
HMComp: Extending Near-Memory Capacity using Compression in
Hybrid Memory

Downloaded from: https://research.chalmers.se, 2024-07-17 18:14 UTC

Citation for the original published paper (version of record):
Shao, Q., Arelakis, A., Stenström, P. (2024). HMComp: Extending Near-Memory Capacity using
Compression in Hybrid Memory. Proceedings of the International Conference on Supercomputing:
74-84. http://dx.doi.org/10.1145/3650200.3656612

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



HMComp: Extending Near-Memory Capacity using Compression
in Hybrid Memory

Qi Shao
qisha@chalmers.se

Chalmers University of Technology
Gothenburg, Sweden

Angelos Arelakis
angelos.arelakis@zptcorp.com

ZeroPoint Technologies
Gothenburg, Sweden

Per Stenström
pers@chalmers.se

Chalmers University of Technology
ZeroPoint Technologies
Gothenburg, Sweden

ABSTRACT
Hybrid memories, especially combining a first-tier near memory
using High-Bandwidth Memory (HBM) and a second-tier far mem-
ory using DRAM, can realize a large and low cost, high-bandwidth
main memory.

State-of-the-art hybrid memories typically use a flat hierarchy
where blocks are swapped between near and far memory based on
bandwidth demands. However, this may cause significant overheads
for metadata storage and traffic. While using a fixed-size, near-
memory cache and compressing data in near memory can help,
precious near-memory capacity is still wasted by the cache and the
metadata needed to manage a compressed hybrid memory.

This paper proposes HMComp, a flat hybrid-memory architec-
ture, in which compression techniques free up near-memory ca-
pacity to be used as a cache for far memory data to cut down
swap traffic without sacrificing any memory capacity. Moreover,
through a carefully crafted metadata layout, we show that meta-
data can be stored in less costly far memory, thus avoiding to waste
any near-memory capacity. Overall, HMComp offers a speedup of
single-thread performance of up to 22%, on average 13%, and traffic
reduction due to swapping of up to 60% and by 41% on average
compared to flat hybrid memory designs.

CCS CONCEPTS
• Computer systems organization→ Architectures.

KEYWORDS
Hybrid Memory, Memory Management, Memory Compression,
HBM

ACM Reference Format:
Qi Shao, Angelos Arelakis, and Per Stenström. 2024. HMComp: Extending
Near-Memory Capacity using Compression in Hybrid Memory. In Pro-
ceedings of the 38th ACM International Conference on Supercomputing (ICS
’24), June 04–07, 2024, Kyoto, Japan. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3650200.3656612

This work is licensed under a Creative Commons Attribution International
4.0 License.

ICS ’24, June 04–07, 2024, Kyoto, Japan
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0610-3/24/06
https://doi.org/10.1145/3650200.3656612

1 INTRODUCTION
Dynamic random-access memory (DRAM) is plagued by limited
bandwidth. To mitigate it, heterogeneous memory systems consist-
ing of a two-level main-memory hierarchy, a.k.a. hybrid memory,
is an attractive way of addressing this deficiency. In this paper, we
consider two-tier, hybrid memories with High-Bandwidth Memory
(HBM) being the first-tier or Near Memory (NM) and DRAM being
the second-tier or Far Memory (FM). HBM typically offers sixteen
times higher bandwidth than DRAM [25, 29] to accommodate the
bandwidth needed by data-intensive applications but the cost of
HBM is substantially higher than DRAM. Consequently, this type
of hybrid memory can provide a main memory that matches the
high bandwidth of HBM, possesses a size equivalent to DRAM, and
maintains a cost that is almost as low as that of DRAM.

Prior art has investigated two broad approaches to manage hy-
brid memories: cached and flat hybrid memories. In a cached hybrid
memory, NM is used as a cache for FM, managed transparently to
the operating system [9, 13, 14, 16, 19, 21, 28, 35]. However, for a
hybrid memory using HBM and DRAM as NM and FM, respectively,
as we do in this paper, the amount of DRAM is often a small factor,
say eight, more than the amount of HBM. Hence, by not exposing
NM to the (operating) system, a significant amount of memory
capacity is wasted.

In a flat hybrid memory, NM as well as FM contribute to the flat
physical address space making the entire hybrid-memory capacity
available to the (operating) system. Here, bandwidth-demanding
pages mapped in FM (e.g., DRAM) are typically swapped by less
bandwidth-demanding pages residing in NM (e.g., HBM) [6, 8, 11,
17, 18, 22]. Unfortunately, changing the page mapping entails sig-
nificant operating-system induced overhead along with the traffic
overhead of swapping pages. To reduce the former type of overhead,
prior art has proposed remapping mechanisms at the hardware
level and have considered smaller grain sizes [7, 20, 26, 27, 30–33].
However, the metadata needed to track finer-grain access units for
remapping can consume a significant portion of the NM capacity
and can require significant on-chip memory resources for keeping
remapping metadata.

Hybrid2 [33] and Baryon [20] propose a middle ground between
cache and flat hybrid memories by statically setting aside a portion
of NM to cache data from FM to avoid costly swap operations. The
rest of the NM capacity is available to the system in flat mode.While
Hybrid2 allows for fine-grain swapping and caching, metadata still
consumes precious space in NM. Unlike Hybrid2, Baryon addition-
ally compresses data in NM to agnostically expand its capacity for
cache or flat space. However, cache space is still statically set aside
from the flat space and compression necessitates a staging area to

74

https://orcid.org/0000-0001-9640-4525
https://orcid.org/0000-0001-6809-9797
https://orcid.org/0000-0002-4280-3843
https://doi.org/10.1145/3650200.3656612
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3650200.3656612
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3650200.3656612&domain=pdf&date_stamp=2024-06-03


ICS ’24, June 04–07, 2024, Kyoto, Japan Qi Shao, Angelos Arelakis, and Per Stenström

stabilize compressed data. Both approaches contribute to less
NM capacity being available to the system.

This paper proposes Hybrid Memory Compression (HMComp).
Unlike previous work, HMComp (1) exposes the entire NM plus
FM capacity in flat mode to the system and (2) dynamically ex-
poses a cache in NM from capacity made available from com-
pressing data in NM. The freed-up cache is used to bring more
bandwidth-demanding FM data into NM to avoid costly swap op-
erations. Through its novel management along with a carefully
crafted metadata layout, metadata can be kept in FM. HMComp im-
poses virtually no area overhead in NM for metadata or for staging.

HMComp unlocks space for caching by selectively compressing
data in NM. This is done by dynamically monitoring compress-
ibility and bandwidth demands of fine-grain access units in FM.
By allowing fine-grain management of hybrid memory, HMComp
carefully manages compressed blocks in HBM with a minimum of
metadata needed. For example, it compresses HBM blocks where
they originally are mapped and uses surplus ECC bits (in HBM) in
a clever way to locate a compressed block and eliminates the use
of remap tables in NM altogether.
Contributions:

• HMComp – a novel hybrid memory architecture – that ex-
poses the entire NM and FM capacity to the system. Further,
HMComp compresses data to free up NM capacity (HBM) to
cache bandwidth-demanding blocks from FM (DRAM). This
includes techniques for dynamically assessing compressibil-
ity and bandwidth demand of fine-grain access units in FM.

• A novel metadata layout that keeps the overhead low by,
among other techniques, placing compressed blocks at the
same place as uncompressed blocks and using surplus ECC
bits to store metadata in NM compactly. This eliminates the
need for any metadata in NM and leads to modestly-sized
on-chip memory structures to cache remapping metadata
from FM.

