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A B S T R A C T

To explore the influence of dilatational and rotational motions on iso-scalar surface area within a premixed
turbulent flame, three-dimensional compressible direct numerical simulation data obtained by Dave et al.
(2018) from a lean, complex-chemistry, hydrogen-air flame propagating in intense small-scale turbulence
(a ratio of laminar flame thickness to Kolmogorov length scale is about 20) in a box are analyzed using
Helmholtz–Hodge decomposition of velocity field into solenoidal and potential components. The obtained
results indicate that the flame surface area is created by potential velocity fluctuations generated due to
combustion-induced thermal expansion, whereas the rotational motion acts to smooth wrinkles of iso-scalar
surfaces within local preheat and reaction zones and, consequently, to reduce the flame surface area. The latter
finding challenges the classical concept of flame-generated turbulence and is attributed to flame-generated
solenoidal velocity fluctuations. Specifically, the incoming tangential (to the flame) vorticity is suppressed
by baroclinic torque, which also generates vorticity in another tangential direction, with the latter (flame-
generated) solenoidal velocity fluctuations working to smooth the flame surface. Thus, even under conditions of
moderately intense turbulence, flame surface area can primarily be created by potential velocity perturbations
caused by combustion-induced thermal expansion.
1. Introduction

Since turbulence in a typical laboratory burner is primarily rota-
tional motion, an increase in premixed burning rate by turbulence
is often attributed to the influence of vortices on a flame. In par-
ticular, such a view motivated numerous computational and experi-
mental studies of flame-vortex interaction, e.g., see a review article
by Renard et al. [1] and recent papers by Thiesset et al. [2], Paes
et al. [3], or Luna and Egolfopoulos [4]. Within the framework of such a
paradigm, flame-generated vorticity is often believed to accelerate pre-
mixed combustion. Nevertheless, there are theoretical, experimental,
and numerical data that indicate the opposite effect. First, Darrieus–
Landau theory of hydrodynamic instability of an infinitely thin laminar
premixed flame [5,6] predicts that rotational and potential velocities
generated by the instability have opposite directions just downstream
of the flame sheet, with the rotational motion pushing the sheet per-
turbations back, see Eq. (40) in a review article by Lipatnikov and
Chomiak [7]. Second, (i) experimental studies [8,9] of the interaction
of a large laminar toroidal vortex with a relatively thin premixed
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flame and (ii) two-dimensional (2D) numerical simulations [10–12]
of the interaction of a laminar vortex pair (a 2D approximation of
a toroidal vortex) with a laminar premixed flame have shown that
vorticity signs may be opposite upstream and downstream of the flame,
i.e., vorticity generated by baroclinic torque ∇𝜌 × ∇𝑝 in the flame can
stabilize perturbations of the flame surface, caused by the incoming
vortices. Here, 𝜌 and 𝑝 are the density and pressure, respectively.
A similar effect was documented in experiments with three weakly
turbulent Bunsen flames [13]. Finally, a recent analysis [14,15] of
three-dimensional (3D) Direct Numerical Simulation (DNS) data ob-
tained from two weakly turbulent single-step-chemistry flames has
shown that the local flame stretch rate is predominantly negative in
regions characterized by a large magnitude of baroclinic torque or a
large magnitude of enstrophy. Thus, strong flame-generated vorticity
impeded wrinkling reaction zones under conditions of that study.

While such a phenomenon is of fundamental interest for under-
standing the physics of premixed turbulent combustion (in particular,
flame-generated turbulence and its effect on burning rate), it has not yet
attracted due attention. This lack of due attention stems, probably, from
vailable online 24 June 2024
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the facts that a few earlier studies either (i) used 2D optical diagnostic
or numerical tools [8–12] or/and (ii) dealt with laminar [5,6,8–12] or
weakly-turbulent [13–15] flames. While the influence of combustion-
induced thermal expansion on certain turbulence characteristics was
shown to be weak in very intense turbulence, as reviewed elsewhere [7,
16,17], the present authors are not aware on research into effects
of flame-generated potential and solenoidal velocity fluctuations on
iso-scalar surface areas within a premixed flame under conditions of
moderately intense, small-scale turbulence.

In addition, all the aforementioned simulations [10–12,14,15] dealt
with single-step combustion chemistry. While the present authors are
not aware on an argument that implies a substantial influence of
combustion chemistry on vorticity evolution within a premixed flame,
the lack of such an influence should nevertheless be demonstrated.

Accordingly, the present paper aims at bridging this knowledge
gap by reporting DNS data, which show, for the first time to the au-
thors’ knowledge, that, under conditions of moderately intense, small-
scale turbulence, (i) flame-generated solenoidal velocity fluctuations
statistically smooth 3D wrinkles on flame surface, (ii) which, never-
theless, grow due to potential velocity fluctuations generated due to
combustion-induced thermal expansion.

