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Predicting Electric Vehicle Energy Consumption
from Field Data Using Machine Learning

Qingbo Zhu, Yicun Huang, Chih Feng Lee, IEEE Senior Member, Peng Liu, IEEE Member,
Jin Zhang, Torsten Wik, IEEE Member

Abstract—This study addresses the challenge of accurately
forecasting the energy consumption of electric vehicles (EVs),
which is crucial for reducing range anxiety and advancing
strategies for charging and energy optimization. Despite the
limitations of current forecasting methods, including empirical,
physics-based, and data-driven models, this paper presents a
novel machine learning-based prediction framework. It integrates
physics-informed features and combines offline global models
with vehicle-specific online adaptation to enhance prediction
accuracy and assess uncertainties. Our framework is tested
extensively on data from a real-world fleet of EVs. While
the leading global model, quantile regression neural network
(QRNN), demonstrates an average error of 6.30%, the online
adaptation further achieves a notable reduction to 5.04%, with
both surpassing the performance of existing models significantly.
Moreover, for a 95% prediction interval, the online adapted
QRNN improves coverage probability to 91.27% and reduces
the average width of prediction intervals to 0.51. These results
demonstrate the effectiveness and efficiency of utilizing physics-
based features and vehicle-based online adaptation for predicting
EV energy consumption.

Index Terms—Electric vehicles, energy consumption, modeling
and prediction, machine learning, field data.

I. INTRODUCTION

A. Motivation & Technical Challenges

Current road transport, heavily relying on fossil fuels,
has caused severe public concerns over the energy crisis,
air pollution, and global warming. To achieve a sustainable
transport system, the mass deployment of electric vehicles
(EVs) is imperative and has become an unstoppable trend
[1]. According to the International Energy Agency, the global
EV stock in the stated policies scenario will expand rapidly
from almost 18 million in 2021 to 200 million by 2030, corre-
sponding to an average annual growth of more than 30% [2].
Such electric revolution in the transport sector entails various
studies at different levels, ranging from vehicle components
(e.g., batteries), individual EVs, and a vehicle fleet, up to traffic
networks and their interactions with road infrastructure, power
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grids, and the environment [3], [4]. Specifically, typical re-
search topics around EVs include but are not limited to battery
sizing [5], charging planning [6], driving range prediction [7],
routing [8], speed control [9], [10], energy optimization [11],
and environmental analysis [12]. To tackle these problems, a
common and fundamental task is the development of a reliable
and accurate model for EV energy consumption. In addition,
such an energy consumption model is a basis for making EV
regulations and policies, and for analyzing the supply risks of
battery resources.

Accurately and quickly predicting the energy consumption
of EVs in completing a given trip is a non-trivial task due to
the presence of several technical challenges. First, the energy
of an EV is consumed by various resistances (e.g., caused by
road friction, gravity, and aerodynamics), inevitable energy
losses (e.g., in motors, batteries, and braking systems), and
auxiliary vehicle components (e.g., the heating, ventilation,
and air conditioning system) while maintaining desired vehicle
dynamics and comfort. Furthermore, this process involves a
large set of parameters in vehicle design, operation, road
topology, traffic states, and the external environment [13],
some of which, such as the road conditions, wind speed, and
driver behavior, are time-varying and stochastic. Compared to
commercial transit buses, private electric cars tend to have
complicated and highly volatile trips, and their prediction
problem is even more challenging. Last but not least, an
instantaneous prediction value is often expected for decision-
making and system control, and, in contrast, a trip duration can
range from several minutes to hours in which the associated
energy consumption is related to vehicle dynamics varying in
milliseconds. The multiple timescales involved further com-
plicate the prediction task.

B. Literature Review

Considerable research efforts have been devoted to the
modeling of EV energy consumption. The obtained results can
generally be categorized into empirical models, physics-based
models, and data-driven models.

The simplest empirical models assume constant energy con-
sumption rates in EVs. For example, the electricity consump-
tion has been hypothetically fixed at 1.5 kWh/km in [14] for
electric buses in Stockholm, Sweden, whereas it was defined
to be 1.2 kWh/km in [15] for mixed bus fleet scheduling.
By using the Renault Zoe as a case study, Desreveaux et
al. demonstrated an important impact of velocity profiles on
energy consumption, particularly the maximal velocity, while
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the maximal acceleration turned out to have a low impact [16].
With this in mind, for improved model accuracy, Wu et al. fit-
ted the energy usage as a monotonically increasing polynomial
function of the velocity for in-city and freeway driving [17].
Recently, Ji et al. developed an analytical model that describes
the trip-level energy consumption of the traction and battery
thermal management system as a linear logarithmic function
of the ambient temperature, curb weight, travel distance, and
trip travel time [18]. Similar works can be found in [19]
and [20]. Although being useful to analyze and reveal how
some parameters affect the energy consumption of a specific
EV, or an EV fleet, this class of models ignores many other
factors and can suffer from severely degraded performance
when being deployed to predict EV energy consumption in a
general case.

According to fundamental principles, such as Newton’s
second law and the law of energy conservation, the dynamics
of the mechanical, electrical, and thermal energy states of an
EV can be formulated as differential equations, as in [21]–[25].
The obtained physics-based models have been widely used
in offline vehicle design [5], simulation-based studies [26],
[27], and short-horizon predictive control [9], [10]. However,
the application of these models to long-term prediction is
challenging due to the need to identify a large number of
parameters related to the considered vehicle, driver, road,
traffic, and environment, as well as the necessity to update
all those time-varying parameters online continuously. To the
best of our knowledge, there is currently no well-established
physics-based model accurately capturing all the microscopic
dynamic behaviors of EVs throughout individual and typical
trips. Furthermore, running the physics-based models requires
detailed time-series input data concerning the planned trip,
such as vehicle and wind velocity profiles, which are not easy
to acquire precisely. Even though there is a perfect physics-
based model with all its time-varying parameters described by
lookup tables or derived by online identification algorithms,
and a well-defined trip lasting tens of minutes, it can be
computationally expensive to propagate the high-resolution
model, e.g., at a sampling time of ten milliseconds, to generate
state trajectories for the calculation of accumulated energy
consumption. This outrules many applications, such as the
planning of trips and charging schedules, where one needs
an immediate estimate of energy consumption or even solving
an online optimization problem based on the estimated value.