• HMComp is quantitatively compared to state-of-the-art flat
hybrid memory schemes. The evaluation shows that HM-
Comp offers a speedup of single-thread performance of up to
22% and on average 13% and a swap traffic reduction of up to
60% and by 41%, on average, compared to flat hybrid memory
designs. Finally, we show that a quite modest metadata cache
of 256 KB suffices.

Outline of paper: We provide background and further motivation
of the study in Section 2. In Section 3, we introduce HMComp. We
move on to the experimental results presenting the methodology
in Section 4 and the results in Section 5. Finally, we conclude in
Section 6.

2 BACKGROUND
This section first establishes a baseline system for HMComp in
Section 2.1. Then, we provide further motivation for the approach
taken in HMComp in Section 2.2.

2.1 Baseline
The assumed baseline system is shown in Figure 1 with the addi-
tional structures needed for HMComp (Section 3) shaded in gray.

Figure 1: Baseline system with and without HMComp. HM-
Comp extensions are marked in gray.

We consider a conventional multicore chip with a number of proces-
sors or cores (marked P), each connected to a private L1/L2 cache
hierarchy and all cores and L1/L2 hierarchies are connected to a
level-3 (L3) shared, last-level cache (LLC). LLC requests are routed
to an HBM or DRAM controller, depending on whether a page is
mapped to NM or FM (HBM and DRAM in this paper, respectively)
as dictated by the virtual/physical page address mapping.

In our first baseline system, denoted BL1, the OS manages the
HBM/DRAM in flat mode and interleaves pages using congruence
groups [7] as shown in Figure 2. Here, the page size is 𝑁 and page
A is mapped to NM whereas pages B, C, D and E are mapped to
FM, assuming a congruence group with one NM page and four FM
pages. The structure of a congruence group can be likened to that
of a direct-mapped cache, since pages B, C, D, and E are all vying
for space within page A.

Our second baseline system, denoted BL2 is built on top of BL1.
When a page (or portion of it) mapped to FM is deemed bandwidth
demanding, it is remapped to NM transparently to the operating
system. This involves a swap operation with the page (or portion
of it) congruent to it and located in NM. For example, block 𝐾 in
page C in FM is congruent with block 𝐾 in page A in FM and the
two blocks will be swapped with each other (see Figure 2).

Figure 2: Congruence grouping of pages in HBM and DRAM.

The granularity chosen as the portion of a page to monitor
bandwidth demand will determine the amount of metadata needed

75



HMComp: Extending Near-Memory Capacity using Compression in Hybrid Memory ICS ’24, June 04–07, 2024, Kyoto, Japan

to keep track of it. The finer the grain size the more metadata is
needed. This will push towards larger grain sizes. On the other hand,
a too large grain-size can lead to overfetching of data due to limited
spatial locality, resulting in too high traffic overhead for swapping.
Therefore, the trade-off when selecting a grain size is between
metadata overhead and spatial locality, and grain sizes other than
pages and blocks are considered in this paper. Throughout the paper,
and to clarify terminology, we will deal with the following grain
sizes of access units: Pages, subpages, superblocks and blocks, where
the size of pages > subpages ≥ superblocks > blocks. As exemplary
sizes of these access units, we will assume 4KB, 2KB, 512B and 64B
for pages, subpages, superblocks, and blocks, respectively, if not
stated otherwise.

2.2 Motivation
The baseline systems described in Section 2.1 are operated in flat
mode meaning that BL1 as well as BL2 expose the entire NM as
well as FM capacity to the operating system. Typically, when an
access unit in FM, being a page, subpage or superblock, is deemed
bandwidth demanding, it will be swapped by the corresponding
congruent access unit in NM. The swapping of access units between
NM and FM can cause overhead in terms of increased traffic. In a
hybrid system with HBM (being NM) and DRAM (being FM), this
can take away the bandwidth advantage and performance potential
of such a hybrid memory.

To reduce the traffic overhead caused by swapping in flat hybrid
memories, Hybrid2 [33] proposes to statically set aside a portion
of the NM capacity as a cache. This allows bandwidth demanding
access units at the granularity of super-blocks (e.g., 256-B units) in
FM to be cached in NM. Hybrid2 saves traffic because caching an
access unit, as opposed to swapping, leads to less traffic between
NM and FM. However, statically setting aside NM capacity for
caching nonetheless reduces the amount of NM capacity exposed
to the system.

Like Hybrid2 [33], Baryon [20] also sets aside a portion of the NM
capacity as a cache statically to transform expensive swap to fast
NM cache operations. But unlike Hybrid2, Baryon uses compression
techniques to expand the capacity of the flat as well as the cache
area of NM. As Baryon is agnostic to the choice of compression
algorithm, the cache portion of NM can be potentially expanded
by the compression factor offered by the compression algorithm at
hand. While Baryon potentially can also expand the flat portion of
NM, this would require interventions with the operating system,
such as with ballooning [34]. Baryon does not address this.

Hybrid2 as well as Baryon carefully organize the metadata to
locate whether fine-grain access units, in effect superblocks, are
cached in NM or are in the flat space of NM or FM. However,
metadata is stored in NM and consumes precious NM capacity. In
addition, since compression is subject to changes in the size of a
compressed access unit, Baryon lets newly compressed superblocks
(called sub-blocks in Baryon terminology) stay in a staging area to
stabilize. When the compression ratio has stabilized, superblocks
are committed to the cache area in NM or in the flat area of NM or
FM.

The bottom-line is that statically allocated NM caches in prior
art reduce NM capacity. Moreover, metadata needed for remapping

in Hybrid2 as well as Baryon further reduces the available NM
capacity. Finally, Baryon’s approach to enable compression leads
to further reduction of NM capacity through a staging area located
in NM. This paper shows how HMComp can expose the entire NM
and FM capacity to the system while offering a NM cache through
freed up NM capacity using compression to improve performance
of a hybrid memory.

3 HMCOMP: EXTENDING NEAR-MEMORY
(NM) CAPACITY USING COMPRESSION

In this section, we present the detailed design of HMComp. Sec-
tion 3.1 provides an overview of HMComp. Then, in Section 3.2,
we describe the metadata layout followed by a detailed description
of the operation of HMComp in Section 3.3.

3.1 HMComp Overview
The objective of HMComp is to free up capacity in NM using fast
compression techniques and use the freed-up capacity to cache
bandwidth-demanding FM blocks. Without loss of generality, NM
in this paper uses HBM devices whereas FM uses DRAM devices.

Just like in the baseline systems in Section 2.1, pages are mapped
by the operating system to NM and FM using congruence groups.
The baseline is extended with a functional block, denoted HM-
Comp which is gray-shaded in Figure 1. HMComp intercepts all
LLC requests. Initially, HMComp adopts the policy of BL1 to all FM
pages meaning that none of them are subject to swapping from the
very start. This is referred to as non-swap mode. However, when
a FM-mapped page is accessed, it will be tracked by a reference
counter at the granularity of a subpage. The reference counter will
be incremented for each access to said subpage. For as long as the
reference counter is below a preset threshold (32 is chosen in the
experimental results), all superblocks of the tracked subpage will
be accessed from FM and will not be swapped. However, when
the reference counter exceeds a preset threshold, we say that the
subpage is bandwidth demanding and the subpage will turn into
swap mode. From this point, all accessed FM superblocks associated
with a subpage in swap mode will be swapped with their corre-
sponding NM superblocks belonging to the same congruence group.
For details, see Section 3.3.

