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We show that rotating two-dimensional Fermi gases possess a nonrelativistic scale and conformal invariance
at weak but nonzero interactions, where the scale invariance of universal short-range interactions is not yet
broken by quantum effects. We demonstrate the symmetry in the excitation spectrum of few-fermion ensembles
in a harmonic trap obtained by exact diagonalization. The excitation spectrum is shown to split in a set of
primary states and derived excited states that consist of breathing modes as well as two different center-of-mass
excitations, which describe cyclotron and guiding-center excitations of the total particle cloud. Furthermore, the
conformal symmetry is manifest in the many-body wave function, where it dictates the form of the hyperradial
component, which we demonstrate using Monte Carlo sampling of few-body wave functions.

DOI: 10.1103/PhysRevResearch.6.023279

I. INTRODUCTION

Ultracold quantum gas experiments are used to simulate
strongly correlated phases of matter, and in particular to create
artificial gauge fields to emulate the physics of the lowest
Landau level. In its simplest setting, a synthetic magnetic
field is induced in a trapped two-dimensional gas brought in
rotation [1–5], which is described in the rotating frame by a
substitution [6]

H → H (�) = H − �Lz, (1)

where H is the many-body Hamiltonian of the nonrotating
system, � is the rotation frequency, and Lz is the out-of-
plane angular momentum component. Here, the Hamiltonian
H describes nonrelativistic atoms in a harmonic trap with fre-
quency ω that interact with a short-range potential of strength
g. The Coriolis force acting on a particle then takes the same
form as the Lorentz force on a unit charge in a constant
magnetic field of strength B = 2m∗� (m∗ is the atomic mass),
with an additional centrifugal force that weakens the har-
monic trap confinement [6]. In the limit of fast rotation with
a frequency that approaches the trap frequency, the effective
trap potential vanishes and single-particle levels form fully
degenerate Landau levels. While such a rapidly rotating gas in
the lowest Landau level is seemingly scale invariant due to the
complete quenching of the kinetic energy, and described by a
single Haldane pseudopotential parameter, the noncommuta-
tive nature of the guiding-center coordinates violates such a
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scaling symmetry and gives rise to a quantum anomaly [7].
A different quantum anomaly arises if interactions are suffi-
ciently strong to induce transitions between Landau levels: In
this case, the contact interaction is renormalized due to virtual
excitations, which has been studied extensively in nonrotating
systems [8–18]. Deviations from scale invariance caused by
virtual excitations are experimentally observable in a shift
of the breathing mode frequency [8,12,13,19], a logarithmic
scaling correction to the rf spectrum [20], or the emergence
of a finite bulk viscosity [21–24]. However, as was shown for
nonrotating systems in a previous work by the present authors
[25], virtual excitations only contribute at second order in
the dimensionless interaction strength g/(�2

hoh̄ω) (�ho is the
harmonic oscillator length), such that the scale symmetry is
restored at weak interactions [i.e., to linear order O(g)]. In this
regime, the scale invariance implies a second symmetry, con-
formal invariance [26,27]. Since scale transformations do not
affect the angular momentum, we expect that this invariance
also holds for rotating systems.

In this work, we confirm that this is indeed the case
and rotating 2D Fermi gases at weak interactions are scale
and conformally invariant. We use exact diagonalization
and many-body degenerate perturbation theory to reveal
signatures of scale invariance in the energy spectrum and the
statistics of the many-body wave function. A key signature
that we establish is that scale and conformal invariance
constrain the spectrum of the harmonically trapped rotating
gas [27–31], which separates in a set of so-called primary
states and their excitations. The primary states include the
ground state and are specific to the particular system. In
particular, their energy depends on the rotation frequency and
will change compared to the nonrotating gas [25]. From each
primary state, we find an infinite set of derived states that are
composed of three different excitations: (i) breathing modes,
(ii) cyclotron center-of-mass excitations, and (iii) guiding-
center center-of-mass excitations. The breathing modes are
constrained by the conformal symmetry to an excitation
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FIG. 1. Time evolution (left to right panels) of the particle density in the stationary frame with rotation frequency �/ω = 1/3 for an equal
superposition of the N = 2 particle ground state (a primary state) and an excitation by any of the three spectrum-generating operators (top
to bottom panels). Top panel: The excitation by R† induces an undamped internal breathing mode oscillating at exactly twice the trapping
frequency, 2ω, independently of both the rotation frequency � and interactions. Middle and bottom panels: The center-of-mass excitations Q†

−
and Q†

+ stir the gas in a clockwise or anticlockwise direction, respectively; the rotation direction is indicated by a white arrow to guide the eye.
In contrast to the internal breathing mode excitation, the frequencies of the center-of-mass excitations depend on the rotation, (ω + �) for Q†

−,
and (ω − �) for Q†

+, corresponding to two complete cyclotron cycles in the middle row and one guiding-center cycle in the bottom row. White
frames indicate the oscillation period.

energy 2ω of exactly twice the trap frequency, independent of
interactions, while the center-of-mass excitations follow from
Galilean invariance and have excitation energies ω + � and
ω − �, respectively. The latter two excitations correspond to
a cyclotron motion of the center of mass and a drift of the
center-of-mass guiding center, respectively. This change in the
center-of-mass excitations is a further difference compared
to nonrotating systems [25]. Microscopically, the conformal
tower structure follows because the Hamiltonian of a rotating
trapped gas is part of a symmetry algebra (specifically, the
trap potential is at the same time the generator of special
conformal transformations [32–34]). From the symmetry
algebra, excitation operators can be created, which we denote
by R†, Q†

+, and Q†
− throughout the paper.

To illustrate the nature and naming of these excitations, we
show in Fig. 1 density plots in the stationary two-dimensional
plane of an equal superposition |�0(t )〉 + |�e(t )〉 of a ground
state wave function |�0〉 and the first excited breathing and
center-of-mass states |�e〉 = R†|�0〉, Q†

−|�0〉, or Q†
+|�0〉, re-

spectively (top to bottom). These wave functions are obtained
using the calculations in this paper for N = 2 weakly interact-
ing particles in a harmonic trap that rotates at a third of the
trap frequency, �/ω = 1/3. The density of a superposition
of eigenstates with different energies evolves in time, and
horizontal panels show the density plot at time increments
�t = π/(4ω) up to one-and-a-half trap periods T = 2π/ω.
The top panel shows a breathing mode excitation, and in-
deed the gas is seen to radially expand and contract. As is
apparent from the figure, the mode is undamped and com-
pletes three cycles in the time period, corresponding to an
oscillation frequency of 2ω. (We mark the oscillation period
by white frames in Fig. 1 to guide the eye.) The middle
panel shows an undamped center-of-mass oscillation—i.e.,
the atomic cloud moves without any internal deformation—
which is seen to complete two full periods in clockwise
direction at an increased frequency ω + � = 4ω/3; this is the
analog of classical cyclotron motion. The bottom panel shows
a second undamped center-of-mass excitation, which rotates

in the counterclockwise direction with reduced frequency
ω − � = 2ω/3, completing one full rotation, and which is the
analog of classical guiding-center motion.

