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Abstract The present study discusses the effect of
symmetric and asymmetric grafting on the surface
of CNCs (cellulose nanocrystals) on their disper-
sion properties using dialkyl azetidinium salts. Three
dialkylamine of different size and chain length were
successfully grafted to the sulfate groups on the sur-
face of CNCs by conjugation of azetidinium salts.
The coupling process resulted in the formation of 2-
hydroxypropyl-N-dialkylamine conjugated to theCNC
sulfate groups abbreviated as Cn-N-Cm-Prop-2-OH-
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CNC, where m, n are the number of carbons in the
alkyl groups, each with a total of m + n = 12, with
(m, n) = (11, 1); (9, 3); (6, 6). Molecular dynamics
simulations were used to assess the probable morphol-
ogy of the grafted chains and the interaction potential
betweenCNCs. Steady shear simultaneously combined
with polarized light imaging and oscillatory shear rhe-
ological measurements were used to evaluate for the
first time the impact of the CNC surface modifications
on their dispersion flow and optical properties. Over-
all, the results show that the different linker topologies
could effectively promote different types of aggrega-
tion morphologies based on the size of the linker, their
flexibility and their most probable conformation.
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Introduction

Cellulose nanocrystals (CNCs) have been highlighted
for film applications and as reinforcement in compos-
ites (Abitbol et al. 2006, Ferrer et al. 207, Klemm et al.
2011, Salas et al. 2014). To increase the hydropho-
bicity of their surface, CNCs are usually chemically
modified by esterification, alkylation, or silylation of
the hydroxyl groups (Klemm et al. 2011, Moon et al.
2011). An alternative method is to use oxidized CNCs
with carboxylic acid surface groups and use them as
ionic anchors for hydrophobization by trimethylalkyl
ammonium salts (Salajková et al. 2012). For modifi-
cation of the sulfate groups on the CNC surfaces, the
only conjugation method published in the scientific lit-
erature is by conjugation with azetidinium salts (Bör-
jesson et al. 2018). It has the advantage that it can be
easily done in water whereas almost all the hydropho-
bizations that conjugate to the hydroxyl groups are per-
formed in organic solvents. An additional advantage of
conjugation to the sulfate groups is that the thermal sta-
bility of CNCs is regained when the acidic sulfate half
ester is transformed into a sulfate diester (Börjesson
et al. 2018). This is in agreement with investigations
by Roman and Winter that showed than an increase in
the number of sulfate groups correlated to a reduction
in thermal stability (Roman and Winter 2004). A sim-
ilar effect has been found by Wang et al. (2004) who
reported that an inhibited degradation reaction occurs
when the hydrogen ion on the sulfate group is replaced
by a sodium ion.

Upon self-organization, many of the CNC disper-
sions show photonic properties. Gray and coworkers
(Gray 2016, 2020, Revol et al. 1992) have done pio-
neering work and showed that CNCs form an isotropic
to chiral liquid-crystalline phase transition above a
critical concentration upon drying. They have shown
that films made from aqueous dispersions of CNCs
exhibit a color reflection when illuminated with polar-
ized light and that the color from CNCs is associ-
ated with the pitch length between the layers of chi-
ral nematic CNCs (Revol et al. 1998, 1997). They also
showed that the pitch length depended upon the size
of the counter ion coordinated to the sulphate groups.

Subsequently, it has been demonstrated by others that
the color also relies on the size distribution of CNCs
(Dumanli et al. 2014a, b), the angle between the lay-
ers, and the incident wavelength (Liu et al. 2014).
Nevertheless, the described observations have primar-
ily centered on static (microscopic) conditions. Under
dynamic conditions, i.e. flow, the nanostructural order-
ing is dominated by nematic rather than chiral nematic
structuring, with a complex interplay between con-
centration dependent ordered domains and the applied
flow-field (Gray 2016, Kádár et al. 2020, Shafiei-Sabet
et al. 2012). Specifically, combined rheology - polar-
ized light imaging on aqueous CNC dispersions has
focused on the effects of concentration, sonication con-
ditions, degree of sulfation, ionic strength effects, ori-
entation under shear flow (Fazilati et al. 2021, Kádár
et al. 2020, Kádár et al. 2021, Shafiei-Sabet et al. 2012,
Wojno et al. 2022) and nonlinear rheological response
(Wojno et al. 2022, 2023a, b). Microstructural CNC
dynamics in shear flow has also been considered using
other complementary techniques (Calabrese et al. 2021,
Diaz et al. 2013, Ebeling et al. 1999, Haywood et al.
2017). When it comes to hydrophobization, CNCs are
typically functionalized using reagents that result in
a surface covered with linear alkyl groups. Increased
hydrophobicity is generally believed to reduce CNC
self-aggregationwhile enhancing its compatibilitywith
a polymeric matrix (Hasani et al. 2008, Holland and
Rubingh 1999). This will also affect the rheological
properties of the system. Furthermore, if a uniform
organization is formed, similar to liquid crystalline
phases, the optical properties of the system will also
be influenced.