Once a subpage switches to swap mode, attempts will be made
to gain cache space in NM through compression. This is done by
attempting to compress a FM superblock in swap mode together
with its corresponding congruent NM superblock. We note that
HMComp is agnostic to the choice of compression algorithm and
that any fast compression algorithm in prior art can be used (e.g., [1–
3, 5, 15, 24]).

When a FM superblock is requested, HMComp will also request
the corresponding congruent NM superblock. Next, for each pair
of blocks in the two superblocks, it will be decided whether these
two blocks compress sufficiently well meaning that they can be
accommodated within the same 64-B block frame. If a certain frac-
tion of the blocks within a requested superblock is sufficiently well
compressed, using above definition, the corresponding subpage
is deemed to be in cache/compress mode. We have experimentally
established that a fraction of seven blocks out of eight is a good

76



ICS ’24, June 04–07, 2024, Kyoto, Japan Qi Shao, Angelos Arelakis, and Per Stenström

trade-off. All sufficiently well compressible blocks inside said su-
perblock will be compressed. An uncompressible FM-mapped block
will stay uncompressed in FM.

From now on, an attempt is made to compress all superblocks
inside the subpage to be placed in NM. HMComp will then update
the metadata table (for details, see Section 3.2) so that subsequent
requests for the remapped superblocks are destined to NM with no
involvement of FM. Otherwise, the subpage will remain in swap
mode and the requested superblock will be swapped with the corre-
sponding congruent superblock in NM (for details, see Section 3.3).

Figure 3: Combining compressed & cached blocks in congru-
ence groups. Comp stands for compressed.

To see how compressible blocks are compressed, Figure 3 shows
three contiguous compressed blocks (blocks 𝑁 − 1, 𝑁 , and 𝑁 + 1)
from two congruent pages A and B. Here, blocks 𝑁 − 1, 𝑁 , and
𝑁 + 1 from page B in FM are compressed and stored together with
their corresponding congruent blocks 𝑁 − 1, 𝑁 , and 𝑁 + 1 from
page A in NM. If the LLC subsequently requests block 𝑁 in page
B, HMComp will reroute the request to NM based on the metadata
to the cached 𝑁 th block in page A. In the case that the FM block
and the corresponding congruent NM block cannot fit into the 64-B
block frame, the FM block will remain in FM and HMComp will
verify the response from NM and then forward the request to FM
(for details, see Section 3.3).

3.2 HMComp: Metadata Layout
For HMComp to decide which action to take for each LLC request,
it uses a metadata cache. LLC requests will be routed either to NM
or FM. In Section 3.2.1, we describe the layout of the metadata table.
Section 3.2.2 describes the organization of the metadata cache and,
finally, Section 3.2.3 describes the metadata needed in NM.

Figure 4: Metadata table layout with a) one entry per congru-
ence group b) each entry has metadata for the two subpages
of a referenced FM page and c) metadata for each subpage.

3.2.1 Metadata Table Layout. Recall that HMComp initially oper-
ates the hybrid memory in flat mode, where a page is mapped to NM
or FM by the operating system. However, when the reference count
of a referenced FM-mapped subpage exceeds a preset threshold, it
will be remapped from FM to NM at the granularity of superblocks.
From this point, requested FM-mapped superblocks belonging to
that subpage will be swapped with the corresponding congruent
NM-mapped superblock.

The layout of the metadata table is shown in Figure 4. The meta-
data table associates an entry with each congruence group, as
shown in Figure 4a). Hence, it has as many entries as the num-
ber of pages in NM. It is stored in FM but cached in the metadata
cache in HMComp (see Figure 1). The metadata entry for a congru-
ence group is constructed to track one out of all FM pages belonging
to a congruence group. Hence, as shown in Figure 4b) and assuming
two subpages per page, a metadata entry for a congruence group
needs a Tag of 2 bits to designate one out of four tracked FM pages
in the congruence group and the two subpages (2 KB each) belong-
ing to the tracked page (4 KB), with 15 bits of meta data for each
subpage.

The 15-bit metadata field for each subpage is shown in Figure 4c).
To the left, a single bit (Swap/Comp) together with the content
of the reference counter (Reference Counter), designates whether
the subpage is in non-swap, swap or cache/compress mode. If the
reference count is below a preset threshold, the subpage is in non-
swap mode and requests will be destined to NM or FM based on the
virtual-to-physical address mapping. If the reference count is above
a preset threshold, the Swap/Comp flag designates if the subpage
is in swap mode (flag is set) or in cache/compress mode (the flag is
reset). Next, there is one valid bit for each of the four superblocks
(default size is 512 B) that belong to a subpage (default size is 2 KB).
A valid superblock bit designates that the FM-mapped superblock
is swapped (Swap/Comp bit set) or compressed in NM together
with its corresponding NM-mapped superblock (Swap/Comp bit
cleared). There are also 4 dirty superblock bits. Whenever a request
is written back in cache/compress mode, the superblock dirty bit
will be set. Finally, to the right in Figure 4c), the reference counter
for a superblock uses 6 bits.

3.2.2 Metadata Cache. Recall that we assume that the metadata
table is stored in FM. HMComp is configured to cache contents of
the metadata table using a metadata cache as shown in Figure 1.
As we will see in Section 5, a 256-KB metadata cache with 8-way
associativity will impose negligible impact on performance. Each
metadata cache entry (64 B) in the metadata cache contains 16
consecutive metadata entries (32 bits each). Thus, the metadata
cache is indexed by an address corresponding to the requested
congruence group, stripping out the least significant 4 bits. Given
that the NM size is𝐶 = 2𝑐 and the page size is 𝑃 = 2𝑝 there are 𝑁 =

2𝑐−𝑝 congruence groups. The congruence group can be stripped
out from the physical page number taking the most significant 𝑐
bits.

On a metadata cache hit, HMComp will update the reference
counter and retrieve the request’s corresponding metadata entry
from the metadata cache. Conversely, on a metadata cache miss,
HMComp will first evict an entry to make room for the requested
metadata entry and, if needed, write back the evicted metadata

77



HMComp: Extending Near-Memory Capacity using Compression in Hybrid Memory ICS ’24, June 04–07, 2024, Kyoto, Japan

entry to FM. Then, the missing metadata entry from FM is fetched
into the metadata cache.

Figure 5: Block-level metadata in unused ECC bits. A green
rectangle represents a NM block while a gray rectangle rep-
resents a FM block.

3.2.3 Near-Memory Metadata Support. Figure 5 shows the map-
ping of blocks inside two pages (A and B) in different operating
modes. Here, pages A and B belong to the same congruence group
and page A is mapped to NM whereas page B is mapped to FM.
Recall that LLC block requests, as intercepted by HMComp, will
be destined to NM in three cases with reference to Figure 5. The
first case is in non-swap mode, when the block is mapped to NM.
This corresponds to the baseline (BL1) in Figure 5a). The second
case is in swap mode, when the Swap/Comp bit is set and the su-
perblock valid bit is set. This corresponds to Swap in Figure 5c).
Here, all blocks in page A have been swapped with the blocks in
page B. Finally, the third case is in cache/compress mode when
the Swap/Comp bit is reset and the superblock valid bit is set (see
Figure 5). This corresponds to Cache & Compress in Figure 5b).

In cache/compress mode it is not certain that the requested
block is in NM as a block may not compress sufficiently. Therefore,
block-level information must be maintained in NM whether the
FM-mapped block is compressed together with the corresponding
congruent NM-mapped block. If not, the FM-block is placed in FM
and the request has to be rerouted to FM.