In combination, starting from any primary state |P〉 with
energy Eg and angular momentum Mg, an infinite set of
breathing and center-of-mass excitations is obtained. We illus-
trate this conformal tower structure in Fig. 2 (here explicitly
for a rotation frequency �/ω = 1/5), where the horizon-
tal axis shows the angular momentum and the vertical axis
the excitation energy. Vertical orange arrows denote breath-
ing mode excitations, which do not change the angular
momentum; green arrows cyclotron center-of-mass excita-
tions, which reduce the total angular momentum; and blue
arrows guiding-center center-of-mass excitations, which in-
crease the total angular momentum. Every state thus has an

FIG. 2. The conformal tower with the first nonprimary states
derived from a primary state |P〉 with energy Eg and total angular
momentum Mg, shown here for a rotation frequency �/ω = 1/5.
Blue arrows are center-of-mass excitations created by Q†

+ that in-
crease the energy by h̄(ω − �) and the angular momentum by +1,
i.e., that stir in the direction of rotation (see Fig. 1). Green arrows are
center-of-mass excitations created with Q†

− that increase the energy
by h̄(ω + �) and decrease the angular momentum by −1. Orange
arrows are internal breathing modes created by R† that increase the
energy by 2h̄ω while preserving the angular momentum.
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associated primary state, which forms the bottom of a con-
formal tower, and is specified by the number |a, b, c〉 of
breathing and center-of-mass excitations (note that since the
excitations are independent, the order in which they are ex-
cited is not important). The conjecture is then that for the
full excitation spectrum of the weakly interacting rotating
gas, we can identify the primary states and all derived ex-
citations in the conformal tower. Indeed, in this paper we
confirm the conformal tower structure in the energy spec-
trum for few-particle ensembles. In addition, we compute and
confirm the hyperradial distribution of the many-body wave
function using Metropolis importance sampling. We consider
few-fermion ensembles of two-component Fermi gases, and
our predictions should be observable in experiments on inter-
acting few-body 2D Fermi systems with recently developed
single-particle imaging techniques [35–38].

This paper is structured as follows: Section II discusses the
level structure of two-component Fermi gases in a rotating
harmonic trap and introduces degenerate perturbation theory.
Section III then discusses the spectrum-generating conformal
symmetry algebra that gives rise to the conformal tower struc-
ture shown in Fig. 2. These predictions for the level structure
are then explicitly verified in our numerical calculations pre-
sented in Sec. IV. Additional predictions for the hyperradial
part of the many-body wave function are confirmed using
Monte Carlo sampling of our eigenstates and presented in
Sec. V. The paper contains two Appendixes with a derivation
of the center-of-mass and the hyperradial wave functions start-
ing from the operator algebra as well as details of the Monte
Carlo sampling.

II. PROPERTIES OF ROTATING 2D FERMI GASES

The aim of our work is to reveal the conformal symmetry
in the excitation spectrum and many-body wave function for
few-fermion ensembles in a rotating harmonic trap with weak
contact interactions. This section sets the groundwork for
these calculations and discusses the basics of the level struc-
ture of rotating Fermi gases, both for free fermions and for
contact interactions, and introduces degenerate perturbation
theory for weak interactions.

Throughout the paper, we consider two-component
fermions with spin projection σ =↑,↓ and mass m∗ (we
include an asterisk to avoid possible confusion with an an-
gular momentum quantum number) that are confined in a
two-dimensional harmonic trap with oscillator frequency ω

and rotation frequency �. We consider fixed-particle number
states with N = N↑ + N↓ atoms that contain an equal num-
ber of both spin types. We use dimensionless units where
both the oscillator energy h̄ω = 1 and the oscillator length
�ho = √

h̄/m∗ω = 1 are set to unity (in particular, the rotation
frequency is measured in units of ω). We restore full units in
the plots for clarity.

A. Noninteracting rotating Fermi gas

The noninteracting dimensionless Hamiltonian in a har-
monic rotating trap in the stationary frame is

H (0)(�) =
∑

jσ

(
−1

2
∇2

jσ + r2
jσ

2
+ � i

∂

∂ϕ jσ

)
, (2)

FIG. 3. (a)–(d) Single-particle spectrum of particles in a rotating
trap ordered by angular momentum for four different rotation fre-
quencies �/ω = 0, 1/3, 2/3, and 1. States with quantum number
nj = 0, 1, 2 are highlighted in blue, red, and green, respectively.
In (d), the single-particle energy states form Landau levels. (e)
Evolution of the single-particle spectrum as a function of rotation
frequency �.

where r jσ and ϕ jσ label the position of particle j in polar
coordinates. The first term is the kinetic energy, the second
term describes the harmonic trap potential, and the last term is
the out-of-plane-component of the angular momentum opera-
tor. The Hamiltonian may be rewritten with a vector potential
A = m∗ez × �r, which describes a unit charged particle in a
constant perpendicular magnetic field of strength B = 2m∗�,
indicating the mathematical equivalence of the Coriolis force
and the magnetic Lorentz force on a charged particle [6]. In
addition, after separating the vector potential, the particles
experience a reduced trapping potential 1 − �2, such that
� � 1 must hold to ensure that the spectrum is bounded, or
physically, that the centrifugal force does not overcome the
trapping force.

Single-particle eigenstates of the Hamiltonian (2) are de-
scribed by two quantum numbers j = {nj, k j} with n j, k j � 0
and a harmonic oscillator wave function [6]

φ j (z, z̄) =
√

min(n j, k j )!

π max(n j, k j )!
zk j−n j e− z̄z

2 L
|k j−n j |
min(n j ,k j )

(z̄z), (3)

where L
|k j−n j |
min(n j ,k j )

is an associated Laguerre polynomial and we

use complex coordinates z = reiϕ . These states are eigenstates
of the angular momentum operator with eigenvalue mj = k j −
n j � −n j . The corresponding eigenenergies are

ε j = 1 + (1 + �)n j + (1 − �)k j . (4)

Without rotation (� = 0), this is the spectrum of the two-
dimensional harmonic oscillator, where energy levels with
energy � + 1 are � + 1-fold degenerate with degenerate states
distinguished by their angular momentum projection mj =
−�,−� + 2, . . . , � (corresponding to nj = 0, 1, . . . , �). This
is illustrated in Fig. 3(a), where states with n j = 0, 1, 2 are
marked in blue, red, and green, respectively. In a rotating trap
[cf. Figs. 3(b) and 3(c) for two rotation frequencies � = 1/3
and 2/3], the single-particle levels shift by an amount set
by their angular momentum: For angular momenta along the
direction of rotation (positive mj), the energy decreases by
mj�; for negative angular momenta, the energy increases by
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the same amount. As is apparent from the figures, new level
degeneracies arise with changing rotation frequency. Finally,
in the limit � → 1− where the fermions are no longer trapped
[Fig. 3(d)], states with fixed n j form degenerate Landau levels
that are separated by 2�. The full evolution of the single-
particle spectrum (without resolving the angular momentum)
is illustrated in Fig. 3(e), where new degeneracies are visible
at rational fractions � = p/q with p, q ∈ N.

A noninteracting few-particle eigenstate |〉 is described
by a set of occupied single-particle levels {λ1, λ2, . . .}, where
each level accommodates at most one particle of each spin
type [39]. In a position-space projection, these states are rep-
resented as a Slater determinant of the single-particle wave
functions in Eq. (3) as [40–43]

〈r1↑, . . . , r1↓, . . . , |〉 = ↑(r1↑, . . .) · ↓(r1↓, . . .) (5)

with

σ (r1σ , . . . , rNσ σ )

= 1√
Nσ !

∣∣∣∣∣∣∣
φλ1 (r1σ ) · · · φλNσ

(r1σ )
...

. . .
...

