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Bound states in quantum dots coupled to superconductors can be in a coherent superposition of states with
different electron number but with the same fermion parity. Electrostatic gating can tune this superposition to a
sweet spot, where the quantum dot has the same mean electric charge independent of its electron-number parity.
Here, we propose to encode quantum information in the local fermion parity of two tunnel-coupled quantum
dots embedded in a Josephson junction. At the sweet spot, the qubit states have zero charge dipole moment. This
protects the qubit from dephasing due to charge noise acting on the potential of each dot, as well as fluctuations
of the (weak) interdot tunneling. At weak interdot tunneling, relaxation is suppressed because of disjoint qubit
states. However, for strong interdot tunneling the system is protected against noise affecting each quantum dot
separately (energy-level noise, dot-superconductor tunneling fluctuations, and hyperfine interactions). Finally,
we describe initialization and readout as well as single-qubit and two-qubit gates by pulsing gate voltages.

DOI: 10.1103/PhysRevResearch.6.023281

I. INTRODUCTION

Quantum dots coupled to superconductors host bound
states with energies below the superconducting gap. They
are known as Yu-Shiba-Rusinov states [1–3] for large charg-
ing energy or Andreev bound states [4] with small charging
energy compared to the superconducting gap. These bound
states are superpositions with different particle number due
to so-called Andreev tunnel events where pairs of elec-
trons in the quantum dot are transferred as a Cooper pair
in the superconductor. This process thus preserves the to-
tal fermion parity of the system. In recent years, hybrid
superconductor-semiconductor structures have proven to be a
reliable platform to realize Yu-Shiba-Rusinov [5–7] and An-
dreev bound states [8–15]. In Josephson junctions, these states
can induce 0–π transitions [16–24], φ0 phase shifts [25,26],
occupation [27] and spin-dependent [28] transport, and qubits
[29–32]. Hybridized Andreev bound states have been applied
as Cooper pair splitters [33] and to create minimal Kitaev
chains [34–36].

Electrostatic gating can control the mean electric charge
of the subgap states [11,29,30,37–40]. The quantum dot can
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be tuned to a sweet spot where it has same mean electric
charge for both ground states with an even or odd electron
number parity. As a consequence, both fermion-parity sectors
have the same response to small electric fields, and the energy
difference between the two sectors are thus protected against
small fluctuations of the electrostatic environment.

Here, we propose to leverage the protection of the local
fermion parity together with the tunability of the charge ex-
pectation value to define a qubit in a pair of electrostatically
controlled quantum dots embedded in a superconducting loop,
see sketch in Fig. 1(a). The two qubit states can be encoded in
the protected local fermion parity of the two dots: the state |L〉
(|R〉) is a product of the left (right) quantum dot hosting an odd
number of fermions while the right (left) quantum dot hosts an
even number, as depicted in Fig. 1(b). The quantum dot with
odd fermion parity has a spin 1/2 degree of freedom. When
the coupling of the spin to the environment is negligible, the
qubit can be operated with spin-degenerate levels. Otherwise,
the spin can be polarized by an applied magnetic field.

The coherence properties of this system depend on the hy-
bridization between the quantum dots. For weak hybridization
relative to the energy difference of the left and right bound
states, the qubit eigen states are |L〉 and |R〉. Relaxation of
the qubit state requires a quasiparticle to tunnel between the
quantum dots, which is suppressed for weak tunneling. Elec-
tric field fluctuations enter only to second order in the qubit
spectrum by fluctuations of the interdot tunneling strength
and the level energy. For strong hybridization, the qubit eigen
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FIG. 1. (a) Device sketch: Two quantum dots labeled by ν =
L, R (orange) with charging energy Uν are coupled to a superconduct-
ing loop (light blue) that induces superconducting correlations with
magnitude �ν and phase difference φ = 2π�/�0 controlled by the
enclosed magnetic flux �, where �0 = h/2e is the superconducting
flux quantum. The dot level energies εν and interdot coupling τ

are tunable by gate electrodes (yellow). (b) Sketch of the states |L〉
and |R〉 whose superposition makes up the qubit eigen states. The
states |L〉 and |R〉 are a product of single electrons of spin σ , |σ 〉ν =
ĉ†
νσ |0〉ν , and even parity states in an equal superposition of empty |0〉ν

and double occupation |2〉ν = ĉ†
ν↑ĉ†

ν↓|0〉ν . (c) Many-body spectrum
as a function of level energy εR + UR/2 for weak tunneling. The blue
(red) solid line indicates the qubit state |L〉 (|R〉), while dashed lines
are excited states. Parameters: τ = �L/20, �R = 1.1�L, UL = UR =
�L , εL = −UL/2. (d) Corresponding results for strong tunneling.
The line color indicates the wave function overlap with |L〉 (blue)
and |R〉 (red). The qubit eigen energy at the operating point is h̄ω0.
Parameters: τ = �L/4, remaining parameters unchanged.

states are close to an equal superposition of |L〉 and |R〉. In
this regime, dephasing due to noise coupling to individual
quantum dots (such as local magnetic field or level energy
fluctuations) are suppressed. Instead, the qubit is sensitive
to fluctuations in the tunneling strength between the quan-
tum dots. In both regimes, the qubit is insensitive towards
common-mode fluctuations in parameters coupling to individ-
ual quantum dots.

It is instructive to consider the case where the charging
energy can be neglected. In the case, the qubit states can be
described in terms of a single Bogoliubov quasiparticle shared
between the quantum dots. This quasiparticle has zero electric
charge when the quantum dots are tuned to the sweet spot.
From this point of view, our proposal can be considered a
“chargeless” variant of a charge qubit [41,42]. In our parity
qubit, the superconducting correlations strip off the electron’s
charge.

The fermion-parity qubit combines features of single-
electron charge [41–43] and spin qubits [44] with features of
superconducting platforms [45,46]. In comparison to single-
electron charge and spin qubits, (i) the fermion-parity qubit
provides intrinsic protection from electric field noise due to
the chargeless nature of the quasiparticles, (ii) can be operated

with spin-polarized qubit states, (iii) is directly electrically
addressable, (iv) can provide protection from relaxation by
spatially separating the two qubit states in the weak-tunneling
limit, and (v) is compatible with superconducting circuit ar-
chitecture. In comparison to superconducting qubits, such as
transmons [47], the fermion-parity qubit allows for faster gate
times because the qubit subspace can be well separated from
the next excited states.

In the following Sec. II, we define the system Hamiltonian
and the regimes for qubit operations, as well as microwave
controlled single- and two-qubit rotations. A detailed discus-
sion on the effects of noise on the qubit is contained in Sec. III.
While Secs. II and III describe the system in the limit of an
infinite gap � in the superconducting leads, in Sec. IV we dis-
cuss the case when charging energy in the quantum dots is the
largest energy scale. Sections V and VI provide estimates of
gate and coherence times, respectively, for realistic systems.
In Sec. VII, we discuss the relation of our proposal to other
qubit realizations in detail.

II. FERMION-PARITY QUBIT

In this section, we define the Hamiltonian describing
the pair of quantum dots connected to superconductors
(Sec. II A), identify the operating regimes (Sec. II B), and
describe initialization and readout (Sec. II C) as well as single-
and two-qubit rotations (Secs. II D and II E).

A. System Hamiltonian

Figure 1(a) shows a sketch of the fermion-parity qubit
setup with the relevant control parameters. The system
Hamiltonian,

Ĥ =
∑

ν

Ĥν + ĤT , (1)

is composed of terms Ĥν, ν = L, R describing the two indi-
vidual quantum dots and their tunnel coupling ĤT . The terms
Ĥν describing the individual quantum dots read

Ĥν =
∑

σ

εν n̂σν + Uν n̂↑ν n̂↓ν + �ν (ĉ↑ν ĉ↓ν + H.c.), (2)

where n̂σν = ĉ†
σν ĉσν , with the annihilation operator ĉσν for

an electron on the dot ν with spin σ = ↑,↓. The level en-
ergy εν can be controlled using electrostatic gates, Uν is the
Coulomb repulsion strength, and �ν describes the proximity-
induced superconducting correlations in the quantum dots.
The proximity-induced pairing strength enters in second-order
perturbation theory, �ν = πt2

ν νS, where tν is the hopping am-
plitude between quantum dot ν and superconductor and νS is
the density of states of the superconductor. We here consider
only a single level εν in each dot and thus each dot can
only be occupied by up to two electrons. This description is
valid in the limit of a large gap in the superconducting leads
� � �ν, εν,Uν . We focus on this limit throughout the bulk
of the paper due to its analytical tractability and for presenta-
tion purposes. The qualitative qubit properties and operation
principles also apply in the limit Uν � �,�ν as we discuss in
Sec. IV based on numerical calculations.
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The eigen states of Ĥν with even local fermion parity are
superpositions of zero |vac〉ν and two excess electrons of op-
posite spin |2〉ν = ĉ†

ν↑ĉ†
ν↓|vac〉ν . The odd local fermion-parity

subspace contains the states where a single electron of spin σ

occupies the quantum dot, |σ 〉ν = ĉ†
νσ |vac〉ν .

The tunnel coupling between the dots is given by

Ĥτ = τ
∑

σ

eiφ/2ĉ†
σRĉσL + H.c., (3)

where τ is the tunneling amplitude and φ the superconducting
phase difference. The Hamiltonian is written in a gauge where
the pairing amplitudes �ν are real and positive while the
superconducting phase difference is included in the tunnel-
ing term. For now, spin-orbit coupling and Zeeman field are
neglected as these terms are not required for operating the
fermion-parity qubit. These effects are included in the discus-
sion on dephasing and relaxation due to parameter fluctuations
in Sec. III.

B. Sweet spot

Crucial to our proposal is the sweet spot at which deco-
herence is suppressed. Here, we describe how to reach this
sweet spot, and how the main control parameters affect qubit
operations at or close to this point.