HBMdevices associate 16 ECC bits with each 32-B access unit [12].
When the NM-mapped and FM-mapped blocks in the same congru-
ence group are compressed to fit into a 64-B block frame (two 32-B
access units), we propose to use 6 unused ECC bits (out of 16) to
encode the validity and size of the compressed NM-mapped and
FM-mapped blocks. If the FM-mapped block is not compressed, it
is stored in FM. This case is recorded by setting all six ECC bits
to zero. If the FM and NM-mapped blocks are compressed, their
compressed sizes will be recorded in the unused respective six ECC
bits. For example, if the compressed size is 63 bytes, the 6 ECC bits
will be encoded ’111111’ and if the compressed size is 2 bytes, the 6
ECC bits will be encoded ’000010’. As shown in Figure 5, the NM
block is placed starting at the original address of the block frame
whereas the corresponding congruent FM-mapped block is mapped
to the end of the block frame. ’Pointer’ refers to the 6 ECC bits
and are in effect interpreted as the location of the last byte. In the

case ECC bits cannot be used, an alternative is to store metadata
needed for compression, i.e., the size of the compressed block as
part of the unused portions of the block. The only metadata needed
outside of the HBM would be to designate whether or not the block
is compressed, a single bit per block.

3.3 HMComp: Detailed Operation
We now review in detail the operation of HMComp. Recall that
HMComp initially, when in non-swap mode with respect to an LLC
request, will send the LLC request to NM or FM depending on its
virtual-to-physical mapping.

3.3.1 Mode Changes. A subpagewill make amode change from the
non-swap mode to swap mode when the reference count exceeds a
preset threshold. Figure 7 shows the process of going from swap
mode to cache/compress mode for a subpage. For each subpage in
swap mode and at each FM superblock request for that subpage,
the first action is to request the FM superblock along with the
corresponding congruent NM superblock. All blocks in the two
superblocks will be pair-wise compressed. A pair of blocks that are
compressed and can fit into a 64-B blockframe will be successfully
compressed. If at least seven out of all eight blocks in a superblock
are successfully compressed, the valid bit for said superblock will
be set and the subpage will be in cache/compress mode. Otherwise,
the subpage is set to swap mode.

3.3.2 Transaction Flow for Last-level Cache Requests. We now con-
sider the transaction flow associatedwith LLC read orwrite requests
to FM-mapped pages as shown in Figure 6 in the case the subpage
is in swap mode (Figure 6a)) and cache/compress mode (Figure 6b)).
As shown in Figure 6a), in swap mode, upon receiving a FM read
or write request, HMComp will check whether the superblock is
already in NM as a result of an earlier swap operation. If the su-
perblock Valid bit is set, HMComp will forward the request to NM.
If the valid bit is cleared, HMComp will swap the superblock in FM
with the superblock in NM. This applies to both read and write FM
requests in swap mode.

When considering the transactions of read requests to subpages
in cache/compress mode, HMComp also first verifies the validity of
the superblock. However, it is possible that some of the FM blocks
within the superblock are cached in the compressed NM, while a
few FM blocks still remain in FM. The latter applies to FM blocks
that cannot be compressed and stored within a 64-B block frame
along with the corresponding congruent and compressed NM block.
For this reason, HMComp will examine the response from NM,
including the data and relevant ECC bits. If the ECC bits are none-
zero, the FM block is compressed and cached and HMComp will
respond to LLC. If the ECC bits are zero, however, HMComp will
forward the request to FM, as shown in Figure 6b).

The process for handling FM write request hits to subpages in
cache/compress mode is illustrated in Figure 8. The issue here is
that a written back block may, after compression, change in size
and may not fit anymore. First, a test is carried out whether the size
of the compressed written back block is greater than the already
existing block. If not, the block is written back and the ECC bits
are updated to reflect its new size. Meanwhile, the superblock dirty
bit is set. However, if it exceeds the size but can still fit into the

78



ICS ’24, June 04–07, 2024, Kyoto, Japan Qi Shao, Angelos Arelakis, and Per Stenström

Figure 6: Transaction flow for a) LLC read/write requests in swap mode and b) read requests in cache/compress mode.

Figure 7: LLC read and write transactions for subpages in
swap mode (left) and cache/compress mode (right).

64-B block frame together with the NM-mapped block, the block
is written into NM and the process terminates. Finally, if it does
not fit, the block will be forwarded to FM and the unused ECC bits
of the congruent block in NM will be reset to reflect that it is not
valid.

Figure 8: Transaction flow for write requests in
cache/compress mode.

3.3.3 Other Operations Needed. When a page in a congruence
group is being tracked, it can happen that another page in that

same congruence group will be accessed. For as long as the the first
page is not in swap mode, accesses to other pages inside the same
congruence group will be disregarded. However, when the preset
threshold is exceeded and the page will turn into swap mode, ac-
cesses by other pages inside the congruence group will decrement
the reference counter. If it hits zero, the page will not be considered
bandwidth demanding anymore and will make a transition from
either cache/compress or swap mode to non-swap mode. This tran-
sition necessitates that all superblocks that have been potentially
migrated to NM in non-compressed or compressed fashion must
move back non-compressed to FM. We will call this operation page
consolidation.

Page consolidation is also needed when the mapping is changed
for a page by the operating system. Then, typically, TLB entries to
the page have to be invalidated (TLB shootdown) and all blocks
from said page must be evicted too. Page consolidation does exactly
the latter as follows. The page metadata is consulted. For each
subpage and each superblock of that subpage, if the superblock is
in NM in swap mode, it will be swapped with the superblock in FM.
If it is cached and compressed in NM, it will be decompressed and
written back if the superblock is dirty or silently evicted if it is not
dirty.

4 EXPERIMENTAL METHODOLOGY
This section provides the details of the experimental setup in Sec-
tion 5.3.2, the benchmarks used in our evaluation in Section 4.2 and
the models we use in our evaluation in Section 4.3.

4.1 Simulation Methodology and Parameters
We use Gem5 [4] based on the Simpoint methodology [10]. We run
10 representative slices of each application. We warm up caches
before taking measurements in each slice for 100 million instruc-
tions and then replay the following 500 million instructions. We
use workload mixes of eight benchmarks for eight cores in rate
mode with the same benchmark run on every core.

We adopt the timing parameter configuration of HBM and DDR4
in Gem5, listed in Table 1. For the hybrid memory system, the
capacity ratio between HBM and DDR4 is set to 1:4. We allocate

79



HMComp: Extending Near-Memory Capacity using Compression in Hybrid Memory ICS ’24, June 04–07, 2024, Kyoto, Japan

4-KB pages in an interleaved fashion to form congruence groups
between HBM and DRAM according to Section 2.1 with five con-
secutive pages mapped so that the first one is mapped to HBM and
the next four pages are mapped to DRAM. Each entry (64 bytes) in
the metadata cache contains 16 consecutive metadata entries. Thus,
the timing parameter of a 256-KB metadata cache is estimated in
CACTI the same way as a classic 16-KB cache. Table 1 shows the
detailed architectural parameters used.

Table 1: Simulator configuration.