φλ1 (rNσ σ ) · · · φλNσ
(rNσ σ )

∣∣∣∣∣∣∣. (6)

Such basis states are odd under any exchange of the N↑ po-
sitions {r1↑, . . .} or the N↓ positions {r1↓, . . .}, reflecting the
Pauli principle. Energy eigenstates in a rotating isotropic trap
are also simultaneous total angular momentum eigenstates
with

M =
N↑∑
j=1

mλ j +
N↓∑
j=1

mλ j , (7)

which is the sum of the angular momentum projections of
occupied single-particle states.

The ground state configuration at a given rotation fre-
quency is obtained by successively populating the lowest
single-particle levels with both spins. States obtained in this
way are degenerate unless all states at the valence level (the
occupied level with highest single-particle energy) are fully
occupied. Without rotation, such nondegenerate ground states
exist for the “magic” numbers N = 2, 6, 12, 20, 30, 42, . . .

with completely filled shells [cf. Fig. 4(a) for the case N = 12]
[44]. As � increases and the single-particle spectrum changes,
new degeneracies emerge and the ground state will change
in favor of a state with higher total angular momentum. To
illustrate this, we show in Figs. 4(b)–4(d) the ground state
occupancy at the threshold frequencies � = 1/5, 1/2, and
2/3, where the state is degenerate with states with smaller
total angular momentum.

Excited states with a given fermion number transfer single
fermions or pairs from occupied levels to higher single-
particle states. Note that, in general, excited states are highly
degenerate even if the ground state is not. To illustrate the
degeneracy structure, we show in Fig. 5 the occupancy of the
lowest excitation of an N = 4 state with rotation frequency
� = 1/3. The four excited states have degenerate excitation
energy 2/3. While the number of degenerate states is small
in this example, it generally grows very quickly with both
particle number and excitation energy. For example, excited
states with excitation energy 2 for N = 12 particles with

FIG. 4. (a) Ground state of N = 12 particles in a nonrotating
trap. (b)–(d) Threshold rotation frequencies at which the ground state
rearranges to a state with larger total angular momentum. The color
coding is the same as in Fig. 3.

� = 0 are 226-fold degenerate, and for N = 20 particles with
� = 1/3 they are 2060-fold degenerate. In our work, we
identify ground and excited state configurations by numerical
counting. We emphasize that the complexity of the subspace
of degenerate excited states is still vastly smaller than the size
of the full Hilbert space for N particles.

B. Contact interactions

The ground and excited state degeneracy is lifted when
interactions are taken into account. For fermionic quantum
gases, these are dominantly short-range s-wave interactions
between different spin species that are described in a universal
way by a delta function potential

H (I) = g
∑

i j

δ(2)(ri↑ − r j↓), (8)

with a dimensionless interaction strength g. Since the
delta function is a homogeneous function under coordinate

FIG. 5. Fourfold degenerate excited states for the lowest exci-
tation of the N = 4 particle ground state with rotation frequency
�/ω = 1/3, which has excitation energy 2h̄ω/3. The color coding
is the same as in Fig. 3.
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rescaling δ(2)(λr) = λ−2δ(2)(r), a rescaling of every particle
coordinate r → λr by a constant λ changes the interacting
Hamiltonian in the absence of a trapping potential as H →
H/λ2; i.e., the kinetic and the interaction energies transform
in the same way and the Hamiltonian is classically scale
invariant. However, a delta function interaction in 2D requires
renormalization such that the coupling g picks up an addi-
tional regulator scale that breaks the scale invariance of the
interaction [6], which is known as a quantum scale anomaly
[8,19]. Yet, as argued in [25], we expect that renormalization
effects are negligible for weak interactions. The coupling is
then indeed scale invariant and given by g = √

8πa3D/lz, with
a3D the 3D scattering length and �z the oscillator length of
a transverse harmonic potential [6,45,46]. Hence, to linear
order in the interaction strength g, the scale invariance of the
theory is exact; experimental signatures of the quantum scale
anomaly enter only at quadratic order [19,20,22–24].

We therefore use first-order degenerate perturbation theory
in g and restrict our attention to few-particle ensembles to stay
in a quasi-2D regime where particles only occupy the lowest
state of a transverse harmonic potential. Within first-order
degenerate perturbation theory, we collect all states {|�n〉}
with equal noninteracting energy E (0)

N and diagonalize the
Hamiltonian matrix [47,48]

Hmn = 〈�m|H (�)|�n〉 (9)

to obtain the energy eigenvalues EN = E (0)
N + E (1)

N . Here,
E (1)

N ∼ O(g) and scale invariance follows directly from the
homogeneity of the delta potential in the matrix element in
Eq. (9). Formally, leading-order degenerate perturbation the-
ory will apply for interaction strengths g � 1, which do not
connect many-body states with equal total angular momen-
tum at different noninteracting energies (i.e., the splitting of
degenerate states is small compared to the harmonic oscillator
spacing). Note that for a fixed particle number N , this includes
the limit of rapid rotations � → 1−. Here, degenerate pertur-
bation theory is equivalent to an exact diagonalization in the
lowest Landau level [7,49].

By definition of a degenerate subspace, the noninteracting
contribution to Hmn is a diagonal matrix with equal entries
E (0)

N , which means that the eigenvectors themselves (unlike
the eigenenergies) do not depend on the interaction strength g.
Hence, although the eigenvectors we obtain are independent
of g, they are still a nontrivial superposition of basis states
(5) governed by the nonrelativistic conformal symmetry. In-
cluding O(g) corrections to the eigenvectors corresponds to
the next-to-leading order in perturbation theory and involves
a divergent summation over all excited states [47,48], where
contributions to eigenenergies are of order O(g2). Here, in
principle, we anticipate the quantum anomaly to become
apparent and the conformal window to close. However, cor-
rections to scale invariance at higher orders can be small [50],
and we expect the conformal window to extend beyond the
range of validity of leading-order perturbation theory. Note
that another quantum anomaly arises in the rapid rotation limit
due to the noncommutative nature of guiding-center coordi-
nates breaking scale invariance [7].

To evaluate the matrix elements (9), it is convenient to
work in an occupation number representation, in which the

Hamiltonian (1) takes the form

H (�) =
∑
j,σ

ε jc
†
jσ c jσ + g

∑
i jkl

wi jkl c
†
i↑c†

j↓ck↓cl↑. (10)

Here, c†
jσ creates a fermion with spin projection σ =↑,↓ in

a single-particle state j = {n j, k j} with energy ε j given in
Eq. (4). The interaction matrix element in Eq. (10) is set by
the overlap integral

wi jkl =
∫

d2r φ∗
i φ∗

j φkφl , (11)

where φi is the single-particle wave function in Eq. (3). The
overlap integral conserves angular momentum (since wi jkl ∼∫ 2π

0 dϕeiϕ(−mi−mj+mk+ml )), making the choice of single-
particle eigenstates (3) convenient.

Note that a comprehensive discussion of the ground state
properties in a rotating Fermi gas was given by Mashkevich
et al. [51,52] in the case of rapid rotations with � < 1, i.e.,
involving occupied Landau level states with n j = 0. Here,
the analyticity of the many-body wave function allows for an
exact calculation of the ground state energy even for a general
pairwise interaction potential, not just a contact interaction.
While excited states within the lowest Landau level can be
evaluated in principle using the same method [52], such exci-
tations do not include the breathing mode excitations, which
connect different Landau levels, as will be discussed in the
next section.