Data-driven modeling approaches using machine learning
have recently become very popular in a wide range of research
areas, including energy storage, electrified transportation and
vehicle technologies [28]–[31], and are good candidates to
solve the prediction problem for EV energy consumption. With
millions of EVs deployed in the world, it is not technically
difficult to collect a statistically sufficient amount of data,
though such data may not be readily accessible to many aca-
demic research groups. To overcome the data shortage issue,
Abdelaty et al. used a physics-based model for electric transit
buses (ETBs) to generate a large dataset by gradually varying
a set of parameters, such as the initial state of charge (SoC),
minimum acceleration, average speed, and space between
consecutive bus stops, and then developed several machine

learning-based models to explain the energy consumption
variance [13]. To be more realistic and potentially capture
the correlated effects of different vehicle parameters, a few
recent studies have made use of real-world vehicle data. For
example, Chen et al. established a recurrent neural network-
based model from time-series ETB data for short-term energy
prediction [32]. Towards trip-level predictions based upon field
data, relevant models can be found in [33], [34] for ETBs
and in [35], [36] for electric cars. The referred works have
demonstrated the potential of machine learning-based models
for the long-term prediction of EV energy consumption.

C. Contributions of This Work

Inspired by the data-driven models discussed above, this
work presents a practical and generic machine learning-based
modeling approach for EV energy consumption prediction that
not only significantly improves accuracy and robustness, but
also provides the prediction uncertainties in real-time. The
contributions are systematically achieved by: 1) proposing a
new procedure to process and clean real-world EV data, 2)
constructing a comprehensive, physics-informed feature pool
and extracting the best set of features, 3) applying several
powerful machine learning methods to develop prediction
models for the consumed energy of an EV fleet with highly
diverse trip information, 4) providing the uncertainty range
estimation associated with the point prediction, making it
useful for corrective actions, decision-making, and safety
control purposes, and 5) online adaptation of the selected
global models for further improved accuracy and tightened
uncertainty range. The proposed machine learning pipeline is
illustrated in Fig. 1.

II. DATA DESCRIPTION AND PROCESSING

A. Dataset

The dataset was collected by the National Monitoring and
Management Platform for New Energy Vehicles in China
from 55 battery electric taxis of the same brand and model.
Equipped with lithium nickel cobalt manganese oxide (NCM)
batteries having 30.4 kWh nominal capacity, these taxis were
designed to have a driving range of up to 200 km and a
maximum speed of 125 km/h. More specifications about them
can be found in [35]. The states of vehicle operation (e.g.,
mileage and speed), batteries, motors, motor controllers, the
braking system, fault alarms, and insulation resistance, as well
as the location information, were monitored in real-time. The
corresponding data were sent to the platform via wireless
communication at a nominal frequency of 1 Hz. The detailed
data items, formats, and communication protocols follow the
standard given in [37]. The selected data reflect vehicles
running in Beijing, with the earliest data points from March
2017 and the latest from December 2018.

The obtained time-series data for each vehicle were seg-
mented into different driving trips, where the trips end when-
ever a stop or idling state is longer than three minutes. In
practice, these trips could be terminated due to parking or
charging. When there was no data uploading, embodied as
data missing, or a series of zeros for more than three minutes,
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Fig. 1: Pipeline to develop data-driven algorithms for energy consumption prediction.

we also considered it as a trip completion. The data samples
between every two consecutive trips were ignored as the cor-
responding energy consumption was negligibly small. Without
energy consumption information from the vehicle cabin, e.g.,
for heating, ventilation, and air conditioning (HVAC), the
energy output from the motors has been considered as the
system output of interest, y, and was calculated by the time
integral of the product of the measured current and voltage
over the motor.

The measured GPS data from vehicles were input into
Google Earth to generate road elevation data allowing cal-
culation of road grade profiles. According to the recorded
time and position, the external environment measurements,
including ambient temperature, wind speed and direction,
dewpoint temperature, and humidity, were taken from the
weather website (https://www.xihe-energy.com) at a sampling
time of 30 minutes.

All the trips were labeled by dates, and when the daily
driving ranges became outside of [1, 600] km, the correspond-
ing trips were dropped. When the daily driving ranges are
less than 1 km, the included trips are very short, rendering
the energy consumption prediction unnecessary. On the other
hand, it is unusual for these taxis to drive 600 km in a day as
it means three full charges. As a result, a total of 91,932 trips
were extracted from the raw vehicle data. Fig. 2 exemplifies
the time-series velocity, acceleration, and elevation within two
trips and illustrates the distribution of their trip-level average
values over all the trips. It can be seen that the driving profiles
vary largely within a specific trip and among different trips.

B. Data Processing

The dataset described in Section II-A was transmitted wire-
lessly from the running taxis to the data platform. However,
wireless transmission is susceptible to interference and can be
affected by long distances, physical obstructions, channel dis-
turbance, and weather conditions. In addition, digital-to-analog
conversion, sensor noise, and differentiation of measurements
may also cause problems. Under such circumstances, our

Fig. 2: Data measured from electric taxis. (a)-(c) show the ve-
locity, acceleration, and elevation profiles, respectively, of two
continuous trips of a vehicle. (d)-(f) illustrate the histogram
trip-level average velocity, acceleration, and elevation, respec-
tively, over all the trips, where both the positive acceleration,
a+, and the negative acceleration, a−, are considered.

dataset should have inherently suffered from issues, such as
measurement noise, data latency, loss, or mismatch. Given that
data quality is critical for machine learning, the existing issues
will inevitably weaken and even undermine the accuracy and
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Fig. 3: Illustration of raw data samples. (a) Probability of en-
ergy consumption over all the trips. (b) Total energy consump-
tion of each trip versus the corresponding driving distance.

reliability of data-driven models for predicting vehicle energy
consumption. Hence, it is necessary to process and clean the
data. To do so, we use knowledge of vehicle usage and kinetics
as well as statistical properties to phase out potential issues.

1) Data Cleaning. For any given trip i ∈ {1, 2, · · · , N̄},
where N̄ is the number of all trips, we identify and quantify
the data loss by comparing the number of existing time-series
data samples, denoted by Mi, to its expected value Σi. The
data loss rate, ρloss,i, is defined as

ρloss,i = (Σi −Mi) /Σi. (1)

With the frequency of 1 Hz in collecting data, it is common
that exists ρloss,i > 0. Analogously, the data mismatch rate,
ρmismatch,i, is calculated by

ρmismatch,i = (Mi −Mmismatch,i) /Mi, (2)

where Mmismatch,i is the number of expected data samples and
it can be exemplified as the situation where the motor current
is zero while the vehicle speed is nonzero.

2) Outlier Detection. Some outliers in the obtained dataset
can be detected from the labeled output while others can be
isolated based on the trip-level features x that impact the
system output. As illustrated in Fig. 3(a), some trips have
consumed unusually more energy than others while a small
number of trips are on the other side of the spectrum. From
Fig. 3(b), it can be observed that the trip-level average energy
consumption yi tends to be linearly related to the driving
distance di. In the bottom-left corner of the sub-figure, some
trips are featured with over 10 km driving distance whereas the
corresponding energy consumption is around zero. To system-
atically deal with these outliers, we combine the concepts of
studentized residuals and leverage [38] to distinguish extreme
output values in {y1, · · · , yN̄} and extreme feature values in
{d1, · · · , dN̄}.