In this framework, we examine the impact of dialky-
lamine groups grafted to the sulfate groups. CNCs with
reduced amount of sulfate groups were used to obtain
CNCs with sulfate groups further apart to minimize
intra hydrophobic interactions between alkyl groups
on the same CNC crystallites. The three dialkylamine
groups in the study had in total 12 carbons. This number
was chosen to minimize effects from to strong micelle
formation and from earlier work in our lab we have
found that when the linkers have 14 or more carbons
in the dialkyl segment the CNC suspension starts to
phase separate and/or form unstable foams (Nilsson
2017). Given that these dialkylamines possess an equal
number of atoms, their total accessible surface area
(ASA) and solubility are comparable. However, it’s
worth noting that the individual alkyl groups exhibit
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distinct ASA and van der Waals regions. Supplemen-
tary material (Section S1.7 Structure properties) con-
tains the calculated data for reference. TheASA for par-
ticular alkyl groups were calculated using DataWarrior
software. Molecular modeling was performed to get
further insight in how the dialkyl-N-2-hydroxy propyl
group was positioned in space and asses their proba-
bility distribution, a potential mean force of interaction
between nanocrystals. The shear rheological properties
and shear-induced optical activity of themodified CNC
dispersions were experimentally evaluated. Recently,
we have examined the influence of similar surfacemod-
ifications on the nonlinear rheology of isotropic (non-
optically active) gels. However, here we consider for
the first time the impact of surface grafting of symmet-
ric and asymmetric alkyl amines on sulfate groups of
CNC crystals that show optical activity. In the present
work, a direct one step grafting of dialkyl amine on sul-
fate groups on CNCs is performed. The surface modi-
fication of CNCs utilized additives with concentration
less than 10 wt% to maintain its biodegradability and
crystal structure. There is no conversion of cellulose to
other polymorphs like cellulose II upon surface mod-
ification. Modified CNC suspensions show promising
applications in flexible electronics, photonics, neutral
surfactants, functional foams etc.

Materials and methods

Synthesis of amines and azetidinium salts

Dihexyl amine (C6-N-C6)was purchased and two other
amines, nonyl-propyl amine (C9-N-C3) and undecyl-
methyl amine (C11-N-C1) were synthesized by reduc-
tive amination of the relevant aldehyde and amine.
These amines were used to synthesize the azetidinium
salts, 1,1-dihexyl-3-hydroxyazetidin-1-ium chloride,
1-nonyl-1-propyl-3-hydroxy-azetidin-1-ium chloride,
1-methyl-1-undecyl-3-hydroxy-azetidin-1-ium chloride.
Further details regarding their synthesis are available
in the Sections S1.4.

Isolation of CNCs

The method described by Hasani et al. (2008) was
used to manufacture CNCs, with some scale-up adjust-
ments. Here, microcrystalline cellulose (MCC) was

acid hydrolyzed with sulfuric acid (64 wt%) to obtain
CNC-OSO3H, which we label in the following as
CNCs, for simplicity. The surface charge (-OSO−

3 )
in terms of sulfate content was determined by poten-
tiometric titration. Low sulfated CNC suspensions
were prepared by autocatalyzed desulfation (Beck and
Bouchard 2014) from 2 wt% of highly sulfated CNCs
with high sulfate content (345 ± 21 μmol/g). This
was achieved by heating to 70◦C for 2 hours. Dialy-
sis was performed to remove the formed sulfuric acid.
Potentiometric titration was then performed to calcu-
late the sulfate content after desulfation and it was
determined to be 160 ± 4 μmol/g. Deionized water
(Mili-Q Purification System) was used to dilute sus-
pensions to 1.5 wt%. For further details on the char-
acterization of CNCs such as potentiometric titration,
NMR, zeta potential, etc. see Section S1.