2. Numerical simulations

2.1. DNS attributes

The DNS data analyzed here were computed by Dave et al. [18,19]
and were also explored in other recent papers [20–25]. The data were
obtained from an unconfined, statistically one-dimensional and planar,
lean (the equivalence ratio 𝜙 = 0.81), and slightly preheated (unburned
gas temperature 𝑇𝑢 = 310 K) H2-air flame propagating in a box
19.18× 4.8× 4.8 mm) meshed using a uniform grid of 960 × 240 × 240
ells. The mixture-averaged transport model and a ‘‘comprehensive
inetic model’’ by Li et al. [26] (21 reactions, 9 species) were adopted.
he laminar flame speed 𝑆𝐿 = 1.84 m∕s, thickness 𝛿𝐿 = (𝑇𝑏 −

𝑇𝑢)∕max{|∇𝑇 |} = 0.36 mm, and time scale 𝜏𝑓 = 𝛿𝐿∕𝑆𝐿 = 0.20 ms, where
subscripts 𝑢 and 𝑏 designate unburned and burned gases, respectively.

Homogeneous isotropic turbulence was pre-generated using forc-
ing at low wavenumbers in a separate cube with the fully periodic
boundary conditions. The generation process was performed until a
statistically stationary stage was reached. The obtained turbulence dis-
plays the Kolmogorov–Obukhov 5/3 spectrum [5] and is characterized
by the r.m.s. velocity 𝑢′ = 6.7 m∕s, an integral length scale 𝐿 = 3.1 mm,
the turbulent Reynolds number 𝑅𝑒𝑡 = 𝑢′𝐿∕𝜈𝑢 = 950, the Kolmogorov
length scale 𝜂𝐾 = (𝜈3𝑢∕⟨𝜀⟩)

1∕4 = 0.018 mm, the integral and Kolmogorov
time scales 𝜏𝑡 = 𝐿∕𝑢′ = 0.46 ms and 𝜏𝐾 = (𝜈𝑢∕⟨𝜀⟩)1∕2 = 0.015 ms,
respectively. Here, ⟨𝜀⟩ = 2𝜈𝑢⟨𝑆𝑖𝑗𝑆𝑖𝑗⟩ designates the rate of dissipation
of turbulent kinetic energy, averaged over the cube; 𝜈 is kinematic
viscosity; 𝑆𝑖𝑗 = 0.5(𝜕𝑢𝑖∕𝜕𝑥𝑗 + 𝜕𝑢𝑗∕𝜕𝑥𝑖) is the rate-of-strain tensor;
and the Einstein summation convention applies to repeated indexes.
Accordingly, the Damköhler number 𝐷𝑎 = 𝜏𝑡∕𝜏𝑓 = 2.35 and the number
(𝛿𝐿∕𝜂𝐾 )2, which is sometimes associated with Karlovitz number, is as
large as 400. Note, that a more appropriate Karlovitz number 𝐾𝑎 =
𝜏𝑓∕𝜏𝐾 = 13 is significantly less, because 𝑆𝐿𝛿𝐿∕𝜈𝑢 ≫ 1 in lean H2-air
flames [27].

When running combustion simulations, the pre-generated turbu-
lence was continuously injected into the computational domain through
the left boundary and decayed along the mean flow direction 𝑥 (sym-

etry boundary conditions were set at transverse boundaries). Accord-
ngly, 𝑢′ = 3.3 m∕s and 𝐾𝑎 = 3.3 at the leading edge of the mean flame
rush, associated with the transverse-averaged value 𝑐𝐹 (𝑥, 𝑡) of the fuel-

based combustion progress variable equal to 0.01. Nevertheless, the
turbulence length scales evaluated at the inlet boundary and at the
leading edge are roughly equal to one another, i.e., (𝛿𝐿∕𝜂𝐾 )2 is still
about 400 at the leading edge. Here, 𝑐𝐹 = (𝑌𝐹 − 𝑌𝐹 ,𝑢)∕(𝑌𝐹 ,𝑏 − 𝑌𝐹 ,𝑢) is
efined using the fuel mass fraction 𝑌𝐹 to satisfy a constraint of 0 ≤
𝐹 ≤ 1, whereas local values of temperature-based combustion progress
ariable can be larger than unity due to differences in molecular
2

iffusivities of heat, H2, and O2 [28,29]. 𝑐
.2. Velocity decomposition

The computed turbulent velocity field 𝐮(𝐱, 𝑡) was decomposed into
otential and solenoidal components, 𝐮𝑝(𝐱, 𝑡) and 𝐮𝑠(𝐱, 𝑡), respectively,
sing a numerical method applied earlier by the present authors to
wo weakly turbulent single-step chemistry flames [30] and two other
omplex-chemistry flames [31–33]. This method yields

(𝐱, 𝑡) = 𝐮𝑝(𝐱, 𝑡) + 𝐮𝑠(𝐱, 𝑡);

× 𝐮𝑝(𝐱, 𝑡) = 0; ∇ ⋅ 𝐮𝑠(𝐱, 𝑡) = 0. (1)

he key difference between solenoidal and potential velocity fields
onsists of the fact that the former is dilatation-free, i.e., combustion-
nduced dilatation directly affects the potential velocity field only.

