
Transfer RL with Maximum Likelihood Estimates

Reinforcement Learning in the Wild
with Maximum Likelihood-based Model Transfer

Hannes Eriksson hannes.eriksson@zenseact.com
Zenseact, Gothenburg, Sweden
Chalmers University of Technology, Gothenburg, Sweden

Debabrota Basu
Scool, INRIA Lille- Nord Europe, Lille, France
CRIStAL, CNRS, Lille, France

Tommy Tram
Zenseact, Gothenburg, Sweden
Chalmers University of Technology, Gothenburg, Sweden

Mina Alibeigi
Zenseact, Gothenburg, Sweden

Christos Dimitrakakis
University of Oslo, Oslo, Norway

University of Neuchatel, Neuchatel, Switzerland

Abstract

In this paper, we study the problem of transferring the available Markov Decision Process
(MDP) models to learn and plan efficiently in an unknown but similar MDP. We refer
to it as Model Transfer Reinforcement Learning (MTRL) problem. First, we formulate
MTRL for discrete MDPs and Linear Quadratic Regulators (LQRs) with continuous state
actions. Then, we propose a generic two-stage algorithm, MLEMTRL, to address the
MTRL problem in discrete and continuous settings. In the first stage, MLEMTRL uses a
constrained Maximum Likelihood Estimation (MLE)-based approach to estimate the target
MDP model using a set of known MDP models. In the second stage, using the estimated
target MDP model, MLEMTRL deploys a model-based planning algorithm appropriate
for the MDP class. Theoretically, we prove worst-case regret bounds for MLEMTRL both
in realisable and non-realisable settings. We empirically demonstrate that MLEMTRL
allows faster learning in new MDPs than learning from scratch and achieves near-optimal
performance depending on the similarity of the available MDPs and the target MDP.

Keywords: Reinforcement Learning, Transfer Learning, Maximum Likelihood Estima-
tion, Linear Quadratic Regulator

1. Introduction

Deploying autonomous agents in the real world poses a wide variety of challenges. As
in Dulac-Arnold et al. (2021), we are often required to learn the real-world model with

1

ar
X

iv
:2

30
2.

09
27

3v
1

 [
cs

.L
G

]
 1

8
Fe

b
20

23

Eriksson, Basu, Tram, Alibeigi and Dimitrakakis

limited data, and use it to plan to achieve satisfactory performance in the real world. There
might also be safety and reproducibility constraints, which require us to track a model of the
real-world environment (Skirzyński et al., 2021). In light of these challenges, we attempt to
construct a framework that can aptly deal with optimal decision making for a novel task, by
leveraging external knowledge. As the novel task is unknown, we adopt the Reinforcement
Learning (RL) (Sutton and Barto, 2018) framework to guide an agent’s learning process
and to achieve near-optimal decisions.

An RL agent interacts directly with the environment to improve its performance. Specif-
ically, in model-based RL, the agent tries to learn a model of the environment and then
use it to improve performance (Moerland et al., 2023). In many applications, the depreci-
ation in performance due to sub-optimal model learning can be paramount. For example,
if the agent interacts with living things or expensive equipment, decision-making with an
imprecise model might incur significant cost (Polydoros and Nalpantidis, 2017). In such
instances, boosting the model learning by leveraging external knowledge from the existing
models, such as simulators (Peng et al., 2018), physics-driven engines, etc., can be of great
value (Taylor et al., 2008). A model trained on simulated data may perform reasonably
well when deployed in a new environment, given the novel environment is similar enough
to the simulated model. Also, RL algorithms running on different environments yield data
and models that can be used to plan in another similar enough real-life environment. In
this work, we study the problem where we have access to multiple source models built using
simulators or data from other environments, and we want to transfer the source models to
perform efficient model-based RL in a different real-life environment.

Example 1 Let us consider that a company is designing autonomous driving agents for
different countries in the world. The company has designed two RL agents that have learned
to drive well in USA and UK. Now, the company wants to deploy a new RL agent in
India. Though all the RL agents are concerned with the same task, i.e. driving, the models
encompassing driver behaviors, traffic rules, signs, etc., can differ for each. For example,
UK and India have left-handed traffic, while the USA has right-handed traffic. However,
learning a new controller specifically for every new geographic location is computationally
expensive and time-consuming, as both data collection and learning take time. Thus, the
company might use the models learned for UK and USA, to estimate the model for India,
and use it further to build a new autonomous driving agent (RL agent). Hence, being able
to transfer the source models to the target environment allows the company to use existing
knowledge to build an efficient agent faster and resource efficiently.
We address this problem of model transfer from source models to a target environment to
plan efficiently. We observe that this problem falls at the juncture of transfer learning
and reinforcement learning (Taylor and Stone, 2009; Lazaric, 2012; Laroche and Barlier,
2017). Lazaric (2012) enlists three approaches to transfer knowledge from the source tasks
to a target task. (i) Instance transfer: data from the source tasks is used to guide decision-
making in the novel task (Taylor et al., 2008). (ii) Representation transfer: a representation
of the task, such as learned neural network features, are transferred to perform the new
task (Zhang et al., 2018). (iii) Parameter transfer: the parameters of the RL algorithm or
policy are transferred (Rusu et al., 2015). In our paper, the source tasks are equivalent to
the source models, and the target task is the target environment. Moreover, we adopt the
model transfer approach (MTRL), which encompasses both (i) and (ii) (Section 4).

2

Transfer RL with Maximum Likelihood Estimates

Langley (2006) describes three possible benefits of transfer learning. The first is learn-
ing speed improvement, i.e. decreasing the amount of data required to learn the solution.
Secondly, asymptotic improvement, where the solution results in better asymptotic per-
formance. Lastly, jumpstart improvement, where the initial proxy model serves as a
better starting solution than that of one learning the true model from scratch. In this work,
we propose a new algorithm to transfer RL that achieves both learning speed improvement
and jumpstart improvement (Section 7). However, we might not find an asymptotic im-
provement in performance if compared with the best and unbiased algorithm in the true
setting. Rather, we aim to achieve a model estimate that allows us to plan accurately in
the target MDP (Section 6).

Contributions. We aim to answer the two questions:
1. How can we accurately construct a model using a set of source models for an RL agent
deployed in the wild?
2. Does the constructed model allows efficient planning and yield improvements over learning
from scratch?

In this paper, we address these questions as follows:

1. A Taxonomy of MTRL: First, we formulate the problem with the Markov Decision
Processes (MDPs) setting of RL. We further provide a taxonomy of the problem depending
on a discrete or continuous set of source models, and whether the target model is realisable
by the source models (Section 4).

2. Algorithm Design with MLE: Following that, we design a two-stage algorithm MLEMTRL
to plan in an unknown target MDP (Section 5). In the first stage, MLEMTRL uses a Max-
imum Likelihood Estimation (MLE) approach to estimate the target MDP using the source
MDPs. In the second stage, MLEMTRL uses the estimated model to perform model-based
planning. We instantiate MLEMTRL for discrete state-action (tabular) MDPs and Linear
Quadratic Regulators (LQRs). We also derive a generic bound on the goodness of the policy
computed using MLEMTRL (Section 6).

3. Performance Analysis: In Section 7, we empirically verify whether MLEMTRL
improves the performance for unknown tabular MDPs and LQRs than learning from scratch.
MLEMTRL exhibits learning speed improvement for tabular MDPs and LQRs. For LQRs, it
incurs learning speed improvement and asymptotic improvement. We also observe that the
more similar the target and source models are, the better the performance of MLEMTRL,
as indicated by the theoretical analysis.

Before elaborating on the contributions, we posit this work in the existing literature
(Section 2) and discuss the background knowledge of MDPs and MLEs (Section 3).

2. Related Work

Our work on Model Transfer Reinforcement Learning is situated in the field of Transfer
RL (TRL) and also is closely related to the multi-task RL and Bayesian multi-task RL
literature. In this section, we elaborate on these connections.

