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A control oriented strategy of disruption
prediction to avoid the configuration
collapse of tokamak reactors

Andrea Murari 1,2,121, Riccardo Rossi 3,121, Teddy Craciunescu 4,
Jesús Vega 5, JET Contributors* & Michela Gelfusa 3

The objective of thermonuclear fusion consists of producing electricity from
the coalescence of light nuclei in high temperature plasmas. The most pro-
mising route to fusion envisages the confinement of such plasmas with mag-
netic fields, whose most studied configuration is the tokamak. Disruptions are
catastrophic collapses affecting all tokamak devices and one of the main
potential showstoppers on the route to a commercial reactor. In this work we
report how, deploying innovative analysis methods on thousands of JET
experiments covering the isotopic compositions from hydrogen to full tritium
and including the major D-T campaign, the nature of the various forms of
collapse is investigated in all phases of the discharges. An original approach to
proximity detection has been developed, which allows determining both the
probability of and the time interval remaining before an incoming disruption,
with adaptive, from scratch, real time compatible techniques. The results
indicate that physics based prediction and control tools can be developed, to
deploy realistic strategies of disruption avoidance and prevention, meeting
the requirements of the next generation of devices.

The increasing acceleration of climate change and its consequences
has recently emphasised theneed for humanity tofind clean sources of
energy and in particular of electricity1. In the medium and long term,
thermonuclear fusion could potentially become a very important
ingredient in a sustainable energy mix on a planetary scale2. This
approach to electricity generation is based on coalescing the nuclei of
hydrogen isotopes; the resulting defect of mass translates into very
efficient energy production3. Indeed, nuclear fusion is the most
exoenergetic reaction in the known universe and it is the power
sources of stars such as our sun.

On earth, the most practical reaction is the one between two
hydrogen isotopes: deuterium (D) and tritium (T). However, their
nuclei, in order to fuse, need to overcome the repulsive Coulomb
barrier and come very close, to distances of the same order as the

nuclear radius. Unfortunately this is not easy to achieve in the
laboratory. Themost advanced alternative consists of heating the fuel,
to produce the fourth state of matter in the form of very high tem-
perature plasmas. These plasmas, routinely reaching temperatures
higher than the core of the sun, cannot come in contact with material
surfaces andmust be confined by other means. One potential solution
is based on containing them with very strong magnetic fields. This is
the approach called Magnetic Confinement Nuclear Fusion (MCNF)4.

The tokamak remains the most realistic magnetic configuration
in the perspective of developing a commercially viable thermo-
nuclear fusion reactor5. The topology of the magnetic fields in a
tokamak is shown graphically in Fig. 1a. Unfortunately, the config-
uration is affected by macroscopic instabilities, which are called
disruptions6,7 and can cause the abrupt extinction of the plasma
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current, with potential disastrous consequences for future large
machines, such as ITER (the international tokamak under construc-
tion in the south of France) and DEMO (the demonstrative reactor)8,9.
The qualitative evolution of the main plasma quantities, in the phase
approaching and during a disruption, are reported in Fig. 1b. The
disruption proper start with a thermal quench, in which almost all the
thermal energy of the plasma is lost to the wall on time scales of
milliseconds. In future devices, such as DEMO, in this phase the
energy loads on the plasma facing components could cause the
melting of even themost resistant present-day materials. The plasma
current decays on much longer time scales, during the so called
current quench. Also this phase can be very dangerous though, due
to the ensuing induced electromagnetic loads. In ITER, the forces on
the metallic structures surrounding the plasma could be higher than
the weight of an Airbus A380 plane. Consequently, in reactor scale
devices it will be imperative to limit the number of disruptions, not
only to guarantee continuity of operation but also to preserve the
structural integrity of the machines. Fortunately, several signals
show an anomalous behaviour in the phases leading to the beginning
of the current quench. Detecting these precursors and interpreting
them, in order to provide the control system with clear indications
about the criticality of the plasma state, is the objective of disruption
predictors (see section ‘Methods’).

To reduce the tritium inventory in their vacuum vessels, the next
generation of devices will be equipped with metallic plasma facing
components. The Joint European Tokamak (JET) is one of the largest
tokamaks ever operated in the world and it is also fitted with ametallic
wall: Be in themain chamber andW in the divertor10. JET is also the only
present devicewith the capability of using the fuel of the reactor. In the
second half of 2021, the most ambitious series of experiments in the
world, scanning systematically the isotopic composition from pure
hydrogen to full tritium and 50-50 DT, was carried out on JET11.

Unfortunately, operation with metallic walls is proving particu-
larly vulnerable to disruptions also in present-day devices. On JET at
high currents and powers, the disruptivity of both the baseline and the
hybrid scenarios exceeds by about an order of magnitude the max-
imum levels admitted in ITER at target values, let alone DEMO, as
shown in Table 112. This a consequence of the fact that disruptions are a
very complex and nonlinear phenomenon, involving several entangled
effects: the peaking of the density profile, the hollowing of the tem-
perature profile, the transport of impurities, the pedestal properties,
centrifugal forces, plasma rotation, local radiation emission to men-
tion just a few13.

Even if no first principle models exist, which can predict the
occurrence of all the types of the plasma collapse, in the community
there is a general consensus about themain stages of plasma dynamics
leading to disruptions14. Various factors, ranging fromhuman errors to
anomalies in the radiation, temperature or density, can cause mod-
ifications of the pressure and current profiles, which destabilise mac-
roscopic instabilities. These electromagnetic modes typically slow
down and stop rotating with respect to the vacuum vessel, becoming
even more unstable, to the point that the magnetic configuration is so
altered that cannot be sustained. A good understanding of these
physical mechanisms seems essential, to predict these catastrophic
collapses and to develop real-time compatible avoidance, prevention
andmitigation strategies (see caption of Fig. 1). Determining how close
the plasma is to the boundary between the safe and disruptive regions
of the operational space is an essential task usually referred to as
proximity detection.

The subject of the present work consists of overviewing the
physics of the plasma dynamics leading to disruptions, with the aim of
devising reliable disruption predictors, capable of providing the

Fig. 1 | Magnetic topology and disruption precursors. a Topology of the mag-
netic fields in a tokamak. b Time evolution of typical disruption precursors during
normal operation and in the phase leading to a disruption. In agreement with the
literature, the beginning of the current quench is considered the disruption time.
Avoidance consists of the remedial actions, allowing to recover a healthy plasma

state to continue the experiments. Preventionmeasures aremeant to terminate the
discharge quickly, before the actual occurrence of the disruption. When a disrup-
tion is unavoidable, because there is no time for avoidance or prevention, miti-
gating its consequenceswith appropriate tools, suchas shatteredpellets ormassive
gas injection, is the only remaining option7.

Table 1 | Database statistics

C38 C39 C40 C41 Total Baseline Hybrid

Total 907 168 310 298 1683 1324 359

Safe 653 133 184 171 1141 881 260

Disruptive 254 35 126 127 542 443 99

Flat Top
Disruption

62 23 33 33 151 140 11

Ramp Down
Disruption

192 12 93 94 391 303 88

Statistics of disruptions in terms of scenario and discharge phase. Only intentional disruptions
and discharges missing essential measurements have been excluded. The entries cover a range
of flat top currents from 1.5 to 3.8 MA and toroidal fields from 1.7 to 3.9 T. The maximum input
power reached almost 40 MW. Fuel: C38 campaign in DD, C39 in DD and H, C40 in full tritium
and C41 50-50 DT.
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control systems of next-generation devices with enough warning time
to implement realistic strategies to handle the problem. To this end,
the qualitatively and quantitatively most ambitious JET database has
been built and analysed with real-time compatible tools: all the dis-
charges of JET campaigns, from the middle of 2019 to the end of 2021,
have been investigated. These campaigns are particularly relevant
because they cover experiments of different fuel mixtures: discharges
with all the hydrogen isotopes (H/D/T) separately and the reactor 50-
50 DT mixture, including the top performance experiments ever per-
formed on JET11. The analysed database consists of 1683 discharges, of
which 542 disruptive. The global statistics, obtained with a dedicated
relational database, are reported in Table 1.