Cores 8 cores, out-of-order, ARM, 3.2GHz

L1 Cache Private, 64KB, 4-way, 4 cycle access latency

L2 Cache Private, 512KB, 8-way, 12 cycle access latency

L3 Cache Shared, 8MB, 8-way, 20 cycle access latency

Metadata
Cache

512 sets, 8-way, 16 entry per line, 5-cycle latency

Compressor CPack, 13-cycle compression latency, 8-cycle decom-
pression latency [5]

Near Memory HBM2, 1GHz, 2GB, 8 128-bit channels, 8 banks,
tCAS=28ns, tRCD=12ns, tCL=18ns, tRP=14ns

Far Memory DDR4-2400, 8GB, 64 bit channel, 8 banks, tCAS=32ns,
tRCD=14.16ns, tCL=14.16ns, tRP=14.16ns

4.2 Benchmarks
We simulate all of the SPEC2017 benchmarks except the following:

• roms and omnetpp are excluded because they do not run
properly on Gem5;

• imagick, leela, povray, and exchange2 are excluded
because of the small memory footprint (< 10MB) making
them unsuitable for this study;

• nab, namd, deepsjeng, perlbench, parest, and bwaves
are excluded because of too low LLCMisses-Per-Kilo-Instruction
(MPKI) (MPKI < 1). However, we show results for deepsjeng
and bwaves to represent this group of applications to show
their impact on HMComp.

The compression algorithm used is CPack [5] with the compres-
sion and decompression latencies shown in Table 1. Table 2 shows
the LLC MPKI statistics for a single core, the average compression
ratio of blocks (64 bytes) in memory and memory footprint for 8
cores.

4.3 Simulation Models
We compare HMComp with a baseline configuration with HBM
in flat mode without swapping (BL1), a baseline with swapping
(BL2) and the two closest state-of-the-art proposals: Hybrid2 [33]
and Baryon [20]. The sizes of pages, subpages, superblocks and
blocks are by default 4KB, 2KB, 512B and 64B, respectively, although
we will present a sensitivity analysis with respect to the size of
subpages and superblocks in Section 5.3.

• BL1. The baseline hybrid memory system according to Sec-
tion 2.1.

Table 2: Benchmark characteristics.

Programs MPKI Compression Ratio Memory Footprint
mcf 5.5 2.13 5.10 GB
blender 4.86 1.33 5.02 GB
xalancbmk 4.67 1.52 2.00 GB
gcc 4.32 3.22 7.68 GB
lbm 4.15 1.33 3.20 GB
fotonik3d 2.95 3.76 7.22 GB
cactuBSSN 2.27 1.16 6.18 GB
wrf 1.11 2.28 1.76 GB
bwaves 0.87 1.28 6.89 GB
deepsjeng 0.07 2.46 5.46 GB

• BL2. In BL2, superblocks referenced frequently in FM, ac-
cording to the HMComp methodology in Section 3, will be
swapped with superblocks in the same congruence group in
NM.

• Hybrid2. For Hybrid2, we statically allocate a NM cache of
64 MB as proposed in Hybrid2 [33]. We model it by modi-
fying HMComp according to Section 3 to fix the cache size
to 64 MB after the initialization process. Hybrid2 will then
decide whether to write back data or swap them to create
the available NM cache space until the cache becomes full.
To simplify the implementation of Hybrid2, we do not save
space in NM for the remap table but instead use the metadata
cache provided by HMComp. This will give our implementa-
tion of Hybrid2 a performance advantage over the original
proposal[33].

• Baryon. Baryon [20] is modeled as Hybrid2 with the differ-
ence that the size of the NM cache is not limited to 64MB but
is instead 64MB times the compression ratio using the CPack
compression algorithm of the benchmark being modelled
(see Table 2).

5 EXPERIMENTAL RESULTS
In this section, we present the results of the evaluation of HMComp.
Section 5.1 evaluates the impact of HMComp on performance com-
pared with the baselines (BL1 and BL2) and the closest state-of-the-
art models: Hybrid2 and Baryon. Section 5.2 evaluates the impact
of HMComp on the FM traffic and Section 5.3 presents a sensitivity
analysis of selected architectural parameters.

5.1 Speedup of HMComp over Other Models
Figure 9 shows the improvement of Instructions Per Cycle of BL2,
Hybrid2 and Baryon normalized to BL1. We can see that HMComp
achieves the best performance with an average speedup of 24.0%,
13.4%, 7.7%, and 4.1%, compared to BL1, BL2, Hybrid2 and Baryon,
respectively. In Figure 9 benchmarks are sorted according to their
MPKI as shown in Table 2 with the highest MPKI to the lowest
MPKI, from left to right.

To understand the results for each individual benchmark, Fig-
ure 10 depicts the average latency ratio of FM accesses to NM
accesses assuming BL1 and Figure 11 displays the ratio of FM su-
perblock request-hits in the cache/compress mode in NM. A higher
average latency ratio suggests a greater potential for performance

80



ICS ’24, June 04–07, 2024, Kyoto, Japan Qi Shao, Angelos Arelakis, and Per Stenström

0.8

1

1.2

1.4

1.6

mcf blender xalancbmk gcc lbm cactuBSSN wrf fotonik3d bwaves deepsjeng geomean

IPC

Baseline swap-only Hybrid2 Baryon HMComp

0%

20%

40%

60%

80%

100%

Read Req Write Req

0.8

1

1.2

1.4

1.6

1.8

2

Performance Improvement

BL1 BL2 Hybrid2 Baryon HMComp

0

0.2

0.4

0.6

0.8

1

0.0

1.0

2.0

3.0

4.0

5.0

0.8

1

1.2

1.4

1.6

mcf blender xalancbmk gcc lbm fotonik3d cactuBSSN wrf bwaves deepsjeng geomean

BL1 BL2 Hybrid2 Baryon HMComp

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 >16

mcf blender xalancbmk gcc lbm fotonik3d cactuBSSN

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 >16

blender xalancbmk lbm cactuBSSN

0.8

0.9

1

1.1

1.2

Performance Comparison

32KB 128KB 256KB 512KB 1MB 2MB #REF!

0.9

0.95

1

1.05

1.1

1.15

1.2

32KB 128KB 256KB 512KB 1MB 2MB

0

0.2

0.4

0.6

0.8

1

32KB 128KB 256KB 512KB 1MB 2MB

Figure 9: Geomean speedup of BL2, Hybrid2, Baryon and HMComp normalized to BL1.

Figure 10: FM average memory access latency ratio, normal-
ized to NM latency in BL1.

Figure 11: Fraction of FM superblock request that hit NM
superblocks in cache/compress mode.

enhancement through the caching or swapping of FM data into
NM. First we can see that HMComp shows a performance advan-
tage over Hybrid2 and Baryon for mcf, gcc, fotonik and wrf (see
Figure 9). As we can see in Figure 11, the fraction of FM superblock
accesses that hit in NM in cache/compress mode is about 70% for
mcf, close to 100% for gcc and fotonik and 80% for wrf. The reason
for the high fraction of accesses to NM is attributed to the high
compression ratio for these benchmarks. As shown in Table 2, the
average compression ratio per block is above 2× for the four bench-
marks; 2.13, 3.22, 3.76 and 2.28× for mcf, gcc, fotonik and wrf,

respectively. This would not lead to any performance advantage
for HMComp unless there is a significant latency gap between FM
and NM due to the higher bandwidth provided by NM (HBM). As
we can see in Figure 10, the average latency ratio of FM accesses to
NM accesses is more than two times for the same benchmarks; it is
2.2, 2.0, 2.4 and 2.1× for mcf, gcc, fotonik and wrf, respectively.

For blender, xalancbmk and bwaves, HMComp performs sim-
ilarly with Hybrid2 and Baryon and offers a slight performance
advantage over the two baselines: BL1 and BL2. As can be seen in
Table 2, the average per-block compression ratio is quite good –
1.33, 1.52 and 1.28× for blender, xalancbmk and bwaves, respec-
tively – although not as high as for the first set of benchmarks.
However, the fraction of FM accesses that hit in NM is substantially
lower (5%, 28% and 15% for blender, xalancbmk and bwaves, re-
spectively) which explains why the NM caches in Hybrid2, Baryon
and HMComp are not as effective and do not yield a noticeable
performance advantage over BL2.