.3. Conditioned quantities

Quantities conditioned to the instantaneous local values 𝑐𝐹 (𝐱, 𝑡)
f the combustion progress variable, reported in the following, were
ampled from volumes characterized by 0.005 ≤ 𝑐𝐹 (𝐱, 𝑡) < 0.995 by
ividing an interval of a sampling variable 𝜉 ∈ [0.005, 0.995) in 100 bins,
.g., ⟨𝐮𝑠|𝜉⟩ designates the solenoidal velocity vector sampled from and
veraged over volumes characterized by 𝜉 −0.005 ≤ 𝑐𝐹 (𝐱, 𝑡) < 𝜉 +0.005.
esults sampled at 𝑐𝐹 (𝐱, 𝑡) < 0.005 and 𝑐𝐹 (𝐱, 𝑡) ≥ 0.995 are disregarded,
ecause (i) the focus of this study is placed on velocity fluctuations
ithin flames, but (ii) statistics sampled from these two bins are
ainly controlled by velocity fluctuations in fresh reactants and burned
roducts, respectively. The sampling was applied either to the entire
omputational domain or to a band of 𝑐∗𝑖 − 0.01 < 𝑐𝐹 (𝑥, 𝑡) < 𝑐∗𝑖 + 0.01,
here 𝑐∗𝑖 = 0.1, 0.3, 0.5, 0.7, or 0.9. In the following, dependencies
f conditioned quantities on the local combustion progress variable
𝐹 or the mean combustion progress variable 𝑐𝐹 will be referred to
s variations of these quantities in flame or flame brush, respectively,
.e., word ‘‘flame’’ will designate instantaneous local flame. Moreover,
ince ⟨𝑞|𝜉⟩ ≡ ⟨𝑞|𝜉 − 0.005 ≤ 𝑐𝐹 (𝐱, 𝑡) < 𝜉 + 0.005⟩ for any quantity 𝑞,
he former variations will be discussed in terms of 𝜉-dependence of the
onditioned ⟨𝑞|𝜉⟩.

Conditioned quantities reported in the following were sampled from
6 snapshots stored each 5 μs over 2.8 ≤ 𝑡∕𝜏𝑡 ≤ 3.4 and time-
veraged. During this time interval, statistical stationarity of the flame
ropagation was reached, e.g., turbulent burning velocity oscillated
eakly around a steady value [20].

. Results and discussion

.1. Potential and solenoidal mass fluxes

Figs. 1a and 1b show dimensionless conditioned normal mass fluxes
𝑛,𝑠 ≡ ⟨𝐧 ⋅ 𝜌𝐮𝑠|𝜉⟩∕(𝜌𝑢𝑆𝐿) and 𝑚𝑛,𝑝 ≡ ⟨𝐧 ⋅ 𝜌𝐮𝑝|𝜉⟩∕(𝜌𝑢𝑆𝐿), sampled from
ifferent zones of the mean flame brush. Since the normal unit vector
= −∇𝑐𝐹 ∕|∇𝑐𝐹 | points to unburned reactants, the normal mass fluxes

re negative when the corresponding velocities convect the flame to
ombustion products. The following trends are worth emphasizing.

First, the magnitude of the solenoidal normal flux 𝑚𝑛,𝑠 is less than
he magnitude of the potential normal flux 𝑚𝑛,𝑝, thus, indicating that
onvection of flames in direction normal to them is mainly controlled
y the potential motion.

Second, the magnitude of the potential 𝑚𝑛,𝑝, which is negative,
.e., 𝐮𝑝 convects the flame to products, decreases with increasing 𝜉, with
he exception of the flame-brush zone characterized by 𝑐𝐹 ≈ 0.1, see
ig. 1b. Since such a behavior of the normal mass flow rate is known for
trained laminar flames [6,34], the discussed trend could be attributed
o generation of predominantly positive strain rates by the potential
elocity field, as will be discussed later.