TRL is widely studied in Deep Reinforcement Learning. Zhu et al. (2020) introduces
different ways of transferring knowledge, such as policy transfer, where the set of source
MDPs Ms has a set of expert policies associated with them. The expert policies are used
together with a new policy for the novel task by transferring knowledge from each policy.
Rusu et al. (2015) uses this approach, where a student learner is combined with a set of

3

Eriksson, Basu, Tram, Alibeigi and Dimitrakakis

teacher networks to guide learning in multi-task RL. Parisotto et al. (2015) develops an
actor-critic structure to learn ways to transfer its knowledge to new domains. Arnekvist
et al. (2019) invokes generalisation across Q-functions by learning a master policy. Here,
we focus on model transfer instead of policy.

Another seminal work in TRL, by Taylor and Stone (2009) distinguishes between multi-
task learning and transfer learning. Multi-task learning deals with problems where the agent
aims to learn from a distribution over scenarios, whereas transfer learning makes no specific
assumptions about the source and target tasks. Thus, in transfer learning, the tasks could
involve different state and action spaces, and different transition dynamics. Specifically, we
focus on model-transfer (Atkeson and Santamaria, 1997) approach to TRL, where the
state-action spaces and also dynamics can be different. Atkeson and Santamaria (1997)
performs model transfer for a target task with an identical transition model. Thus, the
main consideration is to transfer knowledge to tasks with the same dynamics but varying
rewards. Laroche and Barlier (2017) assumes a context similar to that of Atkeson and
Santamaria (1997), where the model dynamics are identical across environments. In our
work, we rather assume that the reward function is the same, but the transition models
are different. We believe this is an interesting question as the harder part of learning an
MDP is learning the transition model. These works explicate a deep connection between
the fields of multi-task learning and TRL. In general, TRL can be viewed as an extension
of multi-task RL, where multiple tasks can either be learned simultaneously or have been
learned a priori. This flexibility allows us to learn even in settings where the state-actions
and transition dynamics are different among tasks. (Rommel et al., 2017) describes a multi-
task Maximum Likelihood Estimation procedure for optimal control of an aircraft. They
identify a mixture of Gaussians, where the mixture is over each of the tasks. Here, we adopt
an MLE approach to TRL in order to optimise performance for the target MDP (or a target
task) than restricting to a mixture of Gaussians.

The Bayesian approach to multi-task RL (Wilson et al., 2007; Lazaric and Ghavamzadeh,
2010) tackles the problem of learning jointly how to act in multiple environments. Lazaric
and Ghavamzadeh (2010) handles the open-world assumption, i.e. the number of tasks is
unknown. This allows them to transfer knowledge from existing tasks to a novel task, using
value function transfer. However, this is significantly different from our setting, as we are
considering model-based transfer. Further, we adopt an MLE-based framework in lieu of
the full Bayesian procedure described in their work. In Bayesian RL, Tamar et al. (2022)
also investigates a learning technique to generalise over multiple problem instances. By
sampling a large number of instances, the method is expected to learn how to generalise
from the existing tasks to a novel task. We do not assume access to such a prior or posterior
distributions to sample from.

There is another related line of work, namely multi-agent transfer RL (Da Silva and
Costa, 2019). For example, Liang et al. (2023) develops a TRL framework for autonomous
driving using federated learning. They accomplish this by aggregating knowledge for in-
dependent agents. This setting is different from general transfer learning but could be
incorporated if the source tasks are learned simultaneously with the target task. This
requires cooperation among agents and is out of the scope of this paper.

4

Transfer RL with Maximum Likelihood Estimates

3. Background

Here, we introduce the important concepts on which this work is based upon. Firstly, we
introduce the way we model the dynamics of the tasks. Secondly, we describe the Maximum
Likelihood Estimation framework used in this work.

Markov Decision Process (MDP). We study sequential decision-making problems that
can be represented as MDPs (Puterman, 2014). An MDP µ = (S,A,R, T , γ) consists of a
discrete or continuous state space denoted by S, a discrete or continuous action-space A,
a reward function R : S × A → R which determines the quality of taking action a in state
s, and a transition function T : S × A → ∆(S) inducing a probability distribution over
the successor states s′ given a current state s and action a. Finally, in the infinite-horizon
formulation, a discount factor γ ∈ [0, 1) is assigned. The overarching objective for the agent
is to compute a decision-making policy π : S → ∆(A) that maximises the expected sum

of future discounted rewards up until the horizon T : V π
µ (s) = E

[∑T
t=0 γ

tR(st, at)
]
. V π

µ (s)

is called the value function of policy π for MDP µ. Let V ∗µ = V π∗
µ denote the optimal

value function. The technique used to obtain the the optimal policy π∗ = supπ V
π
µ depends

on the MDP class. The MDPs with discrete state-action spaces are referred to as tabular
MDPs. In this paper, we also study a class of MDPs with continuous state-action spaces,
namely Linear Quadratic Regulators (LQRs) (Kalman, 1960). In tabular MDPs, we employ
ValueIteration (Puterman, 2014) for model-based planning, whereas in the LQR setting,
we use RiccatiIteration (Willems, 1971).

The standard metric used to measure the performance of a policy π (Bell, 1982) for an
MDP µ is regret R(µ, π). Regret is the difference between the optimal value function and
the value function of π. In this work, we extend the definition of regret for MTRL, where
the optimality is taken for a policy class in the target MDP.

Maximum Likelihood Estimation (MLE). One of the most popular methods of con-
structing point estimators is the Maximum Likelihood Estimation (Casella and Berger,
2021) framework. Given a density function f(x | θ1, . . . , θn) and associated i.i.d. data
X1, . . . , Xt, the goal of the MLE scheme is to maximise, `(θ |x) , `(θ1, . . . , θn |x1, . . . , xt) ,
log
∏t
i=1 f(xi | θ1, . . . , θn). `(·) is called the log-likelihood function. The set of parame-

ters θ maximising `(θ |x) is called the maximum likelihood estimator of θ given the data
X1, . . . , Xt. MLE has many desirable properties that we leverage in this work. For exam-
ple, the MLE satisfies consistency, i.e. under certain conditions, it achieves optimality even
for constrained MLE. An estimator being consistent means that if the data X1, . . . , Xt is
generated by f(· | θ) and as t → ∞, the estimate almost surely converges to the true pa-
rameter θ. (Kiefer and Wolfowitz, 1956) shows that MLE admits the consistency property
given the following assumptions hold. The model is identifiable, i.e. the densities at two
parameter values must be different unless the two parameter values are identical. Further,
the parameter space is compact and continuous. Finally, if the log-density is dominated, one
can establish that MLE converges to the true parameter almost surely (Newey and Powell,
1987). For problems where the likelihood is unbounded, flat, or otherwise unstable, one
may introduce a penalty term in the objective function. This approach is called penalised
maximum likelihood estimation (Ciuperca et al., 2003; Ouhamma et al., 2022). As we in
our work are mixing over known parameters, we do not need to add regularisation to our
objective to guarantee convergence.

5

Eriksson, Basu, Tram, Alibeigi and Dimitrakakis

In this work, we iteratively collect data and compute new point estimates of the pa-
rameters and use them in our decision-making procedure. In order to carry out MLE,
a likelihood function has to be chosen. In this work, we investigate two such likelihood
functions in Section 5, one for each respective model class.

4. A Taxonomy of Model Transfer RL

Now, we formally define the Model Transfer RL problem and derive a taxonomy of settings
encountered in MTRL.

4.1 MTRL: Problem Formulation

Let us assume that we have access to a set of source MDPs Ms , {µi}mi=1. The individual
MDPs can belong to a finite or infinite but compact set depending on the setting. For
example, for tabular MDPs with finite state-actions, this is always a finite set. Whereas for
MDPs with continuous state-actions, the transitions can be parameterised by real-valued
vectors/matrices, corresponding to an infinite but compact set. Given access to Ms, we
want to find an optimal policy for an unknown target MDP µ∗ that we encounter while
deploying RL in the wild. At each step t, we useMs and the data observed from the target
MDP Dt−1 , {s0, a0, s1, . . . , st−1, at−1, st} to construct an estimate of µ∗, say µ̂t. Now,
we use µ̂t to run a model-based planner, such as ValueIteration or RiccatiIteration,
that leads to a policy πt. After completing this planning step, we interact with the target
MDP using πt that yields an action at, and leads to observing st+1, rt+1. We update the
dataset with these observations: Dt , Dt−1 ∪ {at, st}. Here, we assume that all the source
and target MDPs share the same reward function R. We do not put any restrictions on the
state-action space of target and source MDPs.

