complement and its applications (pp.
17–46). Boston, MA: Springer.

Kallenberg, Olav (1997). Foundations of modern probability. New York, NY:
Springer.

Kalman, Rudolf E. (1964). When is a linear control system optimal? Journal of
Basic Engineering, 86(1), 51–60.

Keshavarz, Arezou, Wang, Yang, & Boyd, Stephen (2011). Imputing a convex
objective function. In 2011 IEEE international symposium on intelligent control
(pp. 613–619). IEEE.

Li, Yibei, Yao, Yu, & Hu, Xiaoming (2020). Continuous-time inverse quadratic

optimal control problem. Automatica, 117, Article 108977.

http://refhub.elsevier.com/S0005-1098(24)00199-7/sb1
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb1
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb1
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb2
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb2
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb2
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb3
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb3
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb3
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb4
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb4
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb4
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb5
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb5
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb5
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb6
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb6
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb6
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb6
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb6
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb7
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb7
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb7
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb7
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb7
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb8
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb8
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb8
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb9
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb9
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb9
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb9
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb9
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb10
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb10
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb10
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb11
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb11
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb11
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb11
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb11
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb12
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb12
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb12
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb13
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb13
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb13
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb14
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb14
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb14
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb14
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb14
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb15
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb15
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb15


H. Zhang and A. Ringh Automatica 166 (2024) 111705

L

L

L

M

N

N

N

P

R

R

R

S

T

T

v

X

Z

Z

Z

i, Yibei, Zhang, Han, Yao, Yu, & Hu, Xiaoming (2018). A convex optimization
approach to inverse optimal control. In 2018 37th Chinese control conference
(pp. 257–262). IEEE.

Lian, Bosen, Xue, Wenqian, Lewis, Frank L., & Chai, Tianyou (2021). Ro-
bust inverse Q-learning for continuous-time linear systems in adversarial
environments. IEEE Transactions on Cybernetics.

jung, Lennart, & Glad, Torkel (1994). On global identifiability for arbitrary model
parametrizations. Automatica, 30(2), 265–276.

öfberg, J. (2004). YALMIP : A toolbox for modeling and optimization in MATLAB.
In Proceedings of the CACSD conference. Taipei, Taiwan.

OSEK ApS (2019). The MOSEK optimization toolbox for MATLAB manual.
Version 9.0.

g, Andrew Y., & Russell, Stuart (2000). Algorithms for inverse reinforcement
learning.. In Proceeding of the 17th international conference on machine
learning (pp. 663–670).

ordström, Kenneth (2011). Convexity of the inverse and Moore–Penrose
inverse. Linear Algebra and its Applications, 434(6), 1489–1512.

ordström, Kenneth (2018). A note on the convexity of the Moore–Penrose
inverse. Linear Algebra and its Applications, 538, 143–148.

riess, M Cody, Conway, Richard, Choi, Jongeun, Popovich, John M, & Rad-
cliffe, Clark (2014). Solutions to the inverse LQR problem with application to
biological systems analysis. IEEE Transactions on Control Systems Technology,
23(2), 770–777.

ami, Mustapha Ait, Chen, X., & Zhou, Xun Yu (2002). Discrete-time indefinite
LQ control with state and control dependent noises. Journal of Global
Optimization, 23(3), 245–265.

Ran, André C. M., & Trentelman, Harry L. (1993). Linear quadratic problems with
indefinite cost for discrete time systems. SIAM Journal on Matrix Analysis and
Applications, 14(3), 776–797.

Åström, Karl J. (2006). Introduction to stochastic control theory. Mineola, NY:
Dover, Unabridged republication of original published by Academic Press,
1970.

eid, Robert E., Tugcu, A. Kemal, & Mears, Barry C. (1983). An optimal controller
arising from minimization of a quadratic performance criterion of indefinite
form. IEEE Transactions on Automatic Control, 28(10), 985–987.

ockafellar, R. Tyrrell (1970). Convex Analysis. Princeton, NJ: Princeton University
Press.

tarr, Alan Wilbor, & Ho, Yu-Chi (1969). Nonzero-sum differential games. Journal
of Optimization Theory and Applications, 3(3), 184–206.

oumi, Noureddine, Malhamé, Roland, & Le Ny, Jerome (2020). A tractable mean
field game model for the analysis of crowd evacuation dynamics. In 2020
59th IEEE conference on decision and control (pp. 1020–1025). IEEE.

oumi, Noureddine, Malhamé, Roland, & Le Ny, Jerome (2021). A spatial par-
titioning based crowd evacuation model. In 2021 60th IEEE conference on
decision and control (pp. 5247–5252). IEEE.

an der Vaart, Adrianus W. (1998). Asymptotic statistics. Cambridge, United
Kingdom: Cambridge University Press.

ue, Wenqian, Kolaric, Patrik, Fan, Jialu, Lian, Bosen, Chai, Tianyou, &
Lewis, Frank L (2021). Inverse reinforcement learning in tracking control
based on inverse optimal control. IEEE Transactions on Cybernetics.
13
Xue, Wenqian, Lian, Bosen, Fan, Jialu, Kolaric, Patrik, Chai, Tianyou, &
Lewis, Frank L (2021). Inverse reinforcement Q-learning through expert
imitation for discrete-time systems. IEEE Transactions on Neural Networks and
Learning Systems.