Modification of CNCs with azetidinium salts

The CNCswere modified with the three different azeti-
dinium salts, to give C6-N-C6- Prop-2-OH-CNC , C9-
N-C3- Prop-2-OH-CNC, and, C11-N-C1-Prop-2-OH-
CNC. In other words, if m, n are the number of car-
bons in each alkyl group, each modification had a total
of m + n = 12, with (m, n) = (11, 1); (9, 3); (6, 6).
The ratio of azetidinium salt to CNC dispersion was
taken in accordance with a 1÷1 molar ration of sulfate
content÷azetidinium salt. Conjugation of azetidinium
salts to sulfate half esters was done by keeping the
mixture at 90◦C for 4 hrs. Upon completion, the mix-
ture was allowed to cool to room temperature. Unre-
acted azetidinium reagent was removed from the reac-
tionmixture by dialysis(Spectra/Por® molecular porous
membrane tubing, MWCO 12-14 kDa) against deion-
izedwater for 48 hours. For detailed synthesis and char-
acterization of dialkyl amines and azetidinium salts,
see Sections S1.4 - 1.5. The chemical structures are
presented in Fig. SI2.

Characterization techniques

Infrared spectra were recorded using a PerkinElmer
Spectrum One FT-IR spectrophotometer (Waltham,
MA, US) that included an attenuated Total Reflectance
(ATR; diamond crystal) attachment (GladiATR) from
Pike Technologies. Measurements were conducted at
room temperature in air and 32 scans in the range of
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4000-400 cm-1 with resolution of 4 cm1. The FT-IR
data was normalized, and background corrected.

Thermal gravimetrical analysis (TGA) was per-
formed using a TGA/DSC 3 + Star system (Mettler
Toledo, Switzerland) to determine the onset tempera-
ture for thermal degradation. Samples of 5 mg were
weighed out and heated from 25 to 500 ◦C at a rate of
5 ◦C/min under a nitrogen flow rate of 20 mL·min1.

A Zetasizer Nano ZS (Malvern Instruments, UK)
was used to measure the zeta-potential for all samples.
A 50 mW diode-pumped solid-state laser was used as
the light source with a wavelength of 532 nm. The con-
centration of the test samples was 0.1 wt% and their
pH was the same. DTS1070 folded capillary cells were
filled with each sample and allowed to stabilize for 120
s, repeated 6 times and the average value was reported.
All measurements were conducted at 25 ◦C.

An Anton Paar MCR 702 Twin Drive rotational
rheometer (Graz, Austria) was used for the rheologi-
cal characterization.Allmeasurementswere performed
on suspensions containing 1.5 wt% CNCs and the test-
ing temperature was 23◦C. Two sets of tests were per-
formed: (i) steady shear and (ii) oscillatory shear tests.
Both were performed in single motor - transducer con-
figuration using a custom rheo-optical visualization

setup, see Fig. 1. Thus, a parallel plate geometry of
(2 · R =)43 mm in diameter with a measuring gap of 1
mm was used. The lower and upper plates were made
of glass. The outer area of the upper geometry (L ∼= 7.5
mm in Fig. 1) can be used for visualizations in trans-
missionmode. Two linear polarizers were placed above
the upper geometry and below the lower geometry at
90◦ relative orientation (cross-polarized) for polarized
light imaging during flow (Fazilati et al. 2021, Kádár
et al. 2021, Mykhaylyk et al. 2016, Völker-Pop 2014).
For the steady shear tests, to ensure that steady state
was achieved, a customprocedurewas appliedwhereby
time-dependent data for each shear rate was acquired
manually and later post-processed (Kádár et al. 2020).
The steady shear measurements were conducted within
a shear rate range of 0.01 to 100 s1. Dynamic strain
sweeps oscillatory shear testswere also performed. The
tests were performed at a constant angular frequency
of 2 rad/s with the strain amplitude ranging from 0.01
to 1500%.