In the following, the first subsection of the Results describes the
original aspects of the developed predictors. The second subsection
of the Results introduces the observers developed to identify the
plasma state for control purposes. In the third subsection of the
Results, the modelling of the plasma dynamics leading to the main
types of disruptions is discussed in detail. The investigation of the
possible strategies of avoidance and prevention, which could be
realistically implemented in real time in the next generation of
devices, is the subject of the last subsection of the Results. The dis-
cussion section of the paper is devoted to a brief overview of the
work and the lines of future research, including the prospects of
transferring the present experience to future devices. More details
about the diagnostics, the analysis techniques and the control tools
can be found in the section ‘Methods’ and the supplementary
material.

Results
An advanced, control-oriented approach to disruption
prediction
The availability of reliable disruption predictors is a prerequisite to the
deployment of any form of avoidance or remedial action. The devel-
opment of such tools requires investigating in detail the sequence of
macroscopic anomalies in the magnetic topology, kinetic profiles and
radiation emission, to determine the proximity of the plasma to the
disruption boundary. In the last decades, the potential of machine
learningmethods for this task has been studied in detail as overviewed
briefly in section ‘Methods’ and in more detail in ref. 7. Despite quite
encouraging results, disruption predictors, relying on traditional
machine-learning technologies, have shown some inherent funda-
mental weaknesses related to: (a) the approach to learning; (b) the
mathematical form of themodels; (c) the choice of the input signals or
features.

With regard to the first issue,most predictors, reviewed in section
‘Methods’, implemented a closed-world approach to learning. This
method needs all the information required for the training to be
available prior to the first prediction. Moreover, their performances
are predicated on the assumption of absolute stationarity, in the sense
that the training data, the test data and the inputs in the actual
deployment must be generated by identical systems. Such a hypoth-
esis is systematically violated, due to the rapid evolution of experi-
mental programmes. Consequently classifiers based on closed-world
training, having no capability of adapting to different regimes or
unexplored physics, present some quite significant practical flaws.
They tend to require very large amounts of data for the training,
impossible to collect in future devices, and they lack generality,
because the quality of their predictions tend to degrade quickly even
when the experiments present properties only slightly different from
those in the training data. Moreover, the deployment of predictors,
trained in the traditional way, is typically limited to their tokamak of
origin15–17.

Another category of drawbacks is a consequence of the mathe-
matical form of the models, implicitly assumed by the traditional
machine learning tools such as SVM or neural networks. Whatever the

application, most machine learning tools basically fit only a specific
class of functions to the data. This means that their models have no
relation to the actual plasma dynamics, are difficult to interpret and
whether they can be extrapolated to future, larger devices is
doubtful18.

The third class of weaknesses is related to the choice of the input
signals, which has not been always optimised. Better profile indicators
are required (see section ‘Methods’). Moreover, a fundamental direc-
tion for future improvements involves a better detection of radiation
anomalies, which are localised patterns of high emission. Most dis-
ruptions are indeed preceded or caused by anomalous radiation
events, which often constitute the earliest macroscopic precursors by
a quite ample margin19. The three most common anomalous radiation
patterns leading to disruption on JET are reported in Fig. 2 (and the
tools developed to detect them in real time are described in detail in
section ‘Methods’).

The consequences of the just described limitations are particu-
larly unsatisfactory also because natural forms of intelligence can
cope quite well with these cognitive problems. Various animals, and
humans in particular, can learn effectively from few examples, can
adapt quickly to changing situations and have also the capability of
transferring knowledge from one problem to similar ones. It is the
contention of the present work that these gaps between natural and
artificial forms of intelligence can be reduced, by developing adap-
tive tools, less abstract and closer to the actual physics and dynamics
of the phenomena under study. They will require original data pro-
cessing techniques to analyse and interpret the available measure-
ments in real time. In this perspective, the tools developed in the
context of the present work rely on real time compatible measure-
ments and signal processing techniques and present the following
four innovative characteristics: (1) they utilise physics-based but
control-oriented indicators as inputs (see section ‘Methods’); (2) they
output not only alarms but also a classification of the type of anomaly
detected (see section ‘Methods’ for details); (3) they implement an
automated adaptive form of training to follow the evolution of the
experimental programme see (section ‘Methods’); (4) they operate in
the two-dimensional space of probability and time; they therefore
provide both the disruption probability and an estimate of the time
remaining before the beginning of the current quench inputs (see
section ‘Methods’ for the details). Of course, all these aspects are of
great help for the control system to optimise any form of remedial
strategy.

Characterising the plasma state for proximity control
The research in the last years has revealed that the essential diag-
nostics, for proximity control and mitigation, are: global indicators of
the magnetic configuration state, the kinetic profiles, visible imaging
andbolometric tomography. Their role in predicting the occurrenceof
disruptions is overviewed in this subsection.

Global indicators of the magnetic configuration are important to
determine the proximity of the plasma to the disruption boundary (see
section ‘Methods’). Two quantities, whichhave proved very useful, and
which will be available also in the next generation of devices, are the
normalised internal inductance li and the safety factor at 95% of the
plasmaminor radius q95. The best estimates of li and q95 are the output
of quite sophisticated equilibrium codes, whose description is beyond
the scope of the present work5. However, intuitively the internal
inductance provides an indication about how peaked the current
profile is. Small values of li correspond to a broad current profile. This
is important for stability and to interpret other signals such as the
locked mode amplitude (see later and ref. 20). The safety factor indi-
cates how much stabilising toroidal field is used in a certain config-
uration, again quantifying the vulnerability of the configuration to
become instable. Other things being equal, plasmas at higher q95 are
more stable. At values of q95 ≈ 3, the reference of ITER baseline

Article https://doi.org/10.1038/s41467-024-46242-7

Nature Communications |         (2024) 15:2424 3



scenario, the plasma disruptivity of present-day tokamak can exceed
60%, absolutely incompatible with the operation of a reactor level
device. When macroscopic electromagnetic instabilities, capable of
leading to disruptions, stop rotating in the frame of reference of the
lab, their amplitude increases and their magnetic signature is picked
up by large saddle coils located around the vacuum vessel. This so-
called Locked Mode (LM) amplitude signal is important because
almost all disruptions on JETareprecededbyan anomalous increaseof
this quantity21.

Anomalies in the electron temperature profile can also play a
fundamental role in destabilising various macroscopic instabilities,
namelyMHDmodes, which then grow, lock to the wall and finally lead
to disruptions14. The so called electron temperature hollowness and
edge cooling are the two most evident and potentially harmful tem-
perature anomalies.

The hollowing of the electron temperature Te is a situation, in
which the maximum temperature is not reached in the centre of the
plasma but off-axis, resulting in a double bumped profile (see section
‘Methods’). In metallic devices, such an unhealthy plasma condition is
typically caused by an excessive emission of radiation in the core,
mostly a consequence of the accumulation of heavy impurities,mainly
tungsten. The consequent modifications of the local resistivity
η∼Zeff=T

3=2
e , cause changes of the plasma current profile, which often

lead to the destabilisation of macroscopic modes14.

Analogous destabilising effects, due to the alterations of the
current profile, may be caused by the dynamics at the plasma edge. In
this case, excessive local density or radiation, typically due to the
attempt to reduce the power loads on the divertor, induce a reduction
in the peripheral temperature, with consequent contraction of the
current profile, leading to tearing mode destabilisation14.

An important point to appreciate is that unhealthy modifications
of the temperature profile can occur significantly in advance of the
destabilisation of the fatal MHDmodes, givingmore time to intervene.
The availability of robust and reliable indicators of anomalies in the
electron temperature profile is therefore a crucial ingredient in the
development of predictors for prevention and avoidance. The ones
implemented in the present work are overviewed in the section
‘Methods’ and in ref. 22.