1. Level energies εν

The sweet spot, at which both fermion-parity sectors of a
quantum dot have the same mean charge, is reached by setting
the level energy to εν = −Uν/2. At this point, the quantum dot
eigen states with even fermion parity are symmetric (labeled
by λν = g) and antisymmetric (labeled by λν = u) superpo-
sitions |g/u〉ν = 1√

2
(|vac〉ν ± |2〉ν ) with energies ±�ν . Thus,

the ground state of individual quantum dots is |u〉ν .

2. Superconducting phase difference φ

The phase difference φ determines the tunneling between
the quantum dots. At φ = 0, tunneling of an electron switches
the symmetry of the even-parity bound state (λν = u ↔ g),
due to a sign acquired by fermionic anticommutation upon
tunneling. At φ = π , this sign is canceled and the symmetry
of the even-parity bound state is preserved, thus coupling the
two qubit states, which have λR = λL = u. This manifests in
the spectra as a function of phase difference shown in Fig. 2.
At φ = π the gap in the spectrum is proportional to τ . For
φ = 0, tunneling between the left and right quantum dots
is prohibited and the gap in the spectrum is given by the
asymmetry of the two quantum dots |〈L|HL|L〉 − 〈R|HR|R〉| =
|(UR − UL )/2 − (�R − �L )| at the sweet spot. Setting φ = 0
provides an effective way to switch off the tunneling coupling
and thus parking the qubit in the protected situation. In con-
trast, for qubit operations that involve rotating in the |L〉, |R〉
space, we set φ = π . Moreover, at φ = π , the spectrum is
first-order insensitive to the fluctuations in φ [see Fig. 2 and
Eq. (17)].

3. Tunneling strength τ

Tunneling between the quantum dots hybridizes the bound
states in the two dots. Without tunnel coupling, the qubit eigen

FIG. 2. Dependence of the spectrum of Eq. (1) on the super-
conducting phase difference φ at the operating point εν = −Uν/2
in (a) the weak tunneling regime τ = 0.05�L and (b) the strong
tunneling regime τ = 0.25�L . Remaining parameters as in Fig. 1.

states are the product states |L〉 = |σ 〉L ⊗ |u〉R, |R〉 = |u〉L ⊗
|σ 〉R with energies −UL/R/2 − �R/L (at the sweet spots). With
finite tunneling strength and φ = π , the qubit eigen states are
|1〉 = sin η

2 |L〉 + i cos η

2 |R〉, |0〉 = cos η

2 |L〉 − i sin η

2 |R〉 with
angle

tan η = 2τ

(UR − UL )/2 − (�R − �L )
, (4)

and energies Eρ = −(UR + UL )/4 − (�R + �L )/2 +
sρ h̄ω0/2, where ρ = 0, 1 labels the qubit states |0, 1〉,
s0 = −1, s1 = 1, and the qubit eigen frequency at the sweet
spot is

h̄ω0 = 2τ

sin η

= sign(η)
√

[(UR − UL )/2 − (�R − �L )]2 + 4τ 2. (5)

Notice that a left-right symmetric system is always in the
strong tunneling regime for finite tunneling. A positive (nega-
tive) qubit frequency indicates that |0〉 (|1〉) is the qubit ground
state.

4. Qubit encoding

Throughout the paper we consider a qubit encoding in
terms of the qubit eigen states at the operating point. This
choice allows to discuss both weak- and strong-tunneling
regimes on equal footing.

To summarize this section, setting both quantum dots to
the sweet spot leads to a first-order insensitivity of the qubit
frequency to dot potentials. The qubit states are decoupled a
φ = 0 and x-axis rotations rotations are optimal at phase bias
φ = π . Moreover, for weak tunneling (|η| 
 1) the system is
protected against relaxation, but sensitive to dephasing from
fluctuations of the energy difference between the even and odd
states of the individual dots. In contrast, for strong tunneling
(|η| � π/2) the sensitivity to these fluctuations is suppressed
by a factor 1/| tan η| 
 1 (but the qubit is no longer protected
against relaxation). Analytic results for the decoherence rates
are presented in Sec. III.

The protection from dephasing follows from the dispersion
of the qubit spectrum [48]. Figures 1(c) and 1(d) show the
many-body spectra as a function of the level energy εR for
the two regimes. Analogous results hold for εL. For weak tun-
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neling [|η| 
 1, Fig. 1(c)] the slope of the energy of the two
states |L〉 and |R〉 as a function of εR aligns at the sweet spot
εR = −UR/2. At this point, the qubit frequency (h̄ω0, given by
the energy difference of the two lowest states) is insensitive to
first order in εR. For strong tunneling [|η| � π/2, Fig. 1(d)]
the fluctuations of qubit frequency are further suppressed by a
factor |(UR − UL )/2 − (�R − �L )|/τ .

C. Initialization and readout

The operation of our qubit proposal is restricted to total
odd fermion parity in the two quantum dots. Changing the
total parity in the pair of quantum dots requires a quasipar-
ticle from the superconducting leads to enter the quantum
dots, similar to a quasiparticle poisoning event [49]. It can be
expected that there are (almost) no quasiparticles present in
the superconducting leads for temperature much below their
superconducting gap. However, recent experiments [50–54]
have shown that superconductors exhibit a density of “hot”
quasiparticles at high energy that persists for small temper-
atures and dominates over thermally excited quasiparticles
below T ≈ 35 mK [52] or T ≈ 150 mK [50,51,53]. Below, we
discuss two ways to control fermion-parity-changing events to
initialize the fermion parity of the individual quantum dots.

1. Initialization by detuning εν

Depending on the system parameters, it may be energet-
ically favorable for a quasiparticle from the environment to
enter a quantum dot and, thereby, flip its fermion parity. For
large charging energy U > �ν , the ground state of the quan-
tum dot switches from odd fermion parity around the sweet
spot (in our model: (εν − Uν/2)2 � �2

ν ) to even at larger level
energy εν [11,37,38,55]. The energy released by a quasipar-
ticle entering the quantum dot depends on the parity of the
quantum dot, resulting in different quasiparticle trapping rates
[56]. This transition has been applied experimentally to ini-
tialize the fermion parity in a quantum dot [57]. A follow-up
work, Ref. [32], applied this procedure to initialize a quantum
dot in the odd-parity sector, with measured even-to-odd and
odd-to-even switching rates of 17 and 0.36 kHz, respectively.
If the fermion-parity lifetimes cannot be tuned to differ sig-
nificantly, one can alternatively monitor the fermion parity on
the quantum dots in real time.

2. Initialization by microwave drive

Alternatively, the local fermion parity can be polarized in
the odd parity state by a microwave pulse on a local gate that
supplies the energy to split a Cooper pair from the condensate
into one electron in the dot and one in the continuum of
the superconductor [58]. Similarly, the local fermion parity
can be polarized in the even state by a microwave pulse that
supplies the energy to excite an electron from the dot into the
continuum of the superconductor.

3. Comment on spin initialization

In the absence of Zeeman fields, the above initialization
procedures do not favor a particular spin direction in the quan-
tum dot. In this case, the spin of the quasiparticle is irrelevant
and plays no role during operations.

FIG. 3. Two axis control of the parity qubit operated at weak tun-
neling |η| 
 1. (a) Sketch of the rotations. A drive of the tunneling
τ or detuning εν performs X or Y rotations. The energy difference
between the two qubit states leads to a natural rotation around Z with
the qubit frequency ω0. (b) Pauli X -gate by driving the tunnel cou-
pling τ at the sweet spot. The probabilities P0,1(t ) = |〈0, 1|�(t )〉|2
describe the overlap of the driven wave function |�(t )〉 with the
qubit eigen states |0〉 ≈ |L〉 and |1〉 ≈ |R〉 (for weak tunneling).
(c) Xπ/2Z2nπ Xπ/2 = Xπ sequence of rotations, the waiting time is
chosen as tw = n/ω0, n = 1, 2, 3... such that Z2nπ = 1. (d) Shifting
the phase of the second pulse by φ0 = π rotates the qubit back to
its initial configuration, Xπ/2Z2nπ X−π/2 = 1. In panels (b)–(d), we
include a ramp in εR at the beginning and end of the qubit op-
eration, which simulates detuning the quantum dot away from the
sweet spot for initialization and readout. Hamiltonian parameters are
the same as in Fig. 1(c). The qubit frequency at the sweet spot is
h̄ω0 ≈ 0.1414 �L . The parametrization of the pulses is contained in
Appendix C.

4. Readout by charge measurements

The qubit state can be read out by converting the parity
information to charge. This is done by detuning the level
energy of one of the quantum dots away from the sweet spot
(to |εν + Uν/2| � �ν), resulting in a different charge in the
dots for the even and odd parity sectors. Once tuned away, the
state can be read by conventional charge-detection methods
[59–63].

D. Single-qubit gates

Single-qubit gates can be achieved by driving ei-
ther the tunneling amplitude between the dots τ (t ) = τ +
δτ (t ) cos(�t + ϕ0) or the level energy of one of the quan-
tum dots εν (t ) = εν + δεν (t ) cos(�t + ϕ0) at the resonance
frequency � = ω0 = (E0 − E1)/h̄ [Fig. 3(a)]. The two com-
putational qubit eigen states |0〉 and |1〉 are given by the two
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lowest-energy eigen states in the global odd-parity sector of
Ĥ (t ) [defined around Eq. (4)]. The amplitudes δτ, δε deter-
mine the Rabi frequency, and the phase ϕ0 sets the axis of
rotation within the X -Y -plane [45]. We obtain the response of
the qubit states to the driving protocol from the exact unitary
Schrödinger evolution with respect to Ĥ (t ) [Eq. (1)].

1. Weak tunneling regime, |η| � 1

In the weak tunneling regime, the qubit eigen basis |0, 1〉 is
approximately given by the product states |0〉 ≈ |L〉 and |1〉 ≈
|R〉, up to perturbative corrections in | tan η| 
 1. In this basis,
the tunnel coupling ĤT at φ = π is off-diagonal, ĤT |L〉 = |R〉.
Thus, a drive in the tunnel strength leads to qubit rotations.