Our goal is to compute a policy πt that performs as close as possible with respect to the
optimal policy π∗ for the target MDP as the number of interactions with the target MDP
t→∞. This allows us to define a notion of regret for MTRL: R(µ∗, πt) , V ∗µ∗ −V

πt
µ∗ . Here,

πt is a function of the source models Ms, the data collected from target MDP Dt, and the
underlying MTRL algorithm. The goal of an MTRL algorithm is to minimise R(µ∗, πt).
For the parametric policies πθ with θ ∈ Θ ⊂ Rd, we can specialise the regret further for
this parametric family: R(µ∗, πθt) = V πθ∗

µ∗ − V
πθt
µ∗ . For example, for LQRs, we by default

work with linear policies. We use this notion of regret in our theoretical and experimental
analysis.

4.2 Three Classes of MTRL Problems

We begin by illustrating MTRL using Figure 1. In the figure, the source MDPs Ms are
depicted in red. This green area is the convex hull spanned by the source models C(Ms).
The target MDP µ∗, the best representative within the convex hull of the source models µ,
and the estimated MDP µ̂ are shown in blue, yellow, and purple, respectively. If the target
model is inside the convex hull, we call it a realisable setting. whereas If the target model
is outside (as in Figure 1), then we have a non-realisable setting.

Figure 1 also shows that the total deviation of the estimated model from the target
model depends on two sources of errors: (i) realisability, i.e. how far is the target MDP µ∗

from the convex hull of the source models C(Ms) available to us, and (ii) estimation, i.e.
how close is the estimated MDP µ̂ to the best possible representation µ of the target MDP.
In the realisable case, the realisability gap can be reduced to zero, but not otherwise. This

6

Transfer RL with Maximum Likelihood Estimates

Total Deviation

Realisability
Estimation

Figure 1: An illustration of the MTRL setting. The source models Ms are the red boxes.
The green area is the convex hull C(Ms) spanned by the source models. The
target MDP µ∗ is displayed in blue, and the best proxy model is contained in
the convex hull µ in yellow. Finally, the estimator of the best proxy model µ̂ is
shown in purple.

approach allows us to decouple the effect of the expressibility of the source models and the
goodness of the estimator.

Now, we further elaborate on these three classes and the corresponding implications of
performing MLE.

I. Finite and Realisable Plausible Models. If the true model µ∗ is one of the target
models, i.e. µ̂ ∈Ms, we have to identify the target MDP from a finite set of plausible MDPs.
Thus, the corresponding MLE involves a finite set of parameters, i.e. the parameters of the
source MDPs Ms. We compute the MLE µ̂ by solving the optimisation problem:

µ̂ ∈ arg max
µ′∈Ms

logP(Dt |µ′), Dt ∼ µ∗. (1)

This method may serve as a reasonable heuristic for the TRL problem, where the target
MDP is the same as or reasonably close to one of the source MDPs. However, this method
will potentially be sub-optimal if the target MDP is too different from the source MDPs.
Even if µ∗ lies within the convex hull of the source MDPs (the green area in Figure 1), this
setting restricts the selection of a model to one of the red boxes. Thus, this setting fails to
leverage the expressiveness of the source models as MLE allows us to accurately estimate
models which are also in C(Ms). Thus, we focus on the two settings described below.

II. Infinite and Realisable Plausible Models. In this setting, the target MDP µ∗

is in the convex hull µ∗ ∈ C(Ms) of the source MDPs. Thus, with respect to Class I, we
extend the parameter space considered in MLE to an infinite but compact parameter set.

Let us define the convex hull as C(Ms) , {µ1w1 + . . . + µmwm |µi ∈ Ms, wi ≥ 0, i =
1, . . . ,m,

∑m
i=1wi = 1}. Then, the corresponding MLE problem with the corresponding

likelihood function is given by:

µ̂ ∈ arg max
µ′∈C(Ms)

logP(Dt |µ′), Dt ∼ µ∗. (2)

7

Eriksson, Basu, Tram, Alibeigi and Dimitrakakis

Algorithm 1 Maximum Likelihood Estimation for Model-based Transfer Reinforcement
Learning (MLEMTRL)

1: Input: weights w0, m source MDPs Ms, data D0, discount factor γ, iterations T .
2: for t = 0, . . . , T do
3: // Stage 1: Model Estimation //
4: wt+1 ← Optimiser(logP(Dt |Σm

i=1wiµi),w
t)

5: Estimate the MDP: µt+1 =
∑m

i=1wiµi
6: // Stage 2: Model-based Planning //
7: Compute the policy: πt+1 ∈ arg max

π
V π
µt+1

8: // Control //
9: Observe st+1, rt+1 ∼ µ∗(st, at), at ∼ πt+1(st)

10: Update the dataset Dt+1 = Dt ∪ {st, at, st+1, rt+1}
11: end for
12: return An estimated MDP model µT and a policy πT

Since C(Ms) induces a compact subset of model parameters M′ ⊂ M, Equation (2) leads
to a constrained maximum likelihood estimation problem (Aitchison and Silvey, 1958). It
implies that, if the parameter corresponding to the target MDP is inM′, it can be correctly
identified. In the case where the optimum lies inside, we can use constrained MLE to
accurately identify the true parameters given enough experience from µ∗. This approach
allows us to leverage the expressibility of the source models completely. However, µ∗ might
lie outside or on the boundary. Either of these cases may pose problems for the optimiser.

III. Infinite and Non-realisable Plausible Models. This class is similar to Class
II with the important difference that the true parameter µ∗ is outside the convex hull of
source MDPs C(Ms), and thus, the corresponding parameter is not in the induced parameter
subset M′. This key difference means the true parameters cannot be correctly identified.
Instead, the objective is to identify the best proxy model µ ∈M′. The performance loss for
using µ instead of µ∗ is intimately related to the model dissimilarity ||µ∗−µ||1. This allows
us to describe the limitation of expressivity of the source models by defining the realisability
gap: εRealise , minµ∈C(Ms) ‖µ∗−µ‖1. The realisability gap becomes important while dealing
with continuous state-action MDPs with parameterised dynamics, such as LQRs.

5. MLEMTRL: MTRL with Maximum Likelihood Model Transfer

Now, we present the proposed algorithm, MLEMTRL. The algorithm consists of two stages,
a model estimation stage, and a planning stage. After having obtained a plan, then the
agent will carry out its decision-making in the environment to acquire new experiences. We
sketch an overview of MLEMTRL in Algorithm 1. For completeness, we also provide an ex-
tension to MLEMTRL called Meta-MLEMLTRL. This extension combines the MLEMTRL
estimated model with the empirical model of the target task. This allows us to identify
the true model even in the non-realisable setting. For brevity of space, further details are
deferred to Appendix C.
Stage 1: Model Estimation: The first stage of the proposed algorithm is model esti-
mation. During this procedure, the likelihood of the data needs to be computed for the
appropriate MDP class. In the tabular setting, we use a product of multinomial likelihoods,
where the data likelihood is over the distribution of successor states s′ for a given state-

8

Transfer RL with Maximum Likelihood Estimates

action pair (s, a). In the LQR setting, we use a linear-Gaussian likelihood, which is also
expressed as a product over data observed from target MDP.

Likelihood for Tabular MDPs. The log-likelihood that we attempt to maximise in
tabular MDPs is a product over |S|×|A| of pairs of multinomials, where pi is the probability
of event i, ns,a is the number of times the state-action pairs (s, a) appear in the data Dt,
and xs,ai is the number of times the state-action pair (s, a, si) occurs in the data. That is,∑|S|

i=1 x
s,a
i = ns,a. Specifically,

logP(Dt |p) = log

(∏
s,a

ns,a!

|S|∏
i=1

p
xs,ai
i

xs,ai !