Third, the solenoidal flux signs are opposite at 𝑐𝐹 = 0.1 or 0.3 and

̄𝐹 = 0.7 or 0.9. More specifically, the solenoidal velocity predominantly
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Fig. 1. Dependencies of dimensionless conditioned (a) solenoidal ⟨𝐧 ⋅ 𝜌𝐮𝑠|𝜉⟩∕(𝜌𝑢𝑆𝐿) and (b) potential ⟨𝐧 ⋅ 𝜌𝐮𝑝|𝜉⟩∕(𝜌𝑢𝑆𝐿) normal mass fluxes on 𝜉, sampled from different bands
𝑐∗𝑖 − 0.01 < 𝑐𝐹 (𝑥, 𝑡) < 𝑐∗𝑖 + 0.01, with 𝑐∗𝑖 being specified in legends. Sketches of the influence of (c) solenoidal and (d) potential velocities on an instantaneous local flame surface
(solid magenta line). Vertical straight dashed lines show mean surfaces 𝑐𝐹 (𝑥, 𝑡) = 𝑐∗𝑖 , with 𝑐∗𝑖 being specified near the lines. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
Fig. 2. Normalized conditioned strain rates (black lines) sampled from the entire
computational domain, as well as potential (red lines) and solenoidal (blue lines)
contributions to them. 𝜏𝑓 ⟨𝑎𝑡|𝜉⟩ are plotted in dotted-dashed lines. Other curves show
𝜏𝑓 ⟨𝑎𝑡|∇𝑐𝐹 ||𝜉⟩∕⟨|∇𝑐𝐹 ||𝜉⟩. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

convects flames to (from) products in the leading (trailing, respectively)
halves of the flame brush. This is illustrated in Fig. 1c, where arrows
show direction of 𝑚𝑛,𝑠, the arrow length characterizes |𝑚𝑛,𝑠|, and ver-
tical dashed lines represent mean surfaces of 𝑐𝐹 (𝑥, 𝑡) = 𝑐∗𝑖 , with 𝑐∗𝑖
being specified near the lines. The emphasized changes in 𝑚𝑛,𝑠 with
𝑐𝐹 imply that the solenoidal velocity predominantly convects flames to
the middle of the flame brush both from its leading and trailing halves,
thus, damping perturbations of the axial coordinate 𝑥𝑓 of the flame
surface. Accordingly, the solenoidal velocity field works to decrease
the flame surface area. On the contrary, the potential 𝑚𝑛,𝑝 points to
products at various 𝑐𝐹 and |𝑚𝑛,𝑝| is increased with increasing 𝑐𝐹 .

3.2. Potential and solenoidal strain rates

To support the above interpretation of Fig. 1, let us compare con-
tributions of potential and solenoidal velocity fields to the flame strain
3

rate 𝑎𝑡 = ∇ ⋅ 𝐮 − 𝐧 ⋅ ∇𝐮 ⋅ 𝐧. The point is that the time derivative of the
area 𝐴𝑓 of an infinitesimal element of an iso-scalar surface 𝑐𝐹 (𝐱, 𝑡) = 𝜉
is known to be controlled by the local flame stretch rate 𝑠̇ [35–38], i.e.,

1
𝐴𝑓

d𝐴𝑓

d𝑡
= 𝑠̇ = 𝑎𝑡 + 𝑆𝑑∇ ⋅ 𝐧. (2)

In particular, a transport equation for flame surface density [38–40],
i.e., flame surface area per unit volume, involves both the strain rate 𝑎𝑡
and the curvature term 𝑆𝑑∇ ⋅𝐧. Here, ∇ ⋅𝐧 characterizes the local flame
curvature and, for any iso-scalar surface, the flame displacement speed
𝑆𝑑 is evaluated as follows 𝑆𝑑 = |∇𝑐𝐹 |

−1 (𝜕𝑐𝐹 ∕𝜕𝑡 + 𝐮 ⋅ ∇𝑐𝐹
)

.
While separation of contributions of potential and solenoidal veloc-

ity fields to the curvature term 𝑆𝑑∇ ⋅ 𝐧 is difficult, such a separation
is of minor interest for the goals of the present study, because this
curvature term is predominantly negative in various premixed turbu-
lent flames [41–46], i.e., this term works statistically to reduce flame
surface density. On the contrary, the mean strain rate is positive in
those flames [41–46], i.e., flame surface is predominantly created by
turbulent strain rates. Since the strain rate 𝑎𝑡 is linear with respect
to the velocity vector 𝐮, contributions of potential and solenoidal
velocity fields to 𝑎𝑡 can easily be separated. Accordingly, comparison
of conditioned values of 𝑎𝑡,𝑝 = ∇ ⋅ 𝐮𝑝 − 𝐧 ⋅ ∇𝐮𝑝 ⋅ 𝐧 and 𝑎𝑡,𝑠 = −𝐧 ⋅ ∇𝐮𝑠 ⋅ 𝐧
offers the opportunity to explore the effects of potential and solenoidal
velocity fields on flame surface area generation.

Total (black solid line), potential (red dotted line), and solenoidal
(blue dashed line) conditioned strain rates ⟨𝑎𝑡|𝜉⟩ are compared in Fig. 2.
Since similar results were obtained from various flame-brush zones,
only results sampled from the entire flame brush are reported. Note that
the differently conditioned strain rates ⟨𝑎𝑡⟩𝜉 ≡ ⟨𝑎𝑡|∇𝑐𝐹 ||𝜉⟩∕⟨|∇𝑐𝐹 ||𝜉⟩,
which are associated with the transport equation for |∇𝑐𝐹 | [40], evolve
similarly to ⟨𝑎𝑡|𝜉⟩, cf. a dotted-dashed line with another line of the same
color.