The qubit rotation by driving τ is demonstrated in Fig. 3(b).
There, we furthermore include a ramp of the level energy εR at
the beginning and end of the protocol to demonstrate a readout
scenario where adiabatic detuning of εR changes the mean
charge of the even-parity state detectable by a charge measure-
ment. The small modulation on top of the Rabi oscillations
is due to the Bloch-Siegert effect [64] occurring for sizable
ratios δτ/� between Rabi and driving frequency. These oscil-
lations are often neglected when employing a rotating-wave
approximation for driven quantum systems, but are included
in our exact time-evolution.

Due to the finite-energy difference between the two qubit
states, any superposition between the qubit states Larmor pre-
cesses at frequency ω0 around the Z axis [Fig. 3(a)]. Changing
the phase φ0 of the pulse relative to the Larmor precession of
the qubit changes the axis of rotation. This is demonstrated in
Figs. 3(c) and 3(d): In Fig. 3(c), two Xπ/2 pulses are applied
in sequence separated by a waiting time tw. The waiting time
is chosen as ω0tw = 2πn such that the rotation Zω0tw = 1. The
result is Xπ/2Zω0tw Xπ/2 = Xπ . In Fig. 3(d), the phase of the
second pulse is shifted by φ0 = π such that its rotation in the
opposite direction X−π/2 brings the qubit back into its initial
state.

2. Strong tunneling regime, |η| ≈ π/2

For strong tunneling, the qubit states |0, 1〉 are approx-
imately equal superpositions of the product states |L〉 and
|R〉, up to perturbative corrections in cot η. In this case, driv-
ing the amplitude τ only affects weakly the qubit states via
perturbative processes in cot(η). Instead, driving the level
energy εν of one of the quantum dots strongly couples to the
qubit states. A numerical demonstration of the resulting Rabi
oscillations is shown in Fig. 4. Away from the sweet spot,
the optimal driving frequency for Rabi processes equals to
the qubit frequency. At the sweet spot, the optimal driving
frequency to achieve complete population transfer is shifted
to � = 1

2 (ω0 + 1
8

∂2ω0
∂ε2

ν
δε2

ν ). The second term in the previous
expression accounts for the shift of the mean qubit frequency
at the sweet spot in the presence of the drive with amplitude
δεν in second-order perturbation theory, see Appendix A for a
derivation. The derivative of the qubit frequency ∂2ω0

∂ε2
ν

follows
directly from the perturbative result contained in Eq. (14) be-
low. Again, two-axis control is achieved by setting the phase
φ0 of the pulse or, equivalently, by Larmor precession due to
the energy difference of the two qubit states.

FIG. 4. Pauli X gate for strong tunnel coupling |η| ≈ π/2, imple-
mented by (a) driving εR away from the sweet spot εR = −UR/2 +
δεR,detune in resonance � = ω0(−UR/2 + δεR,detune ), or by (b) driving
εR at the sweet spot at half of the qubit frequency averaged over
one period of the drive, � = ω̃

2 = 1
2 (ω0 + 1

8
∂2ω0
∂ε2

ν
δε2

ν ). Hamiltonian
parameters are the same as in Fig. 1(d). The qubit frequency at the
sweet spot is h̄ω0 ≈ 0.5099 �L . The parametrization of the pulses is
contained in Appendix C.

E. Two-qubit gates

We describe two-qubit gates that arise from inductive cou-
pling of the superconducting loops or capacitive coupling
between quantum dots of two distinct qubits indexed by j =
1, 2. Figure 5 shows a sketch for a setup allowing to realize
two-qubit gates.

1. Capacitive coupling

Mutual capacitive coupling between quantum dots ν1, ν2

of adjacent qubits can be described by an interaction term
U12n̂ν1,1n̂ν2,2, where n̂ν j , j = ∑

σ n̂σ,ν j , j is the occupation of the
ν j = L, R quantum dot of qubit j = 1, 2. For concreteness,
we consider capacitive coupling between the right quantum
dot νR,1 of qubit 1 and the left quantum dot νL,2 of qubit 2. Us-

ing n̂ν, j = dĤj

dεν, j
with Ĥj being the Hamiltonian Eq. (1) for each

qubit, we apply the Hellman-Feynman theorem 〈n| dĤ
dεν, j

|n〉 =
dEn
dεν, j

where |n〉 labels the nth eigen state. The capacitive cou-
pling projected onto the qubit eigenspace is

P U12n̂R1n̂L2P = h̄2U12
dω0,1

dεR,1

dω0,2

dεL,2
ρ̂z

1 ⊗ ρ̂z
2, (6)

FIG. 5. Device sketch for two-qubit gates: Two fermion-parity
qubits 1, 2 can be coupled inductively or by a floating gate (green)
mediating capacitive between quantum dots of distinct qubits.
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where ρ̂z
j are Pauli-z operators in the space of eigen states

|ρ j〉 j, ρ j = 0, 1 of qubit j (see around Eq. (4) for a defi-
nition of the qubit eigen states at the operating point), P =∑

ρ1,ρ2
|ρ1〉1|ρ2〉2〈ρ1|1〈ρ2|2 the projector onto these states, and

the qubit frequency h̄ω0, j to second order is given in Eq. (14)
below. At the sweet spot, εν, j = −Uν, j/2, the capacitive cou-
pling does not differentiate between the qubit states as the
charge dipole moment of both qubit states vanishes. The
charge dipole moment increases linearly with the detuning
of the level energy εν, j away from the sweet spot, which
allows to switch on the two-qubit coupling using electrostatic
control of the level energy εν, j [65]. Long distance capacitive
coupling between quantum dots can be mediated by floating
gates [66,67], schematically depicted in Fig. 5 in green.

2. Inductive coupling

Inductive coupling via the superconducting loops is de-

scribed by a term ĤL = L Î1 Î2 where Î j = 2e
h̄

dĤj

dφ j
is the

supercurrent operator in the loop and L the mutual induc-
tance. However, the inductive coupling is not well-suited for
our qubit design because at the phase sweet spot φ = π ,
the derivatives, and thereby the inductive coupling, are zero.
Moreover, around φ = π , the coupling is proportional to
τ sin η [see Eq. (17)] and, thus, suppressed in the weak tun-
neling regime |η| 
 1. It therefore requires strong tunneling
between the dots to give a significant contribution.

III. PARAMETER NOISE

In this section, we quantify the susceptibility of the par-
ity qubit to noise around the sweet spot. We use Fermi’s
golden rule and the Bloch-Redfield approximation to deter-
mine relaxation and dephasing rates. We use lowest-order
perturbation theory for the qubit frequency ω0 as a function
of the fluctuating parameters. Here we focus on what we
believe are the most relevant noise parameters. A discussion
including fluctuations in all system parameters is contained in
Appendix B.

We include terms coupling to the local spin,

ĤB
ν =

∑
σ

sσ Bz,ν n̂σν + [(Bx,ν − iBy,ν )ĉ†
↑ν ĉ↓ν + H.c.], (7)

with sσ = ±1 for σ =↑,↓, which describes Zeeman coupling
to magnetic fields as well as spin-spin exchange coupling to
a nuclear spin bath. We further include spin-orbit coupling,
which replaces the tunneling term in Eq. (3),

ĤSOC
T = τeiφ[ĉ†

↑L, ĉ†
↓L]eiθ n·σ

(
ĉ↑R

ĉ↓R

)
+ H.c., (8)

with the vector of Pauli matrices σ = (σx, σy, σz )T in spin
space. The matrix eiθ n·σ describes a rotation of the electron’s
spin by an angle θ around the axis n as they tunnel from the
right to left dot. For θ = 0, the spin-orbit coupling is zero and
Eq. (3) is recovered. The axis n is called the spin-orbit direc-
tion. By choosing the spin quantization axis in both quantum
dots to be aligned with n, the spin-orbit coupling becomes di-
agonal, τeiθσz . We choose this basis for the following, keeping
in mind that the Zeeman fields are now given with respect to
this basis, i.e., Bz points parallel to the spin-orbit axis n. In

a device implementation, we expect the direction of the ex-
ternally applied field to be constrained by the superconductor
geometry and g-factor anisotropy of the semiconductor, see
the discussion in Sec. V for details.

In the presence of Zeeman fields, the angle η determining
the qubit eigen states and operating regimes [as defined in
Eq. (4)] is modified,

tan ησ,λ = 2τ

(UR − UL )/2 + sσ (BzL − BzR) + sλ(�R − �L )
,

(9)
where sλ = ±1 for λ = g, u. The qubit eigen frequency is
accordingly

h̄ω0 = 2
τ

sin ησ,u
. (10)

Equations (4) and (5) are recovered from Eqs. (9) and (10)
for Bz,L = Bz,R and λ = u, see Sec. II B [68]. The spin-orbit
coupling angle θ does not enter in Eq. (9). It only enters as
a relative phase factor between |L〉 and |R〉 in the qubit eigen
states, see Appendix B 1.

1. Dephasing and relaxation rates

Assuming the computational qubit subspace to be decou-
pled from the remaining states governed by Ĥ (t ) at any time
t , the dephasing rate �χ

ϕ due to a noisy, linearly coupled
parameter χ is given in Bloch-Redfield theory as [45,48]

�χ
ϕ = π

(
∂ω0

∂χ

)2

Sχ (ω → 0). (11)

This presupposes that the noise spectral density

Sχ (ω) =
∫ ∞

−∞
dτ 〈χ (0)χ (τ )〉e−iωτ (12)

is regular near ω ≈ 0 up to frequencies of order of �ϕ ,
where 〈χ (0)χ (τ )〉 is the autocorrelation function of the fluc-
tuating parameter χ with respect to its underlying statistical
distribution.