In the whole analysed database (see introductory section), only
7 disruptions do not show any anomalous radiation pattern. Prop-
erly measuring the total emission of radiation will be therefore a
crucial and delicate task in all future machines. The main radiation
patterns leading to the plasma collapse on JET are reported in Fig. 2.
All these emission events are cases of radiation positive feedback
instabilities, because the impurities have a radiation function
increasing with the inverse of the temperature. Consequently, when
the local radiation is sufficiently high to provoke a reduction in the
temperature, the impurities radiate more, causing a further

Fig. 2 |Main radiation patterns.Themain radiation patterns leading to a radiation
collapse of the plasma in JET with a metallic wall, as revealed by the maximum
likelihood tomography and visible imaging. a Anomalous high radiation in the core
due to accumulation of high Z impurities, mainly W. b Anomalous low field radia-
tion. The crescent shape excessive emission of is typically an effect of heavy
impurities in configurations, in which, due to the combination of neoclassical and

anomalous transport, they accumulate in the outer equatorial plane. c Radiation
instability of the MARFE (Multifaceted Asymmetric Radiation from the Edge)
type14,15, typically consequence of impurity seeding or excessive high density in the
attempt to reduce the power load on the divertor. dMARFE radiation observed by
the visible camera (colour proportional to pixel intensity).
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decrease of the temperature, which results in higher emission, in a
vicious positive feedback loop. The most important point to
appreciate is that the radiation anomalies are normally the first ones
to appear and therefore it is essential to detect them for avoidance
and prevention purposes (see next subsection).

The accurate determination of the radiation losses on JET requires
tomographic inversion of the bolometric signals, which is a very ill-
posed problem. This aspect has been addressed on JET with the
combination of a sophisticated tomographic method, called the
Maximum Likelihood (ML), and a fast high time resolution algorithm
for deployment in real time (see section ‘Methods’). Most radiation
problems in the high-field side (such as Multifaceted Asymmetric
Radiation from the Edge or MARFEs) appear also very clearly in the
frames of the visible cameras and do not require particularly sophis-
ticated image processing algorithms to be followed in real time (see
section ‘Methods’).

Modelling the plasma thermal dynamics leading to disruptions
To predict and interpret the plasma evolution in the precursor
phase leading to the disruption, a model of the radiation dynamics
is necessary. The one described in the present subsection has been
conceived with real-time applications in mind; attention has been
paid to finding an appropriate trade-off between accuracy and real-
time compatibility. In this perspective, to model quantitatively the
processes in Fig. 2 for prediction purposes, the most suitable indi-
cator proves to be the ratio of the radiated power divided by the
plasma thermal energy. This quantity is much more useful than the
traditional ratio of radiated power divided by input power, which
can diverge and become misleading, for example during the ramp
down of the plasma current, when the additional heating systems
are switched off 23. In terms of this quantity, the balance equation, to
analyse the radiation anomalies leading to radiative collapse, can be

written as:

1
Epðρ,θÞ

dEpðρ,θÞ
dt

=
Pin ρ,θð Þ
Epðρ,θÞ

� Prad ρ,θð Þ
Epðρ,θÞ

+
Pt ρ,θð Þ
Epðρ,θÞ

ð1Þ

Where Ep is the plasma thermal energy, Pin the input power, Prad the
local radiated power, Pt the power due to transport. Equation (1) is
particularised for each macropixel of the plasma cross-section and ρ
and θ are the polar coordinates of the considered region barycentre
(see Fig. 3). The shape and size of the macro-pixels are determined by
the layout of JET bolometric diagnostic (see section ‘Methods’). The
local plasma energy has been calculated employing themeasurements
of the High Resolution Thomson Scattering (HRTS) over the macro-
pixels, under the usual approximations that electrons and ions have
the same temperature and density i.e. Te = Ti, ne = ni (see section
‘Methods’).

Within the help of Eq. (1) and the high time resolution tomo-
graphy, it has been possible to study the dynamics of the plasma
leading to the disruptions in hundreds of discharges. A threshold
level Λith of Λi=Prad/Ep, for each of the 4 regions shown in Fig. 3, can
be set by the user, depending on the needs of the experimental
programme and its potential danger for the device. In the following,
the reported threshold levels Λith have been chosen so that, above
the corresponding value of the ratio, the plasma has more than 50%
probability to be in a state with excessive radiation, tending to
develop temperature andmagnetic anomalies. The details about the
calculation of the various disruption probabilities are provided in
section ‘Methods’.

The distribution of the first alarms, due to radiation anomalies in
disruptive discharges, is reported in the top histogram of Fig. 4. It has
been checked on a well-documented set of discharges that the alarms
of the predictors developed in the present work precede the inter-
ventions of JET control system in practically all cases, as documented
in section ‘Methods’. In all regions, significantly more disruptions
occur in the ramp down of the plasma current than during the flat top.
Radiation anomalies appear also in discharges that in the end do not
disrupt, as reported in the bottom histogram of Fig. 4. In these
occurrences, the safe ending of the pulse is often due either to positive
interventions of the control system or to rapid terminations of the
discharge, not allowing the plasma dynamics to evolve naturally.
Moreover, it has also been verified that remedial actions, of the type
advocated in the next subsection, would be always beneficial and
improve the performance of the plasma even if implemented in the
discharges not disrupting. Indeed, after the appearance of the detec-
ted radiation anomalies, if not remedial actions of the typeproposed in
this work were taken (see next subsection), these experiments would
be typically compromised anyway, even if they did not disrupt, and
would not provide any useful information.

Since 1/Λi has the dimension of time, it can be interpreted as a
cooling time. As mentioned, the traditional approaches to proximity
assessment estimate either the probability of disruption or the time
remaining to the onset of a macroscopic MHD mode. With the model
just described it is possible to combine these two quantities and
operate in the bi-dimensional space of time and probability.

It should be emphasised that all the results reported in thepresent
work have been obtained with a fully adaptive technique from scratch
to update the Λi values, as described in section ‘Methods’. The first
guess has been obtained with only the first disruptive and three non-
disruptive discharges, and the thresholds have been updated with
adaptive techniques on a shot-to-shot basis15–18. It is also important to
mention that all the proposed indicators and used measurements are
available in real time. All the quantities utilised in this paper can be
comfortably calculatedwithin JET real time network cycle timeof 2ms.

Fig. 3 | Fast time resolution tomography regions.The fourmacro regions, whose
emittedpower isdeterminedwith the fast time resolution tomographydescribed in
the section ‘Methods’.
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The strategy for proximity control
Coming to the relationship between the radiation emission and the
dynamics of the plasma kinetic quantities, the statistical results, cov-
ering the sequence of the various anomalies, are reported in Table 2.
The intervals between the various types of anomalies areoverviewed in
Table 3.

The collected evidence indicates that the increase in the locked
mode is almost always preceded by some other anomalies. Excessive
radiation alarms precede the temperature hollowness in about 90% of
the cases. Radiation anomalies in the edge are detected earlier than
edge cooling in about 80% of occurrences. The intervals between the
preceding alarms and the subsequent ones vary but are typically
enough to undertake remedial actions (before having to trigger
mitigation).

Coming to the exploitation of the evidence just discussed for
control purposes, the approach pursued in the present work consists
of estimating the proximity to the disruption boundary in three dif-
ferent steps. First, the radiation patterns and their criticalities are
estimated, secondly, the anomalies of the temperature profiles are
assessed. Thehealthiness ofmagnetic configuration is determined last.

With these objectives and in the light of the evidence just over-
viewed, a reasonable control strategy can be devised, whose main
elements are shown in the block diagram of Fig. 5. Starting from the
beginning of the current quench and moving backward in time, the

approach could consist of triggering mitigation actions immediately
after a locked mode alarm. Following a warning due to excessive
cooling of the edge, the time remaining before the beginning of the
current quench is compatible only with prevention and therefore the
control system should immediately activate the sequence of actions to
terminate the discharge safely. In case of anomalies in the radiation
patterns, the heating is to be increased in the affected regions. With
sufficiently flexible additional heating schemes, such as those already
deployed to avoid MHD instabilities24,25, the regions of excessive
radiation could be targeted, avoiding the radiation collapse (and
consequently avoiding the disruption).