Fig. 2 shows that, first, the mean strain rates, i.e., 𝑎𝑡, 𝑎𝑡,𝑝, and
𝑎𝑡,𝑠 plotted in dotted-dashed lines, and the flame-conditioned strain
rates ⟨𝑎𝑡⟩𝜉 , ⟨𝑎𝑡,𝑝⟩𝜉 , and ⟨𝑎𝑡,𝑠⟩𝜉 , respectively, plotted in solid, dotted, and
dashed lines, respectively, are close to one another, i.e., 𝑎 ≈ ⟨𝑎 ⟩ ,
𝑡 𝑡 𝜉
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Fig. 3. Dependencies of normalized conditioned magnitude of tangential vorticity
𝜏𝑓 ⟨

√

(𝝎 − (𝐧 ⋅ 𝝎)𝐧)2|𝜉⟩ (dotted lines) and enstrophy 𝜏𝑓 ⟨
√

𝜔2
|𝜉⟩ (other lines) on 𝜉,

sampled from bands of 𝑐∗𝑖 −0.01 < 𝑐𝐹 (𝑥, 𝑡) < 𝑐∗𝑖 +0.01, with 𝑐∗𝑖 being specified in legends.

𝑎𝑡,𝑝 ≈ ⟨𝑎𝑡,𝑝⟩𝜉 , and 𝑎𝑡,𝑠 ≈ ⟨𝑎𝑡,𝑠⟩𝜉 under conditions of the present study.
econd, the total strain rate 𝑎𝑡 (⟨𝑎𝑡⟩𝜉) or the potential strain rate 𝑎𝑡,𝑝

(⟨𝑎𝑡,𝑝⟩𝜉) is significantly larger than the magnitude |𝑎𝑡,𝑠| (|⟨𝑎𝑡,𝑠⟩𝜉 |) of the
solenoidal strain rate. Third, the total strain rates 𝑎𝑡 and ⟨𝑎𝑡⟩𝜉 or the
otential strain rates 𝑎𝑡,𝑝 and ⟨𝑎𝑡,𝑝⟩𝜉 are positive, whereas the solenoidal
train rates 𝑎𝑡,𝑠 and ⟨𝑎𝑡,𝑠⟩∕𝜉 are negative. Thus, under conditions of

the present study, strain rates created by the potential velocity field
work predominantly to increase flame surface area, whereas strain rates
created by the solenoidal velocity field work statistically to reduce the
area, in line with discussion of Fig. 1. Consistency of results shown in
Figs. 1 and 2 validates the present analysis, because the results have
been obtained using different numerical diagnostic tools.

3.3. Vorticity rotation in flames

Since the incoming vorticity is widely accepted to wrinkle flame
surface and increase its area in a turbulent flow, the DNS data shown
in Figs. 1 and 2 imply that thermal expansion results in generating
counter-rotating (with respect to the incoming flow) vorticity, with
strain rates created by the corresponding solenoidal velocity fluctu-
ations statistically smoothing flame surface. The following discussion
aims at supporting this interpretation of the DNS data.

Fig. 3 shows that, within flames, the conditioned enstrophy ⟨

√

𝜔2
|𝜉⟩

decreases with increasing 𝜉 at low 𝑐𝐹 (𝐱, 𝑡), i.e., on the flame unburned
side, with the effect being most pronounced at low 𝑐𝐹 , i.e., at the flame-
brush leading edge. Here, 𝜔2 = 𝝎⋅𝝎 and 𝝎 = ∇×𝐮 is vorticity vector. At
larger 𝑐𝐹 (𝐱, 𝑡), dependencies of ⟨

√

𝜔2
|𝜉⟩ on 𝜉 are weak if 𝑐𝐹 ≤ 0.5, but

√

𝜔2
|𝜉⟩ is increased with 𝜉 at 𝑐𝐹 > 0.5 and 𝜉 > 0.1. Besides, comparison

f curves plotted in dotted lines with other curves in Fig. 3 shows that
ontribution of the normal (to the flame) component of the vorticity
ector 𝝎 to enstrophy is much less than contribution of the tangential
orticity 𝝎𝑡 = 𝝎−(𝐧 ⋅𝝎)𝐧. In other words, the vectors 𝝎 and 𝐧 misalign,
n line with earlier DNS studies of turbulent mixing [47] and highly
urbulent premixed flames [48].