The relaxation rate �
χ

rel is given in Fermi’s golden rule
[45,48],

�
χ

rel(ω0) = π

2h̄2

∣∣∣∣∣〈0|dĤ

dχ
|1〉

∣∣∣∣∣
2

Sχ (ω0). (13)

Similarly, the excitation rate is given by �
χ
exc(ω0) =

�
χ

rel(−ω0). Both processes contribute to the relaxation rate
�

χ

1 (ω0) = �
χ

rel(ω0) + �
χ
exc(ω0). At temperatures kBT 
 h̄ω0,

the excitation rate �
χ
exc(ω0) is exponentially suppressed [48].

Both classical and quantum fluctuations are included in this
formulation via the noise power spectral density Sλ(ω) [45].

At first-order insensitive sweet spots, the dephasing due
to noise in the respective parameter λ is determined by
higher-order terms in λ. Explicit expressions are provided in
Ref. [48]. These contributions depend on the detailed form of
both the higher-order terms and the noise power, and we do
not include them here.

2. Level energy fluctuations

Electric field fluctuations can couple to the dot-level en-
ergies εν . To quantify their effect, we calculate the qubit
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frequency, h̄ω
(2)
0 = E (2)

0 − E (2)
1 , to second order in the detun-

ing of the level energy εν away from the sweet spot,

h̄ω
(2)
0 = h̄ω

(0)
0 +

((
εL + UL

2

)2

2�L
−

(
εR + UR

2

)2

2�R

)
cos ησ,u

−
(

εL + UL
2

2�L
− εR + UR

2

2�R

)2

τ sin ησ,u, (14)

where h̄ω
(0)
0 is the qubit frequency at the operating point

as given by Eq. (10). The first correction arises from the
quadratic dependence of the energy of the local even parity
states of the individual dots on the level energy εν + Uν/2
around the sweet spot. The second correction describes a
modification of the tunneling between these states due to the
change of the Andreev bound state superposition by detuning
εν . In Eq. (14), we neglected a term describing second-order
processes involving high-energy states |g〉ν with a symmetric
superposition of |0〉ν and |2〉ν , see Appendix B for the full
result. These states are separated from the qubit subspace by
an energy difference of the order of 2�ν . Notice that for both
weak- and strong-tunneling regimes, there is a common-mode
fluctuation given by the zeros of the factors of the two correc-
tion terms in Eq. (14) that leaves the qubit frequency invariant,
and thus does not lead to dephasing.

The matrix element 〈0| dĤ
dεν

|1〉 = 0 at the sweet spot. Thus,
we have �

εν

rel = 0 independent of the tunneling strength.

3. Tunneling strength τ

Variations in the magnitude of the tunneling amplitude
τ → τ + δτ enter in the qubit frequency up to second order
as

h̄ω
(2)
0 = h̄ω

(0)
0 + 2δτ sin ησ,u

+ 2
(
h̄ω

(0)
0

)3
[(UR − UL )/2 − (�R − �L )]2(δτ )2.

(15)

The resulting dephasing and relaxation rates are �τ
ϕ =

4π

h̄2 sin2 ησ,uSτ (ω → 0) and �τ
rel = 2 π

h̄2 cos2 ησ,uSτ (ω0). For
strong tunneling, |η| ≈ π/2, the term linear in δτ dominates
dephasing. For weak tunneling, |η| 
 1, the linear term is
suppressed and the equation simplifies,

h̄ω
(2)
0 ≈ h̄ω

(0)
0 + 2(δτ )2

(UR − UL )/2 − (�R − �L )
. (16)

Thus, for weak tunneling |η| 
 1, the system has a sweet spot
protecting against dephasing from electric field fluctuations
coupling to τ .

4. Phase fluctuations

The phase difference between the superconductors can
fluctuate due to magnetic flux variations. To second order in
the superconducting phase difference, the qubit frequency can
be written as

h̄ω
(2)
0 = h̄ω

(0)
0 − δφ2

4
τ sin ησ,u. (17)

Also here, we neglected a term describing second-order pro-
cesses via the high-energy states |g〉ν , cf. Appendix B. At the

sweet spot εν + Uν/2 = 0 and φ = π , also the matrix element
〈0| dĤ

dφ
|1〉 = 0, such that both Bloch-Redfield dephasing and

the relaxation rate in Fermi’s golden rule are zero.

5. Magnetic field fluctuations

Fluctuating magnetic fields coupling to the electron spin
include Zeeman coupling to external magnetic fields as well
as spin-spin exchange interaction with the nuclear spin bath.
Magnetic fields along the spin-orbit axis have a linear contri-
bution to the qubit frequency

h̄ω
(1)
0 = h̄ω

(0)
0 + sσ (Bz,L − Bz,R) cos ησ,u. (18)

This linear contribution is large for weak tunneling |ησ,u| 
 1,
but goes to zero for strong tunnel coupling with | cot ησ,u|
1.
Common-mode fluctuations Bz,L = Bz,R do not contribute to
dephasing. The relaxation rate �

Bz,ν

rel = π

8h̄2 sin2 ησ,uSBz,ν (ω0)
behaves oppositely: It is large for strong tunneling, but ap-
proaches zero for weak tunneling with | tan ησ,u| 
 1.

Magnetic field fluctuations perpendicular to the spin-orbit
direction induce transitions between the two spin sectors.
Choosing one of the spin sectors as the computational space,
these fluctuations would take the qubit out of the computa-
tional space. This can be avoided by applying an external
Zeeman field Bext

z . Ideally, this Zeeman field should be aligned
with the spin-orbit direction n to avoid spin-flipping processes
from the spin-orbit coupling. Then, field fluctuations in the
orthogonal directions δB⊥ enter only to second order,

h̄ω
(2)
0 = h̄ω

(0)
0 − δB2

⊥(
Bext

z

)2

τ sin(ησ,u) sin2 θ

1 − τ 2(sin ησ,u)−2
(
Bext

z

)−2 . (19)

This dephasing contribution decreases quadratically with the
applied magnetic field and requires spin-orbit coupling, as
expressed by the proportionality sin2(θ ) to the spin-orbit angle
θ . Also here, the perpendicular fluctuations do not contribute
to the relaxation rate in Fermi’s golden rule, �

B⊥
rel = 0.

6. Remaining parameters

While the parity qubit is linearly protected against fluctua-
tions in the level energies and the magnetic flux, fluctuations
in other parameters can affect qubit performance. Fluctuations
of local parameters of one of the dots, such as the charging
energy Uν and the induced pairing �ν , contribute to the de-
phasing rate with a term proportional to sin2(ησ,u) and to the
relaxation rate proportional to cos2(ησ,u).

Furthermore, a mutual charging energy ULR
∑

σ,σ ′ n̂σLn̂σ ′R
modifies the system Hamiltonian in the odd fermion-parity
subspace by replacing Uν → Uν + 2ULR. Accounting for the
modified sweet spot, fluctuations in ULR enter only to second
order in the qubit frequency by detuning the system from the
sweet spot as described by Eq. (14).

Beyond the decoherence channels discussed here, the re-
laxation rate of our proposed qubit is lower bounded by the
fermion-parity lifetime of the individual quantum dots. Pre-
vious experiments determined a fermion-parity lifetime of
Tparity = 200 µs [29], 160 µs [30], and 22 µs [31]. Reference
[57] found that the parity lifetime depends sensitively on the
level energy ε, ranging from 60 µs when the ground state of
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the quantum dot is a singlet to 2.8 ms when ground state is a
doublet (see also our discussion in Sec. II C).

Other sources of dephasing include electron-phonon cou-
pling which via spin-orbit coupling lead to dephasing [69].
This mechanism can be suppressed by applying a polarizing
magnetic field, see Sec. V for the required magnetic fields and
compatibility with superconducting leads. We leave detailed
discussions of other sources of dephasing, such as electron-
phonon coupling and quasiparticle effects, to further work.

IV. QUBIT OPERATION FOR LARGE U � �

Several material candidates for implementation of the
fermion-parity qubit, such as InAs or SiGe semiconductors
with Al superconductors (see also Secs. V and VI), typically
realize quantum dots with charging energy U much larger
than the superconducting gap �. Our proposal can also be
implemented in this limit. We here consider the case that the
hopping rate � between dot and superconductor is smaller
than or similar to �. The latter requirement ensures that

the Kondo temperature kBTK ≈ 0.182U
√

8�
πU e−πU/8� [37] is

much smaller than �, where the numerical factor 0.182 is ob-
tained from numerical renormalization group calculations of
the Anderson model [70,71]. In this case, the superconducting
gap � suppresses Kondo correlations. Instead, the even-parity
states in the combined dot-superconductor systems are Yu-
Shiba-Rusinov singlets composed of one electron on the
quantum dot and one quasiparticle from the superconductor.
Above kBTK > 0.3 � [7,37,71,72], the Yu-Shiba-Rusinov sin-
glet crosses over to a Kondo singlet. We focus on the limit
� � � 
 U .

Conceptually, operations in the Yu-Shiba-Rusinov limit
can be performed as described in Sec. II for the infinite-gap
limit. The main difference is that the even parity bound states
are Yu-Shiba-Rusinov singlets instead of even-parity super-
positions of zero and double occupation (cf. Sec. II B). This
physics can be accurately captured by taking into account only
a few levels in the superconducting leads [73].

For concreteness, we here consider material parameters
for InAs/Al heterostructures where gate-defined quantum
dots coupled to superconductors are routinely realized
[7,27,28,36,74]. We take typical values for charging energy,
U=1.5 meV, and tunneling rate, � = 0.1 meV, [27]. Then,
the Kondo temperature kBTK ≈ 0.3 µeV is much smaller
than �.