Molecular modeling

The nanocrystalline structure of cellulose was gener-
ated by placing the cellulose chains in a Iβ crystal lat-

Fig. 1 Schematic representation of the combined rheology-polarized light optical visualization setup used in the study (L ∼= 7.5 mm)
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tice using cellulose builder toolkit (Gomes and Skaf
2012).The sulfonation andgraftingof azetidinium (Az)
salts on the nanoparticle surface were done using Avo-
gadro (Hanwell et al. 2012). OPLS-AA force field (Jor-
gensen et al. 1996) extended for carbohydrates was
used for CNCs and their grafts. A TIP3P water model
was used in the study (Jorgensen et al. 1983). Two types
of Molecular Dynamics (MD) calculations were per-
formed (details in Section S2, Molecular modeling).
First, the morphology of grafted salts on the CNC sur-
face was studied, then the change in the free energy
between two CNCs and between two nematic planes
formed by CNC aggregation, with and without the
grafted substituents, was calculated.

Substituent morphology on CNC surfaces

The CNC surface was generated by placing the cellu-
lose chain in a rectangular cross-section of 9.4 × 5.8
nm2 with a thickness of 1.5 nm, which is formed by 36
chains of cellulose stacked in 2 layers in (010) plane as
shown in Fig. SI 9(a, b). A cellulose with a chain length
of 12 glucose units was used for this calculation across
the periodic box to simulate an infinite surface of CNCs
with the propyl-2-hydroxy-dialkyl groups grafted on it.
A degree of surface substitution (DSS), defined as the
ratio of modified hydroxyl groups to the total hydroxyl
groups, of 0.07was chosen in the calculations to ensure
that alkyl groups adjacent to each other on the CNC
surface did not start to interact with each other. A
limit for the interaction of adjacent dialkyl groups was
found at DSS = 0.02. Further details on DSS, simula-
tion parameters and how variation in DSS affected the
linker surface distribution probability are given in the
Section S2.1.

Free energy between CNCs

The CNC crystals built consist of cellulose Iβ with
18 chains arranged in a hexagonal cross-section with
dimensions of 3.2×3.5 nm2 and length of 8.3 nm. The
CNC crystal has three face types, (100), considered
as a hydrophobic surface, and (110) and (1-10) con-
sidered as hydrophilic surfaces, as shown in Fig. SI 9.
Three types of contact arrangements formed by rela-
tive orientations of faces of these nanocrystals: (100)-
(100), (100)-(1-10) and (110)-(110) were considered.

The change in the free energy (the potential of mean
force, PMF) between the two CNCs, governed by van
derWaals and electrostatic interactions, was calculated
as a function of the separation distance. The effect
of linkers on hydrophobic phenomena was simulated
throughpotential bymean forcewhichdiffereddepend-
ing on the grafted symmetric or asymmetric chains.
The procedure to calculate PMF and simulation details
is described in the Section S2 (Molecular modeling).

Results and discussion

Chemical modification verified by FT-IR

Figure 2 shows the FT-IR spectra for the untreated and
modified CNC samples. The first derivative of trans-
mittancewith respect to thewavenumber. All four sam-
ples gave the expected signals for cellulose (Mykhay-
lyk2010). There is a broadbandof signals at 3600-3000
cm−1 which is known to correspond to the -OH group
on cellulose. The peak at 3000-2900 cm−1 for all the
samples is caused by the aliphatic C-H bonds on cellu-
lose and the grafted propyl-2-hydroxy-dialkyl chains.
The C-O-C bond between each glucose unit is repre-
sented by the peak at 901 cm−1 while the peak at 1640
cm−1 is caused by water which has been absorbed onto
the cellulose. Looking closer at the width and height of
the peak at 3000-2900 cm−1 for the untreated CNC
sample, it is evident they are different from the func-
tionalized CNCs. The modified samples exhibited a
stronger peak at approximately 2850 cm−1 the CH2-
groups, which is expected since upon modification the
number of CH2-groups is increased (Fig. 2c). Further-
more, the peak at 814 cm−1 for the untreatedCNCswas
shifted to 808 cm−1 for the modified samples (Fig. 2b
and reaction scheme SI2). These peaks correspond to
the C-O-S found on the sulfate half ester and diester
(Chen et al. 2013). It should be stressed that these sig-
nals are very weak since it is a very small percent-
age of the total number of glucose units in the sample
that have sulfate groups. Thus, not a strong intensity
but a small shift in this region is a strong indication
of successful modification of CNCs with azetidinium
salt. Additionally, the expected changes in the 2800-
2950 cm−1 region for the CH2 and CH3 vibrations are
also difficult to detect. By taking the derivative of the
signals the change in this region becomes clearer, see
Fig. 2c.
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Fig. 2 (a) Full range FTIR of CNCs and surfacemodifiedCNCs.
(b) FTIR spectra from 850-750 cm−1 (highlighted in grey) indi-
cates shift for C-O-S for modified CNCs samples from 814 to
808 cm−11 in comparison to untreated CNC samples. (c), FTIR
spectra from 4000 to 2000 cm−1 particularly, first derivative of