As for deepsjeng, we can see from Table 2 that it compresses
quite well with a compression ratio of 2.46×. Moreover, as can be
seen from Figure 11, this translates into a NM hit ratio of 55%. Unfor-
tunately, the average latency ratio for FM accesses to NM accesses
is close to one which takes away any performance advantage of
BL2, Hybrid2, Baryon and HMComp over BL1. The reason is that
deepsjeng has a very low MPKI (0.07 according to Table 2).

For lbm, as we can see in Figure 9, HMComp performs slighly
worse than Hybrid2 and Baryon although it performs better than
BL2 and BL1. From Table 2, we can see that lbm offers a compres-
sion ratio that is quite low (1.33 ×). In addition, the fraction of
accesses that hit in NM (see Figure 11) is only about 20%. The stat-
ically assigned caches in Hybrid2 and Baryon give them a slight
performance advantage over HMComp. However, it is possible to
conceive a system that like Hybrid2 statically assigns a part of NM
as a cache and operates the flat part of Hybrid2 like HMComp. Such
a system would get the advantages of Hybrid2 as well as HMComp.
We leave it for future work to evaluate such a system.

Finally, for cactuBSSNwe see in Figure 9, that its performance is
slightly worse for all system models than for BL1. In Figure 12, we
collect statistics of the fraction of accesses to superblocks (y axis)
accessed a certain number of times (x axis) for blender, xalancbmk,

81



HMComp: Extending Near-Memory Capacity using Compression in Hybrid Memory ICS ’24, June 04–07, 2024, Kyoto, Japan

lbm and cactuBSSN. We show these statistics for the selected ap-
plications because they all exhibit high traffic for swap operations
according to Figure 11. Here, we can see that the hit rate in NM is
very low (less than 30%). Figure 12 shows that all superblocks in
cactuBSSN are accessed only 8 times whereas at least 30% of the
superblocks for the other benchmarks are accessed more than 16
times.

Figure 12: Histogram of access counters for 512-B su-
perblocks.

5.2 Impact on Swap Traffic

Figure 13: Swap traffic for Hybrid2, Baryon and HMComp
relative to BL2.

Figure 13 shows the traffic related to swap operations between
FM and NM for Hybrid2, Baryon and HMComp relative to BL2 for
each benchmark (the lower the better). Overall, HMComp manages
to cut the swap traffic by 41%, on average, compared to BL2. This
should be contrasted by only 5% and 23% lower traffic for Hybrid2
and Baryon, respectively, compared to BL2.

The reason for the slight reduction of traffic for Hybrid2 is that
it has a limited NM cache of only 64 MB. In contrast, Baryon and
HMComp take advantage of the high compression ratio of some
of the benchmarks to yield a substantially larger cache. Especially,
we can see that for mcf, gcc, wrf, and fotonik3d, where the
compression ratio ranges between 2.1 and 3.2× according to Table 2,
the traffic reduction is substantial. For Baryon, the traffic reduction
is about 40% for these benchmarks, whereas the traffic reduction
for the same benchmarks under HMComp is as much as 60%.

5.3 Sensitivity Analysis
This section presents sensitivity analysis of the performance re-
sults with respect to the ratio of the amount of DRAM to HBM

in Section 5.3.1, the metadata cache size in Section 5.3.2 and the
superblock granularity in Section 5.3.3.

5.3.1 Impact of Ratio of DRAM to HBM. So far, we have assumed
a memory configuration of 2-GB HBM and 8-GB of DRAM. To
explore the sensitivity of performance for memory configurations,
we also consider memory configurations with 1-GB HBM & 8-GB
DRAM and 4-GB HBM & 8-GB DRAM. If we decrease the amount
of NM (HBM) capacity we would expect a more severe bandwidth
bottleneck problem in FM. In this analysis we exclude bwaves and
deepsjeng because their MPKI are less than one (see Table 2).

Figure14 shows the IPC improvement for the two configurations
relative to BL1: 1-GB HBM & 8-GB DRAM to the left and 4-GB
HBM & 8-GB DRAM to the right. As can be seen in Figure14, when
we consider the configuration with 1-GB HBM & 8-GB DRAM,
performance of HMComp improves by 39.2%, while Baryon enjoys
an increase of 34.9% and Hybrid2 experiences a 28.3% improvement.
For the configuration with 4-GB HBM & 8-GB DRAM, the perfor-
mance improvements are as expected lower than for the default
configuration. HMComp shows a 22.0% improvement compared
to the BL1, while Baryon and Hybrid2 demonstrate improvements
of 18.8% and 16.1%, respectively. Overall, the results are consistent
with the default configuration.

5.3.2 Impact of Metadata Cache Size. So far, we have assumed a
metadata cache of 256 KB. Here, we explore a range of metadata
cache sizes: from 32KB to 2MB. We have established the access time
for the various cache sizes using CACTI [23]. These are shown in
Table 3. As we discuss in Section , considering that each entry (64
bytes) in the metadata cache contains 16 metadata entries (32 bits),
the timing parameter of a 256-KB metadata cache is configured as
a conventional 16-KB cache in CACTI.

Table 3: MetaData Cache Timing Parameter.

Size (Bytes) 32K 64K 128K 256K 512K 1M
Latency (ns) 0.47 0.47 1.31 1.37 1.73 1.78

Figure 15 shows the IPC, takingmisses to FM into account (where
the metadata table is stored), normalized to a metadata cache of
32KB. As we would expect, the speedup improves up to a cer-
tain cache size and then drops for some of the benchmarks (e.g.,
fotonik3d) because of longer cache hit time. Considering the geo-
metric mean of the speedup, we can see that performance peaks
at 256 KB. Hence, a 256-KB metadata cache seems to be the best
choice.

5.3.3 Impact of Superblock Granularity. The granularity of su-
perblocks needs to strike a balance between prefetching coverage
and accuracy. A too small a superblock will not capture the spa-
tial locality and too large a superblock would fetch useless data.
Additionally, the size of the metadata is also determined by the
granularity of the superblock. The larger the superblock, the less
metadata is needed. In order to establish the best superblock gran-
ularity, we conduct a sensitivity analysis with respect to its size.
The subpage size is kept fixed at 2KB consistent with proposals
in prior art [17, 20, 30, 31, 33]. The performance of HMComp as
normalized to BL1 is depicted in Figure 16. deepsjeng and bwaves
are not shown, since they have a low MPKI, according to Table 2.

82



ICS ’24, June 04–07, 2024, Kyoto, Japan Qi Shao, Angelos Arelakis, and Per Stenström

Figure 14: Performance improvement of two memory configurations relative to BL1. The left half shows a configuration with
1-GB HBM and 8-GB DRAM while the right half shows a confguration with 4-GB HBM and 8-GB DRAM.

Figure 15: Performance comparison with different metadata
cache sizes.

Figure 16: IPC improvements relative to BL1 versus size of
superblock ranging from 64B to 2048B.

As shown in Figure 16, the performance improvement of HM-
Comp, compared with BL1 for each core, increases from 12.8% to
26.4% and 27.1% when the superblock size is increased from 64B to
256B and 512B. However, when the size of the superblock is further
increased to 1KB and 2KB, the performance of HMComp deteri-
orates due to the limited spatial locality. Consequently, a 512-B
granularity of the superblock is a good tradeoff.