Here, we solve the interacting problem by reducing the
superconducting lead to a single site. This reduction is
known as the zero-bandwidth approximation and is justified
for kBTK 
 � [7]. We expect this model to qualitatively
capture the relevant physics for t < �, while quantitative
corrections may be found when taking into account additional
superconducting levels [73]. In this limit, the Hamiltonian
for each quantum dot, including a single superconducting site
created by d̂†

σν , reads

ĤZBA
ν =

∑
σ

εν n̂σν + Uν n̂↑ν n̂↓ν

+
∑

σ

tν (ĉ†
σν d̂σν + H.c.) + �(d̂↑ν d̂↓ν + H.c.),

(20)

FIG. 6. Energy difference of the decoupled states
〈R|∑ν HZBA

ν |R〉 − 〈L|∑ν HZBA
ν |L〉 in zero-bandwidth

approximation, Eq. (20), as a function of the ratio of dot-lead
tunneling strengths tR/tL and the ratio of charging energies UR/UL

around UL = 15tL and at the sweet spot εν = −Uν/2.

where tν models the tunneling amplitude to the single-site
superconductor. The tunneling amplitude relates to
the tunneling rate �ν as defined below Eq. (2) as
tν ≈ √

0.9618 �ν�, where the numerical factor 0.9618 is
obtained by fitting the Nambu tunneling self energy to
numerical renormalization group calculations [73]. The full
Hamiltonian is constructed as ĤZBA = ĤZBA

ν + Ĥτ with
Ĥτ given in Eq. (3). We take parameters UL = UR = 15tL,
� = 2tL, and tR = 1.1tL with tL = 0.1 meV as default.

As before, the weak and strong tunneling regimes are dis-
tinguished by the relative strength of the interdot tunneling
τ to the energy difference of the states |L〉 and |R〉. Here,
the state |L〉 (|R〉) consists of the lowest-energy doublet, i.e.,
odd-fermion parity, state on the left (right) dot and a Yu-
Shiba-Rusinov singlet on the right (left) dot. Figure 6 shows
the energy difference of these two states EZBA

R − EZBA
L with

EZBA
ν = 〈ν|HZBA|ν〉 as a function of the asymmetry tR/tL

and UR/UL of the two quantum dots at the sweet spot εν =
−Uν/2 for UL = 15tL. Notably, asymmetries in the charg-
ing energy enter the spectrum approximately proportional to
UR/UL, which is much weaker than in the infinite-gap limit
[cf. Eq. (5)]. For devices with identically shaped quantum
dots we expect UR/UL ≈ 1. We expect the asymmetry in
tunneling amplitudes |tR/tL − 1| to be generically larger than
|UR/UL − 1| and further the tunneling amplitudes tν may be
gate-tunable. This motivates our choice of using an asymme-
try in tν to model the asymmetry while taking UL = UR. In
the following, we set τ = 0.05tL < |tL − tR| for the weak tun-
neling regime and |tL − tR| < τ = 0.5tL < tL, tR for the strong
tunneling regime.

1. Interdot tunneling strength τ

The spectrum of the double-quantum dot as a function of
tunneling strength is shown in Fig. 7. In the weak tunneling
regime, the spectrum is insenstive towards fluctuations in τ .
For strong tunneling, the system has a linear sensitivity to-
wards changes in τ . Notably, the spectral gap at τ = 0.5tL is
smaller than τ due to an effective suppression of tunneling
between the states |L〉 and |R〉 in the Yu-Shiba-Rusinov regime
due to bound-state formation with quasiparticles from the
superconductor.
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FIG. 7. Spectrum as a function of level energy τ for Uν � �

calculated in zero-bandwidth approximation at the sweet spot εν =
−Uν/2. The remaining parameters are UL = UR = 15tL , tR = 1.1tL

and � = 2tL , φ = π . The blue and red line denote the qubit ground
and excited state, respectively. The gray dashed lines indicate excited
states. The light blue and orange markers indicate the values τ =
0.05tL and τ = 0.5tL that we use for the weak and strong tunneling
regime, respectively.

2. Level energy εν

The spectra as a function of level energy εν are shown
in Figs. 8(a) and 8(b). Comparing these results with the
calculations in the infinite gap limit (Fig. 1), we find that
the dependence of the energy difference between ground and
excited states on εν is much weaker than for the infinite gap
limit. We attribute this to the formation of Yu-Shiba-Rusinov
singlets which have a mean occupation close to one electron
on the quantum dot in the range εν ∈ [−Uν, 0], which is much
larger than the range given by �ν obtained for the infinite gap
limit (Fig. 1).

3. Phase difference

As a function of phase difference φ [Figs. 8(c) and 8(d)],
the weak tunneling regime exhibits a flat dispersion while for
strong tunneling there is a quadratic sweet spot around φ =
π . The flat dispersion for weak tunneling occurs due to the
suppression of tunneling between |L〉 and |R〉 as discussed in
the paragraph on the interdot tunneling τ above.

4. Dot-superconductor tunneling tR

The dot-superconductor tunneling strength tR/tL [Figs. 8(e)
and 8(f)] tunes the asymmetry of the two quantum dots and
thereby the tunneling regime. The anticrossing around the
degeneracy tL = tR is determined by the interdot tunneling
τ that is suppressed by the formation of Yu-Shiba-Rusinov
singlet with the superconductor (see paragraph on interdot
tunneling strength τ above).

5. Considerations for readout, initialization, and gates

We expect that also for the strong interaction case, the
fermion parity can be initialized using the singlet-doublet
transition that has been demonstrated experimentally in this
regime [57]. The scheme requires detuning ε on a range
of U/2, at which the local even- and odd-parity states also
are distinguishable by the charge on the quantum dot. This

FIG. 8. Spectra as a function of level energy εν , phase difference
φ, and dot-superconductor tunneling amplitude tR for the weak (left)
and strong tunneling regime (right). The spectra are calculated for
U � � in zero-bandwidth approximation. Here, the parameters are
the same as in Fig. 7 and using τ = 0.05tL for weak and τ = 0.5tL

for the strong tunneling regime.

suggests that the qubit states can be read out using charge
measurements as described in Sec. II C. Alternatively, by de-
tuning the phase difference φ away from the operating point
φ = π , the qubit ground and excited state have opposite su-
percurrents. Thus, the flux through the loop depends on the
qubit state which can be measured by inductive coupling. This
signal would be proportional to the interdot tunneling ampli-
tude τ which favors tuning the system to the strong tunneling
regime for readout. We expect that single-qubit gates can be
performed electrically by driving τ and εν as in Sec. II D even
though larger amplitudes may be required. The considerations
for two-qubit gates from Sec. II E also apply here.

V. GATE TIMES AND LEAKAGE OUT
OF THE COMPUTATIONAL SUBSPACE

In case the Hamiltonian, driving, and noise terms respect
a SU(2) spin-rotation symmetry, the qubit states are spin-
degenerate. Gates can be performed within time scales of
the order of the energy separation to the next excited states
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≈h/�ν 
 2π/ω0, which is fast compared to the qubit fre-
quency 2π/ω0.

If SU(2) spin-rotation symmetry is broken (e.g., due to
spin-orbit coupling [75,76], Zeeman coupling, or Hyperfine
interaction), uncontrolled rotation of the spin leads to dephas-
ing and compromise gate fidelity. This can be avoided by
applying an external field to spin-polarize the qubit states.
Then, gate times are limited by the splitting to the next excited
states.

We estimate the feasibility of this procedure for two candi-
date semiconductor materials. The III/V semiconductor InAs
has an approximately isotropic g factor of gInAs ≈ −5 to
−15 depending on experimental details [77,78]. This g factor
is much larger than the g factor gAl ≈ 2 in Al supercon-
ductor [79]. Thin and narrow Al superconducting strips can
withstand in-plane magnetic fields approaching the Clogston-
Chandrasekhar limit of a few T [79] depending on thickness,
which allows the quantum dots to experience for Zeeman
energies 1

2 gInAsμBB exceeding the superconducting gap � ≈
0.2 to 0.5 meV in Al thin films [79]. In superconductor-
semiconductor heterostructures, the induced pairing gap in
the presence of an in-plane field is further limited by the
orbital effect giving rise to a Cooper pair momentum in the
semiconductor [80]. For a thin and narrow superconductor,
the induced gap closes when one flux quantum encloses the
area given by the strip width and center-to-center distance
d between superconductor and two-dimensional electron gas.
For a typical width of W = 200 nm, the orbital-induced gap
closure occurs around �0/dW ≈ 700 mT where we used d =
15 nm as a typical value for InAs/Al heterostructures [80,81].
Already B = 200 mT with gInAs = −10 achieves a Zeeman
splitting gInAsμBB = 0.12 meV = 2π h̄ × 30 GHz of the order
of �. We expect this to allow gate times on the nanosecond
scale. Such fast gate times are typical for two-level systems
well separated from the excited states, such as in spin qubits
[31,32,44]. We expect this procedure also to apply for other
III/V semiconductors with sufficiently large g factors.

As a second example, we consider the group-IV semi-
conductor SiGe. This material has a strongly anisotropic g
factor, with in-plane gSiGe;‖ ≈ −0.3 and out-of-plane g factor
gSiGe;⊥ ≈ −15 [82]. SiGe makes good interfaces with Al as
parent superconductor [79,83]. The out-of-plane critical field
of Al is around 100 mT [79,84] and may further be improved
by nitridization [84]. Taking 40 mT as a reasonable value
where a hard superconducting gap is still observed, Zeeman
splittings of the order of gSiGe⊥μBB ≈ 0.035 meV ≈ 2π h̄ ×
8 GHz permit gate times on the nanosecond scale. It may fur-
ther be possible to enhance the critical out-of-plane magnetic
field by using thin and narrow strips where vortex formation
(which suppresses superconductivity in the type-1 supercon-
ductor Al) is avoided up to magnetic fields Bc ≈ �0/W 2 with
the film width W [85]. For a typical width W = 100 nm, we
have Bc ≈ 200 mT.

Finally, to assess gate fidelity, we note that for single-
qubit gates by driving εν , it is not necessary to detune the
system away from the charge sweet spots, cf. Appendix A.
Furthermore, in case the closest excited states are of opposite
spin, electrical driving schemes couple to these states only
indirectly via spin-orbit coupling and similar effects which
may yield only weak leakage into these states. Performing

two-qubit gates requires to detune εν (for capacitive coupling)
or tune to the strong tunneling regime (for inductive coupling).
While performing the gate the system is thus sensitive to
charge noise coupling to εν or flux noise φ, respectively. Op-
timal operation will further depend on the achievable mutual
inductance and charging energy.