the alkyl band (highlighted in grey). The short, dashed lines, I,
II, III and IV corresponds to -CH3 (anti symmetric stretch at
2970-2950 cm−1), CH2 (anti symmetric stretch at 2940-2915
cm−1), -CH2 (symmetric stretch at 2870-2840 cm−1) and -CH3
(symmetric stretch at 2885-2860 cm−1), respectively

Thermal analysis and Zeta-potential (ζ )

The success of the chemical modification was also con-
firmed via TGA measurements. Figure 3a, b shows the
thermal degradation curves resulting from TGA mea-
surements. A significant improvement in thermal sta-
bility is seen for the samplesmodifiedwith azetidinium
salts. Table 1 shows that untreated CNCs started to
degrade at 150 ◦C, whereas the modified CNCs had
an onset temperature for degradation almost 100 ◦C
higher. The improvement seen here in thermal sta-
bility is important for industrial applications, as typ-
ical processing temperatures for polymers are much
higher than onset temperature seen here for untreated
CNCs (Forsgren et al. 2019). The other interesting

characteristic of the TGA curves are the two regions
that can be identified. The first, more rapid, weight loss
is causedby the acid-catalyzedpyrolysis reactionby the
sulphate groups (Wang et al. 2004). The second region
is a charring process of the remaining solid material
(Roman andWinter 2004). The residual char left at the
end of each TGA measurement is given in Table 1.

Zeta-potential (ζ ) measurements, see Table 1, show
that surface modification did not chance colloidal sta-
bility, see Table 1 and Fig. SI 3-5. Furthermore, the
ζ -potential was independent of surface modification.
This is in contrast to a previous report on similar sur-
face grafted CNCs by Forsgren et al. (2019), where the
ζ -potential decreased significantly after surface graft-
ing. The discrepancy can be attributed to differences
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Fig. 3 (a) TGA and (b) DTGA curves showing thermal degradation of untreated and modified CNC samples

in the sulfate content of the CNCs after autocatalyzed
desulfation.

Molecular dynamics studies

In order to gain a better understanding of the cellulose
surface functionalized with the dialkylamine segments
and their interaction, molecular dynamics (MD) sim-
ulations of the surface grafted CNCs were performed,
as illustrated in Fig. 4(a)-(c). The determined angular
probability distributions of the different branches of the
alkyl chains can be found in Fig. 4(d)-(f) (DSS = 0.07).
The angular distribution from MD simulations and
probability distribution for other angles can be found
in Figs. SI4 - SI6. The MD simulations show that for
C6-N-C6-Prop-2-OH-CNC, which presents two simi-
lar alkyl chains of six carbons, the probability distri-
bution is broader and not as far out from the surface,

i.e. an oblate ellipsoid distribution, Fig. 4(f). However,
for the C11-N-C1-Prop-2-OH-CNC, the most asym-
metric dialkyl amine, the probability distribution was
further away from the surface but not as broad, i.e. a
prolate ellipsoid distribution, Fig. 4(d). Based on force
field calculations, it has also been similarly suggested
that linear molecules elongate and form a prolate ellip-
soid structures while branched molecules form oblate
ellipsoids (Eisenriegler and Bringer 2007, Shah et al.
2005). The same appears to be true for the present study,
considering that the C6-N-C6-Prop-2-OH-CNC can be
seen as a more branched unit (Fig. SI4), whereas the
C11-N-C1-dialkyl can be considered as a more linear
substituent. Those differences observed in the distri-
bution illustrate how the nature of the different dialkyl
chains structure can affect CNC surface topology. For
the 11-N-1 linker the 2-hydroxy-propyl fragment has
a tilt angle of 30◦, Fig. 4(d), whereas for the C6-N-C6

the linker has a tilt angle of 60◦, Fig. 4(f).