)
(3)

Likelihood for Linear-Gaussian MDPs. For continuous state-action MDPs, we use a
linear-Gaussian likelihood. In this context, let ds be the dimensionality of the state-space,
s ∈ Rds and da be the dimensionality of the action-space. Then, the mean function M is a
Rds×Rda+ds matrix. The mean visitation count to the successor state s′t when an action at
is taken at state st is given by M(at, st). We denote the corresponding covariance matrix
of size Rds × Rds by S. Thus, we express the log-likelihood by

logP(Dt |M,S) = log
t∏
i=1

exp
(
− 1

2v
>S−1v

)
(2π)ds/2|S|1/2

,

where s′i −M(ai, si) = v.

Model Estimation as a Mixture of Models. As the optimisation problem involves
weighing multiple source models together, we add a weight vector w ∈ [0, 1]m with the
usual property that w sum to 1. This addition results in another outer product over the
likelihoods shown above. Henceforth, µ will refer to either the parameters associated with
the product-Multinomial likelihood or the linear-Gaussian likelihood, depending on the
model class.

min
w

logP(Dt |Σm
i=1wiµi), Dt ∼ µ∗, µi ∈Ms,

s.t.
m∑
i=1

wi = 1, wi ≥ 0.
(4)

Because of the constraint on w, this is a constrained nonlinear optimisation problem.
We can use any optimiser algorithm, denoted by Optimiser, for this purpose.

Optimiser. In our implementations, we use Sequential Least-Squares Quadratic Program-
ming (SLSQP) (Kraft, 1988) as the Optimiser. SLSQP is a quasi-Newton method solving
a quadratic programming subproblem for the Lagrangian of the objective function and the
constraints.

Specifically, in Line 1 of Algorithm 1, we compute the next weight vector wt+1 by
solving the optimisation problem in Eq. (4). Let f(w) = logP(Dt |Σm

i=1wiµi). Further, let
λ = {λ1, . . . , λm} and κ be Lagrange multipliers. We then define the Lagrangian L,

L(w, λ, κ) = f(w)− λ>w − κ(1− 1>w). (5)

9

Eriksson, Basu, Tram, Alibeigi and Dimitrakakis

Here, wk is the k-th iterate. Finally, taking the local approximation of Eq. (4), we define
the optimisation problem as:

min
d

1

2
d>∇2L(w, λ, κ)d +∇f(wk)d + f(wk)

s.t.d + wk ≥ 0,1>wk = 1.

(6)

This minimisation problem yields the search direction dk for the k-th iteration. Applying
this iteratively and using the construction above ensures that the constraints posed in
Eq. (4) are adhered to at every step of MLEMTRL. At convergence, the k-th iterate, wk is
considered as the next wt+1 in Line 1 of Algorithm 1.
Stage 2: Model-based Planning: When an appropriate model µt has been identified
at time step t, the next stage of the algorithm involves model-based planning in the es-
timated MDP. We describe two model-based planning techniques, ValueIteration and
RiccatiIteration for tabular MDPs and LQRs, respectively.
ValueIteration. Given the model, µt and the associated reward function R, the optimal
value function of µt can be computed iteratively as (Sutton and Barto, 2018):

V ∗µt(s) = max
a

∑
s′

T as,s′
(
R(s, a) + γV ∗µt(s

′)
)
. (7)

The fixed-point solution to Eq.7 is the optimal value function. When the optimal value
function has been obtained, one can simply select the action maximising the action-value
function. Let πt+1 be the policy selecting the maximising action for every state, then πt+1

is the policy the model-based planner will use at time step t+ 1.
RiccatiIteration. A LQR-based control system, and thus, the corresponding MDP,
is defined by four system matrices (Kalman, 1960): A,B,Q,R. The matrices A,B are
associated with the transition model st+1−st = Ast+Bat. The matrices Q,R dictate the
quadratic cost (or reward) of a policy π under an MDP µ is

V π
µ =

T∑
t=0

s>t Qst + a>t Rat.

Optimal policy is identified following Willems (1971) that states at = −Kst at time t,
where K is computed using A,B,Q,R. We refer to Appendix B for details.

6. Theoretical Analysis

In this section, we further justify the use of our framework by deriving worst-case perfor-
mance degradation bounds relative to the optimal controller. The performance loss is shown
to be related to the realisability of µ∗ under C(Ms). In Figure 1, we visualise the model
dissimilarities, where ||µ− µ̂||1 is the model estimation error, ||µ∗ − µ||1 is the realisability
gap and ||µ∗ − µ̂||1 the total deviation of the estimated model. Note that by the norm on
MDP, we always refer to the L1 norm over transition matrices.

Theorem 1 (Performance Gap for Non-Realisable Models) Let µ∗ = (S,A,R, T ∗, γ)
be the true underlying MDP. Further, let µ = (S,A,R, T , γ) be the maximum likelihood

10

Transfer RL with Maximum Likelihood Estimates

µ ∈ arg minµ′∈C(Ms) P(D∞ |µ′), D∞ ∼ µ∗ and µ̂ = (S,A,R, T̂ , γ) be a maximum like-
lihood estimator of µ. In addition, let π∗, π, π̂ be the optimal policies for the respective
MDPs. Then, if R is a bounded reward function ∀(s,a) r(s, a) ∈ [0, 1] and with εEstim being

the estimation error and εRealise , minµ∈C(Ms) ‖µ∗ − µ‖1 the realisability gap. Then, the
performance gap is given by,

||V ∗µ∗ − V π̂
µ∗ ||∞ ≤

3(εEstim + εRealise)

(1− γ)2
. (8)

For the full proof, see Appendix A.1. This result is comparable to recent results such
as (Zhang et al., 2020) but here with an explicit decomposition into model estimation error
and realisability gap terms.

Remark 2 (Bound on L1 Norm Difference in the Realisable Setting) It is known (Strehl
and Littman, 2005; Auer et al., 2008; Qian et al., 2020) that in the realisable setting, it is
possible to bound the model estimation error term εEstim via the following argument. Let µ∗

be the true underlying MDP, and µ̂ be an MLE estimate of µ∗, as defined in Theorem 1.
If R is a bounded reward function, i.e. r(s, a) ∈ [0, 1], ∀(s, a), and εEstim is upper bound on
the L1 norm between T ∗ and T̂ . If ns,a be the number of times (s, a) occur together, then
with probability 1− SAδ,

||T ∗ − T̂ ||1 ≤ εEstim ≤
∑
s∈S

∑
a∈A

√
2 log

(
(2S − 2)/δ)

)
ns,a

From this, it can be said that the total L1 norm then scales on the order of O(SA
√
S + log(1/δ)/

√
T).

This result is specific to tabular MDPs. In tabular MDPs, the maximum likelihood estimate
coincides with the empirical mean model. Further details are in Appendix A.2.

Remark 3 (Performance Gap in the Realisable Setting) A trivial worst-case bound
for the realisable case (Section 4.2) can be obtained by setting εRealise = 0 because by defini-
tion of the realisable case µ∗ ∈ C(Ms).

7. Experiments

To benchmark the performance of MLEMTRL, we compare ourselves to a posterior sampling
method (PSRL) (Osband et al., 2013), equipped with a combination of product-Dirichlet
and product-NormalInverseGamma priors for the tabular setting, and Bayesian Multivariate
Regression prior (Minka, 2000) for the continuous setting. In PSRL, at every round, a new
model is sampled from the prior, and it learns in the target MDP from scratch. Finally, for
model-based planning, we use RiccatiIterations to obtain the optimal linear controller
for the sampled model. In the continuous action setting, we compare the performance to
the baseline algorithm multi-task soft-actor critic (MT-SAC) (Haarnoja et al., 2018; Yu
et al., 2020) and a modified MT-SAC-TRL using data from the novel task during learning.
In the tabular MDP setting, we compare against multi-task proximal policy optimisation
(MT-PPO) (Schulman et al., 2017; Yu et al., 2020) and similarly MT-PPO-TRL.