VI. ESTIMATE OF COHERENCE TIMES

We estimate the most relevant decoherence sources in
two semiconductor platforms: the group III/V semiconductor
InAs and the group IV semiconductor platform SiGe.

In InAs, Overhauser exchange fields couple the nuclear
spin bath to the spin of the quantum dots. This limits the
dephasing time of spin qubits in this platform to tens of
nanoseconds [31,32]. In our platform, a large magnetic field
can be applied to polarize the spin in both quantum dots
(see Sec. V). Then, only Overhauser fluctuations along the
direction of the applied field lead to dephasing. Operating our
qubit in the weak tunneling regime which is linearly sensitive
to Overhauser fields and assuming Overhauser field as the
dominant dephasing mechanism, we expect an improvement
in dephasing time by a factor of 3 compared to spin qubits
in this platform [31,32] due to the suppression of fluctuations
perpendicular to the applied field. The strong tunneling regime
has a quadratic insensitivity to Overhauser fluctuations but is
linearly sensitive to electric field noise coupling to the interdot
tunneling τ . The noise acting on interdot tunneling depends
on precise device parameters, such as the distance of the gates
to the system. A previous study on semiconductor charge
qubits in GaAs [43], the coherence time at the charge sweet
spot τ > |εL − εR| was limited to below 10 ns. This is of
order of the charge relaxation time in the setup, so that the
limiting mechanism could not be conclusively identified. In
contrast, a recent work implementing a charge qubit using
solid neon as host material found large coherence time of
around 100 µs [86]. This suggests that the decoherence due
to electric field coupling to the interdot tunneling strongly
depends on material and device details. Altogether, based on
the previous experimental results, we expect that a realization
of the parity qubit in InAs/Al can improve over the realized
Ramsey coherence times of 10 ns [43] for strong tunneling
and 11 ns [32] and 18 ns [31], proving a lower bound for the
expected coherence times.

Proximity-induced superconductivity in group IV semi-
conductors has been demonstrated in Ge/SiGe with Al [83]
or PtSiGe [87]. In Ge/SiGe, Ramsey dephasing times in hole
spin qubits of 84 ns [88] and in singlet-triplet qubits of 1 µs
[89] have been demonstrated. This platform could thus be
operated in the weak tunneling regime where the qubit is
quadratically insensitive to electric field noise coupling to
both εν and τ . In this case, noise coupling to the tunneling rate
�ν between dot and superconductor may be a relevant factor.
Our proposal may exhibit better coherence than spin qubits
in this platform due to the relaxation protection by the spatial
separation of the qubit states as well as charge sweet spots.

Finally, in group IV semiconductors, dephasing due to cou-
pling to spinful nuclei can be reduced by isotopic purification.
In isotopically purified SiGe, a recent study has shown de-
phasing times of spin qubits of 28 µs [90]. It has been argued
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that the dephasing time is not limited by Overhauser coupling
to the remaining spinful nuclei, but instead by coupling to
electric fields and magnetic field gradients.

VII. COMPARISON TO OTHER QUBIT REALIZATIONS

This section briefly summarizes how the parity qubit
compares to other mesoscopic solid-state qubits in terms of
principle and expected coherence properties.

1. Semiconductor charge qubit

Our proposal resembles the semiconductor charge qubit
[41–43] where the position of a single excess electron de-
fines the qubit states. The dephasing times of charge qubits is
typically in the nanosecond range [41,43], which is attributed
to coupling of the charge dipole moment of the qubit states
to the environment. The parity qubit also uses the fermion
occupation as information carrier, but unlike the charge qubit,
the two computational states are both in a sweet-spot con-
figuration which suppresses the coupling due to electric field
fluctuations. Moreover, the fermion-parity qubit can achieve
quadratic protection against electric field noise in both dot po-
tential and (in the weak-tunneling regime) interdot tunneling.

2. Semiconductor spin qubit

Another related qubit is spin qubits [44]. For III–V semi-
conductor realizations, the spin qubits suffer from dephasing
due to fluctuations in the host nuclei spins. This will also be
the case of for our parity qubit, unless (i) a large magnetic
field is applied or (ii) by increasing the tunnel coupling of
the quantum dots such that the qubit states are close-to-equal
superpositions of |L〉 and |R〉 [see discussion around Eqs. (18)
and (19)]. A more promising route is silicon or germanium
based systems [83,91,92]. Gates in spin qubits are typically
performed via electric fields taking advantage of either mag-
netic field gradients or spin-orbit coupling [44,92]. The parity
qubit couples in this sense more directly to electric because
the qubit encoding is spatial.

3. Andreev and Andreev spin qubits

In superconductors, coherent control of single fermionic
quasiparticles has been demonstrated in Andreev qubits where
the computational states are defined by the occupation of
spin-degenerate Andreev bound states [29,30]. The Andreev
qubit experiment in Al break junctions [29] found Ramsey
coherence times of around 38 ns, while in InAs [30] the
Ramsey coherence times were immeasurably short. The main
decoherence sources were attributed to gate fluctuations. We
expect that sweet-spot engineering in the parity qubit can
protect against this dephasing source.

Further experiments on Andreev spin qubits demonstrated
coherent manipulation of the quasiparticle spin [31,32]. These
experiments were done in Al-based structures with relatively
long parity and T1 lifetimes, but with somewhat shorter the
dephasing times [29–31,57]. These were attributed to low-
frequency gate-potential fluctuations [29,30]. For Andreev
spin qubits the nuclear spin bath was similarly to usual
spin qubits suggested to be the dominant dephasing mech-
anism [31,32]. We expect that the parity qubit can mitigate

fluctuations coupling to spin (Overhauser, magnetic fields,
spin-orbit) because it is compatible with applying an external
in-plane Zeeman field of a few 100 mT polarizing the spin
(see also Sec. V). This suppresses dephasing because only
fluctuations along the applied field contribute. By choosing
either the weak or strong tunneling regime, the coherence can
be optimized depending on the relative impact of fluctuations
coupled to the spin degree of freedom and electric field noise
coupling to τ .

4. Pairs of quantum dots coupled to superconductors

Recently, other proposals for qubits in pairs of quantum
dots coupled to superconductors have appeared. References
[93,94] discusses two quantum dots coupled to a single
superconducting island. In these proposals, similar charge-
insensitive sweet spots can be reached.

5. Majorana qubit

Our proposal shares two essential properties with topolog-
ical Majorana qubits [95–97], namely that the information is
encoded in the fermion parity and thus separated from elec-
tronic charge. However, there are fundamental differences.
In Majorana qubits, the quantum information is stored in
spatially separated Majorana bound states, where a pair of
Majorana bound states composes a single fermion. Dephas-
ing of quantum information stored in Majorana bound states
due to local fluctuations occurs only via modifications of the
hybridization between Majorana bound states (which, in the
topological case, is exponentially suppressed). In contrast, in
our proposal the quantum dots are fine-tuned to a sweet spot
with zero charge dipole moment. In spirit, our proposal is thus
related to two-dot Kitaev chain proposals [34–36]. However,
this so-called “poor man’s” Majorana system has qubit states
defined by the total parity of two dots (and therefore needs
four dots to make a workable qubit), whereas for our proposal
the qubit states are defined by local parity (and therefore two
dots are sufficient). Moreover, we note that while it remains
challenging to provide convincing experimental evidence of
coherent manipulation of Majorana zero modes, the parity
qubit is based on established technology (e.g., in InAs/Al:
hybridization [33] and coherent control of Andreev bound
states [29–32], fermion-parity initialization [57,58] and read-
out [63], and integration with superconducting circuits [57]).

In comparison to poor man’s Majorana systems, our pro-
posal requires less technological overhead as only two instead
of four dots [98–100] are required to define a qubit (see
above). Poor man’s Majorana systems have perfect protection
from fluctuations of εν in only one of the dots as long as
the other remains at the sweet spot, but only have quadratic
protection from common-mode fluctuations εL = εR [34].
Furthermore, poor man’s Majorana systems are linear sensi-
tive to fluctuations in the interdot-tunneling amplitude τ and
the induced superconducting correlations � [34]. A recent
proposal has suggested that a poor man’s Majorana system
can also be realized in the same double-quantum dot structure
considered in our work [100].
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6. Superconducting qubits

Superconducting qubits (such as transmons [46] and flux-
oniums [101–103]) are currently among the leading qubit
candidates due to their long coherence times and well-
developed technology. They are very different in nature from
the parity qubit and other mesoscopic qubits mentioned above.
One difference is the size of the qubits which for the parity
qubit is determined by the size of the loop, which is much
smaller than the superconducting qubits. Another difference
is that the limiting factors are to a large extend determined by
the more macroscopic device layout factor, whereas the meso-
scopic qubits are limited by fabrication, tuning, and material
issues, as mentioned above.

VIII. CONCLUSIONS AND DISCUSSIONS

We have proposed a qubit where quantum information is
encoded in the fermion parity of two quantum dots constitut-
ing a weak link in a superconducting loop. The qubit states
are defined by the fermion number parity of the two quantum
dots. By electrostatic tuning to a sweet spot, the quantum dots
have the same electric charge, independent of their fermion
parity. Thereby, the qubit states are protected from dephasing
to first order in fluctuations of the electric field that lead
to variations of the quantum dot level energy much smaller
than the induced superconducting correlations (for infinite gap
� � Uν, �ν , cf. Fig. 1) or the charging energy (for large
Uν � �,�ν , cf. Fig. 8). By tuning the tunneling strength
between the quantum dots, the encoded quantum informa-
tion is further protected against relaxation (weak tunneling)
or dephasing (strong tunneling) induced by environmental
fluctuations coupling to individual quantum dots, including
electric and magnetic fields, and nuclear spins. For weak
tunneling, the qubit also exhibits a quadratic sweet spot pro-
tecting against fluctuations in the interdot tunneling strength.
The reduced sensitivity towards noise acting on indivial quan-
tum dots may mediate the main decoherence sources in qubits
in quantum dot-superconductor heterostructures, such as An-
dreev [29,30] and Andreev spin qubits [31,32] (see Sec. VII).
Strong tunneling increases the dephasing due to fluctuations
of the tunneling amplitude, which could be reduced by lower-
ing the lever-arm between gate voltage and tunneling strength.
In systems without spin-splitting, the fermion-parity qubit can
be operated purely electrically. If spin-splitting by effects such
as spin-orbit coupling, external magnetic fields, or hyperfine
coupling to nuclear spins is relevant, then the qubit subspace
can be spin-projected by an external applied magnet field
which reduce the impact of noise due to fluctuations coupling
to spin.