III. PRIMARY STATES AND CONFORMAL TOWERS

In this section, we derive in detail the decomposition of
the excitation spectrum into conformal towers composed of
primary states and their center-of-mass as well as internal
breathing mode excitations, which is illustrated in Fig. 2. The
starting point is a spectrum-generating operator implied by the
nonrelativistic conformal symmetry [25,27–31]

L† = iD + H − 2C, (12)

where H is the interacting Hamiltonian without rotation, cf.
Eq. (1), C is the generator of special conformal transfor-
mations (t, r) → (t, r)/(1 + λt ), and D is the generator of
scale transformations (t, r) → (t/λ2, r/λ). The commutators
[H (�), L†] = 2L† and [Lz, L†] = 0 imply that when acting on
an energy eigenstate, L† creates an excitation at exactly twice
the trapping frequency without any change in the angular
momentum. This is also evident in an occupation number
representation, where (to leading order in perturbation theory)
L† is a single-particle operator

L† =
∑
i, j

[2
√

nikiδ(ni,ki ),(n j+1,k j+1)]
∑

σ

c†
iσ c jσ (13)

that creates excitations from a state {nj, k j} to {n j + 1, k j +
1}. Since all operators in Eq. (12) commute with the angular
momentum operator, these results continue to hold in a ro-
tating trap. As discussed in the introduction, the excitation
is interpreted as an undamped breathing mode excitation.
However, it is important to note that the operator L† mixes
internal motion and center-of-mass motion, as we discuss in
the following.
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A. Center-of-mass excitations

In order to demonstrate and disentangle the mixing of
internal and center-of-mass excitations, we introduce two ad-
ditional independent spectrum-generating operators

Q†
+ = i√

4N

(
NZ − 2

∂

∂Z̄

)
, (14)

Q†
− = i√

4N

(
NZ̄ − 2

∂

∂Z

)
, (15)

which depend on the center-of-mass coordinate Z =
(1/N )

∑
iσ ziσ . The center-of-mass excitations generated by

Q†
± are illustrated in Fig. 1. These operators have a simple

interpretation: They create cyclotron and guiding-center ex-
citations, respectively, for a particle with mass Nm∗ in an
effective magnetic field B = 2Nm∗� [53]. They obey the
commutation relations [Q±, Q†

±] = 1, [H (�), Q†
±] = (1 ∓

�)Q†
±, and [Lz, Q†

±] = ±Q†
±, which implies that Q†

+ creates
an excitation with energy 1 − � and increases the angular
momentum by one unit, and Q†

− has excitation energy 1 + �

and decreases the angular momentum, where the change in
angular momentum is indicated by the subscript. These results
are completely independent of interactions, which only affect
internal degrees of freedom. In the limit of fast rotations
� → 1−, the operator Q†

− generates the cyclotron resonance
between different Landau levels with fixed excitation energy
2� [54], while the operator Q†

+ generates gapless excitations
that decrease the filling fraction. Note that in the lowest Lan-
dau level limit of rapid rotations, the guiding-center excitation
by Q†

+ corresponds to a quasihole excitation [55].
The nature of the center-of-mass excitations also becomes

clear in an occupation number representation: The (single-
particle) operator Q†

− creates excitations from an occupied
state {n j, k j} to a state with a higher Landau-level index
{n j + 1, k j},

Q†
− = 1√

2N

∑
i, j

[(−1)p− i
√

2niδ(ni,ki ),(n j+1,k j )]
∑

σ

c†
iσ c jσ ,

(16)

where p− = 0 if ni > ki and p− = 1 if ni � ki, whereas Q†
+

excites to levels {n j, k j + 1} without changing the Landau
level

Q†
+ = 1√

2N

∑
i, j

[(−1)p+ i
√

2kiδ(ni,ki ),(n j ,k j+1)]
∑

σ

c†
iσ c jσ ,

(17)

where p+ = 0 if ki > ni and p+ = 1 if ki � ni.
Returning to the breathing mode excitations, the operators

Q†
± and L† are linearly independent but they do not com-

mute, as can be seen from [L†, Q±] = −2Q†
∓ and [L, Q†

±] =
2Q∓. Hence, states generated by L† and Q†

+Q†
− are not or-

thogonal, which is precisely the statement that a breathing
mode generated by L† also contain center-of-mass excita-
tions. We illustrate this statement in Fig. 6 in the occupation
number representation for the simple case of the N = 2
ground state |gs〉: The operator L†, Eq. (13), creates an
equal superposition of two spin states excited from {nj, k j}

FIG. 6. Occupation number representation of the excited states
generated by acting with L† [(a) and (b)] and Q†

+Q†
− [(a)–(d)] on

the ground state of N = 2 particles without rotation (� = 0). Black
(gray) spins indicate occupied excited (ground) single-particle states.
We denote the action of L† [Eq. (13)] by a yellow arrow, of Q†

−
[Eq. (16)] by a green arrow, and of Q†

+ [Eq. (17)] by a blue arrow.

to {n j + 1, k j + 1}, L†|gs〉 = 2(|ψ1〉 + |ψ2〉), where the occu-
pation of the states |ψ1〉 and |ψ2〉 is illustrated in Figs. 6(a)
and 6(b). The center-of-mass excitation generated by the
combination Q†

+Q†
− creates the same superposition with addi-

tional two-particle excitations, Q†
+Q†

−|gs〉 = 1
2 (|ψ1〉 + |ψ2〉 −

|ψ3〉 − |ψ4〉) [Figs. 6(c) and 6(d)], which obviously are not
orthogonal.

B. Internal breathing mode excitations

We separate the center-of-mass motion from the bare
breathing mode excitation by introducing a spectrum-
generating operator of internal breathing modes

R† = L† − (Q†
+Q†

− + Q†
−Q†

+), (18)

which commutes with the center-of-mass operators Q†
±. This

form of the operator is the same as for a nonrotating trap
[25,30,31,56]. Furthermore, it obeys the same commutation
relations as L†, [H (�), R†] = 2R† and [Lz, R†] = 0, such that
R† creates an excitation with energy 2 without changing the
angular momentum. The effect of the operator R† is to gen-
erate the internal breathing mode as illustrated in Fig. 1 in
the introduction. It can be shown that R† acts on the internal
hyperradius

R̃ =
√∑

iσ

|ziσ − Z|2, (19)

which gives the coordinate representation of the internal
breathing mode operator

R† = (N − 1) + R̃
∂

∂R̃
+ s + 1 + 2a − R̃2, (20)

where s + 1 + 2a parametrizes the internal energy of an
eigenstate in a nonrotating trap, and a, s are defined in the
following section in Eqs. (23) and (26), respectively.

In an occupation number representation, states excited by
R̃† now contain additional two-particle excitations such that
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they are orthogonal to the center-of-mass excitation Q†
+Q†

−.
In the example in Fig. 6, we have R†|gs〉 = |ψ1〉 + |ψ2〉 +
|ψ3〉 + |ψ4〉, which contains the breathing mode excitation
L†|gs〉 but is now orthogonal to Q†

+Q†
−|gs〉. Note that since

Q†
± is of order O(N−1/2), the contribution of Q†

+Q†
− scales as

∼1/N , and one could naively expect single-particle breath-
ing mode excitations {n j, k j} to {n j + 1, k j + 1} to dominate
for increasing N . However, there is also an enhancement of
order O(N ) of states accessible by two-particle excitations
compared to the breathing mode excitations, such that the rel-
ative importance of single- and two-particle excitations should
thus remain unchanged as N increases. Interestingly, however,
the Pauli principle excludes most two-particle excitations for
low-lying energy eigenstates such that R† is predominantly
a single-particle operator for increasing N : In a nonrotating
trap, for example, the N = 2 state R†|gs〉 shown in Fig. 6
contains 50% overlap with the breathing mode excitation,
which increases to 90% for N = 6, to 96% for N = 12, and
to 98% for N = 20. For even higher energy eigenstates and
higher breathing mode excitations, two-particle excitations
gain importance again.