6 CONCLUSIONS
This paper proposes Hybrid Memory Compression (HMComp).
Unlike previous work, HMComp exposes the entire near memory
(NM) plus far memory (FM) capacity in flat mode to the system
while dynamically exposing a cache in NM from capacity made
available from compressing data in NM. The freed-up cache is used
to bring more bandwidth-demanding FM data into NM to avoid
costly swap operations. Through its novel management along with
its metadata layout, metadata can be kept in FM. HMComp imposes
virtually no area overhead in NM for metadata or for staging.

HMComp unlocks space for caching by selectively compressing
data in NM. This is done by dynamically gauging compressibility
and bandwidth demands of fine-grain access units in FM. By allow-
ing fine-grain management of hybrid memory, HMComp carefully
manages compressed blocks in HBM with a minimum of metadata
needed. For example, it compresses HBM blocks where they origi-
nally are mapped and uses surplus ECC bits (in HBM) in a clever
way to locate a compressed block and eliminates the use of remap
tables in NM altogether.

Apart from presenting the detailed design of HMComp, this
paper evaluates its performance compared to state-of-the-art hybrid
memory schemes. The evaluation shows that HMComp offers a
speedup of single-thread performance of up to 22% and on average
13% and a swap traffic reduction of up to 60% and by 41% on average
compared to flat hybrid memory designs. Finally, we show that a
quite modest metadata cache of 256 KB suffices to host the metadata
cached from FM.

ACKNOWLEDGMENTS
We thank anonymous reviewers for their valuable comments. This
work is supported by the Wallenberg Artificial Intelligence, Au-
tonomous Systems and Software Program (WASP),funded by Knut
and Alice Wallenberg Foundation. The computations were enabled
by resources provided by the National Academic Infrastructure
for Supercomputing in Sweden (NAISS), partially funded by the
Swedish Research Council through grant agreement no. 2022-06725.

83



HMComp: Extending Near-Memory Capacity using Compression in Hybrid Memory ICS ’24, June 04–07, 2024, Kyoto, Japan

REFERENCES
[1] Alaa Alameldeen and David Wood. 2004. Frequent Pattern Compression: A

Significance-Based Compression Scheme for L2 Caches. (01 2004).
[2] Alexandra Angerd, Angelos Arelakis, Vasilis Spiliopoulos, Erik Sintorn, and

Per Stenström. 2022. GBDI: Going Beyond Base-Delta-Immediate Compression
with Global Bases. In 2022 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). 1115–1127. https://doi.org/10.1109/HPCA53966.
2022.00085

[3] Angelos Arelakis, Fredrik Dahlgren, and Per Stenstrom. 2015. HyComp: A hybrid
cache compression method for selection of data-type-specific compression meth-
ods. In 2015 48th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). 38–49. https://doi.org/10.1145/2830772.2830823

[4] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH computer architecture
news 39, 2 (2011), 1–7.

[5] Xi Chen, Lei Yang, Robert P. Dick, Li Shang, and Haris Lekatsas. 2010. C-Pack: A
High-Performance Microprocessor Cache Compression Algorithm. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems 18, 8 (2010), 1196–1208.
https://doi.org/10.1109/TVLSI.2009.2020989

[6] C. Chou, A. Jaleel, and M. Qureshi. 2017. BATMAN: Techniques for maximizing
system bandwidth of memory systems with stacked-DRAM. In MEMSYS. ACM,
268–280. https://doi.org/10.1145/3132402.3132404

[7] Chia Chen Chou, Aamer Jaleel, and Moinuddin K. Qureshi. 2014. CAMEO: A
Two-Level Memory Organization with Capacity of Main Memory and Flexibil-
ity of Hardware-Managed Cache. In 2014 47th Annual IEEE/ACM International
Symposium on Microarchitecture. 1–12. https://doi.org/10.1109/MICRO.2014.63

[8] Padmapriya Duraisamy, Wei Xu, Scott Hare, Ravi Rajwar, David Culler, Zhiyi
Xu, Jianing Fan, Christopher Kennelly, Bill McCloskey, Danijela Mijailovic, Brian
Morris, Chiranjit Mukherjee, Jingliang Ren, Greg Thelen, Paul Turner, Carlos
Villavieja, Parthasarathy Ranganathan, and Amin Vahdat. 2023. Towards an
Adaptable Systems Architecture for Memory Tiering at Warehouse-Scale. In
ASPLOS 2023 (Vancouver, BC, Canada). ACM, New York, NY, USA, 727–741.
https://doi.org/10.1145/3582016.3582031

[9] Fazal Hameed and Jeronimo Castrillon. 2017. Rethinking on-chip DRAM cache
for simultaneous performance and energy optimization. In Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2017. 362–367. https://doi.org/10.
23919/DATE.2017.7927017

[10] Greg Hamerly, Erez Perelman, Jeremy Lau, and Brad Calder. 2005. Simpoint 3.0:
Faster and more flexible program phase analysis. Journal of Instruction Level
Parallelism 7, 4 (2005), 1–28.

[11] Mahzabeen Islam, Shashank Adavally, Marko Scrbak, and Krishna Kavi. 2020. On-
the-Fly Page Migration and Address Reconciliation for Heterogeneous Memory
Systems. 16, 1 (2020), 1–27. https://doi.org/10.1145/3364179

[12] JEDEC. 2022. JESD238 High Bandwidth Memory (HBM3) DRAM. (2022).
[13] Djordje Jevdjic, Gabriel H. Loh, Cansu Kaynak, and Babak Falsafi. 2014. Unison

Cache: A Scalable and Effective Die-Stacked DRAM Cache. In 2014 47th Annual
IEEE/ACM International Symposium on Microarchitecture. 25–37. https://doi.org/
10.1109/MICRO.2014.51

[14] Djordje Jevdjic, Stavros Volos, and Babak Falsafi. 2013. Die-Stacked DRAM
Caches for Servers: Hit Ratio, Latency, or Bandwidth? Have It All with Footprint
Cache. 41, 3 (jun 2013), 404–415. https://doi.org/10.1145/2508148.2485957

[15] Jungrae Kim, Michael Sullivan, Esha Choukse, and Mattan Erez. 2016. Bit-Plane
Compression: Transforming Data for Better Compression in Many-Core Archi-
tectures. In 2016 ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA). 329–340. https://doi.org/10.1109/ISCA.2016.37

[16] Youngin Kim, Hyeonjin Kim, and William J. Song. 2023. NOMAD: Enabling
Non-blocking OS-managed DRAM Cache via Tag-Data Decoupling. In 2023 IEEE
International Symposium on High-Performance Computer Architecture (HPCA).
193–205. https://doi.org/10.1109/HPCA56546.2023.10071016

[17] Jagadish B. Kotra, Haibo Zhang, Alaa R. Alameldeen, Chris Wilkerson, and
Mahmut T. Kandemir. 2018. CHAMELEON: A Dynamically Reconfigurable
Heterogeneous Memory System. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). 533–545. https://doi.org/10.1109/
MICRO.2018.00050

[18] Jagadish B. Kotra, Haibo Zhang, Alaa R. Alameldeen, Chris Wilkerson, and
Mahmut T. Kandemir. 2021. Dynamically Adapting Page Migration Policies
Based on Applications’ Memory Access Behaviors. In ACM Journal on Emerging
Technologies in Computing Systems. 1–24. https://doi.org/10.1145/3444750