Suppose yi = diβ + ϵ for the relationship between the
energy consumption yi and driving distance di, where β is
a scalar coefficient and ϵ is a parameter vector, representing
the slope and bias of the linear regression model, respec-
tively. Then, according to the analytical solution to the linear
least squares problem, the optimal value can be obtained as
[β, ϵ]T = (DTD)−1DTY , where Y = [y1, · · · , yN̄ ]T and

D = [d1, 1; · · · ; dN̄ , 1]. By defining D’s pseudoinverse as D†,
namely D† = (DTD)−1DT , the estimated value of Y is given
by

Ŷ =


D†

11 D†
12 · · · D†

1N̄

D†
21 D†

22 · · · D†
2N̄

...
...

. . .
...

D†
N̄1

D†
N̄2

· · · D†
N̄N̄

Y, (3)

where D†
ii is the leverage value and it indicates the distance

between a certain driving distance di and the average value of
di for all the N̄ trips.

According to its definition, the studentized residual for trip
i, denoted by ri, is given by [38]

ri =
yi − ŷi√

σ(y1, · · · , yN̄ ) · (1−D†
ii)

, (4)

where ŷi is derived from (3), yi − ŷi represents the ordinary
residual for trip i, and the function σ(·) is the standard
deviation of yi in all the N̄ trips.

III. OVERVIEW OF PHYSICS-BASED MODELING

In general, the energy consumption of a vehicle is to
overcome several types of driving resistance and to support
auxiliary systems, e.g., HVAC. At the same time, it will be
affected by regenerative braking and energy efficiencies in the
powertrain system and its components. By only considering
energy flow from the vehicle motors, the energy consumption
of an electric vehicle, ŷ, can be calculated by

ŷ = Frd/ηr + ηbEbrake, (5)

where Fr represents the propulsion force, Ebrake is the regener-
ative braking energy, and ηr and ηb denote the corresponding
energy efficiencies. According to Newton’s second law of mo-
tion, the propulsion force applied to vehicles can be expressed
as [22]

Fr =mgf cos(θ) +
CDA(V − Vair)

2

21.15
+mg sin(θ) + δma, (6)

where the four terms on the right-hand side of (6) represent
the rolling resistance, air resistance, climb resistance, and
acceleration resistance. g, δ, and CD denote the gravitational
acceleration, the transfer coefficient from the revolving mass
to a linear mass, and the drag coefficient, respectively, and
these three parameters are generally constant during vehicle
movement. m, A, and f are the vehicle mass, equivalent cross-
sectional area, and tire rolling resistance coefficient. While m
can vary among different trips for a taxi, f and A are heavily
influenced by road conditions and the ambient environment.
θ, V , and Vair are the road grade, vehicle velocity, and wind
velocity, which are variables in a trip.

If all the model parameters in (6) are known a priori and
all the variables can be measured accurately, the instantaneous
propulsion force can be calculated directly at each time step.
However, as noted in the introduction, these parameters and a
set of energy efficiencies for a vehicle system can be affected
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by many complicated factors, and it is very expensive and
difficult to quantify them accurately, particularly considering
the wide range of uncertainties and stochasticity during vehicle
usage.

IV. DATA-DRIVEN MODEL DEVELOPMENT

Fully recognizing the complexities involved in precise pa-
rameterization and long-term simulation of physical models,
this study adopts a data-driven approach to efficiently forecast
the trip-level energy consumption of EVs. This approach
incorporates a set of features carefully constructed from the
physics-based model described in Section III.

A. Physics-informed Feature Construction and Engineering

The first step in establishing a machine learning (ML)
model is to extract elements for feature construction. All these
elements are taken directly or are inspired by the physics-
based model (6). As such, all essential physical insights into
energy consumption can be systematically incorporated into
the ML-based prediction model. As shown in the first three
columns of Table I, these elements can be categorized into
four classes, i.e., trip intrinsic attributes, road characteristics,
vehicle states, and ambient environments. Note that in addition
to the instantaneous acceleration, the positive and negative
values of acceleration are considered to better reflect the
vehicle states on the trip level. The relative wind velocity Vw,
defined as V − Vair, is also considered as part of the ambient
environment.

With these physics-informed elements, a two-step procedure
is used to construct a comprehensive feature pool. First, the
time-series data of each of the considered elements over a
given trip is transformed into a form of histogram. Then,
a variety of statistical properties of the histogram can be
extracted, including the mean, variance, 0.95 quantile, and
0.05 quantile, which represent the characteristics of central
tendency, dispersion, and extreme situations of each driving
trip, respectively. The obtained library of elements and corre-
sponding constructed features is listed in Table I. Note that
in the absence of measured data, our feature pool does not
explicitly incorporate locally distributed traffic information,
such as traffic density and congestion levels. However, we
anticipate that the selected features related to vehicle velocity
and acceleration implicitly capture the effects of varying traffic
conditions on trip-based energy consumption.

This employed feature construction strategy compresses
hundreds or thousands of time-series data samples in a trip into
a small number of features, corresponding to each physical
element. The strategy reduces the scale of the input data
by several orders of magnitude, resulting in significantly de-
creased memory resources to store the data and computational
cost to train ML models. In addition, it enables efficient
predictions during the online implementation. Such a strategy
is imperative when the raw data are stored originally and
locally as histograms within the vehicle. A similar strategy
was used in [39] to compress vehicle field data for predicting
the aging trajectory of lithium-ion batteries.

With the constructed feature pool, feature engineering is
conducted to select a set of most relevant and independent
features for the development of ML models. To achieve this,
Spearman correlation analysis is first conducted to assess the
correlation between any feature x and the system output y. The
Spearman’s rank correlation coefficient ρs that measures the
strength and direction of the monotonic relationship between
x and y can be calculated as [40]

ri = Rxi
−Ryi

, (7)

ρs = 1− 6ΣNtrain
i=1 r2i

Ntrain(N2
train − 1)

, (8)

where i is the index of the trip-based data samples, Ntrain
represents the number of training samples, and Rxi signifies
the rank of xi after sorting all training samples for the
considered feature in ascending order. By setting a lower
threshold for the Spearman’s rank correlation coefficient, i.e.,
ρs,min, any features with a score less than ρs,min will be
discarded from the feature pool. Following the analysis for the
correlation between any feature and the system output, Pearson
correlation analysis [40] is applied to quantify the correlation
between any two features within the remaining pool. For each
feature pair, when the Pearson correlation coefficient ρp is
greater than a specified upper threshold ρp,max, the feature with
a lower value of ρs is abandoned to avoid multicollinearity
among features.