11

Eriksson, Basu, Tram, Alibeigi and Dimitrakakis

101 103 105

Time steps

100

101

C
um

ul
at

iv
e

re
w

ar
d

Chain Realisable

101 103 105

Time steps

0

100

C
um

ul
at

iv
e

re
w

ar
d

LQR_2_1 Realisable

101 103 105

Time steps

0

100

C
um

ul
at

iv
e

re
w

ar
d

LQR_6_2 Realisable

101 103 105

Time steps

100

101

C
um

ul
at

iv
e

re
w

ar
d

Chain Non-Realisable

101 103 105

Time steps

0

100

C
um

ul
at

iv
e

re
w

ar
d

LQR_2_1 Non-Realisable

101 103 105

Time steps

0

100

C
um

ul
at

iv
e

re
w

ar
d

LQR_6_2 Non-Realisable

PSRL MT-SAC MT-SAC-TRL MT-PPO MT-PPO-TRL MLEMTRL

Figure 2: Depicted is the average cumulative reward at every time step computed over 10
novel tasks in the realisable/non-realisable setting. The shaded regions represent
the standard error of the average cumulative reward at the time step.

The objectives of our empirical study are two-fold:

1. How does MLEMTRL impact performance in terms of learning speed, jumpstart
improvement and asymptotic convergence compared to our baseline?

2. What is the performance loss of MLEMTRL in the non-realisable setting?

We conduct two kinds of experiments to verify our hypotheses. Firstly, in the upper
row of Figure 2, we consider the realisable setting, where the novel task µ∗ is part of the
convex hull C(Ms). In this case, we are looking to identify an improvement in some or
all of the aforementioned qualities compared to the baselines. Further, in the bottom row
of Figure 2, we investigate whether the algorithm can generalise to the case beyond what
is supported by the theory in Section 4.2. We begin by recalling the goals of the transfer
learning problem (Langley, 2006).

Learning Speed Improvement: A learning speed improvement would be indicated by the
algorithm reaching its asymptotic convergence with less data.

Asymptotic Improvement: An asymptotic improvement would mean the algorithm con-
verges asymptotically to a superior solution to that one of the baseline.

Jumpstart Improvement: A jumpstart improvement can be verified by the behaviour of
the algorithm during the early learning process. In particular, if the algorithm starts at a
better solution than the baseline, or has a simpler optimisation surface, it may more rapidly
approach better solutions with much less data.

RL Environments. We test the algorithms in a tabular MDP, i.e. Chain (Dearden et al.,
1998), CartPole (Barto et al., 1983), and two LQR tasks in Deepmind Control Suite (Tassa
et al., 2018): dm LQR 2 1 and dm LQR 6 2. Further details on experimental setups are
deferred to Appendix D.1.

Impacts of Model Transfer with MLEMTRL. We begin by evaluating the proposed
algorithm in the Chain environment. The results of the said experiment are available
in the leftmost column of Figure 2. In it, we evaluate the performance of MLEMTRL
against PSRL, MT-PPO, MT-PPO-TRL. The experiments are done by varying the slippage

12

Transfer RL with Maximum Likelihood Estimates

101
100

101

102

R
eg

re
t

Gaussian Process

0.00 0.25 0.50 0.75 1.00
DKL(* ||)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: A log-log plot of the regret against the KL-divergence between the true MDP
and the best proxy model in CartPole. The thick blue line is a Gaussian Process
regression model fitted on the observed data (in purple).

parameter p ∈ [0.00, 0.50] and the results are computed for each different setup of Chain from
scratch. In this experiment, we can see the baseline algorithms MT-PPO and MT-PPO-TRL
perform very well. This could partially be explained by PSRL and MLEMTRL not only
having to learn the transition distribution but also the reward function. The value function
transfer in the PPO-based baselines implicitly transfers not only the empirical transition
model but also the reward function. We can see that MLEMTRL has improved learning
speed compared to PSRL in both realisable and non-realisable settings. An additional
experiment with a known reward function across tasks is shown in Figure 7.

In the centre and rightmost columns of Figure 2, we can see the results of running the
algorithms in the LQR settings with the baseline algorithms PSRL, MT-SAC and MT-SAC-
TRL. The variation over tasks is given by the randomness over the stiffness of the joints in
the problem. In these experiments, we can see a clear advantage of MLEMTRL compared
to all baselines in terms of learning speed improvements, and in some cases, asymptotic
performance.

In Figure 2, the performance metric is the average cumulative reward at every time
step, for 105 time steps and the shaded region represents the standard deviation, where the
statistics are computed over 10 independent tasks.

Impact of Realisability Gap on Regret. Now, we further illustrate the observed relation
between model dissimilarity and degradation in performance. Figure 3 depicts the regret
against the KL-divergence of the target model to the best proxy model in the convex set.
We observe that model dissimilarity influences the performance gap in MLEMTRL. This is
also justified in the Section 6 where the bounds have an explicit dependency on the model
difference. In this figure, only the non-zero regret experiments are shown. This is to have an
idea of which models result in poor performance. As its shown, it is those models that are
very dissimilar. Additional results in Figure 5 further illustrate the dependency on model
similarity.

Summary of Results. In the experiments, we sought to identify whether the proposed
algorithm shows superiority in terms of the transfer learning goals given by Langley (2006).
In the LQR-based environments, we can see a clear superiority in terms of learning speed
compared to all baselines and in some cases, an asymptotic improvement. In the Chain
environment the proposed algorithm outperforms PSRL in terms of learning speed.

13

Eriksson, Basu, Tram, Alibeigi and Dimitrakakis

Additional ablation studies showing how MLEMTRL can be augmented with a hierar-
chical procedure to take the empirical model into account in addition to the source models
are depicted in Figures 4 and 6. They show how the use of multi-task and transfer RL can
improve performance over a standard RL approach.

8. Discussions and Future Work

In this work, we aim to answer: 1. How can we accurately construct a model using a set
of source models for an RL agent deployed in the wild? 2. Does the constructed model
allows us to perform efficient planning and yield improvements over learning from scratch?
Our answer to the first question is by adopting the Model Transfer Reinforcement Learning
framework and weighting existing knowledge together with data from the novel task. We
accomplished this by the way of a maximum likelihood procedure, which resulted in a
novel algorithm, MLEMTRL, consisting of a model identification stage and a model-based
planning stage. The second question is answered by the empirical results in Section 7 and
the theoretical results in Section 6. We can clearly see the model allows for generalisation
to novel tasks, given that the tasks are similar enough to the existing task.

We motivate the use of our framework in settings where an agent is to be deployed in a
new domain that is similar to existing, known, domains. We verify the quick, near-optimal
performance of the algorithm in the case where the new domain is similar and we prove
worst-case performance bounds of the algorithm in both the realisable and non-realisable
settings.

Acknowledgments

This work was partially supported by the Wallenberg AI, Autonomous Systems and Soft-
ware Program (WASP) funded by the Knut and Alice Wallenberg Foundation and the
computations were performed on resources at Chalmers Centre for Computational Science
and Engineering (C3SE) provided by the Swedish National Infrastructure for Computing
(SNIC).

14

Transfer RL with Maximum Likelihood Estimates

References

John Aitchison and SD Silvey. Maximum-likelihood estimation of parameters subject to
restraints. The annals of mathematical Statistics, 29(3):813–828, 1958.

Isac Arnekvist, Danica Kragic, and Johannes A Stork. Vpe: Variational policy embedding
for transfer reinforcement learning. In 2019 International Conference on Robotics and
Automation (ICRA), pages 36–42. IEEE, 2019.

Christopher G Atkeson and Juan Carlos Santamaria. A comparison of direct and model-
based reinforcement learning. In Proceedings of international conference on robotics and
automation, volume 4, pages 3557–3564. IEEE, 1997.

Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-optimal regret bounds for reinforce-
ment learning. Advances in neural information processing systems, 21, 2008.

Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike adaptive elements
that can solve difficult learning control problems. IEEE transactions on systems, man,
and cybernetics, (5):834–846, 1983.

David E Bell. Regret in decision making under uncertainty. Operations research, 30(5):
961–981, 1982.