Yu, Chengpu, Li, Yao, Fang, Hao, & Chen, Jie (2021). System identification
approach for inverse optimal control of finite-horizon linear quadratic
regulators. Automatica, 129, Article 109636.

hang, Han, & Ringh, Axel (2023). Inverse linear-quadratic discrete-time finite-
horizon optimal control for indistinguishable homogeneous agents: A convex
optimization approach. Automatica, 148, Article 110758.

Zhang, Han, Ringh, Axel, Jiang, Weihan, Li, Shaoyuan, & Hu, Xiaoming (2022).
Statistically consistent inverse optimal control for linear-quadratic tracking
with random time horizon. In 2022 41st Chinese control conference (pp.
1515–1522). http://dx.doi.org/10.23919/CCC55666.2022.9902327.

hang, Han, Umenberger, Jack, & Hu, Xiaoming (2019). Inverse optimal control
for discrete-time finite-horizon linear quadratic regulators. Automatica, 110,
Article 108593.

hou, Xun Yu, & Li, Duan (2000). Continuous-time mean-variance portfolio
selection: A stochastic LQ framework. Applied Mathematics and Optimization,
42(1), 19–33.

Han Zhang received his Ph.D. from Dept. of Mathemat-
ics, KTH Royal Institute of Technology, Sweden in 2019.
He obtained both this B.S. and M.S. degree from Dept.
of Automation, Shanghai Jiao Tong University in 2011
and 2014 respectively. He is now an associate professor
in Dept. of Automation, Shanghai Jiao Tong University.
His main research interests are control of inverse
optimal control, game theory and their application in
robotics.

Axel Ringh received a M.Sc. degree in Engineering
Physics in 2014, and a Ph.D. degree in Applied and
Computational Mathematics in 2019, both from KTH
Royal Institute of Technology, Stockholm, Sweden.
From 2019 to 2021 he was a postdoctoral researcher
with the Department of Electronic and Computer En-
gineering, the Hong Kong University of Science and
Technology, Hong Kong, China, and since 2021 he is
assistant professor at the Department of Mathematical
Sciences, Chalmers University of Technology and the
University of Gothenburg, Gothenburg, Sweden. He is

the recipient of the European Control Conference 2015 Best Student Paper
Award, and the SIAM Activity Group on Control and Systems Theory Best SICON
Paper Prize 2023. His research interests are in the field of applied mathematics,
specifically in optimization and systems theory, and the intersection with
areas such as control theory, signal processing, inverse problems, and machine
learning.

http://refhub.elsevier.com/S0005-1098(24)00199-7/sb16
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb16
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb16
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb16
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb16
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb17
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb17
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb17
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb17
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb17
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb18
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb18
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb18
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb19
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb19
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb19
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb20
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb20
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb20
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb21
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb21
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb21
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb21
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb21
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb22
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb22
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb22
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb23
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb23
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb23
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb24
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb24
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb24
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb24
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb24
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb24
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb24
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb25
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb25
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb25
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb25
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb25
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb26
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb26
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb26
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb26
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb26
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb27
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb27
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb27
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb27
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb27
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb28
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb28
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb28
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb28
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb28
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb29
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb29
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb29
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb30
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb30
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb30
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb31
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb31
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb31
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb31
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb31
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb32
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb32
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb32
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb32
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb32
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb33
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb33
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb33
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb34
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb34
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb34
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb34
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb34
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb35
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb35
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb35
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb35
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb35
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb35
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb35
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb36
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb36
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb36
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb36
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb36
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb37
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb37
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb37
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb37
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb37
http://dx.doi.org/10.23919/CCC55666.2022.9902327
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb39
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb39
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb39
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb39
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb39
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb40
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb40
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb40
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb40
http://refhub.elsevier.com/S0005-1098(24)00199-7/sb40

	Statistically consistent inverse optimal control for discrete-time indefinite linear–quadratic systems
	Introduction
	Problem formulation
	Forward problem analysis
	Necessary and sufficient conditions for existence of optimal control
	Analysis of the closed-loop system matrices

	Identifiability analysis and persistent excitation
	The IOC algorithm
	Construction and empirical approximation
	Statistical consistency analysis
	On implementation and the computational complexity of the estimator

	Numerical examples
	Demonstration of performance for a system with both moderate size and moderate planning horizon
	Identification of cost in non-zero sum pursuit-evasion game

	Conclusion
	Appendix. Deferred proofs
	References