C. Conformal tower structure

We now discuss the full conformal tower structure shown
in Fig. 2. Define a primary state |P〉 that is annihilated by all
spectrum-generating operators R and Q±,

R|P〉 = Q+|P〉 = Q−|P〉 = 0. (21)

Note that the ground state for any N and � is a primary state,
but a primary state is not necessarily the ground state: Indeed,
there is an infinite number of such states.

A primary state forms the ground step of a conformal tower
of orthogonal excited states (the “nonprimary” states) that are
created by successively acting on |P〉 with R† and Q†

±. We
denote these states by

|a, b, c〉P = (R†)a(Q†
+)b(Q†

−)c|P〉. (22)

This is the structure illustrated in Fig. 2, where the energy and
angular momentum of a primary state are denoted by Eg and
Mg, respectively. Excited states in the figure have energy

Ea,b,c = Eg + 2a + (1 − �)b + (1 + �)c (23)

and angular momentum

Ma,b,c = Mg + b − c, (24)

while the total spin SN , which defines the eigenvalue SN (SN +
1) of the operator

S2 =
∑
σ,σ ′

∑
i, j

Siσ · S jσ ′ , (25)

where Siσ = 1
2σ is the vector of Pauli matrices, is conserved.

The coefficient s that enters the coordinate representation of
the internal breathing mode operator in Eq. (20) is defined as

Eg = 2 + s − �Mg, (26)

and thus sets the ground step energy in a nonrotating trap
(� = 0). The set of all conformal towers, one for every pri-
mary state, forms a complete basis of the Hilbert space.

D. Casimir operator

It is further instructive to discuss the separation of internal
and center-of-mass motion on a Hamiltonian level: Introduc-
ing internal particle coordinates relative to the center of mass
z̃ j = z j − Z , the Hamiltonian splits into an internal part and a
center-of-mass part,

H (�) = H com(�) + H int(�), (27)

which always holds for a Galilean invariant interaction. The
center-of-mass part describes a fictitious particle of mass Nm∗
in a rotating harmonic trap and is expressed solely in terms of
the operators Q±:

H com(�) = 1 + (1 − �)Q†
+Q+ + (1 + �)Q†

−Q−,

Lcom
z = Q†

+Q+ − Q†
−Q−. (28)

The decomposition into independent guiding-center and cy-
clotron excitations of the center of mass is directly visible
in this representation. For a given excited nonprimary state,
the center-of-mass contributions to the energy and angular
momentum are

E com
a,b,c = 1 + (1 − �)b + (1 + �)c,

Mcom
a,b,c = b − c. (29)

Note that a primary state and its internal breathing mode
excitations are completely determined by the relative particle
dynamics with internal energy and angular momentum

E int
a,b,c = Eg − 1 + 2a,

M int
a,b,c = Mg. (30)

In order to disentangle different primary states and their
conformal towers, we introduce the SO(2,1) Lie algebra
[T1, T2] = −iT3, [T2, T3] = iT1, and [T3, T1] = iT2 with the
generators [25]

T1 = 1
4 (R† + R),

T2 = 1
4i (R

† − R),

T3 = 1
2 (H − H com) = 1

2 H int, (31)

where H int and H com are the internal and center-of-mass parts
of the Hamiltonian, respectively, without rotation. This is the
algebra of the Lorentz group in 2+1 dimensions, with T1 and
T2 generating boosts in two directions, and T3 rotations in the
plane [45]. The Casimir operator of the algebra,

T = 4
(
T 2

3 − T 2
1 − T 2

2

) = (H int )2 − 1
2 (RR† + R†R), (32)

then commutes with the generators in Eq. (31) and is constant
within each conformal tower. Its expectation value is

〈T 〉 = 〈a, b, c|T |a, b, c〉P = (s + 1)(s − 1), (33)

with s defined in Eq. (26). The value of the Casimir within a
conformal tower is thus independent of the rotation frequency.

Following [30,31], we define a ground step operator Hg(�)
by inverting Eq. (32) using E int

a,b,c = Eg − 1 for primary states
(suppressing the dependence on a, b, c), and [R, R†] = 4H int,
such that

Hg(�) = 1 + √
1 + T − �Lint

z , (34)
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where Lint
z is the internal angular momentum and both Hg(�)

and Lint
z are constant within a conformal tower. Evaluating the

ground step operator for a state yields the internal energy of
the primary state of a conformal tower:

Hg(�)|a, b, c〉P = (Eg − 1)|a, b, c〉P

= (1 + s − �Mg)|a, b, c〉P, (35)

where s = √
1 + 〈T 〉. One can then define the rescaled inter-

nal breathing mode operator

r† = 1√
2

R†
[
H int + Hg(�) + �Lint

z

]−1/2
, (36)

where now [r, r†] = 1 [39]. Thus, the total Hamiltonian and
the angular momentum Lz = Lcom

z + Lint
z are expressed com-

pactly as

H (�) = H com(�) + Hg(�) + 2r†r,

Lz = Q†
+Q+ − Q†

−Q− + Lint
z . (37)

In summary, we have established the conformal tower struc-
ture in a rotating trap. Compared to a nonrotating trap, the
effect of rotations is twofold: First, it rearranges primary
states through the ground step operator Hg(�), and second,
it changes the excitation energy of center-of-mass excitations,
yet undamped breathing modes at exactly 2ω remain.

IV. CONFORMAL STRUCTURE
IN FEW-FERMION ENSEMBLES

In this section, we explicitly confirm the conformal tower
structure outlined in the previous section by exact diagonal-
ization of the energy spectrum within degenerate first-order
perturbation theory. To this end, we construct for a given
particle number N the ground and excited state manifolds
with equal noninteracting energy E (0)

N and diagonalize the
Hamiltonian H (�) [Eq. (10)] as discussed in Sec. II. In the di-
agonalization, we include the total spin operator S2 [Eq. (25)],
the angular momentum operator Lz, and the Casimir operator
T [Eq. (32)],

W = γ1H (�) + γ2Lz + γ3S2 + γ4T (38)

with incommensurate coefficients {γi}. Diagonalizing the ma-
trix W then gives simultaneous eigenstates of all (commuting)
operators, and we determine the eigenvalues of the individual
operators in Eq. (38) by computing their expectation values
with the obtained eigenstates. Primary states and their excited
nonprimary states are identified by the first integers (a, b, c)
for which an eigenstate is in the kernel of the operators
Ra+1, Qb+1

+ , and Qc+1
− , which connect different degenerate

subspaces.
Note that care must be taken when applying this procedure

to determine the indices (a, b, c) of the nonprimary states,
since states R†|P〉 and Q†

+Q†
−|P〉 within the same conformal

tower share eigenvalues of all operators (cf. Fig. 2) (the same
applies to higher breathing mode excitations). Hence, any
linear combination αR†|P〉 + βQ†

+Q†
−|P〉 is a valid eigenstate

of (38), independent of the coefficients {γi}, and the kernel
condition can overcount the indices (a, b, c) for the small sub-
set of such states. To disentangle different nonprimary states,

we thus successively apply the diagonalization procedure to
degenerate manifolds with increasing excitation energy and
store the primary states. Nonprimary states at higher excita-
tion energy are then constructed in a different way by acting
on a lower-level primary state with the operators R†, Q†

+, and
Q†

−. In all cases, we were able to confirm that these states
are identical to the nonprimary states obtained by explicit
diagonalization of (38), which provides a check and confir-
mation of our analysis and shows for the degenerate subspace
with overcounted kernel states that they span the same vector
subspace.