George Casella and Roger L Berger. Statistical inference. Cengage Learning, 2021.

Gabriela Ciuperca, Andrea Ridolfi, and Jérôme Idier. Penalized maximum likelihood esti-
mator for normal mixtures. Scandinavian Journal of Statistics, 30(1):45–59, 2003.

Felipe Leno Da Silva and Anna Helena Reali Costa. A survey on transfer learning for
multiagent reinforcement learning systems. Journal of Artificial Intelligence Research,
64:645–703, 2019.

Richard Dearden, Nir Friedman, and Stuart Russell. Bayesian q-learning. Aaai/iaai, 1998:
761–768, 1998.

Gabriel Dulac-Arnold, Nir Levine, Daniel J Mankowitz, Jerry Li, Cosmin Paduraru, Sven
Gowal, and Todd Hester. Challenges of real-world reinforcement learning: definitions,
benchmarks and analysis. Machine Learning, 110(9):2419–2468, 2021.

Eyal Even-Dar and Yishay Mansour. Approximate equivalence of markov decision processes.
In Learning Theory and Kernel Machines, pages 581–594. Springer, 2003.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In Inter-
national conference on machine learning, pages 1861–1870. PMLR, 2018.

Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. 1960.

Jack Kiefer and Jacob Wolfowitz. Consistency of the maximum likelihood estimator in the
presence of infinitely many incidental parameters. The Annals of Mathematical Statistics,
pages 887–906, 1956.

15

Eriksson, Basu, Tram, Alibeigi and Dimitrakakis

Dieter Kraft. A software package for sequential quadratic programming. Forschungsbericht-
Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt, 1988.

Pat Langley. Transfer of knowledge in cognitive systems. In Talk, workshop on Structural
Knowledge Transfer for Machine Learning at the Twenty-Third International Conference
on Machine Learning, 2006.

Romain Laroche and Merwan Barlier. Transfer reinforcement learning with shared dynam-
ics. In Thirty-First AAAI Conference on Artificial Intelligence, 2017.

Alessandro Lazaric. Transfer in reinforcement learning: a framework and a survey. In
Reinforcement Learning, pages 143–173. Springer, 2012.

Alessandro Lazaric and Mohammad Ghavamzadeh. Bayesian multi-task reinforcement
learning. In ICML-27th International Conference on Machine Learning, pages 599–606.
Omnipress, 2010.

Xinle Liang, Yang Liu, Tianjian Chen, Ming Liu, and Qiang Yang. Federated transfer
reinforcement learning for autonomous driving. In Federated and Transfer Learning,
pages 357–371. Springer, 2023.

Thomas Minka. Bayesian linear regression. Technical report, Citeseer, 2000.

Thomas M Moerland, Joost Broekens, Aske Plaat, Catholijn M Jonker, et al. Model-based
reinforcement learning: A survey. Foundations and Trends® in Machine Learning, 16
(1):1–118, 2023.

Whitney K Newey and James L Powell. Asymmetric least squares estimation and testing.
Econometrica: Journal of the Econometric Society, pages 819–847, 1987.

I.. Osband, D. Russo, and B. Van Roy. (more) efficient reinforcement learning via posterior
sampling. In Advances in Neural Information Processing Systems, pages 3003–3011, 2013.

Reda Ouhamma, Debabrota Basu, and Odalric-Ambrym Maillard. Bilinear exponential
family of mdps: Frequentist regret bound with tractable exploration and planning. arXiv
preprint arXiv:2210.02087, 2022.

Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep multitask
and transfer reinforcement learning. arXiv preprint arXiv:1511.06342, 2015.

Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real
transfer of robotic control with dynamics randomization. In 2018 IEEE international
conference on robotics and automation (ICRA), pages 3803–3810. IEEE, 2018.

Athanasios S Polydoros and Lazaros Nalpantidis. Survey of model-based reinforcement
learning: Applications on robotics. Journal of Intelligent & Robotic Systems, 86(2):153–
173, 2017.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons, 2014.

16

Transfer RL with Maximum Likelihood Estimates

Jian Qian, Ronan Fruit, Matteo Pirotta, and Alessandro Lazaric. Concentration inequalities
for multinoulli random variables. arXiv preprint arXiv:2001.11595, 2020.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and
Noah Dormann. Stable-baselines3: Reliable reinforcement learning implementations. The
Journal of Machine Learning Research, 22(1):12348–12355, 2021.

Cédric Rommel, Joseph Frédéric Bonnans, Baptiste Gregorutti, and Pierre Martinon. Air-
craft dynamics identification for optimal control. In 7th European Conference on Aero-
nautics and Space Sciences (EUCASS 2017), 2017.

Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James
Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell.
Policy distillation. arXiv preprint arXiv:1511.06295, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Julian Skirzyński, Frederic Becker, and Falk Lieder. Automatic discovery of interpretable
planning strategies. Machine Learning, 110(9):2641–2683, 2021.

Alexander L Strehl and Michael L Littman. A theoretical analysis of model-based interval
estimation. In Proceedings of the 22nd international conference on Machine learning,
pages 856–863, 2005.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018.

Aviv Tamar, Daniel Soudry, and Ev Zisselman. Regularization guarantees generalization
in bayesian reinforcement learning through algorithmic stability. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 36, pages 8423–8431, 2022.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas,
David Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind
control suite. arXiv preprint arXiv:1801.00690, 2018.

Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning domains:
A survey. Journal of Machine Learning Research, 10(7), 2009.

Matthew E Taylor, Nicholas K Jong, and Peter Stone. Transferring instances for model-
based reinforcement learning. In Joint European conference on machine learning and
knowledge discovery in databases, pages 488–505. Springer, 2008.

Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, et al.
Scipy 1.0: fundamental algorithms for scientific computing in python. Nature methods,
17(3):261–272, 2020.

Tsachy Weissman, Erik Ordentlich, Gadiel Seroussi, Sergio Verdu, and Marcelo J Wein-
berger. Inequalities for the l1 deviation of the empirical distribution. Hewlett-Packard
Labs, Tech. Rep, 2003.

17

Eriksson, Basu, Tram, Alibeigi and Dimitrakakis

Jan Willems. Least squares stationary optimal control and the algebraic riccati equation.
IEEE Transactions on automatic control, 16(6):621–634, 1971.

Aaron Wilson, Alan Fern, Soumya Ray, and Prasad Tadepalli. Multi-task reinforcement
learning: a hierarchical bayesian approach. In Proceedings of the 24th international con-
ference on Machine learning, pages 1015–1022, 2007.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn,
and Sergey Levine. Meta-world: A benchmark and evaluation for multi-task and meta
reinforcement learning. In Conference on robot learning, pages 1094–1100. PMLR, 2020.

Amy Zhang, Harsh Satija, and Joelle Pineau. Decoupling dynamics and reward for transfer
learning. arXiv preprint arXiv:1804.10689, 2018.

Amy Zhang, Shagun Sodhani, Khimya Khetarpal, and Joelle Pineau. Learning robust state
abstractions for hidden-parameter block mdps. In International Conference on Learning
Representations, 2020.

Zhuangdi Zhu, Kaixiang Lin, and Jiayu Zhou. Transfer learning in deep reinforcement
learning: A survey. arXiv preprint arXiv:2009.07888, 2020.

18

Transfer RL with Maximum Likelihood Estimates

Appendix A. Detailed Proofs

A.1 Proof of Theorem 1

Proof [Proof of Theorem 1] We begin by introducing the appropriate definitions and lem-
mas.

Definition 4 (ε-homogeneity) Given two MDPs µ1 = (S,A,R, T1, γ) and µ2 = (S,A,R, T2, γ)
we say µ2 is a ε-homogenous partition of µ1 with respect to Lk norm if

∀a ∈ A
(∑
s′∈S

(∑
s∈S
T1(s, a, s′)− T2(s, a, s′)

)k) 1
k ≤ ε. (9)

Note that this definition of ε-homogeneity is a special case of Definition 3 (Even-Dar
and Mansour, 2003), where the reward functions and state spaces are taken to be identical.
We will only study partitions with respect to the L1 norm between transition probabilities.