The proposed control logic has been implemented in fully com-
patible real-time conditions, which means that all diagnostics, indica-
tors and predictors would have worked exactly in the same way in
closed feedback loop. Assuming that 100mswarnings for temperature
hollowness and edge cooling are sufficient to undertake successful
remedial action (and 10ms warning time is enough formitigation), for

Table 2 | Sequence of anomalies

Hollowness preceded by Core Radiation 52.9%

Hollowness preceded by LF Radiation 65.2%

Hollowness preceded by Core or LF Radiation 90.5%

Edge Cooling preceded by HF Radiation 64.4%

Edge Cooling preceded by LF Radiation 51.3%

Edge Cooling preceded by Core or LF Radiation 79.2%

Mode Locking preceded by Hollowness 36.0%

Mode Locking preceded by Edge Cooling 40.6%

Mode Locking preceded by Radiation Anomalies 81.7%

Sequence of the anomalies with percentages. The locked mode alarms are practically always
preceded by other anomalies.

Table 3 | Time between anomalies

Mean (ms) Std (ms)

ΔtΛ,core - ΔtETH (all) 167 270

ΔtΛ,core - ΔtETH (FT) 139 435

ΔtΛ,core - ΔtETH (RD) 176 190

ΔtΛ,HF - ΔtEC (all) 208 467

ΔtΛ,HF - ΔtEC (FT) 206 522

ΔtΛ,HF - ΔtEC (RD) 208 454

ΔtΛ,LF - ΔtETH (all) 568 778

ΔtΛ,LF - ΔtETH (FT) 306 472

ΔtΛ,LF - ΔtETH (RD) 690 859

ΔtΛ,LF - ΔtEC (all) 700 933

ΔtΛ,LF - ΔtEC (FT) 300 588

ΔtΛ,LF - ΔtEC (RD) 784 972

ΔtΛ,ETH - ΔtLM (all) 1069 1003

ΔtΛ,ETH - ΔtLM (FT) 1105 1131

ΔtΛ,ETH - ΔtLM (RD) 1062 983

ΔtΛ,EC - ΔtLM (all) 259 659

ΔtΛ,EC - ΔtLM (FT) 304 716

ΔtΛ,EC - ΔtLM (RD) 236 631

ΔtΛ,ALL - ΔtLM (all) 773 952

ΔtΛ,ALL - ΔtLM (FT) 604 857

ΔtΛ,ALL - ΔtLM (RD) 838 981

The time intervals between the various anomalies: FT indicates the flat top and RD the ramp
down phase of the discharges. Since the time intervals are never negative, large standard
deviations are to be considered positive, because they indicate that in many cases the control
system would have plenty of time to intervene.
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Fig. 4 | Alarm statistics. a Distribution of the first alarms in disruptive pulses,
particularised for the current flat top and ramp down. b Distribution of the first
alarms in safe pulses, also particularised for the current flat top and ramp down.
The locked mode does not trigger any false alarms, therefore not causing any
unnecessary mitigation. The majority of the first alarms in safe discharges are due
to the appearance of blobs of radiation in the core. The presence of such anomalies
has been checked with the ML tomography; consequently these alarms would not
result in negative interventions by the control system, because the proposed
remedial action of increasing the power deposition in the core would only improve
the plasma performances.
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the considered database the proposed control logic provides the
performances reported in Tables 4 and 5. Keeping in mind that the
predictors implementing the technologies developed in refs. 15,21 are
almost 100% successful for mitigation, the outcomes of the proposed
strategy look quite promising. Indeed more than 50% of the disrup-
tions could be avoided and a quarter prevented. It should also be
emphasised that, in almost all the safe discharges, in which unneces-
sarymitigations would have been triggered, the alarms are raised after
the intervention of JET control system and therefore these plasmas do
not disrupt only because termination actions had already been
undertaken. All things considered, therefore the obtained results
would be compatible with ITER requirements. It is also worth noting
that about 85% of the first warnings, triggered by the proposed
detection strategy, precede any action of JET control systems (the Real
Time Central Controller RTCC and the Plasma Event TRiggering of
Alarms PETRA26,27) and are therefore reaction to the natural evolution
of the plasma (a detailed comparison of the proposed tools’ perfor-
mances and the interventions of JET control system is the subject of
section ‘Methods’). Some examples of JET discharges, proving the
viability of the proposed strategy, are reported in section ‘Methods’
as well.

It should also be mentioned that, by choosing different prob-
ability thresholds, the user can find a different trade-off between the
need for mitigation and the risk of perturbing discharges that would
not disrupt. The estimates of the time to the onset of a MHD macro-
scopic instabilities could also allow further optimisation of the control
strategies. The quality of such estimates, obtained with a dedicated
neural network, are described in section ‘Methods’, from which it can
be concluded that the accurate measurement of the radiation losses
could help significantly in deciding the best actions to take particularly
for avoidance. It is worth mentioning that information about the time

to the disruption has not been used in the logic of the controller
because this is an aspect, whose transfer from one device to another
has not been proven yet18.

Discussion
Understanding andpredicting the sequenceofmacroscopic anomalies
leading to disruptions will be essential elements of any realistic stra-
tegies of proximity control and avoidance in the next generation
tokamaks. The presented work shows that, to achieve these tasks,
sufficiently resolved measurements of the magnetic configuration,
kinetic quantities and radiation emission are essential. The derived
indicators have to be physics based but at the same time sufficiently
robust and informative about the future evolution of the plasma, to
constitute good inputs to the control system. The probability of dis-
ruption allows optimising the remedial strategies and fine tuning them
depending on the specific needs of the experiments. The estimates of
the time remaining to the beginning of the current quench constitute
another important piece of information for optimising the control
system interventions.

Froma diagnostic perspective, the spatially involved nature of the
various paths to collapse implies that the tokamak, even if not spatially
complex as the stellarator, requires at least 2D measurements to be
fully understood and controlled, not an easy proposition for the
reactor. However, better diagnostic capability of the emitted radiation
would provide essential advantages in terms of disruption prevention
and avoidance. Bolometry and visible imaging, if implemented with
the appropriate time and spatial resolution, can indeed provide sig-
nificantly earlier warning that the discharge is drifting toward dan-
gerous operational conditions. Careful detection of the kinetic profiles
main features will also be essential to optimise the remedial strategies.
Indeed in the reactor false alarms will have very undesirable

Fig. 5 | Control logic. Block diagram of the detection and control logic proposed in the present work.
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consequences as well, because they might interrupt the production of
electricity in critical moments.

It is also worth emphasising that the indicators devised do not
show any significant dependence from the isotopic composition.
This is a very important aspect, because it can potentially lead to
feedback strategies, which are not too dependent on a plasma
quantity, the fuel mixture, which is very delicate to control. Since the
tools developed in this work are all adaptive and real-time compa-
tible, they constitute a quite encouraging package. Indeed, they have
managed to follow the evolution of the experimental programme in
probably the most ambitious and varied set of campaigns ever car-
ried out on JET. Moreover, given the fact that the indicators tested
are based on normalised quantities or ratios, they are expected to be
easily transferrable to other devices. Indeed, the implementation of

some of the proposed tools on ASDEX Upgrade (the second largest
metallic device in Europe), the second largest metallic tokamak in
Europe, has already started and the preliminary indications are very
positive.

The proposed control logic, implemented in completely real-
time compatible conditions, results in no missed alarms, 65% of
avoided and prevented disruptions and almost no wrong actions.
Consequently, the developed tools, which work equally well with all
reactor-relevant hydrogen fuel mixtures, are expected to satisfy ITER
requirements, which will have better actuators to implement any
remedial action. On the other hand, in the future, the technique will
have to be tested and optimised inmore reactor-relevant conditions,
i.e. in experiments at high density28,29, with full detached divertors
and radiated fraction of about 90%. Small ELMs regimes and negative
triangularity configurations will require specific and detailed inves-
tigations as well.

From a methodological perspective, a potentially very significant
improvement would consist of state aware tools, particularised for the
main phases of the discharge: ramp up, flat top and ramp down of the
plasma current. Indeed the plasma behaviour in these different phases
is not exactly the same and the performance of specific predictors
could be significantly better than those of the general ones developed
so far. Such a step would require implementing trajectory learning
solutions, i.e. techniques that can take into account the history of the
discharge and that do not consider only individual time slices of the
data15,16,30,31.