Table 1 Onset temperature for thermal degradation, residual char content and zeta-potential for untreated and modified CNCs

Sample name Tdegr Tdecomp Residual char ζ

[◦C] [◦C] [wt%] [mV]

Untreated CNCs 150 178 36 −33.2 ± 0.24

C6-N-C6-Prop-2-OH-CNC 263 287 26 −34 ± 1.2

C9-N-C3-Prop-2-OH-CNC 270 295 19 −33.4 ± 0.6

C11-N-C1-Prop-2-OH-CNC 270 295 16 −35.8 ± 1

Tdegr and Tdecomp are the degradation and decomposition temperatures of the CNCs and modified CNC samples
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(a) (b) (c)

(d) (e) (f)

Fig. 4 (a-c) Snapshots of CNCs modified with different type of
Az salts. (d-f) Polar plots showing the probability angle distribu-
tion of different segments of the linkers of Az salts normal to the
nanoparticle surface for DSS=0.07. The lower-left angle distri-

bution (purple colour), in (d)-(f) represents the Prop-2-OH-CNC
fragment for reference and the two upper globes (red colour)
represent the two alkyl groups. (d) C11-N-C1-Prop-2-OH-CNC,
(e) C9-N-C3-Prop-2-OH-CNC, (f) C6-N-C6-Prop-2-OH-CNC

The distribution suggests that short chain of the C11-
N-C1-Prop-2-OH-CNC (methyl group) can be quite
close to the surface of the CNCs, whereas the long
11-carbon chain has a greater flexibility and points
away from the surface. This scenario would allow for
a stronger interdigitation of the alkyl chains meaning
that more energywould be needed to break up the inter-
molecular interaction of the C11-N-C1 chains. In con-
trast, in C9-N-C3-Prop-2-OH-CNC, the short part of
the chains is now made of three carbons and would
interact more strongly with the CNC surface than the
methyl group in C11-N-C1-Prop-2-OH-CNC provok-
ing a tilt of the 9-carbon chain with respect to the
normal of the surface. For C6-N-C6-Prop-2-OH-CNC
the interdigitation of the chains would be even weaker
as a result. However, assuming a partial interdigita-
tion between the 11-carbon chain, this would result
in less interaction strength but would promote greater
interconnectivity between CNCs, not only because the

distances between CNCs would be slightly larger, but
also because of the greater flexibility of 11-carbon
chains. In contrast, the smaller sized branched link-
ers could lead to more agglomeration since the CNCs
would make contact in closer proximity, potentially
promoting a higher strength of interaction. The poten-
tial of mean force results, as determined considering
the 100-100 contact surfaces, could suggest a different
scenario in terms of strenght of interaction. For very
low separations, Fig. 5, the strength of interaction for
C6-N-C6-Prop-2-OH-CNC was higher than for C9-N-
C3-Prop-2-OH-CNC which in turn was higher than for
C11-N-C1-Prop-2-OH-CNC. However, as the separa-
tion distance increases, the level of interaction between
the nanocrystals is at first similar, before, above ≈ 10
Å starting to converge towards the untreated CNCs.
In addition to this, the differences in the interactions
between two untreated CNCs as a function of sepa-
ration distance are presented in Fig. SI7. The results
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Fig. 5 (a) Potential of mean force (PMF) per unit length of
CNCs modified with different type of Az salts as function of
surface-to-surface separation distance (ζ ) between the CNCs for
DSS = 0.07 and for different types of alkyl chains attached to
CNCs. The 100-100 contact surfaces were considered while cal-
culating the PMF. The initial and final configuration of CNCs

during PMF calculation are shown in (b) and (c) respectively.
The distance ξ corresponds to the minimum separation distance
in the x-direction between the outermost hydrogen atoms at 100
surfaces as indicated in the figure, where the x-direction goes
between the centers of the mass of two CNC crystals. (The cen-
ters of the mass are marked by filled circles in (c)

support the Lindman hypothesis, that van der Waals
intearctions of cellulosemay outweigh hydrogen bond-
ing (Glasser et al. 2012, Wohlert et al. 2022).