In Figs. 7 and 8, we show the results for the excitation
spectrum obtained from degenerate perturbation theory for
particle numbers N = 6 (Fig. 7) and 20 (Fig. 8) at four rota-
tion frequencies �/ω = 0, 1/4, 1/3, and 1/2 [panels (a)–(d)]
grouped by angular momentum eigenvalue M = 〈Lz〉. As dis-
cussed, without interactions most states are highly degenerate
but interactions lift this degeneracy and split the spectrum.
We visualize the split spectrum using an attractive interaction
strength g = −1 such that states are still clustered around their
noninteracting excitation energies. In the figures, blue points
represent primary states and red points nonprimary states, and
we do not indicate different conformal towers for clarity. In
addition, we shift primary states to the left and nonprimary
states to the right of their angular momentum eigenvalue, and
we separate degenerate states horizontally. Note that while the
distribution of nonprimary states is dictated by the nonrela-
tivistic conformal symmetry (and confirmed in our numerics),
the primary states and their energies are specific to the theory
and determined from our numerical results. The figures show
the excitation spectrum with respect to the ground state, which
changes as the rotation frequency is increased (cf. the dis-
cussion in Sec. II A): For both particle numbers N = 6 and
N = 20, the ground state changes from a zero angular mo-
mentum state M = 0 to a state with finite angular momentum
as the rotation frequency is increased further. For N = 6, the
finite-angular momentum ground state configuration is of the
type shown in Fig. 4(d), where all spins occupy the lowest
angular momentum single-particle states with nj = 0. As a
consequence, it will remain the ground state at faster rotations.
For N = 20, the change to an M = 14 ground state [Fig. 8(b)]
corresponds to moving a pair of opposite spins from a single-
particle state with nj = 3 to the lowest unoccupied angular
momentum single-particle state with nj = 0, and to M = 26
[Fig. 8(d)] by moving a pair from nj = 2. As the rotation
frequency is increased further, subsequent ground states have
angular momentum M = 42, 54, 70, and 90.

Comparing different panels in Figs. 7 and 8, the same
subclusters are seen in the energy spectrum at different ro-
tation frequencies. Consider, for example, the cluster of states
at M = ±1 around excitation energy 1 in Fig. 8(a) (circled
states): As the rotation frequency increases, (b) and (c), these
clusters shift in energy but their relative energy is unchanged.
The same feature is seen for all other clusters at a given
M that are split by the interactions: Since the interaction
matrix elements (9) conserve total angular momentum, the
corrections E (1)

N are independent of rotation frequency and the
only change with rotation is an overall shift in the position of
the clusters by −(M − M0)�, where M0 is the total angular
momentum of the reference ground state in the figure (which,
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FIG. 7. Excitation energies for N = 6 particles in a rotating harmonic trap at rotation frequencies �/ω = 0, 1/4, 1/3, and 1/2, ordered
by angular momentum for an attractive interaction g = −1. Primary (nonprimary) states are represented by blue (red) points (cf. Fig. 2) and
the color coding is consistent in all plots. Overlapping points are moved horizontally for clarity. In (a)–(c), we indicate by arrows the first few
states of the lowest conformal tower originating from the ground-state primary state at M = 0 (compare with Fig. 2). Each primary blue state
sets the ground step for another conformal tower. Orange-colored region: Lowest 115 energy eigenstates for N = 6 at �/ω = 1/2 used in
Sec. V.

as discussed above, changes with �). Note that, as discussed
in Sec. II B, this implies that our calculations are also valid
in the limit of fast rotations � → 1−, where N-particle states
and their excitations are restricted to the lowest Landau level.
Since in this limit the noninteracting energy of a state is pro-
portional to its total angular momentum, E (0)

N = (1 − �)M,
degenerate perturbation theory is equivalent to an exact diag-
onalization in a disk geometry restricted to the lowest Landau
level [7]. In this context, a recent work by Palm et al. [49]
identifies spinful quantum Hall states in the level spectrum
of rapidly rotating few-fermion ensembles in the lowest Lan-
dau level. By the arguments above, such few-body fractional
quantum Hall states at rapid rotations are already present
at finite rotation frequency: For example, the N = 6-particle
primary ground state with M = 6 shown in Fig. 7(d) can be
identified with a (1,1,0)-Halperin state [49,57,58]. Likewise,
ferromagnetic and skyrmion ground states for rapid rotations

with repulsive interactions [49] appear in Figs. 7 and 8 as
excited states with higher angular momentum. A detailed
description of these lowest Landau level states is an exiting
prospect for future work.

In all our calculations, we verify the energy spectrum as
predicted by the nonrelativistic conformal and Galilean sym-
metry. For illustration, we indicate by arrows the first few
states of the lowest conformal tower in Figs. 7(a)–7(c), where
the corresponding primary state is the N = 6-particle ground
state, which has M = 0. The conformal tower structure
sketched in Fig. 2 and proven in Sec. III is clearly apparent,
with fixed angular-momentum conserving breathing-mode ex-
citations that do not depend on the rotation frequency (vertical
arrows in every panel), and center-of-mass excitations that
change the angular momentum and that depend on the rotation
frequency (diagonal right and left arrows). The analogous
conformal tower emanating from the ground primary state is
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FIG. 8. Excitation energies for N = 20 particles in a rotating harmonic trap at rotation frequencies �/ω = 0, 1/4, 1/3, and 1/2, ordered
by angular momentum for an attractive interaction g = −1. The color coding is the same as in Fig. 7: Primary states (nonprimary states) are
represented by blue (red) points and overlapping points are moved horizontally for clarity. In (c), we indicate by arrows the first few states of
the conformal tower originating from an excited primary state at M = 12 (compare with Fig. 2). The circled states in panels (a)–(c) show the
evolution of a cluster of states under rotations.

also visible in Fig. 8. Of course, the ground state is not the
only primary state, and a plethora of additional primary states
emerges in the excitation spectra. For example, in Fig. 7(d) we
find 943 primary states out of 3023 total states up to this exci-
tation energy, and in Fig. 8(d) there are 10 445 primary states
out of 17 464 total states shown. For illustration, we indicate
the first states in the conformal tower of an excited primary
state at M = 12 (lowest state in the cluster of primary states)
in Fig. 8(c). As discussed, the primary states are unique to the
conformal theory and are thus specific to the trapped Fermi
gas. The primary eigenvectors themselves are independent of
the rotation frequency, but their energy shifts by an amount set
by their angular momentum.

V. INTERNAL HYPERRADIAL WAVE FUNCTION

On a microscopic level, the nonrelativistic conformal sym-
metry has its origin in a factorization of the many-body wave

function [30,31]:

�(r1↑, . . . , r1↓, . . .) = �com(Z )
F (R̃)

R̃N−2
φ(n). (39)

Here, �com(Z ) is the center-of-mass part (which factorizes
for any Galilean-invariant interaction), F (R̃) is the internal
hyperradial part with hyperradius R̃ in Eq. (19), and φ(n) is a
hyperangular part that depends on the remaining internal co-
ordinates n = (z1↑ − Z, . . . , z1↓ − Z, . . .)/R̃. We now confirm
the hyperradial distribution using the eigenstates determined
in the previous section.