B. ML-based Prediction Models

Within the realm of supervised machine learning, the pre-
diction of trip-based EV energy consumption is framed as a
regression problem in terms of the selected features and the
consumed energy y. The target is to develop reliable and ac-
curate ML models that provide trip-wise point predictions and
the associated uncertainty range, where the latter aims to make
the prediction results interpretable. Four regression algorithms,
specifically the quantile regression (QR), quantile regression
neural network (QRNN), quantile extreme gradient boosting
regression (QEGBR), and quantile regression forests (QRF),
are utilized in the offline pathway of Fig. 1 to develop novel
prediction models for y. Note that none of these quantile-based
algorithms relies on the assumption of any specific distribution
of the system output, unlike other probabilistic models, such
as Gaussian process regression.

1) QR: QR is a robust learning algorithm for estimating the
conditional quantiles of the target, y, from data, as opposed to
solely focusing on the median. From a physical perspective,
it divides the training dataset into two segments based on the
value of quantile hyperparameters. The QR’s check function,
ρτ (ei, τ), can be written as [41]

ρτ (ei, τ) =

{
−(1− τ)ei if ei < 0

τei if ei ≥ 0,
(9)

where the parameter τ ∈ (0, 1) represents the quantile of y,
and the discrepancy between yi and its predicted value ŷi is
defined as ei = yi − ŷi for the i-th trip. If τ = 0.5, the goal
is to fit a straight line that divides the dataset into two equal
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TABLE I: Elements for feature construction and the resulting feature pool

Element classification Elements Description Features

Trip intrinsic attributes d Driving distance of a trip d
td Driving time of a trip td

Road characteristics
E Elevation of the road mean, variance, 0.95 quantile, 0.05 quantile
Gcos Cosine value of road grade mean, variance, 0.95 quantile, 0.05 quantile
Gtan Tangent value of road grade mean, variance, 0.95 quantile, 0.05 quantile

Vehicle states

V Vehicle velocity mean, variance, 0.95 quantile, 0.05 quantile
V 2 Square of vehicle velocity mean, variance, 0.95 quantile, 0.05 quantile
V 3 Cube of vehicle velocity mean, variance, 0.95 quantile, 0.05 quantile
a Acceleration of vehicle variance, 0.95 quantile, 0.05 quantile
a+ Positive vehicle acceleration mean
a− Negative vehicle acceleration mean

Ambient environments

Vw Relative wind velocity mean, variance, 0.95 quantile, 0.05 quantile
V 2
w Square of relative wind velocity mean, variance, 0.95 quantile, 0.05 quantile

Ta Ambient temperature mean
Td Dewpoint temperature mean
H Humidity mean
P Precipitation mean

parts, which is equivalent to using the absolute loss (AL),
LAL(yi, ŷi) =

∑Ntrain
i=1 |yi − ŷi|, as the loss function in linear

regression. The determination of the upper and lower bounds
for a specified prediction interval can be achieved by setting
the values of τ in (9).

2) QRNN: Neural networks (NNs), drawing inspiration
from the human brain, are computational models composed
of interconnected nodes structured into layers. These nodes
incorporate weighted connections and activation functions, en-
abling them to process data through feedforward computations
for predictive tasks. The training process, known as back-
propagation, refines these networks that often include multiple
hidden layers to facilitate deep learning. Deep neural networks
(DNNs) are a type of NNs characterized by having multiple
hidden layers, providing them with the ability to learn intricate
representations, attain high model performance, and effectively
process extensive datasets. In DNNs for regression problems,
the most commonly used loss functions are the squared loss
(SL) and AL, but they are restricted to making point predic-
tions. According to [42], by integrating the QR algorithm into
a DNN structure, one can obtain both the point prediction
ŷ and the uncertainty range estimation associated with ŷ. In
this work, we incorporate the QR check function into the loss
function of QRNN, namely L(yi, ŷi) =

∑Ntrain
i=1 ρτ (ei, τ).

3) QEGBR: Extreme gradient boosting (XGBoost) is a
scalable end-to-end ML algorithm that leverages gradient
tree boosting to create ensemble models for predictions and
classifications [43]. Unlike linear regression and NNs, which
offer flexibility in choosing loss functions that can be first-
or second-order differentiable, the loss function of XGBoost
needs to be second-order differentiable as Newton’s method
is required for the optimization [44]. Commonly, the log-cosh
loss function is applied in XGBoost with the following form:

ρLC(yi, ŷi) = log(cosh(ŷi − yi)). (10)

Similar to classic DNNs, the XGBoost can provide point
prediction but not the uncertainty range. To have both the
point and uncertainty range predictions, one would naturally
expect some appropriate combinations of XGBoost and QR.
Given that QR’s loss function is not second-order differen-

tiable at the origin, a second-order differentiable function can
be introduced to create a smooth approximation of the QR
loss function, allowing for a smooth transition at the origin
[45]. With this in mind, we replace ŷi − yi in (10) by the
quantile check function ρτ (ŷi − yi, τ) defined in (9). The
obtained algorithm integrates XGBoost and the new quantile
loss function and is consequently termed QEGBR.

4) QRF: Different from the previous three parametric
quantile regression methods, which predict the target value
by minimizing their respective loss functions, random forest-
based algorithms are non-parametric tree-based approaches
without the process of optimizing parameters. QRF is a
generalization of the original random forest (RF) [46]. When
constructing the forest, both QRF and RF utilize decision trees,
employ bootstrapping to generate distinct subsets of data, and
make random selections for nodes and splitting points. In
RF, the predicted value is the conditional mean, which is
approximated by averaging the predictions from all the trees
in the forest. Therefore, the only information needed in RF is
the mean of the observations that fall into each node across
all trees. Different from RF, QRF retains all the values of all
observations in all nodes, not just their mean, and then uses
this information to assess the target conditional distributions
under different quantiles, thereby generating predictions for
the system output and the associated uncertainty.

C. Online Model Adaptation for Customized Prediction

The global models in Section IV-B are trained and validated
on historical vehicle data. When we apply the resulting models
to predict vehicle energy consumption, they are blind to the
unique characteristics of new vehicles whose driving situations
may deviate largely from those in the training set. The predic-
tions are essentially generated from an open-loop simulation
based on the global models. The historical driving data of a
targeted vehicle during real-world usage shall contain valuable
information for understanding and learning the characteristics
of its future energy consumption. Taking this individualized
information into consideration as feedback, online adaptive
models can be developed to potentially improve the prediction
performance, particularly for vehicles that have not been seen
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during the training process. To test this concept for EV fleets,
we for the first time develop online adaptive models for EV
energy consumption based on QRNN and QEGBR, where
model adaptations are made in real-time based on the latest
trip the targeted vehicle has completed.