Single- and two-qubit gates, as well as initialization and
readout can be performed using direct coupling to electric
gates. The qubit states are well separated from the nearest
noncomputational states by an energy difference of the order
of the induced pairing potential 2�ν , which permits fast gate
operations while avoiding population of noncomputational
states, similar to spin qubits. In semiconductor platforms InAs
and SiGe with Al as parent superconductor, we estimated
that single-qubit gates can be performed on a time scale of
1 ns. We expect that the fermion-parity qubit can achieve

reasonable coherence in platforms with either low noise on
the interdot tunneling strength or low Overhauser spin-spin
exchange noise with nuclear spin, such as in group IV semi-
conductors where SiGe is a promising candidate due to the
available technology. For the former, strong tunneling protects
towards Overhauser noise. For the latter, operating the system
in the weak-tunneling regime protects against electric field
noise coupling to both interdot tunneling and level energies.

Future theoretical directions could further investigate how
correlation effects affect and could be engineered to optimize
coherence. For example, in the Yu-Shiba-Rusinov regime, the
case when the interdot tunneling becomes larger than the
tunneling to the superconductors could be explored. Also, it
would be interesting to discuss qubit operation with quantum
dots in the Kondo regime. Further directions could quantify
how inelastic scattering with phonons or quasiparticles affect
coherence.

An experimental realization of our proposal would demon-
strate encoding of quantum information in the fermionic
parity degree of freedom separated from its electric charge.
This property is shared by the topological Majorana qubits
and is an essential element in their anticipated decoupling
of the encoded quantum information from the environmen-
tal noise. While topological Majorana qubits [95–97] have
proven difficult to realize, our proposal uses currently avail-
able technology. We hope our proposal inspires experimental
realization and further studies on how superconductivity can
decouple quantum information from the environment.
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APPENDIX A: RABI DRIVING AT THE SWEET SPOT

Rabi transitions of the qubit states can also be achieved
by driving the level energy εν at the sweet spot. In this
regime, we have to account for the quadratic dependence
of the qubit frequency on the detuning of the level energy
around the sweet spot, h̄ω0(εν ) = h̄ω0(−Uν/2) + 1

2
∂2ω0
∂ε2

ν
(εν +

Uν/2)2 + O[(εν + Uν/2)4], where the factor 1
2

∂2ω0
∂ε2

ν
can be

determined from perturbation theory, see Appendix B for
an explicit expression. Due to the quadratic dependence of
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the low-energy Hamiltonian projected on the qubit subspace
in the driven parameter εν (t ) = −Uν/2 + δεν cos(�t ), the
drive enters the qubit subspace as 1

2
∂2ω0
∂ε2

ν
(εν (t ) + Uν/2)2 =

1
4

∂2ω0
∂ε2

ν
δε2

ν [1 + cos(2�t )] with doubled frequency. For small

driving amplitudes, 1
4

∂2ω0
∂ε2

ν
δε2

ν 
 h̄ω0, the driving frequency �

needs to be set to half of the qubit frequency at the sweet spot,
� = ω0/2 to achieve complete population transfer. For fi-
nite driving amplitudes, 1

4
∂2ω0
∂ε2

ν
δε2

ν � h̄ω0, the qubit frequency

ω̃0 = 1
T

∫ T
0 dt ω0[εν (t )] = h̄ω0(−Uν/2) + 1

4
∂2ω0
∂ε2

ν
δε2

ν averaged

over one period of the drive T = 2π
�

deviates from the non-
driven value ω0 such that the driving frequency needs to be
corrected as � = 1

2 ω̃0 = 1
2ω0 + 1

8
∂2ω0
∂ε2

ν
δε2

ν to allow complete
population transfer. The sweet spot driving is demonstrated in
Fig. 4(b). A similar result also allows driving of the phase dif-
ference φ at the sweet spot φ = π to perform qubit rotations.

APPENDIX B: PERTURBATION THEORY
AND DECOHERENCE RATES

Here we give the full result of the second-order pertur-
bation theory for the qubit frequency around the sweet spot
εν = −Uν/2 and at the operating point φ = π . These results
are employed to calculate the Bloch-Redfield dephasing rates
and relaxation rates from Eqs. (11) and (13).

1. Diagonalization at the sweet spot

The full qubit Hamiltonian including spin-orbit coupling
and Zeeman fields,

Ĥ =
∑

ν

(
Ĥν + ĤB

ν

) + Ĥ soc
T , (B1)

is conveniently diagonalized in the eigenbasis of proximitized
dots Ĥν ,

|λν〉ν = |vac〉 + [sinh (ξν ) + sλν
cosh (ξν )]c†

↑νc†
↓ν |vac〉

Nλν

,

(B2)
with labels λν = g, u as in Sec. II B, Nλν

=√
2 cosh ξν (cosh ξν + sλν

sinh ξν ), sinh ξν = 2εν+Uν

2�ν
, and

energy Eλν
= �ν (sinh ξν + sλν

cosh ξν ).
In the eigenbasis of proximitized dots Ĥν as given in

Eq. (B2), the Hamiltonian within a spin sector σ can be
written in matrix form,

Ĥσ =

⎛
⎜⎜⎜⎝

εσL + EgR 0 τeiσθ fgg τeiσθ fgu

0 εσL + EuR τeiσθ fug τeiσθ fuu

εσR + EgL 0

H.c. 0 εσR + EuL

⎞
⎟⎟⎟⎠,

(B3)

acting on the basis (ĉ†
σL|g〉R, ĉ†

σL|u〉R, ĉ†
σR|g〉L, ĉ†

σR|u〉L )T,
where εσν = εν + sσ Bz,ν and

fλRλL = eiφ/2

NλR NλL

− sλR sλL e−iφ/2

NλR NλL

× [cosh(sλL ξL + sλRξR) + sinh(sλL ξL + sλRξR)].
(B4)

At the sweet spot ξL = ξR = 0, the function fλRλL simplifies as
f (0)
λλ = i sin φ

2 and f (0)
λλ̄

= cos φ

2 where ḡ/ū = u/g. Thus, the
tunnel-coupling of the quantum dot states can be controlled
by the phase-bias φ: At φ = 0, the low-energy state |u〉L of
the left dot is coupled to the high-energy state |g〉R of the right
dot, and vice versa. At φ = π , the low-energy states |u〉L, |u〉R

and high-energy states |g〉L, |g〉R are coupled with each other.
The perpendicular components of the Zeeman field Bx,ν , By,ν

remain unaffected by this basis transformation.
At the sweet spot, for Bx,ν = By,ν = 0, and at φ = π , the

eigen states of the full Hamiltonian Ĥ are

|σ, λ, ρ = 0〉 = sin
ησ,λ

2
ĉ†
σL|λ〉R + ie−isσ θ cos

ησ,λ

2
ĉ†
σR|λ〉L,

|σ, λ, ρ = 1〉 = cos
ησ,λ

2
ĉ†
σL|λ〉R − ie−isσ θ sin

ησ,λ

2
ĉ†
σR|λ〉L,

(B5)

with energy

E (0)
σ,λ,ρ = −(UR + UL )/2 + sσ (BzL + BzR) + sλ(�R + �L )

2

+ sρ

τ

sin ησ,λ

, (B6)

with ρ = 0, 1 labeling the corresponding eigen state and the
superscript (0) indicates the sweet spot. The angle ησ,λ is
given in Eq. (9). It determines the operating regime: For small
|ησ,u| 
 π/2 (weak tunneling), the eigen states Eqs. (B5)
are localized either left or right, while for large |ησ,u| ≈ π/2
(strong tunneling), the eigen states are bonding and anti-
bonding superpositions between left and right.

The two qubit states are given by the two lowest energy
eigen states of the system within a spin sector σ , |σ, u,−〉 and
|σ, u,+〉. The qubit eigenfrequency h̄ω

(0)
0 = E (0)

σ,u,+ − E (0)
σ,u,−

is given in Eq. (10). For Zeeman fields (and fluctuations
thereof) much smaller than h̄ω

(0)
0 , the system can be oper-

ated in the spin degenerate regime. For sizable fluctuations
of the Zeeman fields, it is advantageous to apply an external
magnetic field Bext

zν much larger than the variance of the fluc-
tuations to suppress spin flips. Differences in the electronic
g factor in the two quantum dots gν lead different resulting
Zeeman fields Bext

zν .