The hyperradial distribution F (R̃) is predicted by the con-
formal symmetry and determined for a state |a, b, c〉P by the
condition (R)a+1|a, b, c〉P = 0, yielding [25]

F (R̃) =
√

2a!

�(s + a + 1)
R̃se−R̃2/2Ls

a(R̃2), (40)
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FIG. 9. Distribution of the internal hyperradius R̃, defined in Eq. (19), for the lowest 115 lowest eigenstates of N = 6 particles for �/ω =
1/2. Gray points are the result of a Monte Carlo sampling of the many-body wave function, and continuous lines are the analytical prediction
in Eq. (40). Each figure highlights states with a particular value of the Casimir s =

√
(h̄ω)2 + 〈T 〉 for clarity. The insets show the same energy

spectrum as in the highlighted region in Fig. 7 but with a color coding that matches the hyperradial distribution.

where � is the Gamma function (see Appendix A for a
derivation). The hyperradial wave function depends on the
rank of the internal breathing mode excitation a, which sets
the number of nodes in the wave function, but it does not
depend on the center-of-mass parameters b and c since these
do not affect the internal dynamics. Furthermore, it depends
on the Casimir parameter s [Eq. (33)] that parametrizes the
noninteracting energy of the corresponding primary state in
the absence of rotations [Eq. (26)]. Thus, states that share the
same expectation value of the Casimir operator have the same
hyperradial distribution for a given number of breathing mode
excitations.

An experimentally observable consequence of the separa-
bility in Eq. (39) is that R̃F 2(R̃) describes the distribution of
the internal hyperradius R̃, Eq. (19) [31,59]. We confirm this
using Metropolis Monte Carlo sampling of the perturbative
wave function |�a,b,c(r1↑, . . . , r1↓, . . .)|2 obtained from our
diagonalization procedure. Details of the numerical imple-
mentation are described in Appendix B. Figure 9 shows results
for the hyperradial distribution computed for the lowest 115
states of N = 6 particles with rotation frequency � = 1/2
[these states are highlighted in orange in Fig. 7(d)]. Gray
points are Monte Carlo simulations and continuous lines
are the analytical predictions in Eq. (40), where the insets
show the energy spectrum with a color coding matching the

distributions. For clarity, the results for the hyperradial
distribution are split into seven figures, where each fig-
ure highlights the results of a particular value of s, Eq. (26),
while the rest is opaque to allow a comparison between the
figures. Since multiple states have equal Casimir, Eq. (33),
several distributions overlap. For example, Fig. 9(a) shows
two distributions with equal value of s = 10, where the blue
curve is the distribution for 29 different states, and one red
distribution corresponding to an internal breathing mode exci-
tation of the ground state with a = 1. Figures 9(b)–9(g) show
one distribution per plot, where all selected states are either
primary states with equal s or their center-of-mass excitations
(cf. the figure insets): 16 states in Fig. 9(b), 23 in Fig. 9(c), 3
in Fig. 9(d), 25 in Fig. 9(e), 10 in Fig. 9(f), and 8 in Fig. 9(g).
Note that the positions of the peaks in the distributions in-
crease with increasing s, which parametrizes the energy of
a primary state without rotation. Hence, in a rotating trap,
the most compact distribution [Fig. 9(d)] corresponds to the
ground state without rotations and its center-of-mass excita-
tions [i.e., states derived from the primary state in Fig. 9(d)
with M = 0], even though the former now forms an excited
state in the rotating trap.

Different from the hyperradial distribution, the center-of-
mass wave function �com(Z ) depends on b and c, and is
independent of internal dynamics and thus independent of the
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FIG. 10. Distribution of the center-of-mass coordinate Rcom =√
ZZ̄ = √

[(1/N )
∑

iσ riσ ]2 for the lowest 115 eigenstates of N = 6
particles for �/ω = 1/2. Gray points are the result of a Monte Carlo
sampling of the many-body wave function, and continuous lines are
the analytical prediction in Eq. (41). The inset shows the same energy
spectrum as the highlighted region in Fig. 7 but with a color coding
matching the distribution.

interaction potential. The wave function is determined by the
relations (Q+)b+1|a, b, c〉P = 0 and (Q−)c+1|a, b, c〉P = 0,
yielding for b � c (cf. Appendix A for a derivation)

�com(Z ) =
√

2N1+b−cc!

b!
Zb−ce−N |Z|2/2Lb−c

c (N |Z|2), (41)

with Z and Z̄ as well as b and c exchanged for c � b.
This is (up to normalization) exactly the wave function of a
heavy particle with mass Nm∗ in an effective magnetic field
B = 2Nm∗� in the cth Landau level with angular momentum
m = b − c [53,60], again illustrating the interpretation of the
center-of-mass modes as guiding-center and cyclotron modes.
The center-of-mass wave function (41) depends on neither the
energy of the primary state nor the number of breathing mode
excitations a. Figure 10 shows the center-of-mass distribution
Rcom|�com(Z )|2 as a function of the modulus Rcom =

√
ZZ̄ ,

where unlike in Fig. 9 we avoid splitting the plots. As is
apparent from the figure, states with the same max(b, c) and
|b − c| share the same center-of-mass distribution. Hence, the
distribution for all primary states as well as their internal
breathing mode excitations, 64 states in total, collapse onto
the blue curve. The red curve with a node corresponds to
b = c = 1, which describes one out of the 115 lowest states.

The hyperradial distribution (as well as the center-of-mass
distribution) should be observable experimentally, hence ver-
ifying the conformal symmetry on a microscopic level, by
sampling the many-body wave function with recently devel-
oped single-particle imaging techniques [37,38]. Deviations
from our predictions are expected for stronger interactions,
corresponding to anomalous symmetry breaking, or deformed
traps, corresponding to introducing different length scales and
explicitly breaking the symmetry.

VI. CONCLUSION

In this work, we have demonstrated that rotating 2D
mesoscopic Fermi gases at weak interactions possess a nonrel-
ativistic conformal symmetry. We confirmed this by means of

exact diagonalization of few-fermion ensembles in a harmonic
trap, for which the conformal symmetry predicts so-called
conformal towers formed by primary states and their center-
of-mass and internal breathing mode excitations, the latter
having an excitation energy at exactly twice the harmonic
trap frequency. From the diagonalization, the eigenstates were
used together with Monte Carlo simulations to compute and
confirm the hyperradial distribution of the many-body wave
function predicted by the symmetry. To the best of our
knowledge, this provides the only setup, together with the
nonrotating mesoscopic 2D Fermi gas considered in a previ-
ous work [25], where the nonrelativistic conformal symmetry
can be verified exactly by elementary means in an interact-
ing quantum system. Thus, studying the rotating mesoscopic
2D Fermi gas can not only help our understanding of in-
teracting systems in a magnetic field, but also give new
insights into problems such as conformal nonequilibrium
dynamics [61–68].