Lemma 5 (Lemma 3 Even-Dar and Mansour (2003)) Let µ2 be an ε-homogenous par-
tition of µ1, then, with respect to L1 norm, an arbitrary policy π in µ2 induces an ε

(1−γ)2−optimal

policy in µ1.

||V π
µ1 − V

π
µ2 ||∞ ≤

ε

(1− γ)2
. (10)

Lemma 6 (Lemma 4 Even-Dar and Mansour (2003)) Let µ2 be an ε-homogenous par-
tition of µ1, then, with respect to L1 norm, the optimal policy in µ2 induces an 2ε

(1−γ)2−optimal

policy in µ1.

||V ∗µ1 − V
∗
µ2 ||∞ ≤

2ε

(1− γ)2
. (11)

Given the assumptions in Theorem 1 hold true. Then, using the ε−homogeneity defini-
tion in Definition 4, let µ̂ be an εEstim−homogenous partition of µ and µ be an εRealise−homogenous
partition of µ∗. Under the L1 norm then, we have

∀a ∈ A
(∑
s′∈S

∑
s∈S
T (s, a, s′)− T̂ (s, a, s′)

)
≤ εEstim, (12)(∑

s′∈S

∑
s∈S
T ∗(s, a, s′)− T (s, a, s′)

)
≤ εRealise. (13)

Using triangle inequalities we can then bound the L1 norm between the true underlying
MDP and the maximum likelihood estimator,

∀a ∈ A
(∑
s′∈S

∑
s∈S
T ∗(s, a, s′)− T̂ (s, a, s′)

)
(14)

=
(∑
s′∈S

∑
s∈S
T ∗(s, a, s′)− T (s, a, s′) + T (s, a, s′)− T̂ (s, a, s′)

)
(15)

≤
(∑
s′∈S

∑
s∈S
T ∗(s, a, s′)− T (s, a, s′)

)
+
(∑
s′∈S

∑
s∈S
T (s, a, s′)− T̂ (s, a, s′)

)
(16)

≤ εEstim + εRealise. (17)

19

Eriksson, Basu, Tram, Alibeigi and Dimitrakakis

Thus, µ̂ is a (εEstim + εRealise)−homogenous partition of µ∗. The next steps involves
creating a bound on the performance gap between the value functions and policies in ||V ∗µ∗−
V π̂
µ∗ ||∞. Using triangle inequalities the performance gap can be expanded further,

||V ∗µ∗ − V π̂
µ∗ ||∞ = ||V ∗µ∗ − V π̂

µ̂ + V π̂
µ̂ − V π̂

µ∗ ||∞
≤ ||V ∗µ∗ − V π̂

µ̂ ||∞ + ||V π̂
µ̂ − V π̂

µ∗ ||∞.
(18)

The first term on the right side of the inequality in Eq. 18 can be bounded using Lemma 6
since π̂ is the optimal policy in µ̂,

||V ∗µ∗ − V π̂
µ̂ ||∞ ≤

2(εEstim + εRealise)

(1− γ)2
. (19)

Likewise, the second term in the inequality can be bounded using Lemma 5,

||V π̂
µ̂ − V π̂

µ∗ ||∞ ≤
εEstim + εRealise

(1− γ)2
. (20)

Combining these two terms yields us ||V ∗µ∗ − V π̂
µ∗ ||∞ ≤

3(εEstim+εRealise)
(1−γ)2 .

A.2 Proof of Remark 2

Proof [Proof of Remark 2] The analysis of the concentration of εEstim follows the works
of Auer et al. (2008); Qian et al. (2020). Let ∆S be the (S − 1)−dimensional simplex and
T ∗s,a ∈ ∆S be the transition kernel for a state-action pair of the true underlying MDP µ∗

and T̂s,a ∈ ∆S a random vector. If T̂s,a is taken to be the empirical estimate of T ∗s,a then
the following lemma can be invoked.

Proposition 7 (Weissman et al. (2003)) Let T ∗s,a ∈ ∆S and T̂s,a ∼ 1
ns,aMultinomial(ns,a, T ∗s,a).

Then, for S ≥ 2, δ ∈ [0, 1] and ns,a ≥ 1,

P

(
||T ∗s,a−T̂s,a||1 ≥

√
2S log(2/δ)

ns,a

)
≤ P

(
||T ∗s,a−T̂s,a||1 ≥

√
2 log

(
(2S − 2)/δ)

)
ns,a

)
≤ δ. (21)

The invocation of Proposition 7, with T =
∑

s∈S
∑

a∈A n
s,a yields us a L1 norm bound for

the difference of transition kernels associated with a particular state-action pair s, a. Next,
union bounding over all possible state and action combinations yields us a bound on the
total L1 norm.

P

(⋃
s∈S

⋃
a∈A

(
||T ∗s,a − T̂s,a||1 ≥

√
2 log

(
(2S − 2)/δ)

)
ns,a

))
(22)

≤
∑
s∈S

∑
a∈A

P

(
||T ∗s,a − T̂s,a||1 ≥

√
2 log

(
(2S − 2)/δ)

)
ns,a

)
(23)

≤SAδ. (24)

20

Transfer RL with Maximum Likelihood Estimates

From this, we have that, with probability 1− SAδ,

||T ∗ − T̂ ||1 ≤ εEstim ≤
∑
s∈S

∑
a∈A

√
2 log

(
(2S − 2)/δ)

)
ns,a

. (25)

The total L1 norm then scales on the order of O(SA
√
S − log(δ)/

√
T), which is the final

result.

21

Eriksson, Basu, Tram, Alibeigi and Dimitrakakis

Appendix B. Details of Planning: RiccatiIteration

An LQR-based control system is defined by its system matrices (Kalman, 1960). Let ds be
the state dimensionality and da be the action dimensionality. Then, A ∈ Rds × Rds is a
matrix describing state associated state transitions. B ∈ Rds × Rda is a matrix describing
control associated state transitions. The final two system matrices are cost related with
Q ∈ Rds ×Rds being a positive definite cost matrix of states and R ∈ Rda ×Rda a positive
definite cost matrix of control inputs. The transition model described under this model is
given by,

st+1 − st = Ast + Bat. (26)

When an MDP is mentioned in the context of an LQR system in this work, the MDP is
the set of system matrices. Further, the cost (or reward) of a policy π under an MDP µ is

V π
µ =

T∑
t=0

s>t Qst + a>t Rat. (27)

Optimal policy identification can be accomplished using Willems (1971). It begins by solving
for the cost-to-go matrix P by,

solve
P

A>PA−P + Q− (A>PB)(R + B>PB)−1(B>PA) = 0.

Then, using P the control input a for a particular state s is

a = −(R + B>PB)−1(B>PA)s. (28)

With some abuse of notation and for compactness, we allow ourselves to write at =
−(R + B>PB)−1(B>PA)st for at ∼ π(st).

Appendix C. Meta-Algorithm for MLEMTRL in the Non-Realisable
Setting

In order to guarantee good performance even in the non-realisable setting one might think of
adding the target task to the set of source tasks or constructing a meta-algorithm, combining
the model estimated by MLEMTRL and the empirical estimation of the target task. In
this section we propose a meta-algorithm based on the latter, in Algorithm 2. The main
change in the algorithm is internally keeping track of the empirical model and on Line 2,
computing a posterior probability distribution over the respective models by weighting the
two likelihoods together with their respective priors. How much the meta-algorithm should
focus on the empirical model is then decided by the prior, because `Empirical ≥ `MLEM. For
experimental results using this algorithm, see Figure 4.

Appendix D. Additional Experimental Analysis

D.1 Experimental Setup

The experiments are deployed in Python 3.7, with support from SciPy (Virtanen et al.,
2020), Stable-baselines3 (Raffin et al., 2021) and ran on a i5-4690k CPU and a GTX-960
GPU. The parameters for the variations of SAC and PPO are kept to be the default ones.

22

Transfer RL with Maximum Likelihood Estimates

Algorithm 2 Meta-MLEMTRL

1: Input: prior p, weights w0, m source MDPsMs, data D0, discount factor γ, iterations
T .