It should be noted that this is modelled with-
out effects from shear or close-packed nanocellulose
particles. There, additionally, alkyl chain aggregation
from neighboring crystallites and flow induced tilt of
the dialkylamine group towards the crystallite surface
when they start to become closer to each other, may
occur. However, we can consider the molecular model-
ing as limiting ideal cases that could be considered as
a reference for interpreting the flow results.

Rheology and shear-induced polarized light imaging

The steady shear viscosity functions of the samples
are compared in Fig. 6. All azetidinium salt modifica-
tions resulted in at one order of magnitude increase
in shear viscosity compared to untreated CNC dis-
persions, similar to previous findings (Sahlin et al.
2018). Due to the low viscosity of untreated CNCs
(low torques), the first few points at shear rates < 1
1/s were cut for this sample. The general variation in
viscositymagnitudewasCNC<C6-N-C6-Prop-2-OH-
CNC<C9-N-C3-Prop-2-OH-CNC<C11-N-C1-Prop-

2-OH-CNC. At the highest shear rates, where a strong
orientation of the constituents in the flow direction is
expected, the viscosity functions appear to converge
(Derakhshandeh et al. 2013, Kádár et al. 2020).

Figure 7 shows polarized light imaging (PLI) results
taken during the steady shear data in Fig. 6. Shear rate
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Fig. 6 Shear viscosity functions from steady shear tests for sam-
ples at 1.5 wt%
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(a)

(b)

Fig. 7 (a) Space-time diagrams of the birefringence pattern
development during the steady shear tests in Fig. 6 for samples
at 1.5 wt%. (b) Still frame visualizations at selected shear rates.

Gray hatched regions highlight visualizations where a Maltese-
cross pattern could be distinguished. The white arrows mark rip-
ples that could be associated to secondary flows
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intervals in the space-time diagrams, Fig. 7(a), have
been re-scaled to be equidistant. This is to compensate
for the fact that lower shear rates require significantly
more time to reach steady state. For reference, indi-
vidual frames out of the PLI video recordings, where
the Maltese-cross pattern can be directly observed, are
shown at selected shear rates in Fig. 7 (b). TheMaltese-
cross pattern, observed (for cross-polarized setups) in
the form of alternating dark and light colored regions,
see the images in Fig. 7(b) (hatched regions), signi-
fies the general orientation of optical indicatrices in
the flow direction (Mykhaylyk 2010). The dark shades
(extinction) appearwhenone of the refractive indices of
the optical indicatrices is parallel to the incident polar-
ization direction. The azimuthal angle of line L (see
angle θ in Fig. 7(b)) used to construct the space-time
diagrams was chosen so that it captures the onset of
the so-called Maltese-cross pattern. Thus, the onset of
the Maltese-cross pattern in the space-time diagrams
in Fig. 7(a) can be observed in the form of light col-
ored regions. Note that the concept of optical indicatrix
does not imply what lengthscales in the sample are ori-
ented in the flow direction to create birefringence. This
means that the tests cannot evidence whether the ori-
ented structures are individual CNCs, bundles or other
form of agglomerates. Since both in flow and static
conditions a rotation of the relative polarizer/analyzer
angle did not result in any brightly colored areas (Kádár
et al. 2021), we assign the onset of birefringence to the
orientation of nanocrystals or aggregates thereof in the
flow direction (Hausmann 2018) and not to any form of
self-assembly. Thus, as all test samples are assumed to
be in a randomlyoriented state at the beginningof shear,
whether or not birefringence occurs and at what shear
rates, can be interpreted as the ability of the CNC struc-
ture to uniformly orient in the flow direction resulting
in optically anisotropic properties at the scale of obser-
vation. For the untreated CNCs, the Maltese-cross pat-
tern was detected at γ̇ ∼= 1 1/s. For the modified CNCs,
C11-N-C1-Prop-2-OH-CNC was the only sample that
exhibited birefringence, above γ̇ ∼= 4 1/s, in the inves-
tigated shear rate range. In addition, the suspension
likely exhibits a form of flow instability as evidenced
by the periodic ripples forming from the outer edge of
the geometry, where the shear rates are highest, see the
white arrows in Fig. 7(a) and the corresponding peri-
odic rings for C11-N-C1-Prop-2-OH-CNC at γ̇ ≥ 23
1/s in Fig. 7(b). In contrast, the addition of symmetric
alkyl chains, i.e. C6-N-C6-Prop-2-OH-CNC, resulted

in a total suppression of shear-induced birefringence in
the investigated shear rate range.