1) Online Adaptive QRNN: With continuous usage of the
targeted vehicle, new data samples will be available and can
be used for individualized model development. The QRNN
often consists of many layers and neurons to learn complex
input-output relationships.

On one hand, if training the entire QRNN model at each
time step k only against the newly arrived data sample, one can
expect serious over-fitting. On the other hand, by adding the
newly arrived data to the training set for model re-training,
the required time can be very long, hindering online model
adaptation. In addition, the result of model re-training will
still be dominated by the offline available dataset. To enhance
the impact of new data and facilitate efficient online learning,
we adopt a learning-without-forgetting approach proposed in
[47]. The key idea is that while the overall structure and the
values of most parameters of the global model are preserved,
the parameters of the hidden layer closest to the output layer,
denoted Θ, are updated as the new data sample arrives. While
various online parameter estimation methods can be appli-
cable, for demonstration purpose, we employ the stochastic
gradient descent to estimate Θk recursively according to

Θk+1 = Θk − α∇L(Θk), (11)

where k+ 1 means the trip next after trip k, α represents the
learning rate, and ∇L(Θk) is the gradient (vector) of the loss
function of QRNN with respect to Θk.

2) Online Adaptive QEGBR: XGBoost can be implemented
through a mature and well-encapsulated toolbox, which limits
modifications to the global model trained offline. The core of
the QEGBR algorithm involves adding trees and repeatedly
performing feature splits to grow a tree, where a new function
is learned each time, and a tree is added to fit the residual from
the previous prediction. To have the benefits of both offline
and online learning, we propose the online adaptive QEGBR
algorithm. Specifically, with the arrival of each new training
data from a targeted vehicle, we add a new tree in its modeling
to reduce the residual, thereby enabling individualized mod-
eling for this specific vehicle in real-time. Differing from the
online adaptive QRNN, the online adaptive QEGBR thus alters
the structure, rather than the parameters, of its corresponding
global model.

Note that during the online phase, both the above two adap-
tation algorithms will preserve the major model information
from the previous learning step to reduce the risk of over-
fitting, robustness issues, and large modeling errors.

V. RESULTS AND DISCUSSION

Four evaluation metrics are applied to evaluate the predic-
tion accuracy and uncertainty estimation performance. Two of
them are used to analyze the prediction accuracy, namely the

root mean squared error (RMSE) and the percentage mean
absolute error (PMAE) defined as

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2, (12)

PMAE =
1
N

∑N
i=1 |yi − ŷi|

1
N

∑N
i=1 |yi|

× 100%, (13)

where N is the number of data samples in the testing set.
The other two evaluation standards for assessing prediction
intervals at the same probability level are the coverage proba-
bility (CP) and average width (AW) of the prediction interval,
defined as

PICP =
1

N

N∑
i=1

Ci,where Ci =

{
1 yi ∈ [y

i
, yi]

0 yi ̸∈ [y
i
, yi]

(14)

PIAW =
1

N

N∑
i=1

(yi − y
i
), (15)

where y
i

and yi represent the predicted lower and upper
bounds, respectively, for a certain prediction interval.

A. Implementation Specification

For data processing in Section II-B, to balance the degree of
removing the detected issues and the number of data samples
in model development, we set the tolerable thresholds for ρloss,i
and ρmismatch,i to 10% and 30%, respectively. Any trips in the
dataset that do not satisfy the conditions will be removed. We
flag trip-level samples as outliers when D†

ii exceeds 6/N̄ or
the absolute value of ri is larger than 3.

We use Monte Carlo cross-validation to evaluate the accu-
racy, efficiency, and robustness of the developed ML models.
From the processed dataset, 45 vehicles are randomly selected
and used for model training, while the data from the remaining
10 vehicles serve as the test set. This process of random data
splitting is iterated 20 times to mitigate sample bias. Subse-
quently, the average results of these iterations are computed
to provide a robust assessment of model performance. For
feature engineering in Section IV-A, we set ρs,min = 0.05,
and ρp,max = 0.8.

For all the ML algorithms described in Section IV-B, the
quantile values, τ , in their corresponding loss functions are
set as 0.5 for generating point predictions. The quantile values
are set to be 0.025 and 0.975 to obtain the lower and upper
bounds, of a 95% prediction interval, respectively.

B. Results of Data Processing

The results of data processing, including data cleaning
and outlier detection conducted in Section II-A, are partially
depicted. For brevity, only the data on trip-based energy
consumption and its correlation with driving distances are
presented in Fig. 4.

Compared with the raw data samples displayed in Fig. 3, the
shapes of these two histogram plots are highly similar, both
exhibiting a distinct right skewness. This means most trips
had low energy consumption. However, the distribution of the
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cleaned dataset has a shorter and lighter tail than that of the
raw dataset. Specifically, the trips with energy consumption
of more than 15 kWh, which is about 50% of the maximum
energy stored in the battery system at the beginning of its life,
are largely reduced. The removed data samples particularly
include “skeptical trips” that consumed high energy within
short driving distances. After the data processing, the linearity
between driving distances and energy consumption becomes
more pronounced, and correspondingly, the variation of energy
consumption generally becomes smaller for a given driving
distance.

In total, 91,932 driving trips are extracted from the original
time-series data. According to the tolerable thresholds of data
loss and mismatch in each trip specified in Section V-A,
53.88% of the data samples are removed. After the data
cleaning, 816 data samples belong to the defined outliers,
corresponding to 0.8876% of the raw data. Overall, 41,585
samples are retained for the training and testing of ML models.

Fig. 4: Illustration of the trip-based energy consumption data
resulting from data cleaning and outlier detection.

C. Results of Feature Engineering

This subsection presents results of feature engineering per-
formed in Section IV-A using ρs,min and ρp,max specified in
Section V-A. Table II lists the 17 selected features and their
coefficients of Spearman correlation with the output y, i.e.,
the trip-based energy consumption. For Pearson correlation
between each two features, the coefficients are also derived,
and Fig. 5. depicts the scores for the features applied in the
ML models.

The driving distance d is found as the most relevant feature
to predict y, having a Spearman correlation coefficient as
high as 0.98. However, several other features also correlate
strongly with y, such as the driving time. However, these
features are heavily dependent on d according to the Pearson
correlation analysis and were therefore excluded to mitigate
multicollinearity. In general, features related to vehicle states
are more relevant to y than those features associated with the
ambient environment. Specifically, the 95th quantile of the
vehicle velocity carries more weight than the average velocity,
and the variance of acceleration takes precedence over all
other acceleration-related features. It is noteworthy that the
impact of both the variance of the relative wind velocity and
the elevation on y is substantial, which is an underexplored
aspect in the existing literature.