2: for t = 0, . . . , T do
3: // Stage 1: Obtain Model Weights //
4: wt+1 ←MLEMTRL(wt,Ms,Dt, γ, 1)
5: Estimate the MDP: µt+1 =

∑m
i=1wiµi

6: Compute log-likelihood `t+1
MLEM = logP(Dt |µt+1)

7: Compute log-likelihood of empirical model `t+1
Empirical = logP(Dt | µ̂t+1)

8: Sample µ̃t+1 as µt+1 w.p. ∝ p exp
(
`t+1
MLEM

)
and µ̂t+1 w.p. ∝ (1− p) exp

(
`t+1
Empirical

)
.

9: // Stage 2: Model-based Planning //
10: Compute the policy: πt+1 ∈ arg max

π
V π
µ̃t+1

11: // Control //
12: Observe st+1, rt+1 ∼ µ∗(st, at), at ∼ πt+1(st)
13: Update the dataset Dt+1 = Dt ∪ {st, at, st+1, rt+1}
14: end for
15: return An estimated MDP model µ̃T and a policy πT

101 103 105

Time steps

100

101

C
um

ul
at

iv
e

re
w

ar
d

Chain Realisable

101 103 105

Time steps

100

101

C
um

ul
at

iv
e

re
w

ar
d

Chain Non-Realisable

Meta-MLEMTRL p=0.99 Meta-MLEMTRL p=0.90 Meta-MLEMTRL p=0.10 Meta-MLEMTRL p=0.01

Figure 4: Figure depicting an ablation study of the prior parameter p in the Meta-
MLEMTRL algorithm. The y-axis is the average cumulative reward at each time
step computed over 10 novel tasks and the shaded region represents the standard
error. When p = 1, the algorithm reduces to MLEMTRL and when p = 0 the
algorithm reduces to standard maximum likelihood model estimation.

RL Environments: Chain. A common testbed for RL algorithms in tabular settings is
the Chain (Dearden et al., 1998) environment. In it, there is a chain of states where the
agent can either walk forward or backward. At the end of the chain, there is a state yielding
the highest rewards. At every step, there is a chance of the effect of the opposite action
occurring. This is denoted as the slipping probability. The slippage parameter is also what

23

Eriksson, Basu, Tram, Alibeigi and Dimitrakakis

is used to create the source models, in this case, those parameters are {0.01, 0.20, 0.50}. For
PSRL and MLEMTRL we use a product-NormalGamma prior over the reward functions.
For PSRL, we use product-Dirichlet priors over the transition matrix.
RL Environments: LQR Tasks. We investigate two LQR tasks in the Deepmind Control
Suite Tassa et al. (2018), namely dm LQR 2 1 and dm LQR 6 2. These environments are
continuous state and actions whereby the task is to control a two joint one actuator and six
joint two actuators towards the center of the platform for the two tasks, respectively. They
consist of unbounded control inputs and rewards with the state spaces s ∈ R4 and s ∈ R12,
respectively. In the Deepmind Control suite every task is made to be different by varying
the seed at creation. The seed determines the stiffness of the joints.
RL Environments: CartPole. We also conduct some experiments on the CartPole Barto
et al. (1983) environment. In this case, we use a continuous control version of it and
formulate it as a LQR problem. The environment has a single continuous action and a
state space s ∈ R4. To create different tasks we vary the environmental parameters of the
problem, namely the gravity, mass of cart, mass of pole the length of the pole.

D.2 Impacts of Realisability

In the experiment depicted in Figure 5, we investigate the convergence rate and the jump-
start improvement of the MLEMTRL algorithm on 100 independent target MDP realisations
at six different levels of divergence. The divergence is measured from the centroid of the
convex hull to the target MDP. Further, in the topmost row, all of the target MDPs belong
to the convex hull of source models.

As we can see, in this setting, identification of the true model occurs rapidly. One
reason for this is because of the near-determinism of the environment. Compared to the
agent learning from scratch, we observe zero-regret with faster convergence. As we go from
top-left to bottom-right, the divergence increases. For the bottom-most row, we can again
observe a faster learning rate. In this case, the degradation in performance increases with the
divergence, resulting in poor performance in the final case. The experiment demonstrates
that under the TRL framework, we require that the source models are not too dissimilar
from the target model.

D.3 Impacts of Multi-Task Learning as a Baseline

In Figure 6 we investigate the performance increase of using multi-task RL and transfer
RL compared to regular RL. The baseline algorithm is Soft Actor-Critic and its associated
multi-task and transfer learning formulations. As we can see, MT-SAC-TRL appears to
have overall strongest performance, with MT-SAC a close second. Because of the nature of
the problem (unbounded negative rewards), it is also possible for the algorithms to diverge
during learning, which further strengthens the argument for using multi-task or transfer
learning for robustness.

24

Transfer RL with Maximum Likelihood Estimates

0

100

200

0

100

200

0

100

200

*
(

s)

101 1030

100

200

101 1030

100

200

101 1030

100

200

*
(

s)

0.0 0.2 0.4 0.6 0.8 1.0
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

PSRL MLEMTRL

Figure 5: We compare MLEMTRL against PSRL in terms of convergence speed and early
performance. The value functions of the algorithms are plotted against the log of
the number of episodes. The shaded area is the 68% confidence of the mean over
multiple MDPs with the same model dissimilarity. In the topmost row, all of the
true MDPs are within the convex hull C(Ms). In the bottom row, the MDPs are
outside. As you go from top-left to bottom-right, the divergence from the true
model to the average model in the convex hull increases. For utility, higher values
are better.

D.4 Model-based Transfer Reinforcement Learning with Known Reward
Function

In Figure 7, we aim to contrast the difference from the figure in the main paper where now
the reward function is known a priori to MLEMTRL and PSRL.

25

Eriksson, Basu, Tram, Alibeigi and Dimitrakakis

101 103 105

Time steps

0
100

C
um

ul
at

iv
e

re
w

ar
d

LQR_2_1 Realisable

101 103 105

Time steps

0

100

C
um

ul
at

iv
e

re
w

ar
d

LQR_6_2 Realisable

101 103 105

Time steps

0

100

C
um

ul
at

iv
e

re
w

ar
d

LQR_2_1 Non-Realisable

101 103 105

Time steps

0

100

C
um

ul
at

iv
e

re
w

ar
d

LQR_6_2 Non-Realisable

SAC MT-SAC MT-SAC-TRL

Figure 6: Figure depicting the performance boost of using multi-task and transfer rein-
forcement learning compared to standard reinforcement learning. The y-axis
represents average cumulative reward at every time step and the shaded region
is the standard error.

26

Transfer RL with Maximum Likelihood Estimates

101 103 105

Time steps

100

101

C
um

ul
at

iv
e

re
w

ar
d

Chain Realisable

101 103 105

Time steps

100

101

C
um

ul
at

iv
e

re
w

ar
d

Chain Non-Realisable

PSRL MT-SAC MT-SAC-TRL MT-PPO MT-PPO-TRL MLEMTRL

Figure 7: Performance of MLEMTRL, the meta algorithms, and the baselines for the case
with known reward function in Chain. The y-axis is the average cumulative
reward at every time step and the shaded region is the standard error.

27

	1 Introduction
	2 Related Work
	3 Background

	4 A Taxonomy of Model Transfer RL
	4.1 MTRL: Problem Formulation
	4.2 Three Classes of MTRL Problems
	5 MLEMTRL: MTRL with Maximum Likelihood Model Transfer
	6 Theoretical Analysis
	7 Experiments
	8 Discussions and Future Work

	A Detailed Proofs
	A.1 Proof of Theorem 1
	A.2 Proof of Remark 2

	B Details of Planning: RiccatiIteration
	C Meta-Algorithm for MLEMTRL in the Non-Realisable Setting
	D Additional Experimental Analysis
	D.1 Experimental Setup
	D.2 Impacts of Realisability
	D.3 Impacts of Multi-Task Learning as a Baseline
	D.4 Model-based Transfer Reinforcement Learning with Known Reward Function