[19] Yongjun Lee, Jongwon Kim, Hakbeom Jang, Hyunggyun Yang, Jangwoo Kim,
Jinkyu Jeong, and Jae W. Lee. 2015. A fully associative, tagless DRAM cache. In
2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture
(ISCA). 211–222. https://doi.org/10.1145/2749469.2750383

[20] Yiwei Li and Mingyu Gao. 2023. Baryon: Efficient Hybrid Memory Management
with Compression and Sub-Blocking. In 2023 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). 137–151. https://doi.org/10.
1109/HPCA56546.2023.10071115

[21] Gabriel Loh and Mark D. Hill. 2012. Supporting Very Large DRAM Caches with
Compound-Access Scheduling and MissMap. IEEE Micro 32, 3 (2012), 70–78.
https://doi.org/10.1109/MM.2012.25

[22] Mitesh R. Meswani, Sergey Blagodurov, David Roberts, John Slice, Mike Igna-
towski, and Gabriel H. Loh. 2015. Heterogeneous memory architectures: A
HW/SW approach for mixing die-stacked and off-package memories. In 2015
IEEE 21st International Symposium on High Performance Computer Architecture
(HPCA). 126–136. https://doi.org/10.1109/HPCA.2015.7056027

[23] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P Jouppi. 2009.
CACTI 6.0: A tool to model large caches. HP laboratories 27 (2009), 28.

[24] Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Michael A. Kozuch, Phillip B.
Gibbons, and Todd C. Mowry. 2012. Base-delta-immediate compression: Practical
data compression for on-chip caches. In 2012 21st International Conference on
Parallel Architectures and Compilation Techniques (PACT). 377–388.

[25] Ivy Bo Peng, Roberto Gioiosa, Gokcen Kestor, Pietro Cicotti, Erwin Laure, and
Stefano Markidis. 2017. Exploring the Performance Benefit of Hybrid Memory
System on HPC Environments. In 2017 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). 683–692. https://doi.org/10.1109/
IPDPSW.2017.115

[26] Zhouxuan Peng, Dan Feng, Jianxi Chen, Jing Hu, and Chuang Huang. 2022.
RHPM: Using Relative Hotness to Guide Page Migration for Hybrid Memory
Systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (2022), 1–1. https://doi.org/10.1109/TCAD.2022.3231836

[27] Andreas Prodromou,MiteshMeswani, Nuwan Jayasena, Gabriel Loh, and DeanM.
Tullsen. 2017. MemPod: A Clustered Architecture for Efficient and Scalable
Migration in Flat Address Space Multi-level Memories. In 2017 IEEE International
Symposium on High Performance Computer Architecture (HPCA). 433–444. https:
//doi.org/10.1109/HPCA.2017.39

[28] Moinuddin K. Qureshi and Gabe H. Loh. 2012. Fundamental Latency Trade-off
in Architecting DRAM Caches: Outperforming Impractical SRAM-Tags with
a Simple and Practical Design. In 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture. 235–246. https://doi.org/10.1109/MICRO.2012.
30

[29] Rambus. [n. d.]. Accelerating AI/ML applications in the data center with HBM3.
([n. d.]).

[30] Jee Ho Ryoo, Mitesh R. Meswani, Andreas Prodromou, and Lizy K. John. 2017.
SILC-FM: Subblocked InterLeaved Cache-Like Flat Memory Organization. In
2017 IEEE International Symposium on High Performance Computer Architecture
(HPCA). 349–360. https://doi.org/10.1109/HPCA.2017.20

[31] Jaewoong Sim, Alaa R. Alameldeen, Zeshan Chishti, Chris Wilkerson, and Hye-
soon Kim. 2014. Transparent Hardware Management of Stacked DRAM as Part
of Memory. In 2014 47th Annual IEEE/ACM International Symposium on Microar-
chitecture. 13–24. https://doi.org/10.1109/MICRO.2014.56

[32] Evangelos Vasilakis, Vassilis Papaefstathiou, Pedro Trancoso, and Ioannis Sourdis.
2019. LLC-Guided Data Migration in Hybrid Memory Systems. In 2019 IEEE
International Parallel and Distributed Processing Symposium (IPDPS). 932–942.
https://doi.org/10.1109/IPDPS.2019.00101

[33] Evangelos Vasilakis, Vassilis Papaefstathiou, Pedro Trancoso, and Ioannis Sourdis.
2020. Hybrid2: Combining Caching and Migration in Hybrid Memory Systems.
In 2020 IEEE International Symposium on High Performance Computer Architecture
(HPCA). 649–662. https://doi.org/10.1109/HPCA47549.2020.00059

[34] Carl A. Waldspurger. 2003. Memory Resource Management in VMware ESX
Server. 36, SI (2003). https://doi.org/10.1145/844128.844146

[35] Xiangyao Yu, Christopher J. Hughes, Nadathur Satish, Onur Mutlu, and Srini-
vas Devadas. 2017. Banshee: Bandwidth-Efficient DRAM Caching via Soft-
ware/Hardware Cooperation. In 2017 50th Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO). 1–14.

Received 18 January 2024; revised 18 March 2024; accepted 16 April 2024

84

https://doi.org/10.1109/HPCA53966.2022.00085
https://doi.org/10.1109/HPCA53966.2022.00085
https://doi.org/10.1145/2830772.2830823
https://doi.org/10.1109/TVLSI.2009.2020989
https://doi.org/10.1145/3132402.3132404
https://doi.org/10.1109/MICRO.2014.63
https://doi.org/10.1145/3582016.3582031
https://doi.org/10.23919/DATE.2017.7927017
https://doi.org/10.23919/DATE.2017.7927017
https://doi.org/10.1145/3364179
https://doi.org/10.1109/MICRO.2014.51
https://doi.org/10.1109/MICRO.2014.51
https://doi.org/10.1145/2508148.2485957
https://doi.org/10.1109/ISCA.2016.37
https://doi.org/10.1109/HPCA56546.2023.10071016
https://doi.org/10.1109/MICRO.2018.00050
https://doi.org/10.1109/MICRO.2018.00050
https://doi.org/10.1145/3444750
https://doi.org/10.1145/2749469.2750383
https://doi.org/10.1109/HPCA56546.2023.10071115
https://doi.org/10.1109/HPCA56546.2023.10071115
https://doi.org/10.1109/MM.2012.25
https://doi.org/10.1109/HPCA.2015.7056027
https://doi.org/10.1109/IPDPSW.2017.115
https://doi.org/10.1109/IPDPSW.2017.115
https://doi.org/10.1109/TCAD.2022.3231836
https://doi.org/10.1109/HPCA.2017.39
https://doi.org/10.1109/HPCA.2017.39
https://doi.org/10.1109/MICRO.2012.30
https://doi.org/10.1109/MICRO.2012.30
https://doi.org/10.1109/HPCA.2017.20
https://doi.org/10.1109/MICRO.2014.56
https://doi.org/10.1109/IPDPS.2019.00101
https://doi.org/10.1109/HPCA47549.2020.00059
https://doi.org/10.1145/844128.844146

	Abstract
	1 Introduction
	2 Background
	2.1 Baseline
	2.2 Motivation

	3 HMComp: Extending Near-Memory (NM) Capacity using Compression
	3.1 HMComp Overview
	3.2 HMComp: Metadata Layout
	3.3 HMComp: Detailed Operation

	4 Experimental Methodology
	4.1 Simulation Methodology and Parameters
	4.2 Benchmarks
	4.3 Simulation Models

	5 Experimental Results
	5.1 Speedup of HMComp over Other Models
	5.2 Impact on Swap Traffic
	5.3 Sensitivity Analysis

	6 Conclusions
	Acknowledgments
	References