Methods
Brief history ofmachine learning-based disruption predictors in
tokamaks
Reliable prediction is an essential ingredient of any strategy to over-
come the problem posed by disruptions. Unfortunately, there are no
first principle plasma models capable of predicting the occurrence of
disruptions even offline, let alone in the short times required for real
time applications. The international community, recognising the
importance of developing reliable predictors, has promoted the
development of data-driven empirical models since some time. The
simple ones, devised manually, unfortunately have provided very dis-
appointing performances particularly on JET with a metallic wall20.
Consequently, given also the huge amounts of data collected in
modern devices, data mining techniques have become increasingly
popular in the last decades. These methodologies will become even
more crucial in the future since, for example, ITER is expected to
produce 50 Gbytes of data per second (2 Petabytes per day), an
amount of information impossible to process with traditional, human-
centred techniques32.

Disruption prediction is usually conceptualised as a binary clas-
sification problem. The machine learning tools are required to divide
the operational space into two regions, the disruptive and the safe one.
Various formsof traininghavebeen tested, from traditional supervised
to adaptive, including even reinforcement learning strategies33. The
derived models of the boundary are then to be deployed in real time
during the discharges with a typical time resolution of the order of
milliseconds.

The signals to be processed are time series, consisting of
sequences of data points indexed in time. The choice of the features
to be provided as inputs to the predictors are typically identified
manually by the experts and require various forms of pre-processing.
All the main real-time signal processing techniques available both in
the time domain34–44 and in the frequency domain45 have been
implemented. Approaches based on mixture of time and frequency
domains, such as wavelet transforms, have not been neglected
either46.

So far, all the main families of existing real-time compatible clas-
sifier technologies have been explored, including support vector

Table 4 | Warning time statistics

Mean [ms] Std [ms]

ΔtΛ,core (all) 676 807

ΔtΛ,core (FT) 240 531

ΔtΛ,core (RD) 825 832

ΔtΛ,HF (all) 398 564

ΔtΛ,HF (FT) 216 372

ΔtΛ,HF (RD) 471 610

ΔtΛ,LF (all) 699 919

ΔtΛ,LF (FT) 326 545

ΔtΛ,LF (RD) 852 995

ΔtΛ,Div (all) 492 755

ΔtΛ,Div (FT) 378 739

ΔtΛ,Div (RD) 539 757

ΔtETH (all) 936 1066

ΔtETH (FT) 545 966

ΔtETH (RD) 1060 1069

ΔtEC (all) 390 590

ΔtEC (FT) 545 988

ΔtEC (RD) 334 341

ΔtLM (all) 282 402

ΔtLM (FT) 211 442

ΔtLM (RD) 309 382

The time between the detection of the various anomalies and the beginning of the current
quench. FT indicates the flat top and RD the ramp down phase of the discharges.

Table 5 | Control performances

All FT RD

Disruptive 542 27.9% 72.1%

Mitigated 35.1% 13.5% 21.6%

Prevented 14.9% 3.8% 11.1%

Avoided 49.3% 9.8% 39.5%

Tardy 0.7% 0.7% 0.0%

Missed 0.0% 0.0% 0.0%

Safe 1141 – –

Mitigated 9.0% 1.3% 7.7%

Prevented 7.9% 1.6% 6.3%

Avoided 18.3% 18.0% 0.3%

No Alarm 64.8% – –

Performances of the developed control strategy for the entire database summarised in Table I.
The table reports the percentages of the various interventions that would have been achieved
with the implemented values of the hyper-parameters: 100 ms minimum time to perform
avoidance and prevention actions and 10 ms minimum warning time for successful mitigation.
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machines, artificial neural networks, generative topographic mapping,
fuzzy logic and deep learning. They have also been applied to the data
of many tokamaks of various generations: ADITYA (India)47, ASDEX
Upgrade (Germany)48, DIII-D (US)49–51, J-TEXT (China)52, NSTX (US)53,
ALCATOR C-MOD (US)54, JT-60U (Japan)55, EAST (China)56–58, HL-2A
(China)59 and JET (UK)7. Up to now only three machine-learning-based
predictors have been implemented in JET’s real-time network,
APODIS60, SPAD61, and the centroid-based method21.

The requirements of diagnostics and data analysis tools
In general, the diagnostics for disruption prediction have to provide
more stringent performances than the measurements for the under-
standing of the physics. Certainly the RAMI (Reliability, Availability,
Maintainability, Inspectability) risk control requirements are much
more severe, because the needed measurements have to be always
available in practically all phases of the experiments62. Spatial and time
resolutions have also to be carefully considered, since the causes of
disruptions are multiple, some quite local and evolving on fast time
scales. On top of that, depending on their objectives (mitigation,
prevention or avoidance), the various predictors have to rely on dif-
ferent signals. In particular, the measurements for proximity control,
for assessing how close to the disruption boundary the plasma state is,
have to provide sufficient warning times. For mitigation, the premium
of course is on accuracy, since non-mitigated disruptions are particu-
larly bad and probably cannot be tolerated in devices of the size of
DEMO12.

Whatever the source of information, the adopted metrics to
analyse the experimental signals for disruption prediction should
present the following desirable properties:
1. Sensitive, in the sense of being capable of detecting the anomalies

at an early stage.
2. Specific, which means triggering a very small number of false

detections.
3. Deployable in real-time.
4. Easily portable from one tokamak to another.

All the diagnostics and derived quantities proposed in the present
work satisfy these criteria quite well, as discussed in detail in the fol-
lowing subsections. They are also expected to be available in DEMO
and the reactor. The order follows the time proximity to the beginning
of the current quench: mitigation, prevention and then avoidance.

Diagnostics of the magnetic configuration. Following electrical
engineering standards, the internal inductance is based on the mag-
netic energyWstored in the poloidalfield in the region enclosedby the
plasma boundary. Its normalised version, used for ITER design, is

defined as li =
2V<B2

p>

μ2
0I

2R0
where V is the plasma volume, R0 is the major

radius of the magnetic axis, Bp the poloidal component of the mag-
netic field, <> indicate volume average, I is the plasma current and μ0 is
the vacuum magnetic permeability.

The safety factor essentially measures the "windiness" of the
magnetic field at a certain radius and in general can be conceived as its
pitch: q = dϕ/dθ where ϕ is the toroidal angle and θ the poloidal one
(see Fig. 1a). In practice it is typically expressed in terms of the fields as
q = rBϕ/RBθ where r is the minor radius, R the major radius, Bϕ and Bθ
are the toroidal and poloidal component of the magnetic field
respectively. The indicator q95 is the value of the safety factor at 95% of
the plasma radius, which has proved to be a very good indicator of the
plasma stability.

As mentioned, the locked mode amplitude is the most important
signal formitigationon JET7. The relationshipbetween li and the locked
mode was investigated in ref. 20. Recently the slowing down of the
large electromagnetic modes, preceding the disruption, has been
detected using this signal63. On the other hand, the anomaly in the

locked mode amplitude typically manifests itself too late for preven-
tion and avoidance and therefore this signal is useful only for mitiga-
tion. Indeed, macroscopic alterations to the current profile and the
destabilisation of macroscopic electromagnetic instabilities are typi-
cally the last stage of the pre-disruptive plasma evolution.

Diagnostics of the kinetic profiles. A literature survey has been per-
formed to investigate the performances of the available kinetic profile
indicators for both anomalous behaviours: the hollowing of the profile
in the core and the cooling of the edge. With regard to the core hol-
lowness, all themostwidely used criteria rely either on the ratios of the
temperatures in different regions of the plasma (the “core vs all”
peaking factor64 or the core-middle-edge average temperature
ratios14,65), or on the combination of cumulative profiles obtained
weighting differently the core and the edge66 An innovative indicator,
called Gaussian Fitted Hollowness (GFH), has been recently devised, in
the framework of the present work22. The approach consists of fitting
the electron temperature profile with a bimodal Gaussian. Indeed,
healthy, safe electron temperature profiles are unimodal, i.e. present a
peak only at or near the plasma centre, whereas hollow profiles are
bimodal (see Supplementary Fig. 1). Consequently, detecting and
quantifying bimodality is an alternativeway to determine the degreeof
hollowness. The developed indicator relies on the Bhattacharya dis-
tance (DB)

67 which was originally devised to quantify the distance
between two Gaussian distributions and is defined as:

DB =
1
4
log

1
4

σ2
1

σ2
2

+
σ2
2

σ2
1

+ 2

 ! !
+
1
4

μ1 � μ2

� �2
σ2
1 + σ

2
2

 !
ð2Þ

Where μi are the centres and σi the standard deviations of the
Gaussians.