To further explore the above trends, let us consider the following
ell-known enstrophy transport equation [7,17,49]

1
2
𝜕𝜔2

𝜕𝑡
+ 1

2
𝑢𝑘

𝜕𝜔2

𝜕𝑥𝑘
= 𝜔𝑖𝜔𝑘

𝜕𝑢𝑖
𝜕𝑥𝑘

⏟⏞⏞⏟⏞⏞⏟
𝑇1

−𝜔2 𝜕𝑢𝑘
𝜕𝑥𝑘

⏟⏞⏟⏞⏟
𝑇2

+ 𝜀𝑖𝑗𝑘𝜔𝑖
1
𝜌2

𝜕𝜌
𝜕𝑥𝑗

𝜕𝑝
𝜕𝑥𝑘

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑇3

+ 𝜀𝑖𝑗𝑘𝜔𝑖
𝜕
𝜕𝑥𝑙

(

1
𝜌
𝜕𝜏𝑘𝑙
𝜕𝑥𝑗

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑇4

(3)

where 𝜔𝑖 is a component of the vorticity vector 𝝎,

𝜏𝑘𝑙 = 𝜌𝜈
(

𝜕𝑢𝑘 +
𝜕𝑢𝑙 − 2 𝛿𝑘𝑙

𝜕𝑢𝑘
)

4

𝜕𝑥𝑙 𝜕𝑥𝑘 3 𝜕𝑥𝑙
Fig. 4. Variations of normalized conditioned vortex stretching terms 𝜏3𝑓 ⟨𝑇1|𝜉⟩ (black
olid lines), dilatation terms 𝜏3𝑓 ⟨𝑇2|𝜉⟩ (blue dashed lines), and baroclinic torque terms
3
𝑓 ⟨𝑇3|𝜉⟩ (red dotted-dashed lines) sampled from (a) 0.09 < 𝑐𝐹 (𝑥, 𝑡) < 0.11 and (b)
.49 < 𝑐𝐹 (𝑥, 𝑡) < 0.51. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

s the viscous stress tensor, 𝛿𝑘𝑙 and 𝜀𝑖𝑗𝑘 designate Kronecker delta and
yclic permutation tensor, respectively. In a typical constant-density
urbulent flow, the vortex-stretching term 𝑇1 describes vorticity gener-
tion and is counter-balanced by the viscous dissipation term 𝑇4 [50],
hereas the dilatation term 𝑇2 and the baroclinic torque term 𝑇3 vanish.
n the contrary, the dilatation term 𝑇2 and the baroclinic torque

erm 𝑇3 are known to dominate on the r.h.s. of Eq. (3) in weakly
urbulent flames, with the former (latter) term reducing (increasing,
espectively) enstrophy [51,52]. At very high 𝐾𝑎, the vortex-stretching
erm 𝑇1 results statistically in increasing 𝜔2, overwhelms 𝑇2 and 𝑇3,
ut is counter-balanced by the viscous term 𝑇4 [48,49], which results
tatistically in decreasing 𝜔2. Since the focus of the following discussion
s placed on vorticity generation, the viscous term 𝑇4 will not be
nalyzed in the rest of the paper.

The following trend shown in Fig. 4 is of the most importance for
nderstanding the results emphasized in Figs. 1 and 2: the baroclinic
orque term ⟨𝑇3|𝜉⟩ is negative at 𝑐𝐹 = 0.1 and 𝑐𝐹 (𝐱, 𝑡) < 0.3, see curve
lotted in red dotted-dashed line in Fig. 4a. Such a trend is much less
ronounced in the middle of the flame brush, see Fig. 4b. Therefore, in
he leading flame zones and in the vicinity of the flame-brush leading
dge, the two terms on the r.h.s. of Eq. (3) that vanish in the case of
constant density and, hence, are controlled by combustion-induced

hermal expansion, i.e., the dilatation and baroclinic torque terms 𝑇2
nd 𝑇3, respectively, work jointly to suppress the incoming vorticity.
owever, while the former term works simply to reduce the vorticity
agnitude, baroclinic torque not only decreases the incoming vorticity
agnitude, but also generates vorticity in another tangential (to flame

urface) direction (the normal component of ∇𝜌×∇𝑝 vanishes, because
he vectors ∇𝜌∕|∇𝜌| and 𝐧 are almost collinear).

This difference in the influence of dilatation and baroclinic torque
n the incoming vorticity is shown by the following vorticity transport
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Fig. 5. Dependencies of the conditioned cosine ⟨𝝎 ⋅ (∇𝜌 × ∇𝑝)∕(|𝝎| |∇𝜌 × ∇𝑝|)|𝜉⟩ of
n angle between vorticity and baroclinic torque vectors on 𝑐∗𝑖 with the conditioning
ariable 𝜉 being specified in legends. Black solid line shows unconditioned results.

quation [7,17,49]
𝜕𝜔𝑖
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+ 𝑢𝑘
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𝐓3
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𝜕
𝜕𝑥𝑗

(

1
𝜌
𝜕𝜏𝑘𝑙
𝜕𝑥𝑙
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⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐓4