TABLE II: The selected features and their Spearman correla-
tion coefficients

Feature Description Coefficient

d Driving distance 0.9831
Vw,var Variance of relative wind velocity 0.4126
Evar Variance of elevation 0.3928
V95 95th quantile of vehicle velocity 0.2945
Vave Average of vehicle velocity 0.2422
avar Variance of acceleration 0.2126
E95 95th quantile of of elevation 0.1871
Gcos

var Variance of Gcos 0.1576
Gcos

95 95th quantile of Gcos 0.1399
Td Average of dewpoint temperature 0.1313
P Mean precipitation -0.0944
H Mean humidity 0.0880
Vw,5 5th quantile of relative wind velocity -0.0879
Gtan

5 5th quantile of Gtan 0.0752
V5 5th quantile of vehicle velocity -0.0665
Gtan

95 95th quantile of Gtan -0.0618
Gtan

var Variance of Gtan 0.0586

d
V �

��
��

E v
ar

V 9
5

V a
ve

a v
ar

E 9
5

G
co
s

va
r

G
co
s

95 T d P H
V w

	

G
ta
n

5 V 5
G
ta
n

95

G
ta
n

va
r

d
V�� ���

Evar
V95
Vave
avar
E95
Gcos
var

Gcos
95

Td
P

H
Vw	

Gtan
5

V5
Gtan
95

Gtan
var

���


���� ����

���	 ����� ����

���� ����	 ���� ���


���
 ���� ����	 ���� ���


���
 ���� ��	� ���� ���� ����

���� � ���� ���� � ����� ����

���� � � ���� �� ���� ����� �

���� ����� ���� ���� �� ����	 ���	 ���� �����

���� ���	 � ����� ����� ����� ���� � ����
 ����

��� ����� ���� ���� ���
 ����� ���� ���� ����� ��

 ����

���� ���� ����� ����� ����� ���� ����
 ����� �� ����� ����	 ���	�

���� ���� �� ���� ���
 ���
 ����
 ���	 ���� �� � ���� �����

����� ����� � ���� ���� ����� ���� ����� ����� ���� �� ���� � ���	

����
 ����� ���� ����	 ����� ����� ���� ���	 ���� � ����� ����� � ����� �����

���� ���� ���� � � ����� ���� ���� � ���� �� ���� �� ����� �� ����

����

����

���

���

���

��


�
����������

Fig. 5: Pearson correlation heatmap of the selected features
for the processed dataset.

D. Results of the global ML models

1) Prediction Accuracy: By using the ML-based prediction
models developed in Section IV-B, we can continuously pre-
dict EV energy consumption in each trip. With the data split
defined in Section V-A and the obtained hyperparameters in
Table III, the overall prediction results for all data samples in
the test set are summarized in Tables V–IV.

Although the task is challenging, it can be observed that
the best model, i.e., QRNN, can accurately predict EV energy
consumption. Specifically, after cleaning the data and remov-
ing the outliers, the QRNN model can deliver predictions
with a PMAE of 6.3%. In addition to QRNN, QEGBR can
also effectively learn the characteristics of energy consumption
from the diverse field data and make reliable predictions
for any given input that has not been seen during training.
These results verify the effectiveness of the developed energy
consumption models as well as the constructed and selected
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Fig. 6: Prediction results of the four global models for individual vehicles. (a) and (b) show the RMSE and PMAE values. (c)
exemplifies the predicted energy consumption in 30 trips from a randomly selected vehicle in the test set.

TABLE III: Hyperparameter values for the applied ML algo-
rithms

QR —

QRNN
Hidden unit numbers: 256, 64, 32, 32, 8
L2 regularization: 0.0005
Learning rate: 0.00001

QEGBR
Learning rate: 0.01
Total number of iterations: 8000
Early stopping rounds: 10

QRF

Maximum features: 17
Maximum tree depth: 20
Minimum sample split: 10
Minimum sample leaf: 2

physics-informed features underlying each model.
To evaluate the efficacy of our newly developed global mod-

els for energy prediction, as well as their underlying feature set
(i.e., those in Table II and labeled here as Set 4), we compare
the obtained results with those achieved in three benchmarks
using different feature sets. The first benchmark has a feature
set (i.e., Set 1) only incorporating driving distance. The second
benchmark adopts a more complex feature set derived in the
state-of-the-art literature [35], which includes driving range,
driving time, average velocity, 95% quantile of acceleration,
5% quantile of acceleration, and average temperature, and six
categorical variables representing traffic conditions during rush
and non-rush hours across various time frames and days. The
third benchmark employs the proposed feature engineering
but only takes the ten features with the highest correlation
coefficients from Table II, forming Set 3. To ensure a fair
comparison, all four machine learning (ML) models were im-
plemented and fine-tuned across each benchmark. The results
demonstrate a clear advantage of using our comprehensive
feature set (Set 4). Notably, our QRNN model achieves a
reduction in prediction error of 11.9% compared to the best-
performing benchmark and 19.6% relative to the state-of-the-
art benchmark.

To assess the impact of data processing on prediction
accuracy, we conducted a comparative analysis of results using
the raw dataset and two processed datasets. Our findings
indicate significant improvements in prediction accuracy after
data cleaning and outlier removal, as evidenced by reductions
in both the RMSE and PMAE. By using QRNN as an example,
without the proposed data processing techniques, the PMAE
can become 41% larger, and the RMSE will increase by 29%.
Analysis of the results presented in the last two columns of
Table V underscores that in addition to addressing data loss
and mismatch issues, it is crucial to remove outliers.

Upon detailed examination of the results, it is observed that
for the two less accurate models, i.e., QR and QRF, the RMSE
values exhibit a marginal increase after the data cleaning, a
phenomenon that initially appears counter-intuitive. It is found
that the prediction errors from QR and QRF models tend to
escalate for longer trips. The data cleaning process primarily
removes data samples pertaining to shorter trips, which results
in an increase in the average trip distance within the cleaned
dataset. Consequently, this leads to slightly increased RMSE
values, specifically 0.274 for the QR model and 0.2506 for
the QRF model. This observation further corroborates the
significance of outlier removal from the dataset.