Given the symmetries imposed by the topology of present day
and future devices, it has proved sufficient to fit the profile with a
symmetric bimodal Gaussian function (A1 =A2 =A,μ1 = � μ2,σ1 = σ2).
Particularised for this case, the Bhattacharyya distance becomes
DB =

μ2

2σ2 and therefore the GFH has been defined as:

GFH =
μ
σ
=

ffiffiffiffiffiffiffiffiffi
2DB

p
ð3Þ

TheGFH indicator is therefore the distance, between the peak and
the valley of the bimodal distribution, divided by the standard devia-
tion of the single Gaussians (see Supplementary Fig. 1). A comparison
of the performance of the proposed indicator and the most widely
ones used in the community is reported in the Supplementary Fig. 2.
These results have been obtained with a series of numerical tests and
confirmed by the analysis of a comprehensive set of JET discharges22.
The superiority of the proposed GFH indicator emerges quite clearly
from all the relevant metrics considered.

Criteria for the edge cooling are much less developed than those
for the hollowness. In the literature12 it is reported that on JET the edge
cooling indicator traditionally used relies on the average temperature
in the middle region divided by the average temperature in the
external region. Since its performances are not satisfactory, a series of
alternatives has been explored. The most performing indicator found
computes the cumulative distribution function (CDF), normalised to
its maximum. On the basis of the CDF, it is possible to calculate the
plasma radius (ρ98) at which the CDF reaches the value of 98%:

CDFT rð Þ= R r�aTe,normdr !
! R ρ98

�aTe,normdr =0:98
ð4Þ

Since this radius shrinks with the plasma cooling down, the
Cumulative Based Cooling (CBC) parameter CBC = 1=ρ98 is calculated,
to obtain a quantity increasing with the edge cooling for coherence
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with the literature. The performances of the proposed indicator are
compared with the most widely used alternatives in Supplementary
Table 1. Again this index outperforms quite systematically all the
indicators reported in the literature22.

The density profile is much more resilient to perturbations than
the temperature one. Incipient anomalies in the density at the edge are
typically detectedmuch earlier andmore reliably bymeasurements of
the radiation (for example MARFEs, see next subsection). The core
density also tends to react more slowly than the temperature and
becomes hollow less frequently. Density profile indicators are there-
fore less useful for both proximity control and disruption prediction.
However, to preserve the pressure, the hollowing of the temperature is
often accompanied by a peaking of the density profile. A reliable
density peaking factor can therefore be a useful complement to the
temperatureprofile indicators justdescribed. In this perspective, given
the basic consistency of the density profiles, a ratio based on the
average temperature within 0.3 and within 0.8 of the normalised
radius has proved to be more than adequate:

Npeaking ðtÞ=
1

0:3

R 0:3
0 ne r,tð Þdr

1
0:8

R 0:8
0 ne r,tð Þdr

� 1 ð5Þ

With regard to the computational times, by far the most
demanding indicator is GHF. Even this one though requires of the
order of 1 ms to be calculated on a lap top computer with a Matlab
routine. Consequently, all the developed profile indexes are fully
compatible with any realistic real-time application.

Diagnostics of the radiation emission. The next generation of devices
will have to operate at radiated fractions of about 90% and detached
divertors. Routinely available estimates of the radiation emission and
its accuracy will therefore be essential to control these plasmas and
ensure safe operation. At the edge, early detection of MARFEs onset is
particularly relevant. The main idea behind the proposed method
relies on the already mentioned observation that MARFE instabilities
typically start developing in the divertor region or just above it (X-
point radiator)68. In a safe shot, the centroid of the visible radiation
would remain close to the divertor throughout the entire shot. On the
contrary, in disruptive discharges the blob of high radiation typically
moves up and down along the wall on the high field side. Conse-
quently, to detect the onset of a MARFE, the coordinates of the
emission centroid are evaluated and compared with the ones of the
previously processed frame. The developed algorithm acts on indivi-
dual frames and converts them to a grey-scale image. After thresh-
olding, the resulting binary image contains the brightest zones of the
original frame. On JET, when the centroid of the high emitting region
moves vertically more than 20 pixels between two frames (corre-
sponding to about 15 cm in physical space), a MARFE instability has
typically started to develop68.

A database of JET videos has been built, to evaluate the perfor-
mances of the proposed MARFE detection algorithm. A total of
44 shots, 28 disruptive and 16 safe, have been carefully selected from
the high power deuterium, hydrogen and full tritium campaigns (C39
and C40). The discharges have been chosen to cover a wide range of
experimental conditions, to prove the general applicability of the
algorithm. For these two campaigns, videos from the wide angle
operational visible camera have been analysed. For each video, the
presenceor absence of aMARFE has been evaluated by an expert.With
the aforementioned threshold, the algorithm manages to identify all
the MARFEs in the database correctly, without any false positive or
false negative68. Also in this case, the processing times are of the order
of one ms by MATLAB routines, therefore much shorter than the
camera frame rate and not problematic to implement in real time.

Even if the visible cameras can allow following quite well the
movements ofMARFEs, the determination of the actual power emitted

requires bolometric measurements. For the purposes of control, an
estimate of the uncertainties in the reconstructed emissivity is also
extremely relevant. The only tomographic inversion method that can
provide this information routinely is based on the Maximum Like-
lihood (ML). The implementation of the ML algorithm with compu-
terized tomography is well-documented in the literature69. The
technique was originally based on the assumption that both each of
the “n” pixel of the emissivity f n and the line integratedmeasurements
gm follow poissonian statistics. It has been demonstrated that this
hypothesis can be relaxed and the method can be extended to mea-
surements obeying Gaussian distributions70. The conditional prob-
ability of detectinggmeasurements froma two-dimensional emissivity
f , can therefore be written as the likelihood of a poissonian pdf:

L g,j,fð Þ=
Y
m

1
gm!

gm

� �gm × exp �gm

� �
ð6Þ

In Eq. (6), gm = E gmjf
� �

is the conditional expectation of gm

events collected by line of sight m, given f , the emissivity profile. In
practice, the ML algorithm is implemented with an iterative formula,
derived from a specific version of the Expectation Maximization
algorithm, to converge on the final estimate f ðk

*Þ
ML of f . Using the same

notation as in ref. 69, in terms of the sensitivity sn =
P
m
Hmn, the fol-

lowing equation holds:

gm =Hmnf
n ð7Þ

Where the matrix H, describing the contribution of each pixel to each
detector, is obtained as usual from the layout of the bolometer lines of
sight and their etendues.

The iterative formula, to solve the inversion problem by updating
the 2D profile until a convergence criterion is satisfied, can be written
as:

f k + 1ð Þ
n =

f kð Þ
n

sn
gm=Hmjf

jðkÞ
� �

Hm
n

ð8Þ

The initial guess can be either uniform or a specific distribution.
The former solution is more general and computationally faster but
the latter approach has demonstrated to reduce drastically the
occurrence of artefacts71.

The ML approach has the competitive advantage of computing
also the covariance matrix Kðk*Þ

ML and therefore, for each 2D emissivity
distribution, an estimate of the uncertainty associated to each pixel
can be provided routinely, without making recourse to delicate and
time-consuming Monte Carlo techniques. All the details can be found
in ref. 69. It should be noted that the capability of the ML to provide
confidence intervals in the solutions is due also to the fact that the
algorithm does not include any mathematical regularization. The only
imposed constraint, common to all the tomographic inversion tech-
niques implemented on JET, consists of smoothing the reconstructed
tomograms along the magnetic surfaces. Examples of reconstructions
are reported in Fig. 2. It should be also emphasised that, with adequate
specific refinements, the ML algorithm can be modified to take into
account the most important sources of errors on the measurements,
such as outliers, faulty or missing detectors and uncertainties in the
estimates of the magnetic topology72,73.