. (4)

hile the dilatation term 𝐓2 is proportional to 𝝎, directions of vorticity
nd baroclinic torque vectors are different in a general case. If cosine
os 𝛼 = 𝝎 ⋅ (∇𝜌 × ∇𝑝)∕(|𝝎| |∇𝜌 × ∇𝑝|) of the angle 𝛼 between the two
ectors is negative, as happens at low 𝑐𝐹 (𝐱, 𝑡) and low 𝑐𝐹 (𝑥, 𝑡), see Fig. 5,

baroclinic torque not only suppresses the incoming vorticity, but also
generates vorticity in the tangential direction 𝐭2 that is perpendicular
to the direction 𝐭1 of the incoming tangential vorticity. Since the
magnitude of the negative ⟨cos 𝛼|𝜉⟩ is significantly less than unity, see
Fig. 5, projection of ∇𝜌×∇𝑝 on 𝐭2 is statistically larger than its projection
on 𝐭1, i.e., the latter effect (vorticity generation) is stronger, but can still
weakly affect enstrophy evolution, because the corresponding sub-term
in 𝑇3 in Eq. (3) involves a small 𝜔𝑡,2. Besides, unless 𝜔𝑡,2 is large, the
influence of dilatation on this vorticity is weak, because dilatation term
in the 𝐭2-component of Eq. (4) is multiplied with 𝜔𝑡,2.

Thus, at low 𝑐𝐹 (𝐱, 𝑡) and low 𝑐𝐹 (𝑥, 𝑡), (i) dilatation and baroclinic
torque work jointly to suppress the incoming vorticity, (ii) baroclinic
torque generates vorticity in another tangential (to the local flame)
direction, and (iii) this effect is weakly damped by dilatation unless
the magnitude 𝜔𝑡,2 of the generated vorticity reaches a sufficiently high
value. As a result of such effects, the incoming vorticity is rotated in the
leading flame zones, i.e., at low 𝑐𝐹 (𝐱, 𝑡).

It is worth stressing, however, that these effects neither reduce
enstrophy, nor damp turbulence in the largest part of the studied flame
brush. Indeed, comparison of results plotted in different lines in Fig. 3
indicates that enstrophy is increased by 𝑐𝐹 if the mean 𝑐𝐹 (𝑥, 𝑡) ≤ 0.7
and the local 𝑐𝐹 (𝐱, 𝑡) > 0.2. Moreover, Fig. 4b shows that baroclinic
torque dominates dilatation if 𝑐𝐹 (𝑥, 𝑡) ≈ 0.5 and 𝑐𝐹 (𝐱, 𝑡) > 0.3. Thus,
the effects (i)-(iii) emphasized earlier cause rotation of vorticity vector,
rather than reduce 𝜔2.

This rotation of vorticity vector is illustrated in Fig. 6, which shows
variations of the conditioned cosine ⟨cos 𝛾|𝜉⟩ of the angle 𝛾 between (i)
local and (ii) incoming tangential components of vorticity vector. This
cosine is calculated for vectors 𝝎𝑡 = 𝝎 − (𝝎 ⋅ 𝐧)𝐧 taken in two points;
(i) the local point, where 𝑐𝐹 (𝑥2, 𝑦, 𝑧, 𝑡) ≈ 𝜉, and (ii) an upstream point,
where 𝑐𝐹 (𝑥1, 𝑦, 𝑧, 𝑡) ≈ 0.01. To avoid interpolation, these data were
solely sampled from lines almost parallel to 𝑥-axis, i.e., from horizontal
lines that contain at least one point where |𝑛𝑥| > 0.95 provided that
5

0.3 < 𝑐𝐹 (𝐱, 𝑡) < 0.7 (the reported trends are weakly sensitive to the l
Fig. 6. Conditioned cosines ⟨cos 𝛾|𝜉⟩ of the angle 𝛾 between tangential components
of the local vorticity vector 𝝎(𝑥2 , 𝑦, 𝑧, 𝑡) and the vorticity vector 𝝎(𝑥1 , 𝑦, 𝑧, 𝑡) evaluated
in the most left upstream point characterized by 𝑐𝐹 (𝑥, 𝑦, 𝑧, 𝑡) > 0.01. Data are sampled
rom different bands of 𝑐∗𝑖 −0.01 < 𝑐𝐹 (𝑥, 𝑡) < 𝑐∗𝑖 +0.01, with 𝑐∗𝑖 being specified in legends.

hreshold value of |𝑛𝑥| provided that it is larger than 0.9). A rapid
ecrease in ⟨cos 𝛾|𝜉⟩ with increasing 𝜉 is clearly observed at 𝜉 < 0.2
data sampled at 𝜉 < 0.05 are highly scattered and not shown). As

result, ⟨cos 𝛾|𝜉⟩ < 0.4 if 𝜉 > 0.2, i.e., the vectors 𝝎𝑡(𝑥1, 𝑦, 𝑧, 𝑡) and
𝑡(𝑥2, 𝑦, 𝑧, 𝑡) have (statistically) almost perpendicular directions.