By using the processed dataset, the prediction results for
individual vehicles in the test set are illustrated in Fig. 6.
QRNN and QEGBR generally outperform the other two mod-
els for individual vehicles and trips, consistent with the results
obtained above. It can also be seen that the prediction errors do
not appreciably increase with energy consumption (Fig. 6c),
showing the stability and robustness of the developed models.
This implies that for trips with higher energy consumption, the
relative errors tend to be smaller. In Fig. 6a–b, the trajectories
of the four ML models have a similar variation trend. This
conveys that in addition to the ML algorithms, the prediction
results are also influenced by other factors, such as the data
quality in terms of resolution and level of detail. It may be



IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION 10

TABLE IV: Effects of different feature sets and online learning on prediction accuracy

Model Error type Global models with different feature sets Online adaptive models
Set 1 Set 2 Set 3 Set 4 Set 4

QR RMSE 0.2891 0.2365 0.2343 0.2263
PMAE 10.37% 8.29% 8.17% 7.90%

QRF RMSE 0.2868 0.2232 0.2266 0.2132
PMAE 10.26% 7.88% 7.92% 7.31%

QRNN RMSE 0.2870 0.2193 0.2129 0.1788 0.1456
PMAE 10.30% 7.84% 7.23% 6.30% 5.04%

QEGBR RMSE 0.2875 0.2120 0.2012 0.1861 0.1604
PMAE 10.28% 7.50% 6.97% 6.47% 5.56%

TABLE V: Prediction errors of the developed models using different datasets

Model Error type Raw data Data with outliers Fully processed data

QR RMSE 0.2694 0.2740 0.2263
PMAE 10.23% 8.43% 7.90%

QRF RMSE 0.2482 0.2506 0.2132
PMAE 9.54% 7.70% 7.31%

QRNN RMSE 0.2311 0.2262 0.1788
PMAE 8.88% 7.00% 6.30%

QEGBR RMSE 0.2247 0.2128 0.1861
PMAE 8.84% 6.74% 6.47%

noticed that for test vehicle No. 6, the predictions have a
low RMSE but a high PMAE. This is because we have used
the average energy consumption of all its trips, and shorter
distances traveled by this vehicle result in a larger PMAE
value.

2) Uncertainty Estimation: To make the predictions in-
terpretable for decision-making of EV charging and energy
usage, four quantile-based ML algorithms have been used in
the prediction model development allowing the uncertainty
associated with each prediction to be estimated at the same
time. To the best of our knowledge, this has not previously
been conducted in the literature of data-driven EV energy
prediction. The coverage probability and average width of
prediction intervals, i.e., PICP and PIAW, are used to quantify
the performance of uncertainty estimation, with the results
presented in Table VI and Fig. 8. Without doubt, one would
desire prediction intervals to always cover the ground truth
(i.e., high PICP) and to be as narrow as possible (namely low
PIAW). Within a 95% confidence interval, the ideal PICP for
models evaluated on the test dataset is 0.95, though the actual
values of PICP may vary with the data distribution of the test
dataset and model structures.

From the numerical and graphical results, it can be seen that
the prediction intervals generated by QR, QRF, and QRNN are
able to cover the measured trip-level energy consumption on
most occasions. While QR gives the highest PICP, QEGBR
results in lowest PIAW thanks to the use of the synthetic quan-
tile loss function, i.e., ρLC(yi, ŷi) = log(cosh(ρτ (ŷi − yi, τ))
as described in Section IV-B3. QRNN is capable of best
balancing PICP and PIAW, and can consequently serve as
the most suitable candidate for uncertainty estimation. By
leveraging QRNN’s prediction interval bounds, i.e., y

i
and yi

generated for each trip i, it is possible to establish suitable
constraints and safety margins for various decision actions.

3) Computational efficiency: In addition to performance
for point prediction and uncertainty estimation, the com-
putational efficiency of ML models is crucial for real-time

implementations. With this consideration, we investigate the
computational time required by all the developed models. It is
found that the most accurate global model, namely the QRNN,
requires only 15 microseconds on average to predict the energy
consumption for individual trips. This time is significantly less
than the trip duration, rendering it negligible.

E. Results of Online Adaptive Models

The best global models, i.e., QRNN and QEGBR, have been
adapted online, with the results demonstrated in Table V and
Fig. 7. It is evident that the two online adaptive ML models
significantly outperform their global models across all vehicles
in the test set (see Fig. 7a). The online QRNN can deliver
the highest accuracy, with a PMAE of 5.04%. Corresponding
to a reduction of more than 20% compared to the offline
model performance. In comparison with the method proposed
in [35], the reduction is as high as 35%. QEGBR, with a
PMAE of 5.56%, is also superior to all the global models.
Further, for individual trips of a randomly selected vehicle
(see Fig. 7b–c), the predicted values of the online adapted
QRNN and QEGBR closely follow the ground truth in the
entire range of energy consumption. This validates that our
proposed online adaptation method can judiciously learn the
energy consumption behavior of the target EV and effectively
combine it with the corresponding global model.

The effect of online adaption on uncertainty estimation is
also investigated. From Table VI, it is clear that the online
QRNN and QEGBR effectively reduce the average width of
prediction intervals, PIAW, showing a decrease of 15% and
18%, respectively. Similar results are observed in Fig. 8 for
individual trips. Obviously, the turquoise-colored areas of the
online adaptive models are smaller than the rose-colored areas
of the global models. Furthermore, the online QRNN cannot
only tighten the prediction intervals but also increase the
probability of containing the measured trajectory inside the
intervals. This makes its estimated bounds of each prediction
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Fig. 7: Comparison of the point prediction results of the global models (QRNN and QEGBR) and their online adaptive models.
(a) PMAE values for all vehicles in the test set. (b) and (c) Trajectories of the ground truth and predictions for 30 trips from
a randomly selected vehicle in the test set.

TABLE VI: Uncertainty estimation by the global models and online adaptive models

Evaluation matrices QR QRF QRNN QEGBR Online QRNN Online QEGBR
PICP 0.9354 0.9165 0.8931 0.6377 0.9127 0.5785
PIAW 0.7446 0.6624 0.5981 0.5294 0.5082 0.4348
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Fig. 8: The estimated uncertainties and the ground truth of energy consumption for a vehicle randomly selected from the test
set, where the rose- and turquoise-colored areas denote the 95% prediction intervals.

interval, i.e., y and y, more valuable for advanced EV energy
management. By contrast, the online QEGBR shrinks PIAW
but also decreases PICP. Such a low value of PICP implies that
the uncertainty predictions are less reliable and useful.

While significantly enhancing prediction and estimation per-
formance, the online model adaptation will inevitably demand
additional computational effort. For instance, when using the
online QRNN model, the average computational time is 4.73
milliseconds for predicting the energy consumption of a single
trip. This minimal duration makes the developed ML models
highly suitable for online vehicular applications.