Notwithstanding its competitive advantages, the ML tomo-
graphy shares with the other inversion methods an important
drawback; its computational times are not compatible with real-time
applications. Completing the calculations for a single time slice
typically requires several seconds, a time span far too long for the
task of predicting the occurrence of disruptions. Acceleration tech-
niques are under investigation but the deployment of the ML
tomography in feedback remains far in the future74. The ML
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tomography algorithms are therefore utilised in the present work
only as a benchmark.

For real-time deployment, therefore, a simplified algorithm has
been developed. Themain idea consists of trading spatial resolution for
speed. To this end, the lines of sights of the two bolometric cameras
have been divided in three macro-views each (see Supplementary
Fig. 3). Their intersection results in 8 macro-pixels, which cover the
entire plasma cross section and have enough spatial resolution to allow
identifying all themajor radiation anomalies detected on JET. To obtain
the local emissivity onehas to invert the following systemsof equations:

PH1
= RDivFDiv,H1

+ RLFBFLFB,H1

PH2
= RHFLFHFL,H2

+ RCoreFCore,H2
+ RLFRFLFR,H2

PH3
=RHFTFHFT,H3

+ RTopFTop,H3
+ RLFTFLFT,H3

PV1
= RLFBFLFB,V1

+ RLFRFLFR,V1
+ RLFTFLFT,V1

PV2
= RDivFDiv,V2

+ RCoreFCore,V2
+ RTopFTop,V2

PV3
=RHFTFHFT,V3

+ RHFLFHFL,V3

where the subscripts indicate the macro-pixels depicted in Supple-
mentary Fig. 3 (HFL = high filed low; HFT = high field top; LFR = low
field right; LFT = low field top; LFB = low field bottom; Cor = Core; Top
= Top; Div = Divertor). The systems consists of 6 equations with 8
unknowns, which can be complemented with 8 weak constraints, by
imposing that the emissivities are non-negative. The inversion of this
set of equations has been performed with a non-negative least square
minimisationmethod, as reported in ref. 75. The inversion software has
proved to always converge and the obtained emissivity of the 8macro-
pixels are typically within ±20% of what would be obtained with the
more sophisticatedMLmethod. The results are always provided in less
than 50 μs. Consequently, the fast tomographic approach just
described has the accuracy and spatial resolution to identify all the
major radiation anomalies affecting JET plasmas and its computational
times are more than compatible with deployment in feedback. The 8
macro-pixels of Supplementary Fig. 3 are combined to obtain the four
main regions depicted in Fig. 3.

The estimate of the macro-pixels’ internal energy
To apply the model formulated in Eq. (1), the internal energy of each
macro-pixel must be determined with sufficient accuracy. The
approach adopted, to obtain the results reported in the present work,
is described in this section.

The plasma thermal energy per unit volume can be written as:

u=
pi +pe

γ � 1
=
niTi +neTe

γ � 1
ð9Þ

Where the subscript e indicates the electrons and i the ions. Assuming
Te =Ti =T anddeuterium fully ionizedplasmas (ne=ni =n e γ= 5/3), one
obtains:

u=3nT ð10Þ

The energy inside a certain volume V can then be calculated as:

EV =
Z

V
3nTdV ð11Þ

To determine the plasma energy in a given region, one can
therefore derive the magnetic topology from an equilibrium code and
the temperature and density profiles from the Thomson scattering.
Under theusual assumption that themagnetic surfaces are isobars, it is
possible to calculate the temperature, density and pressure fields as
shown in the example reported in Supplementary Fig. 4. From these
maps, the energy in the regions of interest can be approximated with
discrete integrals of the form:

Ek =
Z

Vk

3nTdV =6π
XX

2ne,i,jTe,i,jRi,jdRdZ ð12Þ

Where ne,i,j and Te,i,j are the density and temperature of the pixel,
whose barycentre has the coordinates (i, j). dR e dZ are the dimensions
along R and Z and Ri,j is the major radius of the corresponding pixel
barycentre.

Unfortunately on JET there is no equilibrium real-time recon-
struction code routinely available. A fall-back solution consists of fit-
ting the HRTS profiles in the region from R = 3 to R = 3.9 m with a
second-order polynomial. For new discharges, the energy in each
macro-pixel is then determined by averaging the HRTS profiles in its
volume. SupplementaryTable 2 reports an estimate of the errors in the
macro-pixels’ energy committed by adopting this approach. It is worth
pointing out that this choice keeps the number of diagnostics required
the entire methodology to a minimum since the HRTS is also the sys-
tem used for the detection of hollowness and edge cooling.

The adaptive estimates of the probability and time to anomaly
In the present work, the probabilities of the various anomalies are
obtained with basically the same mathematical procedure. The
amplitude difference of the relevant signals between disruptive and
safe examples are fitted with a sigmoid function, to obtain an output
between 0 and 1. The fits are then updated with adaptive procedures,
implemented with specific neural networks as described in the fol-
lowing. The delicate aspect is the determination of the thresholds,
above which alarms are to be raised.

In the case of the locked mode, the approach of ref. 20 has been
followed. The critical value of the dimensionless Locked Mode signal
(the locked mode amplitude divided by the plasma current LMN) is
linked to the internal inductance (li) by the equation:

LMN,threshold =al
b
i ð13Þ

The sigmoid function to determine the probability of the plasma
disrupting is:

pLM = ed1LM LMN�LMN,thresholdð Þ+d2LM =ð1 + ed1LM LMN�LMN,thresholdð Þ +d2LM Þ ð14Þ

At the beginning of a new tokamak experimental campaign, no
data is available and the therefore the algorithm starts with the values
reported in ref. 20. Equation (14) is then updated with the incoming
data with a dedicated neural network, using the cross entropy as loss
function.

In the case of the temperature hollowness, the following treat-
ment is implemented. The probability of the temperature profile
becoming hollow is determined by the sigmoid:

pETH = ed1ETH ETH�ETHthresholdð Þ +d2ETH =ð1 + ed1ETH ETH�ETHthresholdð Þ+d2ETH Þ ð15Þ

Since the indicator is a form factor (and not an absolute quantity),
the numerical values of the ETH threshold and the other parameters in
(15) are derived directly from ref. 20. With the evolution of the cam-
paign, the sigmoid function is then updated with a dedicated neural
network, using the cross entropy as loss function.
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As alreadymentioned, the edge cooling (EC) is detected using the
cumulative distribution function (CDF) of the normalised electron
temperature profile and by calculating a “edge radius” ρ98 as the radius
containing the 98% of the CDF. Again, by using a sigmoid function, the
probability to have an EC is computed:

pEC = e
d1EC EC�ECthresholdð Þ+d2EC=ð1 + ed1EC EC�ECthresholdð Þ +d2EC Þ ð16Þ

The first values of the coefficients d1 and d2 have been derived
from the reference paper22. The sigmoid function is then updated
along the campaign with a dedicated neural network, using the cross
entropy as loss function.

In the case of radiation anomalies, a typical classification algo-
rithm would not perform well because any automatic adaptive
training set would have a couple of weaknesses. First it would be
highly unbalanced, since for most time slices the plasma radiation is
not anomalous. Secondly the safe set would unavoidably contain
very misleading examples of anomalous patterns classified as safe
(due for example to interventions of the control system). An effective
way to counteract these problems consists of calculating the prob-
ability density function (pdf) of the various cooling factors for both
safe and disruptive discharges. So, for each region, the pdfs of “safe”
and “(potentially) anomalous” Λ are derived. At higher values of Λ the
two pdfs diverge, because the one of the anomalous patterns
becomes larger at larger Λ. An example for the core radiation is
shown in the top plot of Supplementary Fig. 5. Consequently the
cumulative density functions (CDF), integrals of the pdfs, tend to
separate significantly as shown in the bottom plot of Supplementary
Fig. 5. The true positive percentage (or sensitivity) trend is calculated
as one minus the anomalous CDF, while the false alarm percentage
(or 1 – specificity) is one minus the safe CDF. The results of the
present work have been obtained with the following rules for
determining the Λ thresholds:
1. Search for the threshold that ensure false alarms minor than

0.05% and a true positive larger than false alarms.
2. If no thresholds satisfy the previous rule, the false alarm limit is

increased to 0.1%.
3. If no thresholds satisfy the previous rules, the false alarm limit is

increased to 1%.