At larger 𝑐𝐹 (𝐱, 𝑡) and 𝑐𝐹 (𝑥, 𝑡), cosine of an angle between 𝝎 and
𝜌 × ∇𝑝 becomes positive, see Fig. 5, and enstrophy is increased by
aroclinic torque. Indeed, (i) ⟨𝑇3|𝜉⟩ is positive and significantly larger
han ⟨|𝑇2||𝜉⟩ in the middle of the flame brush, cf. curves plotted in red
otted-dashed and blue dashed lines in Fig. 4b, and, accordingly, (ii)
𝜔2

|𝜉⟩ increases with increasing 𝑐𝐹 (𝑥, 𝑡) if 𝑐𝐹 (𝑥, 𝑡) < 0.8 and 𝑐𝐹 (𝐱, 𝑡) >
.3, see Fig. 3. Thus, baroclinic torque not only damps incoming vortic-
ty in the leading flame zones, but also generates vorticity in another
angential direction, with this rotation of vorticity vector contributing
o flame-generated turbulence at larger 𝑐𝐹 (𝐱, 𝑡). However, as directions
f the incoming vorticity and vorticity generated by baroclinic torque
re different, see Fig. 6, solenoidal velocity fluctuations associated
ith the latter vorticity can work to statistically smooth flame-surface
erturbations, as happens under conditions of the present study, see
igs. 1 and 2. The point is that the flame surface is created not only
y solenoidal velocity fluctuations, but also and mainly by potential
elocity fluctuations generated by combustion-induced pressure per-
urbations, with the mean strain rate created by the potential velocity
luctuations being positive and large, see Fig. 2. It is not known a priori
hether effects of such a potential turbulence and solenoidal turbu-

ence generated by baroclinic torque at large 𝑐𝐹 (𝐱, 𝑡) on flame surface
erturbations are similar or opposite. The above analysis shows that
he two effects are opposite under conditions of the present study, see
ig. 2. This situation is not unique, with the same phenomenon being
redicted by the theory of hydrodynamic instability of an infinitely
hin laminar flame sheet [5]. According to the theory, wrinkles of a
aminar flame sheet grow under the influence of potential flow per-
urbations, whereas solenoidal velocity perturbations generated behind
he sheet work to mitigate the wrinkle growth [5–7]. Nevertheless,
urther research into the influence of combustion-generated vorticity
n flame surface area is required at various 𝐾𝑎, for different flame
onfigurations, e.g., jet flames [42,43,45], etc.

Finally, it is worth noting that vorticity rotation in premixed turbu-
ent flames, explored in the present work, has some common features
ith the phenomenon of vorticity tilting and vortex re-connection [53,
4], documented experimentally by Holzner et al. [55] in homogeneous
onstant-density turbulence, or rotation of strain-rate eigenframe in
remixed flames, investigated by Zhao et al. [56] in their DNS study
f weakly turbulent combustion.

. Concluding remarks

Complex-chemistry DNS data obtained earlier from a moderately

ean hydrogen-air turbulent flame were analyzed adopting several dif-
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ferent numerical diagnostic techniques, with results yielded by all these
techniques indicating consistent trends, thus, validating the performed
analysis. Specifically, the analysis shows that the rotational motion
acts to smooth wrinkles of iso-scalar surfaces within local preheat
and reaction zones and, consequently, to reduce flame surface area.
This physical mechanism arises because baroclinic torque works to
suppress the incoming tangential (to the flame) vorticity, but to gen-
erate vorticity in another tangential direction. Under conditions of
the present study, solenoidal velocity fluctuations associated with the
latter (flame-generated) vorticity work statistically to smooth flame
surface and flame surface area is primarily created by potential velocity
perturbations caused by combustion-induced thermal expansion. Such
effects play an important role even in sufficiently intense small-scale
turbulence considered in this work (a ratio of laminar flame thickness
to Kolmogorov length scale is about 20 and 𝐾𝑎 > 1).

The present results, earlier DNS data [14,15] obtained from weakly
turbulent single-step-chemistry flames, and experimental data by Stein-
berg et al. [13] challenge the classical concept of combustion accel-
eration due to flame-generated turbulence [57], at least if turbulence
is associated with rotational motion. When compared to the earlier
aforementioned data [13–15], the present results were obtained from
sufficiently intense, small-scale turbulence characterized by Damköhler
and Karlovitz numbers on the order on and larger than unity, respec-
tively. As far as highly turbulent flames are concerned, the influence
of combustion-induced thermal expansion on vorticity field is expected
to vanish at 𝐷𝑎 ≪ 1 and 𝐾𝑎 ≫ 1 [48,49], see also recent review
articles [16,17].

Novelty and significance statement

The novelty of research consists in demonstrating that, even in
intense, small-scale turbulence, flame surface area is mainly created
by potential velocity fluctuations generated due to thermal expansion,
whereas solenoidal velocity fluctuations work statistically to reduce the
area. These findings are significant, because they challenge the clas-
sical concept of flame-generated turbulence and show that turbulence
faced by a flame differs fundamentally from constant-density rotational
motion.
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