2. Deviations from the operating regime

Here we summarize the results for the lowest order correc-
tions to the qubit spectrum due to perturbations in the system
parameters away from the operating point at the sweet spot
εν = −Uν/2 and φ = π .

a. Detuning εν

We calculate the energy difference h̄ω
(2)
0 = E (2)

σ,u,+ − E (2)
σ,u,−

of the qubit states to second order in the detuning,

h̄ω
(2)
0 = h̄ω

(0)
0 + �Lξ 2

L − �Rξ 2
R

2
cos ησ,u

−
(

ξL − ξR

2

)2(
1 + 2�2

σ,u

)
τ sin ησ,u, (B7)

where ξν = arsinh 2εν+Uν

2�ν
≈ 2εν+Uν

2�ν
and �σ,λ = 1

�R+�L

τ
sin ησ,λ

.
The first correction arises from the quadratic dependence of
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the energy Eλν
of the local even parity states of the individual

dots. The second correction describes a modification of the
tunneling between these states due to their dependence of the
Andreev bound state wave function [Eq. (B2)] on the level
energy εν . The term proportional to �σ,u describes second-
order processes involving the symmetric even-fermion-parity
bound states λν = g at high energy λν�ν at the sweet spot. The
above result is furthermore expanded to lowest order in �σ,λ,
which is small �σ,λ 
 1 when the qubit states λν = u are well
separated from the high-energy states λν = g. Neglecting the
coupling to the symmetric even-fermion-parity bound states
(�σ,u → 0) reproduces Eq. (14).

b. Phase difference φ

Similarly, the variations of the phase difference φ = π +
δφ away from the operating point φ = π modify the qubit
frequency as

h̄ω
(2)
0 = h̄ω

(0)
0 − δφ2

4

(
1 + 2�2

σ,u

)
τ sin ησ,u, (B8)

which, again, is expanded to second order in �σ,λ. Setting
�σ,u → 0 reproduces Eq. (17).

c. Charging energy Uν

Fluctuations in the charging energy Uν on either dot modify
the qubit frequency to linear order,

h̄ω
(1)
0 = h̄ω

(0)
0 +

(
δUR

2
− δUL

2

)
cos ησ,u. (B9)

d. Induced pairing potential 	ν

At the sweet spot, fluctuations in the induced pairing
strength �ν → �ν + δ�ν modify only the diagonal elements
of the Hamiltonian. The offdiagonal terms remain unchanged
as ξν = 0. The energy depends linearly on the perturbation,

h̄ω
(1)
0 = h̄ω

(0)
0 + (δ�L − δ�R) cos ησ,u. (B10)

e. Zeeman fields �Bν

Dephasing and relaxation due to Zeeman field fluctuations
are discussed around Eqs. (18) and (19) in the main text.

f. Spin-orbit coupling

Spin-orbit coupling enters the Hamiltonian via the tunnel-
ing term Eq. (8). Without Zeeman fields, or for Zeeman fields
pointing only along the spin-orbit direction n, the spin-orbit
coupling does not modify the spectrum. The spin orbit angle
θ enters only in the perturbative corrections due to orthogonal
fluctuations of the Zeeman field [see Eq. (19)].

3. Dephasing and relaxation

We derive Bloch-Redfield dephasing rates and relaxation
rates using Eqs. (11) and (13) from the main text.

a. Detuning εν

Using Eq. (14), the dephasing rate due to fluctuations in the
detuning εν around the sweet spot is

2h̄2

πSε(ω → 0)
�εν

ϕ

=
(

ξν cos ησ,u + ξL − ξR

2�ν

(
1 + 2�2

σ,u

)
τ sin ησ,u

)2

.

(B11)

To compute the relaxation rate, we calculate at the sweet spot
and φ = π ,

dĤ

dεν

= 14 + τ

2�ν

λy ⊗ νx, (B12)

where λl and νl , l = 0, x, y, z are Pauli matrices in λ space and
quantum dot space, respectively, and “⊗” denotes the direct
product. The matrix element 〈+| dĤ

dεν
|−〉 = 0 due to orthogo-

nality of the wave function and because the operator λy ⊗ νx

relates wave functions with opposite λ, while the two qubit
states have the same λ = −. Thus, we have

�
εν

rel = 0. (B13)

Both the Bloch-Redfield dephasing rate and relaxation rate are
zero at the sweet spot ξν = 0 and φ = π .

b. Phase difference φ

The dephasing rate due to fluctuations in φ = π + δφ is

2h̄2

πSφ (ω → 0)
�φ

ϕ =
(

δφ
(
1 + 2�2

σ,u

)
τ sin ησ,u

2

)2

. (B14)

With dĤ
dφ

= −λx ⊗ νx at φ = π we find 〈+| dĤ
dφ

|−〉 = 0 be-
cause the operator λx ⊗ νx couples only states with opposite
λ, such that

�
φ

rel = 0. (B15)

c. Tunneling strength τ

Fluctuations in the tunneling strength lead to a dephasing
and relaxation rate,

�τ
ϕ = 4π

h̄2 sin2 ησ,uSτ (ω → 0), (B16)

�τ
rel = π

2h̄2 cos2 ησ,uSτ (ω0), (B17)

where we used that dĤ/dτσ = −λ0 ⊗ νy at φ = π .

d. Charging energy Uν

Fluctuating charging energies Uν on either dot result in
dephasing and relaxation rates, to first order around the sweet
spot Uν = −2εν ,

�Uν

ϕ = π

4h̄2 cos2 ησ,uSUν
(ω → 0), (B18)

�
Uν

rel = π

32h̄2 sin2 ησ,uSUν
(ω0), (B19)

where we used that dĤ/dUL/R = λ0 ⊗ (ν0 ± νz )/4.
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e. Induced pairing strength 	ν

The dephasing and relaxation rates due to fluctuating �ν ,

��ν

ϕ = π

h̄2 cos2 ησ,uS�ν
(ω → 0), (B20)

�
�ν

rel = π

8h̄2 sin2 ησ,uS�ν
(ω0), (B21)

using dĤ/d�L/R = λ0 ⊗ (ν0 ± νz )/2.

f. Zeeman fields �B

We again distinguish fluctuations Bz along the spin quan-
tization axis in the two dots, and perpendicular fluctuations
Bx, By. The spin quantization axis is either set by the direc-
tion of the spin-orbit coupling n and/or the direction of an
externally applied Zeeman field Bext

z , see Sec. B 2. Parallel
fluctuations δBz result in dephasing and relaxation rates

�Bz,ν
ϕ = π

h̄2 cos2 ησ,uSBz,ν (ω → 0), (B22)

�
Bz,ν

rel = π

8h̄2 sin2 ησ,uSBz,ν (ω0). (B23)

In the presence of an externally applied Zeeman field much
larger than the variance of the fluctuations of Bx and By, fluc-
tuations in these components yield dephasing and relaxation
rates

�Bx,ν
ϕ = π

h̄2

4δB2
x(

Bext
z

)4

⎛
⎝ τ sin ησ,u sin2 θ

1 − (
τ

Bext
z sin ησ,u

)2

⎞
⎠

2

SBx,ν (ω → 0),

(B24)

�
Bx,ν

rel = 0. (B25)

The dephasing rate is zero in the absence of a bias δBx = 0
and/or in the absence of spin-orbit coupling θ = 0.

g. Relative dephasing of multiple qubits

When operating all qubits at the sweet spot, the charge
expectation value of all quantum dots is independent of their
fermion parity. Therefore, any charge dipole or multipole mo-
ments between different qubits vanish as well, such that also
a multi-qubit system remains linearly insensitive to fluctua-
tions in the level energy. Similar arguments hold for the other
parameters.

APPENDIX C: PULSE PARAMETERS

Here, we define the precise form and parameters for the
pulses applied in Figs. 3 and 4 in the main text.

The pulses are of the form

f (t ) = s(t ; tpulse, trise ) cos(�t + φ0), (C1)

with the driving frequency �, pulse phase φ0, and envelope
function

s(t ; tpulse, trise ) = ϑ (t − tpulse/2; trise ) − ϑ (t + tpulse/2; trise )
(C2)

setting the pulse duration tp. The pulse is turned on smoothly
over a rising time tr using the smooth step function

ϑ (t ; trise ) =
(

1 + exp

[
trise

t + trise/2
− tr

trise/2 − t

])−1

, (C3)

which is defined on the interval −trise/2 < t < trise. This
smooth step function connects continuously in derivatives of
all orders to a flat line ϑ (t ) = 0 for t < −trise/2 and ϑ (t ) = 1
for t > trise/2.

1. Weak tunneling, Xπ rotation [Fig. 3(b)]

The pulse on the tunneling amplitude is of the form
τ (t ) = τ + δτ f (t ) with amplitude δτ = 0.006�L, frequency
� = ω0, pulse time tpulse = 115h/�L and rise time trise =
10h/�L. The ramp on the level energy εR is parameterized us-
ing the smooth step functions, εR(t ) = −UR/2 + δεR,ramp[1 −
s(t ; tpulse + tramp + trise, tramp)] with δεR,ramp = �L and ramp
time tramp = 30h/�L. The pulse starts directly after the ramp
is completed.

2. Weak tunneling, Xπ/2Z2πXπ/2 sequence of rotations [Fig. 3(c)]

The two consecutive pulses on the tunneling amplitude are
performed with δτ = 0.006�L , frequency � = ω0, pulse time
tpulse = 60h/�L and rise time trise = 10h/�L. The pulses are
separated by a waiting time tw = 7.75h/�L and have the same
phase φ0.

3. Weak tunneling, Xπ/2Z2πXπ/2 sequence of rotations [Fig. 3(d)]

Same parameters as in Fig. 3(c), except that the phase of
the second pulse is shifted φ0 → φ0 + π .

4. Strong tunneling, Xπ rotation with detuned εR [Fig. 4(a)]

The pulse on the level energy εR is applied for a detuned
εR(t ) = −UR/2 + δεdetune + δε f (t ), with detuning δεdetune =
0.2�L, pulse amplitude δεR = 0.1�L, frequency � = ω0,
pulse time tpulse = 55h/�L and rise time trise = 10h/�L.

5. Strong tunneling, Xπ rotation with by driving the level
energy at the sweet spot [Fig. 4(a)]

The pulse to perform a Xπ rotation by drive the level energy
at the sweet spot is of the form εR(t ) = −UR/2 + δε f (t ) with
amplitude δεR = 0.3�L, frequency � = 1

2ω0 + 1
8

∂2ω0
∂ε2

ν
δε2

ν ≈
0.500214ω0 [see Appendix A], pulse time tpulse = 50h/�L and
rise time trise = 10h/�L.
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