Being based on the CDFs, these threshold aremore robust against
misclassifications in the training set. Once identified the thresholds,
again the probability of a local radiation anomaly is calculated with a
sigmoid function:

pΛ = = ed1Λ Λ�Λthresholdð Þ+d2Λ
	

1 + ed1Λ Λ�Λthresholdð Þ+d2Λ

� �
ð17Þ

Note that a Λthreshold is found for each macro region and an alarm
is raised if one of the pΛ exceeds 0.5.

The just described classifiers are able to detect anomalies and
label them with reference to the macro-pixels illustrated in Fig. 3. This
is of course very valuable information. However, in order to optimise
the remedial strategy, the control system would need also an estimate
of the time available to undertake a certain action. To this end, three
more predictors have been developed to estimate the time to mode
locking, hollowness, and edge cooling (tr,LM, tr,ETH and tr,EC). This
aspect is addressed as a supervised regressionproblem. For eachevent
to forecast, a predictor in the form of a feed-forward neural network is
used. The architecture implemented consists of three hidden layers
with 20, 10 and 5 neurons respectively. The inputs are: the magnetic
toroidal field (Bt), the plasma current (Ip), the dimensionless Locked
Mode (LMN), the internal inductance (li), the electron temperature and
density in the core,middle and edge regions, the electron temperature
profile anomaly indicators (ETH and EC), the Λi in the four regions
(Core, HF, LF andDiv) and the Λheating. The outputs, i.e. the times to the

anomaly, are predicted in the range from 1 ms to 2 s (2 s is considered
the time horizon for reliably predicting the earliest events). The loss
function is the mean square error of the differences between the
predictions and the actual occurring times of the anomalies, weighting
more small times to compensate the fact that at small times there are
less data (for example, from 1ms to 10ms there are 10points per pulse,
while from 100 ms to 1 s there are 900 points). The implemented loss
function can therefore be written as:

lossW ,MSE,j =

P
Wi log10tr,j,i � log10yr,j,i
� �2

P
Wi

ð18Þ

Where:

Wi =
1

yr,j,i
ð19Þ

While tr,j,i and yr,j,i are the predicted and the target time to anomaly jof
the i-th observation in region r. An example for the prediction quality
that can be achieved with this approach is shown in Supplemen-
tary Fig. 6.

JET tools for radiation control and examples proving the added
value of the proposed strategy
On JET with the metallic wall, the influx of high Z impurities and the
consequent radiation emission have proved to be fundamental
aspects influencing plasma stability and performances. The most
harmful impurities are typically W sputtered by the divertor, Ni and
copper, whose source are the neutral beam duct scrapers, and Ni
coming from the ICRH antennas27. To reduce the influxes of these
metal atoms, it is necessary to carefully control the plasma edge
parameters, by fine tuning the density, the temperature and the ELM
behaviour. The main actuators available on JET for this purpose are
gas injection, the pellets of frozen hydrogen isotopes and vertical
kicks (rapid movements of the plasma vertical position obtained by
changing the radial magnetic field)27. Unfortunately, vertical kicks are
not compatible with high current because of the risk of vertical dis-
placement events. In its turn, the level of gas injection required to
control the ELMs is typically so high as to compromise good con-
finement. The best strategy devised is therefore a suitable combi-
nation of gas fuelling and pacing pellets23. However, the fine tuning of
these actuator has proved quite delicate, particularly because it is
not straightforward to transfer the recipes optimised for deuterium
to the other isotopic composition (full tritium and DT). Increasing
the plasma mass indeed tends to results in slower ELMs dynamics
with longer ELM-free periods, which can result in stronger penetra-
tion of the impurities. This problem is compounded by the different
power deposition of the T beams, more peaked toward the edge, and
the different behaviour of the tritium gas injection modules23. How-
ever, the indicators, tools and techniques developed in the present
work are equally effective with all isotopic compositions. This fact
proves their generality and is quite encouraging in view of their
application to the next generation of devices.

For mitigation purposes, the main signal used by JET control
system is the amplitude of the locked mode. As already discussed, to
trigger a control plasma termination, excessive radiation is typically
the earliest precursors. The radiation emission is therefore monitored
by JET both real-time control systems: the Real TimeCentral Controller
(RTCC) and Plasma Event TRiggering for Alarm (PETRA)27. RTCC relies
on twomain indicators related to the radiation emission: the radiation
fraction (the total emission measured by the bolometers divided by
the input power) and various peaking factors (the ratio of bolometric
central and peripheral chords)23. In PETRA a convolutional neural
network, trainedwith JET traditional tomographic inversionmethod, is
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deployed to monitor the radiation in two macro-regions in the centre
and the edge23. All these systems allowed carrying out the DTE2 cam-
paign quite effectively but provided performances, which are clearly
insufficient in the perspective of ITER and DEMO, as documents by the
statistics reported in Table 1.

All these JET metrics are clearly outperformed by the indicators
developed in the presentwork.On thebasis of the improved indicators
and predictions JET control system would be provided with much
better information. Supplementary Table 3 reports a comparison of
the alarms detected by the indicators developed in the present work
and the actions taken from the JET system. A set of 286 discharges has
been analysed, in which the actions undertaken by RTCC and PETRA
are clear andwell-documented. Inspection of the top parts of the table
reveals that, in JET safe discharges, when JET control system does not
intervene also the proposed tools do not launch an alarm. However,
the developed predictors would intervene in the disruptive discharges
notmitigated by JET, showing the capability not tomiss practically any
disruption. In case of successful actions undertaken by RTCC and
PETRA, the warning times provided by the indicators developed in the
present work typically are much longer (see Supplementary Table 4).
They would have therefore allowed implementing avoidance strate-
gies in a good percentage of cases and better prevention and mitiga-
tion actions almost always.

The feedback schemes following the logic in the present work
have not been implemented systematically on JET yet but there is
ample evidence that they could be effective and results in significant
improvements of JET performances in terms of disruption handling.
Some representative case are reported in the following.

One example of recovered radiation anomaly in the core is
shown in Supplementary Fig. 7. A minor core radiation/hollow-
ness anomaly is observed at t ~ 9.5 s, which recovers probably due
to high input power that avoids a critical electron temperature
profile, giving the plasma enough energy to expel the impurities.
A second most intense core radiation is observed from t = 10.8 s
(Λcore > 1). This excessive emission leads to the fast cooling of the
plasma and the hollowing of the electron temperature profile.
However, thanks to the increase of the gas rate a t = 11 s, the
plasma transits from H to L mode, ensuring a larger impurity
transport from the core to the edge. This, together with enough
input power to reheat the core, allows recovering a centre peaked
temperature profile, avoiding the triggering of macroscopic MHD
instabilities. The probabilistic maps of the reporting the level of
hollowness and edge cooling vs the λ indicators show that the
cause of the temperature anomaly is excessive radiation in the
core (see Supplementary Fig. 8).

An interesting example of anomaly in the edge radiation is
reported in Supplementary Fig. 9. In this case, JET control system does
not undertake any remedial action. The developed indicators detect a
MARFE at t = 15.973 s. An edge cooling alarm is triggered at t = 16.083 s
and a lockedmode is detected at t = 16.187 s. TheMARFE is clearly seen
also in the frames of the visible cameras, as shown in Supplementary
Fig. 10. This sequence of events suggests that with adequate actuators
sufficient margins would have been available to avoid this disruption.
Moreover, it is not an uncommon occurrence on JET with the metallic
wall that MARFEs last for much longer periods than the case of
discharge 95993.

Data availability
Data sets generated during the current study are available from the
corresponding author on request.

Code availability
Codes used during the current study are available from the corre-
sponding author on request.
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