From strain sweep tests, Fig. SI8, in contrast to the
untreated CNC dispersions that showed a liquid-like
behavior (G ′ < G ′′), all surface treated dispersions
showed a gel-like behavior (G ′ > G ′′) as well some
level of weak strain overshoot (WSO). WSO refers to
the local maximum in the loss modulus, G ′′, at the
transition to the nonlinear region in strain sweep tests.
Frommicrostructural point of view, a weak strain over-
shoot behavior has been associated to microstructural
jamming followed by yielding (Derakhshandeh et al.
2013). This effect appears nearly absent for C6-N-C6-
Prop-2-OH-CNC. At the same time C11-N-C1-Prop-2-
OH-CNC showed arguably the most pronouncedWSO
behavior, Fig. 6. This would be in agreement with the
higher steady shear viscosities recorded, as both tests
include weakly nonlinear / nonlinear conditions.

Considering all the data in the context of the MD
simulations, one microstructural scenario could be
that the different linker topologies could effectively
promote different types of aggregation morphologies
based on the size of the linker, their flexibility and
their most probable conformation. Thus, longer link-
ers would promote highly interconnected networks
whereas more branched (shorter) structures would
promote network morphologies dominated by more
packed agglomerates. This would effectively limit the
number of connection points between the agglomer-
ates in the gel network. In such a scenario, the vis-
cosity data and the WSO in strain sweep would be
interpreted as a measure of the inter-connectivity of
formed CNC networks. Furthermore, the absence of
birefringence would confirm that whatever aggregates
are present in the more branched topologies, C6-N-C6-
Prop-2-OH-CNC and C6-N-C3-Prop-2-OH-CNC, and
are distorted by the flow at high shear rates, they do
not show any measurable optical anisotropy. In con-
trast, linear topologies with their more flexible linkers
would facilitate a preferential orientation in the flow
direction of the broken network at high shear rates lead-
ing to shear induced birefringence. While this does not
exclude the presence of aggregates, however, it does
suggest that the resulting nanostructure possesses suffi-
cient anisotropy that once oriented in the flow direction
results in birefringence. Referring back to theMD sim-
ulations, the scenario outlined could imply that linker-
linker connection between the linear linkers may just
occur without their complete interdigitation. In terms
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of the PMF calculations, the results could suggest that
the configuration considered may not be fully repre-
sentative of the interparticle interactions occurring in
the experiments. Relating themolecular dynamics sim-
ulations to the rheological data is not straightforward
due to the different lengthscales as well as the static
vs. dynamic (flow) conditions probed. However, under-
standing CNC-CNC interactions provides a molecular
basis for interpreting the rheological and rheo-optical
data.

Conclusions

The surface of cellulose nanocrystals (CNCs) was suc-
cessfully modified by attaching three distinct dialky-
lamines through the conjugation of azetidinium salts to
sulfate groups. A significant influence of surface modi-
fication topology was shown on their self-organization
assisted by shear flow. We base the interpretation of
the experimental results on molecular dynamics simu-
lations, noting that several hypotheses could be made
therefrom. Based on the experimental results, it would
appear that, the simulated preferred conformations of
the surface grafted linkers and their flexibility play a
central role in relating all experiments presented. Thus,
linear linker topologies seem to promote a highly inter-
connected morphology through the linkers’ mobility
and partial interdigitation and this could be respon-
sible for the higher shear viscosities and weak strain
overshoot and the onset of shear-induced birefringence.
Branched surface linkers would conversely form dis-
torted aggregate dominated networks with few connec-
tions points in-between resulting in smaller viscosities,
nearly absent weak strain overshoot and absence of
shear induced birefringence. Thus, the results empha-
size that when considering the hydrophobization of
CNC-derivates, the structure and branching of the con-
stituents must be taken into consideration, since the
structure of the alkyl group will affect the rheological
and optical properties, as well as flow-induced struc-
turing. Or putting it another way, branching of the alkyl
group(s) is a complementary methodology to achieve
desired physical properties and interactions. Therefore,
the main highlight of the study is that the strength
of interaction, mobility and dynamic self-organization
can be tailored by surface modification in CNC disper-
sions.
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