VI. CONCLUSIONS

This paper has introduced a field data-based ML pipeline
for the prediction of EV energy consumption. The first novelty
arises from the proposed data processing method tailored for
a large amount of real-world EV data that was inherently
plagued by various issues and outliers. Then, a new feature
set was constructed from physical insights and picked meticu-
lously through systematic correlation analyses. Based on these
data and features, four quantile-based machine learning algo-
rithms were pertinently formulated and innovatively applied
for the EV energy prediction, enabling accurate and reliable
prediction of both the energy consumption and associated
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uncertainties. Finally, the best-performing global ML models
were adapted online for individualized predictions, leading
to consistently improved accuracy and tightened confidence
internals.

The developed ML models as well as their underpinning
data processing and feature engineering were validated exten-
sively for EV energy prediction. Comprehensive comparisons
were conducted for different steps of data processing, between
global models and online adaptive models, and with models
in the literature. The online adaptive QRNN models outper-
formed all other models with an average prediction error of
5.04%, corresponding to an over 35% improvement over the
state-of-the-art models. Substantial advantages have also been
observed from different steps of data processing and online
model adaptation.
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[38] D. Blatná, “Outliers in regression,” Trutnov, vol. 30, pp. 1–6, 2006.
[39] Y. Zhang, T. Wik, J. Bergström, M. Pecht, and C. Zou, “A machine

learning-based framework for online prediction of battery ageing trajec-
tory and lifetime using histogram data,” J. Power Sources, vol. 526, p.
231110, 2022.



IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION 13

[40] A. Lehman, N. O’Rourke, L. Hatcher, and E. Stepanski, JMP for basic
univariate and multivariate statistics: methods for researchers and social
scientists. Sas Institute Inc., 2013.

[41] R. Koenker and G. Bassett, “Regression quantiles,” Econometrica,
vol. 46, no. 1, pp. 33–50, 1978.

[42] J. W. Taylor, “A quantile regression neural network approach to esti-
mating the conditional density of multiperiod returns,” J. Forecasting,
vol. 19, no. 4, pp. 299–311, 2000.

[43] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proc. of the 22nd ACM SIGKDD Int. Conf. on Knowledge Discovery
and Data Mining, 2016, pp. 785–794.

[44] Q. Wang, Y. Ma, K. Zhao, and Y. Tian, “A comprehensive survey of
loss functions in machine learning,” Ann. Data Sci., pp. 1–26, 2020.

[45] C. Chen, “A finite smoothing algorithm for quantile regression,” J.
Comput. Graph. Statist., vol. 16, no. 1, pp. 136–164, 2007.

[46] N. Meinshausen and G. Ridgeway, “Quantile regression forests.” J.
Mach. Learn. Res., vol. 7, no. 6, 2006.

[47] Z. Li and D. Hoiem, “Learning without forgetting,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 40, no. 12, pp. 2935–2947, 2017.

Qingbo Zhu received the B.S. degree in electrical engi-
neering from Zhengzhou University, Zhengzhou, China, in
2014, and the M.Sc. degree in electrical engineering from
Melbourne University, Melbourne, Australia, in 2015. She is
currently pursuing the Ph.D. degree in electrical engineering
at Chalmers University of Technology, Gothenburg, Sweden.
Her research interests primarily involve machine learning
algorithms, energy consumption modeling for electric vehicles
based on big data, and energy management.

Yicun Huang Dr. Yicun Huang is a Marie Skłodowska-Curie
Fellow in the Automatic Control research unit at Chalmers
University of Technology. His research focuses on physics-
based learning for electrode materials and hazardous reactions
within Li-ion battery cells. With a background in computa-
tional materials science, his work aims to develop diagnostic
algorithms and control strategies to prevent thermal runaway
in batteries. One of his research questions involves enhancing
conventional, physics-based battery modeling approaches by
integrating neural networks for real-time applications.

Chih Feng Lee (Senior Member, IEEE) received the B.E.
degree (Hons.) in mechanical and manufacturing engineering
and the Ph.D. degree from The University of Melbourne,
Melbourne, VIC, Australia, in 2005 and 2014, respectively.
His dissertation dealt with the controller design and im-
plementation of a prototype automotive electromechanical
brake (EMB), where he explored several model-based control
techniques to achieve fast closed-loop clamp force tracking
performance. In addition, a novel brake judder attenuation
method was proposed, in which EMB was utilized to actively
compensate for the judder vibration caused by the variation
in thickness around the disk surface. His research activities
are centered around developing and applying advanced control
techniques to practical problems, where he has a special
interest in automotive applications.

Peng Liu (Member, IEEE) received the Ph.D. degree in me-
chanical engineering from the Beijing Institute of Technology,
Beijing, China, in 2011. He is currently an Associate Professor
with the School of Mechanical Engineering, Beijing Institute
of Technology. His current research interests include battery
fault diagnosis, intelligent transportation, and big data analysis

Jin Zhang received the B.S. degree in mechanical engineer-
ing from the Beijing Institute of Technology, Beijing, China,
in 2016, and the Ph.D. degree in 2023. His research interests

primarily involve machine learning algorithms, energy con-
sumption modeling for electric vehicles based on big data, and
the locating and capacity planning of electric vehicle charging
stations.

Torsten Wik (Member, IEEE) received the M.Sc. degree in
chemical engineering, the Licentiate of Engineering degree in
control engineering, and the Ph.D. and Docent degrees from
the Chalmers University of Technology, Gothenburg, Sweden,
in 1994, 1996, 1999, and 2004, respectively. From 2005 to
2007, he worked as a Senior Researcher at Volvo Technology,
Gothenburg, in control system design. In 2007, he returned
to the Chalmers University of Technology as an Associate
Professor, where he is currently a Full Professor and the Head
of Automatic Control at the Department of Electrical Engi-
neering. His main research areas are optimal control, process
control, and environmentally motivated control applications.
During the last decade, the applications have increasingly been
focused on battery management systems


	Introduction
	Motivation & Technical Challenges
	Literature Review
	Contributions of This Work

	Data Description And Processing
	Dataset
	Data Processing

	Overview of Physics-based Modeling
	Data-driven Model Development
	Physics-informed Feature Construction and Engineering
	ML-based Prediction Models
	QR
	QRNN
	QEGBR
	QRF

	Online Model Adaptation for Customized Prediction
	Online Adaptive QRNN
	Online Adaptive QEGBR


	Results And Discussion
	Implementation Specification
	Results of Data Processing
	Results of Feature Engineering
	Results of the global ML models 
	Prediction Accuracy
	Uncertainty Estimation
	Computational efficiency

	Results of Online Adaptive Models

	Conclusions
	References