Note added. Recently, the experimental work by Lunt et al.
[69] appeared, which creates a two-particle Laughlin state in a
rotating trap. This state corresponds to the lowest-lying N = 2
primary state with M = 2 discussed in this paper. The mea-
surement of the two-body wave function using single-atom
imagining is in excellent agreement with the prediction of this
paper for the hyperradial wave function, Eq. (40).
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APPENDIX A: DERIVATION OF THE CENTER-OF-MASS
AND HYPERRADIAL WAVE FUNCTION

In this Appendix we include an operator-based derivation
of the center-of-mass wave function in Eq. (41) and the hyper-
radial distribution in Eq. (40). For the latter, the result is the
same as in a nonrotating 3D trap, and an additional derivation
can be found in the review by Castin and Werner [31].

1. Center-of-mass wave function

The center-of-mass wave function in Eq. (41) for an excited
state |a, b, c〉P follows from the conditions

(Q+)b+1|a, b, c〉P = 0, (A1)

(Q−)c+1|a, b, c〉P = 0, (A2)

which when written in a coordinate representation [Eqs. (14)
and (15)] give two coupled differential equations. Denot-
ing the center-of-mass wave function by 〈Z, Z̄|a, b, c〉P =
�b,c(Z, Z̄ ), we begin with the case b = c = 0. The first condi-
tion (A1) reads

〈Z, Z̄|Q+|a, 0, 0〉P ∼
(

2
∂

∂Z
+ NZ̄

)
�0,0(Z, Z̄ ) = 0, (A3)

which implies �0,0(Z, Z̄ ) ∼ f (Z̄ )e− N |Z|2
2 , where f (Z̄ ) is an

arbitrary function of the Z̄ coordinate. Likewise, inserting
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�0,0(Z, Z̄ ) in (A2) yields

0 = 〈Z, Z̄|Q−|a, 0, 0〉P ∼
(

2
∂

∂Z̄
+ NZ

)
f (Z̄ )e− N |Z|2

2 , (A4)

which implies f (Z̄ ) = constant and thus an (unnormalized)

wave function �0,0(Z, Z̄ ) = e− N |Z|2
2 .

The center-of-mass wave function of the excited state
|a, b, 0〉P is obtained by acting with (Q†

+)b on �0,0(Z, Z̄ ):

�b,0(Z, Z̄ ) = 〈Z, Z̄|(Q†
+)b|a, 0, 0〉P

∼
(
−2

∂

∂Z̄
+ NZ

)b
e− N |Z|2

2 ∼ Zbe− N |Z|2
2 . (A5)

Assuming b � c, we determine the general wave function by
acting with (Q†

+)c on �b,0(Z, Z̄ ):

�b,c(Z, Z̄ ) = 〈Z, Z̄|(Q†
−)c|a, b, 0〉

∼
(

−2
∂

∂Z
+ NZ̄

)c

Zbe− N |Z|2
2

∼ e− N |Z|2
2 Zb−c

c∑
l=0

(
−N |z|2

2

)l

l!
L(b−c)+l

c−l

(
N |Z|2

2

)
,

(A6)

where in the last line we expanded the prefactor using the bi-
nomial formula and used the Rodriguez representation of the
associated Laguerre polynomials. Now using the recurrence
relation for Laguerre polynomials, we obtain the center-of-
mass wave function (for b � c) stated in Eq. (41) of the main
text, which is normalized as

∫
d|Z| |Z| |�com(Z )|2 = 1. For

c � b, the derivation is analogous, but with Z̄ replacing Z as
well as c and b exchanged.

2. Hyperradial distribution

The hyperradial distribution in Eq. (40) for a state |a, b, c〉P

is determined by the relation

Ra+1|a, b, c〉P = 0. (A7)

It is useful to rewrite the R† operator defined in Eq. (18) as

R† = iDint + H int − 2Cint, (A8)

with Dint = −i(N − 1) − iR̃∂R̃ denoting the generator of in-
ternal scale transformations, H int the internal Hamiltonian in
the absence of rotation (� = 0), and Cint = R̃2/2 the gener-
ator of internal special conformal transformations. Acting on
a state |a, b, c〉P with H int yields the internal energy in a trap
without rotation s + 1 + 2a, where s = √

1 + 〈T 〉 and T is the
Casimir operator in Eq. (32).

Defining

Fa,s(R̃) = Fa,s(R̃)

R̃N−2
= 〈R̃|a, b, c〉P, (A9)

the case a = 0 follows from

〈R̃|R|0, b, c〉P

=
(

−(N − 1) − R̃
∂

∂R̃
+ s + 1 − R̃2

)
F0,s(R̃) = 0,

(A10)

which gives the unnormalized hyperradial distribution
F0,s(R̃) = R̃se−R̃2/2 = R̃se−R̃2/2Ls

0(R̃2). The case a = 1 is de-
termined by acting with R† on |0, b, c〉P,

Fa,s(R̃) =
(

(N − 1) + R̃
∂

∂R̃
+ s + 1 − R̃2

)
F0,s(R̃)

R̃N−2

∼ R̃seR̃2/2(s + 1 − R̃2)/R̃N−2, (A11)

which implies F1,s(R̃) = R̃seR̃2/2(s + 1 − R̃2) = R̃seR̃2/2

Ls
1(R̃2). Now, the unnormalized form for general a,

Fa,s(R̃) = R̃seR̃2/2Ls
a(R̃2), follows by induction using the in-

ternal breathing mode excitation |a + 1, b, c〉P = R†|a, b, c〉P.
We have

Fa+1,s(R̃)

∼
(

(N − 1) + R̃
∂

∂R̃
+ s + 1 + 2a − R̃2

)
Fa,s(R̃)

= 2R̃s−N+2e− R̃2

2
[
(s + a + 1 − R̃2)Ls

a(R̃2)

− R̃2Ls+1
a−1(R̃2)

]
.

(A12)

Using the recurrence relation for Laguerre polynomials, we
end up with

Fa+1,s(R̃) ∼ R̃se−R̃2/2Ls
a+1(R̃2), (A13)

as required. After normalizing Fa,s(R̃) according to∫
dR̃ R̃ F 2

a,s(R̃) = 1, we obtain the hyperradial distribution in
Eq. (40) of the main text.

APPENDIX B: MONTE CARLO SAMPLING
OF THE WAVE FUNCTIONS

Having obtained the many-body wave function
�a,b,c(r1↑, . . . , r1↓, . . .) from the diagonalization of (10),
which is a superposition of Slater determinants, we employ
Monte Carlo Metropolis sampling of the probability density
|�a,b,c(r1↑, . . . , r1↓, . . .)|2 (see Ref. [39]). The algorithm
is initiated by randomly distributing the particle positions
within a radius of �ho around the trap center. We then
choose a particle at random and propose a new particle
position, r′

jσ = r jσ + r, by a distance r ∈ [0, δ] with variance
δ = 0.7�ho, in a random direction, and compute the ratio

ξ = |�a,b,c(. . . , r′
jσ , . . .)|2

|�a,b,c(. . . , r jσ , . . .)|2 . (B1)

We accept the new configuration if the ratio ξ > ξ ′, where
ξ ′ ∈ [0, 1] is a random number; otherwise we keep the ini-
tial configuration. For a given configuration, we compute the
center-of-mass coordinate Rcom = √

[(1/N )
∑

iσ riσ ]2 and the
hyperradius R̃ as defined in Eq. (40) to sample the distribution
functions presented in Sec. V. After a warm-up period of 104

steps, every new proposed particle configuration is a sampling
step, and we build histograms of Rcom and R̃ with bin size
�Rcom = �R̃ = 0.1�ho for 106 sampling steps. The results
of this sampling procedure for selected N = 6-particle wave
functions are shown as gray points in Figs. 9 and 10.
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